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A quantitative theory of current-induced step bunching on Si(111)
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We use a one-dimensional step model to study quantitatively the growth of step bunches on Si(111)
surfaces induced by a direct heating current. Parameters in the model are fixed from experimental
measurements near 900◦C under the assumption that there is local mass transport through surface
diffusion and that step motion is limited by the attachment rate of adatoms to step edges. The
direct heating current is treated as an external driving force acting on each adatom. Numerical
calculations show both qualitative and quantitative agreement with experiment. A force in the
step down direction will destabilize the uniform step train towards step bunching. The average
size of the step bunches grows with electromigration time t as tβ, with β ≈ 0.5, in agreement
with experiment and with an analytical treatment of the steady states. The model is extended to
include the effect of direct hopping of adatoms between different terraces. Monte-Carlo simulations
of a solid-on-solid model, using physically motivated assumptions about the dynamics of surface
diffusion and attachment at step edges, are carried out to study two dimensional features that are
left out of the present step model and to test its validity. These simulations give much better
agreement with experiment than previous work. We find a new step bending instability when the
driving force is along the step edge direction. This instability causes the formation of step bunches
and antisteps that is similar to that observed in experiment.

68.35.Ja,68.10.Jy,68.55.Jk,05.70.Ln

I. INTRODUCTION

In 1989 Latyshev et al.1 made the startling discovery
that a direct heating current can induce step bunching
on vicinal Si(111) surfaces. When the sample is resis-
tively heated with direct current, steps can rearrange
into closely spaced step bunches separated by wide ter-
races. Around 900◦C, the step train is unstable towards
step bunching when the current is in the step-down direc-
tion, but is stable when the current direction is reversed.
Surprisingly, as the temperature is increased to 1190◦,
the stable and unstable current directions are reversed,
i.e., the step train is unstable with step-up current and
stable with step-down current. There is another such
reversal as the temperature is increased further.
Since then the phenomenon has received a great deal

of attention. Theoretical work has mainly concen-
trated on two goals: understanding the microscopic
physics underlying the instability towards step bunch-
ing and the reversal of the unstable current direction
with temperature,2–4 and determining the mesoscopic
evolution of the surface morphology as a result of the
instability.5–11 Recently Williams et al.12–15 carried out
a series of measurements on Si(111) surfaces at 900◦C,
to provide a quantitative understanding of the dynam-
ics. By controlling the experimental system and com-
paring with theoretical models, they were able to ex-
tract detailed information about the mechanism and
to determine quantitative values of relevant parame-
ters. Although the details of the microscopic mecha-
nisms leading to the change in the destabilizing current
direction with varying temperature are still not fully

understood,2–4 we show here that there exists a reliable
mesoscopic theory that can provide quantitative agree-
ment with a variety of experimental results in the tem-
perature regime (900◦C) studied by Williams et al.
In Secs. II and III, we briefly review some of the ex-

perimental and theoretical work that led to our present
model. We focus on the case where the step motion is
limited by the attachment rate of adatoms to the step edge
(in contrast to being limited by the diffusion rate on ter-
races). We also assume local mass transport by surface
diffusion. These assumptions yield a minimal mesoscopic
model that is consistent with all previous experimental
results. In Sec. IV we give numerical results from this
model using realistic parameter values and interpret and
analyze some of the results in Sec. V. We briefly discuss
in Sec. VI some effects of step permeability16,17 (direct
adatom hops from one terrace to another), which might
be important in other systems, e.g., Si(001). In Sec. VII
we present some results of Monte-Carlo simulations of
a microscopic solid-on-solid model, using physically mo-
tivated assumptions about the dynamics of surface dif-
fusion and attachment at step edges. These results are
in qualitative agreement with experiment, in contrast to
previous work9–11 using conventional Metropolis dynam-
ics. They also help in the understanding of additional
2D features and instabilities that cannot be described
by the simple 1D step model. Final remarks are given
in Sec. VIII.
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FIG. 1. Illustration of the labeling of steps and terraces
and kinetic coefficients.

II. 1D STEP MODEL WITH EXTENDED
VELOCITY FUNCTIONS

Vicinal surfaces, which are created by a miscut along a
low-index plane below the roughening temperature, are
most naturally and usefully described by a model of in-
teracting steps of the same sign. Because of the inherent
anisotropy of the underlying crystal structure, these sur-
faces often exhibit quasi one dimensional features, thus
making a 1D step model useful and accurate. Also the
number of steps is often conserved as the surface evolves,
permitting further simplifications in the analysis.
The change in the morphology of vicinal surfaces can

be described in terms of the velocity of each step as
long as no steps are created or destroyed. The classic
Burton-Cabrera-Frank (BCF)18 treatment assumes that
the mass transfer is governed by a set of adatom dif-
fusion equations on each terrace, with steps acting as
perfect sinks and sources for adatoms (or vacancies) so
that local equilibrium is always maintained. However,
the original BCF picture is valid only for simple materi-
als where adatom diffusion is the rate limiting process.
Extensions of the BCF model can be made to include
a finite attachment/detachment term in the boundary
conditions. This is needed for materials like the silicon,
where the atom exchange rate between steps and terraces
is not fast enough to permit the adatom concentration
near the step edge to achieve local equilibrium.
In his important work on the instability induced by a

direct heating current on Si(111), Stoyanov2 proposed
such a modified BCF model, including both a finite
adatom attachment/detachment rate at step edges and
an adatom drift velocity (or equivalently, an external
driving force due to the electric field). Natori7 extended
the work of Stoyanov to include step repulsions. The idea
of incorporating step interactions in a generalized BCF
model has been further developed by Sato and Uwaha.6

To describe the exchange of atoms or vacancies be-
tween steps and their neighboring terraces (attach-
ment/detachment), we use a linear kinetics theory and
write the net surface flux from step n to terrace n (see
Fig. 1 for the labeling) as

j+n =
κ+ceq
kT

[µn − µt(x+
n )], (1a)

and the flux from step n to terrace n− 1 as

− j−n =
κ−ceq
kT

[µn − µt(x−
n )], (1b)

where µn is the atom chemical potential at step n, de-
fined as the increase in free energy per atom when atoms
attach to the step. For a 1D step train with elastic and
entropic step repulsions, this can be written as19

µn = 2gh3a2
(

1

w3
n−1

− 1

w3
n

)

, (2)

where a2 is the area of a single atomic cell on the surface,
h the single step height, and wn ≡ xn+1−xn the width of
terrace n. Here the parameter g is just the coefficient of
the s3 term in the well-known Gruber-Mullins20 form for
the projected free energy of vicinal surfaces with slope s.
µt(x±

n ) is the adatom chemical potential on the terrace
adjacent to step n, approaching xn from right hand (+)
and left hand (−) side.21 ceq is the equilibrium adatom
concentration on terraces. We assume there is no asym-
metry for the kinetic coefficient for adatom attachment
from upper and lower terraces (κ+ = κ−).
To determine the adatom chemical potential on ter-

races µt(x), we need to know the mass transport mech-
anism on the surface. If it is much easier for adatoms to
hop directly across a step edge from one terrace to an-
other one in comparison to attachment at the step edge,
then the adatom chemical potential becomes a constant
on all terraces. We refer to this as non-local mass trans-
port (case A). The other limit is when there is no signifi-
cant hopping of adatoms over the step edge, as assumed
in the BCF model; we call this the limit of local mass
transport (case B). Experiments on Si(111) show that
the relaxation rate of a step bunch with N steps scales
with N−α where α = 4.3 ± 0.5. As we have discussed
in detail elsewhere,14,22 this is consistent with the local
mass transport limit (case B), and we will assume this
limit in most of this paper. In Sec. VI we will consider
a more general scenario.
Assuming local mass transport, the step velocities

vn(t) can be determined by solving the diffusion equa-
tion for adatoms on terraces with boundary conditions
at step edges governed by linear kinetics. The equations
can be written generally in an extended velocity function
form:23,24

vn = f+(wn;µn, µn+1) + f−(wn−1;µn−1, µn) (3)

We will not write down the general form for the velocity
functions f± for the electromigration problem since it is
very complicated and not very instructive for our pur-
pose. A simple limit that is consistent with experiment
will be discussed below. More general expressions have
been given by many authors.25

In studies of surface dynamics, it is often convenient
to consider idealized models where the kinetics is limited
by a few slow processes on the surface, and the rates
of other faster processes are taken to infinity. For BCF
models, neglecting evaporation and deposition, there are
two basic rates, the attachment/detachment rate κ, and
the adatom diffusion rate Ds. Bartelt et al.

26 estimated
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TABLE I. Sets of parameters which give a good fit to
the relaxation of step bunches. We use Γ = 2ceqa

4κ
(ceqa

2 = 0.2ML) to compare with previous work. The ta-
ble is taken from Ref. 15.

Parameter Set d(Å) q(e) Γ(Å3/s) Ds(Å
2/s)

A 100000 0.006 3× 107 5.2 ×1011

B 5000 0.006 4× 107 3.4 ×1010

C 100 0.03 3× 108 5.2 ×109

D 10 0.2 2× 109 3.5 ×108

the attachment/detachment rate from the step fluctua-
tions of Si(111) at 900◦C under the assumption that at-
tachment/detachment is the rate limiting process, while
Pimpinelli et al.27 estimated from the same data the dif-
fusion rate under the assumption that adatom diffusion
is the rate limiting process. It is useful to define a length
scale d ≡ Ds/κ. When d is very small, the step dynamics
is said to be diffusion limited, and when d is very large,
the dynamics is attachment/detachment limited.
However, direct estimation of this ratio is difficult.

For example, Table I lists several sets of parameters
that give good agreement with experiments15 on the
electromigration-driven relaxation of step bunches on
Si(111), with d ranging from 10Å to 105Å. Physically
d has to be finite and whether a system is diffusion lim-
ited or attachment/detachment limited depends on the
comparison of d with other length scales, e.g., the typical
terrace width. Here we refer to the mathematical limit
d → ∞ as the complete attachment/detachment limited
model, and we call the limit d → 0 the complete diffusion
limited model.
As suggested by Table I, the relaxation experiments

can be explained using an effective charge q of the
adatoms that reaches a finite and physically reasonable
value as d → ∞. In contrast, q must tend to the un-
physical limit ∞ when d → 0. Therefore the complete
attachment/detachment limited model is well-defined,
and we will use this limit to illustrate the mechanism
for electromigration. As we show below, Eq. (3) sim-
plifies considerably in this limit. Moreover, a value of
d ≥ 3000Å is predicted by extrapolating the diffusion
rate from higher temperatures using a diffusion activa-
tion energy13 of 1.1eV. However, numerical solutions of
Eq. (3) using any of the parameter sets in Table I are
consistent with the step bunching experiments, including
the power law for coarsening.
As in the Stoyanov model,2 we assume that there is

a force F acting on each adatom because of the electric
field. The adatom flux on terrace n under this driving
force is

jn =
Dsceq
kT

(

−∂µt

∂x
+ F

)

, (4)

With complete attachment/detachment limited kinetics,
Ds tends to infinity relative to the attachment rate κ,
or jn. Therefore the adatom chemical potential µt(x)

has a constant gradient, F , on each terrace. In gen-
eral, µt(x) is affected by the motion of the neighboring
steps, but usually the steps move very slowly so that
they can be treated as effectively stationary as far as the
diffusion of adatoms is concerned. Under this quasistatic
approximation,28 at any given time, the total surface flux
into terrace n from the two neighboring steps (j+n −j−n+1)
equals to the total amount of evaporation from this ter-
race, which is given by ceqwn/τ ≡ wn/τe, where τ is the
average lifetime of an adatom on the terrace before it
evaporates. With these approximations, the step veloci-
ties in Eq. (3) can be written in the simple form23,24

vn =
κceqa

2

2kT
(2µn − µn+1 − µn−1) + k+wn + k−wn−1,

(5)

where

k± = ±κceqa
2F

2kT
+

1

2τe
. (6)

III. EXPERIMENTAL DETERMINATION OF
THE PARAMETERS

Williams et al. devised a series of experiments to mea-
sure the various parameters and also test the assump-
tions about the mass transport limits discussed in the
previous section. As mentioned earlier, on Si(111) at
900◦C, the relaxation of step bunches is consistent with
the local mass transport limit. The step interaction pa-
rameter g can be measured29,30 from the distribution
of terrace widths and step positions at equilibrium, and
has an estimated value around 0.015eV/Å2. Assuming
attachment/detachment limited kinetics for mass trans-
port, the kinetic coefficient κ can be measured indepen-
dently from the thermal fluctuations of the steps and the
relaxation of step bunches. Rather than using κ, we de-
fine Γ = 2ceqa

4κ to compare with earlier work. Γ gives
the step mobility for the Brownian motion of an iso-
lated step26 and is measured to be around 5× 107Å3/s.
This value also gives a good fit to the relaxation of step
bunches, thus providing additional evidence supporting
the local mass transport assumption aside from the scal-
ing behavior mentioned before.
The force on adatoms due to the direct heating current

can be measured from the relaxation of the step bunches
that occurs after reversing the current to the stable
direction.15 The force acting on each adatom can be con-
veniently described in terms of an effective charge q, with
F = qE, where the experimental value of E = 7V/cm.
Table I lists four sets of parameters that give good fits
to the decay of step bunches with a direct current in
the stabilizing direction at 900◦C. As mentioned before,
as d becomes very large, the values of q and Γ reach

3
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FIG. 2. Evolution of average bunch size using parameter
set A. The solid line is a fit to tβ with β = 0.50.

limiting values, which we use in the complete attach-
ment/detachment limited model. Other relevant param-
eters include the average terrace width w0 = 1100Å, and
the evaporation time for one monolayer τe = 1250s.13

IV. NUMERICAL RESULTS AND COMPARISON
WITH EXPERIMENTS

When the adatom drift velocity is in the step down
direction (F < 0), one can show from a linear stability
analysis using the parameters in Table I that a uniform
step train is unstable towards step bunching. The evo-
lution of the step bunches is determined by numerically
integrating Eq. (3), starting from a step train with small
random deviations from uniform spacing. The system
continues to coarsen by forming larger and larger step
bunches. Figure 2 shows the average bunch size Nave for
a system of 2049 steps as a function of time, using Eq. (5)
for the complete attachment/detachment limited model.
A bunch is defined by a number of adjacent steps with
no terraces between them larger than w0/2. The average
bunch size is defined by

∑

n nρn/
∑

n ρn, where ρn is the
number (or density) of bunches consisting of n step. It
can be fitted by a tβ growth rate with β ≈ 0.50. Results
using the more complicated velocity functions in Eq. (3)
obtained from solutions of a generalized BCF equation
and parameter set A are almost indistinguishable on this
scale.
This compares very well with the STM results of

Yang, Fu, and Williams.13 They show at both 945◦C
and 1245◦C that the growth of the facet sizes Z be-
tween two step bunches satisfies tβ where β ≈ 0.5. It
is a good approximation to relate the average number of
steps in a bunch Nave to Z/w0. They observed that at
945◦C, after about 120 min of annealing time, the aver-
age terrace width between step bunches grows to about
3500Å. In the numerical simulations, the average ter-
race width grows to about 6800Å in the same time. We
consider this quite satisfactory agreement, given the un-
certainties in the values of the experimental parameters

we used. Thus, not only does the step model give the
correct power law growth rate, it also gives good quan-
titative agreement with experimental results at 945◦C.
Simulations using other sets of parameters in Table

I produce slightly different results, but all agree with
the experimental data within the errors in measured pa-
rameters. Moreover, they all have approximately a t1/2

coarsening rate during the time simulated and exper-
imentally observed. Therefore we can not determine a
unique set of microscopic parameters accurately from the
coarsening rate alone.
Dobbs and Krug11 also obtained a t1/2 coarsening

rate from simulations of a 2D solid-on-solid model us-
ing Metropolis dynamics. However, they obtained the
t1/2 behavior only when there is significant lateral fluc-
tuations of step bunches as can sometimes occur in the
later stages of coarsening, while initially the growth law
they observed went as t1/4. Experimentally there is no
such transition, and we obtain this kind of coarsening
from a 1D model with straight steps. Moreover, as dis-
cussed below in Sec. VII, there are other unphysical
surface features that arise from the use of Metropolis
dynamics to describe Si(111) and related systems, and
we suggest there an alternative dynamical scheme that
gives good qualitative agreement with experiment.
As another application of the step model, we also sim-

ulate the step bunching occurring under growth condi-
tions. It is well known that a Schwoebel barrier31 has
very different effects on growth and evaporation. For
example, if there is an additional barrier for an adatom
to attach to a step edge from the upper terrace, a 1D
step train will be stabilized under growth and destabi-
lized under evaporation. However, even in the absence
of a Schwoebel asymmetry (that is, even when κ+ = κ−)
as assumed here, simulations of the present step model
under growth conditions show a decrease in the bunch-
ing rate with increasing deposition rate. Figure 3 shows
the dependence of the average bunch size as a function of
time for different growth conditions. It is useful to define
R̃ = Rτ/ceq as the ratio between deposition and desorp-

tion rates. As R̃ increases, the bunching rate decreases,
in good agreement with the experimental results of Yang,
Fu, and Williams.13 This decrease in the coarsening rate
with increasing deposition was also noted by Tersoff et
al.32 in their study of stress induced step bunching. As
Kandel and Weeks5 argued, when the step train is trav-
eling in a certain direction (e.g., due to deposition or
evaporation), a step at the front end of a step bunch
can leave the bunch and join with the step bunch in
front of it, causing an exchange of steps between step
bunches. As the growth rate increases, the velocities of
these crossing steps get larger and larger, so more de-
bunching occurs, thus reducing the coarsening rate. A
detailed study of the effect of debunching requires a 2D
model and is beyond the scope of this paper.
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FIG. 3. Effects of growth conditions on the step bunching.
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FIG. 4. Typical profile of step configurations when step
bunches are induced by a force acting on adatoms in the step
down direction.

V. ANALYSIS: QUASI-STEADY STATE AND
COARSENING RATE

In this section we will try to understand analytically
some of the numerical results. Although it is straightfor-
ward to use the solution of the diffusion equation to de-
termine the velocity functions in Eq. (3) when simulating
the step bunching numerically, it is more convenient and
instructive to consider the simple linear velocity function
model of Eq. (5). Initially we also neglect any deposition
or evaporation.
When the surface flux j is a constant everywhere, the

surface is in a steady state. As we will show later, such
a steady state is possible when F is in the step down
direction. Figure 4 is snapshot of the profile of the sur-
face during one particular simulation. Assuming that
the step bunch between A and B is in a steady state
with a surface atom flux j∗, we have from Eqs. (1a) and
(1b),

(Ns − 1)j∗ =
κceq
2kT

(µA − µB + F wAB), (7)

where Ns is the number of steps in the bunch and wAB

is the distance between A and B. On the flat terrace
between B and A′ the flux is given by

j∗ =
κceq
2kT

(µB − µA′ + F wBA′). (8)

For a periodic array of step bunches, µA = µA′ , and the
steady state flux is then

j∗ss =
1

Ns

κceq
2kT

F wAA′ =
κceq F w0

2kT
. (9)

Therefore the steady state adatom current is indepen-
dent of the size of the step bunches. This result is valid
for a periodic array of step bunches and is important
in determining the time scaling exponent, as it will be
shown at the end of this section.
The steady state profile of the step bunch can be cal-

culated numerically. Here we go to the continuum limit,
which is a good approximation when the number of steps
in the bunch is large. If z(x) denotes the height of
the surface, then the slope is zx(x) ≡ ∂z/∂x. Using
the continuum version of the Gruber-Mullins free energy
functional20,33

H = Ly

∫

g|zx(x)|3 dx, (10)

which is appropriate for vicinal surfaces below the ter-
race roughening temperature, we can write the adatom
chemical potential as33

µ(x) = a2h
δH

δz
= −6ga2h|zx|zxx. (11)

Here zxx is the second derivative of z(x) with respect to
x. As in the step model discussed earlier, we can drop the
linear step energy term if no new steps are created. Note
that in the continuum description slopes of different signs
correspond to positive and negative steps. Here we con-
sider step profiles with positive slopes everywhere and
thus can set |zx| = zx. In the attachment/detachment
limit, the surface flux is given by

j(x) =
κceq
2 kT

h

zx

[

F − ∂

∂x
µ(x)

]

. (12)

The above equation has the physical property that the
adatom mobility (as the response to an external field) is
inversely proportional to the slope zx. To calculate the
step bunch profile z(x), we can neglect the first term in
Eq. (12) if the terrace width inside a bunch is much
smaller than the distance between bunches. For an iso-
lated step bunch with j(x) = j∗, using Eq. (11), we have

3gh2κceq
kT

∂

∂x
(zxzxx) = j∗zx. (13)

This can be reduced to

z3x =
j∗kT

2κgh2ceq

[

(z − z0)
2 − (H/2)2

]

, (14)

where z0 and H are integration constants. The step
bunch profile z(x) can be easily calculated numerically

5



by integrating Eq. (14), or analytically in terms of hy-
pergeometric functions. Equation (14) was first de-
rived by Nozières33 in his study of surface dynamics
below the roughening transition. The maximum slope
of the step bunch with j∗ < 0 is given by zmax

x =
[−j∗(H/2)2kT/(2κgh2ceq)]

1/3. For a true steady state
with a periodic array of step bunches, j∗ = j∗ss [Eq. (9)].
We expect j∗ to fluctuate around this value for a system
in a quasi steady state. H is approximately the height of

the step bunch for large bunches. We have zmax
x ∼ N

2/3
s

since j∗ss is independent of Ns. This can be experimen-
tally tested by measuring the average slope of the step
bunch as a function of the average bunch size. Note that
the continuum limit breaks down near the edges of a step
bunch where sharp changes in the local slope occur.
Strictly speaking, the above analysis only holds

for steady state profiles with complete attach-
ment/detachment limited kinetics, but we expect it to
be a good approximation for the quasi steady state pro-
files that arise as the step bunches slowly coarsen with
time. Indeed simulations and experiment agree that the
step bunches coarsen with time as tβ with β ≈ 0.5. This
t1/2 power law can be justified by a scaling argument.
We assume that as t → ∞, there is only one character-
istic length for the system, which scales as tβ . We can
thus write all the variables on the surface in term of the
scaled length x/tβ at time t. We have noted that the
steady state flux is independent of the size of the step
bunches [Eq. (9)]. For a system in a quasi-steady state,
we thus assume that the flux can be written as a function
of the scaled length only with no extra time dependence,
i.e.,

j(x, t) = J(x/tβ). (15)

In contrast, the surface profile should maintain a con-
stant average slope and thus must have the following
scaling form:

z(x, t) = tβZ(x/tβ). (16)

Substituting these into the equation expressing micro-
scopic mass conservation:

∂

∂t
z(x, t) ∼ − ∂

∂x
j(x, t), (17)

we have β = 1/2 by comparing the leading exponents on
both sides of this equation. This prediction is in good
agreement with both the experimental and the numerical
work, as shown in Fig. 2.

VI. EFFECTS OF STEP PERMEABILITY

In the previous sections we focused our study of the
step model on vicinal Si(111) surfaces around 900◦C.
Our basic approach can be applied more generally,

though the limits we used above are not necessarily sat-
isfied. However as long as the mass transport is local,
other differences from our present model, e.g., a finite dif-
fusion length or asymmetric step edge attachment rates
(Schwoebel barriers), can be studied using the extended
BCF model and the velocity function approach of Eq. (3)
in a more or less straightforward way.
We will not detail this work here, but instead turn

to the conceptually interesting case of step permeability,
which can make the extended BCF picture no longer
valid. This is motivated in part by recent work by
Tanaka et al.17 and Stoyanov.34 In the classic BCF pic-
ture with local mass transport, the only way to achieve
adatom transport from one terrace to another one is
through attachment to and subsequent detachment from
the step edge separating them. However, if there is direct
hopping of adatoms across a step edge without incorpo-
rating into the step edge first, this causes a coupling of
diffusion fields on adjacent terraces that must be taken
into account.
In a BCF-like picture, the adatom chemical poten-

tials can have discontinuities at step edges either because
steps are perfect sinks, or because there is a strong dif-
fusion barrier near the step edge. In their analyses of
island flattening on Si(001), Tanaka et al.17 introduced
an adatom hopping term between adjacent terraces over
a step edge proportional to the difference between the
chemical potentials on the two terraces. Although this
inter-terrace hopping could be fast compared with at-
tachment of adatoms to the step edge, it could still be
slow compared with diffusion on flat terraces, thus al-
lowing discontinuities in the adatom concentration field
at step edge positions. Here we take this limit, assuming
that the adatom diffusion rate on flat terraces is always
much faster than both the attachment and inter-terrace
hopping rates.
The effect of step permeability on the relaxation of

step bunches due to step repulsions can be studied
straightforwardly. In the absence of an external driv-
ing force, the adatom chemical potential on each terrace
is a constant denoted by µt

n (see Fig. 1 for the labeling of
terraces). We can write the net surface flux at the right
hand side of step n as

j+n ∼ κ (µn − µt
n) + p (µt

n−1 − µt
n), (18a)

and the flux at the left hand side of step n as

j−n ∼ κ (µt
n−1 − µn) + p (µt

n−1 − µt
n). (18b)

Assuming again the quasistatic limit where j+n = j−n+1,
we can solve µt

n for any given set of µn from a system
of linear equations. The analytic solution is given in
the Appendix. It is easy to see that the p = ∞ and
p = 0 limits correspond to case A and case B dynamics
respectively.
As was mentioned in Sec. II, experiments14 on the

relaxation rate of step bunches on Si(111) near 900◦C
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show a size scaling exponent α = 4.3 ± 0.5, consistent
with the p = 0 limit (α = 4). In comparison, if we as-
sume p = 2κ, we obtain α = 3.6 for the bunch sizes
used in experiments and larger p will give even smaller
α. Therefore we conclude p < 2κ and can dismiss the
importance of step permeability for Si(111) at 900◦C.
However p can be large for other systems, or even per-
haps for Si(111) at different temperatures. Tanaka et
al.17 estimated p = 36κ on Si(001) at 950◦C. Here we
discuss some interesting effects step permeability has on
electromigration, which could be a way to detect any
significant permeability if it exists.
The adatom concentration field has a constant gradi-

ent on each terrace when there is a driving force. We
need to be more precise in our description of the micro-
scopic origin of step permeability to obtain a complete
theoretical description. Here we consider the case where
the step permeability is proportional to the difference be-
tween the local adatom chemical potentials immediately
to the left and right hand sides of the step. Equations
(18a) and (18b) then become

j+n ∼ κ [µn − µt(x+
n )] + p [µt(x−

n )− µt
n(x

+
n )], (19a)

and

j−n ∼ κ [µt(x−
n )− µn] + p [µt(x−

n )− µt
n(x

+
n )]. (19b)

µt(x) can be determined in much the same way as be-
fore by assuming there is a gradient, F , in µ(x) on each
individual terrace. In a uniform step train, the exter-
nal force creates a local chemical potential gradient, and
introduces a “leak” of surface flux from the permeabil-
ity term. We now show that the “leak” will create a
long wavelength bunching instability, in contrast to the
pairing instability familiar from the BCF picture.
In a linear stability analysis, the step positions are

written as

xn(t) =
∑

φ

einφ+ω(φ)tuφ(0) + nw0, (20)

where

uφ(0) =
1

N

∑

n

e−inφ[xn(0)− nw0], (21)

for small perturbations from uniform configurations.
Figure 5 plots the amplification exponent ω of a uniform
step train as a function of a dimensionless wavenumber
(φ = π corresponds to the pairing mode). The solid line
is for p/κ = 100 and the dashed line is for p = 0. The
maximum linear instability has shifted to much longer
wavelengths. Note that very strong repulsive interac-
tions could also produce such a shift.6 However, for sys-
tems with step permeability, there is a very rapid (al-
most linear) growth in the average size of step bunches
in the initial stage, which then crosses over to the t1/2

behavior. In contrast, for the purely repulsive system,
the growth rate is approximately t1/2 at all times. These
characteristics could be used to detect step permeability
if it is very large.

0.0 0.2 0.4 0.6 0.8 1.0
q/π

0

 

ω

FIG. 5. Linear instability of a uniform step train. The lo-
cal hopping of adatoms over step edges (step permeability),
coupled with the step repulsions, moves the maximum insta-
bility away from the step pairing mode (q = π) to longer
wavelengths. The solid line is for p/κ = 100 and the dashed
line is for p = 0. Other parameters are taken from set A
in Table I, although we don’t attempt to describe Si(111)
realistically here.

VII. MONTE-CARLO SIMULATIONS OF THE
2D SOLID-ON-SOLID MODEL: MODIFIED

ARRHENIUS DYNAMICS

For Si(111) at 900◦C the steps are mostly straight and
a 1D model is adequate for most purposes. However,
at higher temperatures, there exists noticeable bending
of steps. For example, at around 1100◦C when evap-
oration is significant, 2D arrays of crossing steps form
between step bunches. Kandel and Weeks5 proposed a
(quasi) 2D step model where the velocity of each step
depends only on the local neighboring terrace widths in
the direction perpendicular to the average step edge di-
rection. This model reproduced many features of the
crossing arrays quite accurately.12 Further developments
along these lines have been reported in Refs. 23 and 24.
A full 2D step model taking account of 2D adatom

diffusion on terraces with boundary conditions on the
moving curved steps is very difficult to study. Also it is
necessary to go beyond the BCF framework which ex-
cludes the creation of new steps to explain the anti-step
bunches reported by Latyshev et al.35 Here we study
a generalized 2D solid-on-solid (SOS) model that takes
explicit account of a step edge barrier in the kinetics of
adatom attachment/detachment at step edges. We be-
lieve this is probably the simplest 2D microscopic model
that can provide a physically reasonable description of
both adatom diffusion and step motion in Si(111) and
related systems. However there is almost no hope of
simulating the long time behavior of such a microscopic
model using realistic parameter values. Thus, in contrast
to the 1D step model we studied above, here we con-
centrate only on qualitative properties. Specifically, we
consider a very large external driving force along with a
very small average terrace width. These extreme choices
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will permit significant step motion in the computer time
available to us.
The SOS model is defined on a square lattice with

total energy

H =
∑

〈ij〉

ǫ|hi − hj | (22)

where hi is the column height and 〈ij〉 denotes nearest-
neighbor pairs on a square lattice. Surface diffusion is
simulated by exchange of atoms on top of a nearest-
neighbor pair of columns (hi → hi − 1 and hj → hj + 1,
where i, j are nearest-neighbor sites). A driving force
is simulated by asymmetric attempt frequencies in di-
rections along and opposite the force direction. For ex-
ample, when the force is in x direction, we assume the
attempt frequencies in the +x and −x directions satisfy
the following relation:

p+x/p−x = exp(2Fa/kBT ). (23)

Our next task is to describe how the probability Γij for
an adatom hopping from i site to j depends on surface
configurations. Often in statistical physics, Metropolis
dynamics is used, where the hopping probability depends
on the energy difference between the final and initial
state ∆Eij through the relation

Γij = min[1, exp(−∆Eij/kT )]. (24)

This dynamics often has the virtue of fast equilibration
in the absence of a driving force since there are no barri-
ers for movements with no change in energy, but it does
not usually provide a physically realistic description of
actual dynamical processes.
Krug and Dobbs9–11 have studied in detail the effects

of an external driving force combined with Metropolis
dynamics in a SOS model. They used these simulations
along with a continuum model to “describe the univer-
sal features” of the electromigration problem. However,
the resulting surface structures have several artificial fea-
tures that do not resemble experiments on Si(111) sur-
faces. For example, in their simulations, a surface in-
stability develops regardless of the current direction and
then there are no extended flat regions of the surface
with ∇h = 0. Experiments on Si(111) generally reveal
flat terraces and individual steps coalescing into bunches
when the current is in the unstable direction, and revers-
ing the current direction will stabilize the uniform step
train.
Of course it is possible that at much later times some

limiting features of both the experiments and simula-
tions could be insensitive to the choice of dynamics,
and hence universal. For example, most driven sur-
faces eventually become “rough”; because of transverse
step fluctuations36 this probably holds true in principle
for the experiments at sufficiently large length and time
scales even when the current is in the nominally “stable”

direction. We show here that with a more physically mo-
tivated choice of dynamics, the SOS model can provide a
qualitatively accurate description of the length and time
scales probed by present experiments, as well as of any
longer time “universal” features, if such exist.
Diffusion on surfaces is usually an activated process

with an energy barrier. A different dynamical scheme,
Arrhenius dynamics, takes this physics into account in
an extreme way by assuming that the energy barrier is
simply the binding energy of the atom, independent of
the final configuration. However, Krug et al.10 found
that there is no morphological change for this dynamics
under an external driving force. They showed in general
that instabilities in a continuum model are associated
with the dependence of the adatom mobility on the lo-
cal slope, while instabilities in a microscopic model re-
quire a dependence of the hopping probability on the
final configuration. Here we obtain such a configuration
dependence by modifying the original Arrhenius dynam-
ics, which provides a reasonable description of activated
processes such as surface diffusion, to include an extra
barrier that arises from the presence of steps.
This energy barrier is motivated by the physics of re-

bonding and surface reconstruction that can occur near
steps. The surface atoms near steps on Si(111) surfaces
usually rearrange themselves and rebond in characteris-
tic ways to lower the step energy.37 To incorporate an
additional adatom into the step usually involves the col-
lective motion of many atoms as this rebonding is mod-
ified. This process has a higher activation energy than
the simple pairwise additive bond picture in the usual
SOS model would suggest. Also, in many cases the re-
peatable step unit, the kink, has a complex structure,
and requires the incorporation of two adatoms to bring
about its movement. To take account of this physics in
our simulations in a simple way, we assign an additional
barrier for any movement that lowers the energy, since
all attachment events are associated with a decrease in
energy. So that detailed balance holds in equilibrium,
the same barrier must also be added to a movement that
increases the energy. We call this scheme modified Ar-
rhenius dynamics and thus assume

Γij =

{

exp(−2 ǫ ni), ∆Eij = 0
b exp(−2 ǫ ni), ∆Eij 6= 0,

(25)

where b < 1 and ni is the number of horizontal bonds
the surface atom at site i has.
This way of introducing an attachment barrier was

suggested by Bartelt et al.38 in their study of step fluctu-
ations. We view modified Arrhenius dynamics as a con-
venient but not necessarily unique microscopic scheme
that produces the “right” boundary conditions (giving
in particular a finite value for the kinetic coefficient κ)
in the mesoscopic step models discussed in previous sec-
tions. Thus the dynamical behavior of mesoscopic and
macroscopic scale features in the simulations should be
physically meaningful.
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FIG. 6. Snapshot of a simulation using a solid-on-solid
model with a diffusion bias perpendicular to the step edge
direction, after about 2.1 × 106 Monte-Carlo steps. Param-
eters used here are: kT = 0.8ǫ, px = 0.3, p−x = 0.7,
py = p−y = 0.5, and the size of the system is 512 × 512
. The dark lines are normal (up) steps and white lines are
antisteps (down steps).

We start the simulations with a uniform step train
with steps orientated along the vertical (y) direction.
The height of the surface increases along the positive
x direction. Periodic boundary conditions are used
along the y direction. In the x direction we require
h(x + Lx, y) = h(x, y) + N0, where N0 is the initial
number of steps in the system. For a system of size
Lx × Ly, the initial average terrace width w0 = Lx/N0.
With a diffusion bias in the average step down direction
(p+x < p−x, p+y = p−y), the system is unstable towards
step bunching. The step bunches continue to coarsen,
consistent with the results of previous sections. Figure 6
is a snapshot of a typical configuration after some bunch-
ing has occurred. The dark regions are step bunches, and
single height crossing steps are visible between them.
The qualitative features of the simulations are very

similar to the experiments, and also to the predictions
of the step model. Vicinal surfaces are stable during
the time simulated when the driving force is in the step
up direction, and unstable towards step bunching when
the force is in the step down direction. Crossing steps
form when there is significant evaporation. Preliminary
results show that the coarsening rate is consistent with
the t1/2 power law, but so far the system size and sim-
ulation time are too small to determine the exponent
accurately.
In the 2D step model studied in Ref. 5 and 24, the

steps are all ascending (or descending) at a given y po-
sition. Although there is significant step bending, steps
cannot form overhangs since step positions xn(y) are de-
fined as single-valued functions of y. In the SOS model,
there is no such restriction. Indeed, we can see from
Fig. 6 that some crossing steps have bent so much that

FIG. 7. The same parameters as in Fig. 6, except that
the driving force direction is parallel to the average step edge
direction (py = 0.3, p−y = 0.7, px = p−x = 0.5). The initial
steps are along the vertical (y) direction.

they have created anti-steps at certain y positions, i.e.,
steps of opposite sign to the initial ones at particular
fixed y positions. In our simulations, the temperature is
still well below the roughening temperature of the flat
surface, but it is not energetically forbidden to create
new steps or overhangs, in contrast to the step models
previously studied.
It is interesting to compare these results with the ex-

periment by Latyshev et al.35 They observed anti-step
bunch formation taking place after step bunch forma-
tion. The first stage of the anti-step bunch formation
occurs through the bending of the single height cross-
ing steps between the step bunches, creating a region of
bunched steps of the opposite sign. Indeed, we have di-
rectly observed step bunches created from this kind of
step bending in our model with modified Arrhenius dy-
namics when we applied the external force in a direction
parallel to the initial (and average) step edge direction.
In Fig. 7, the initial (and average) step edge direction
is in the vertical (y) direction. The bias is in the down-
wards (−y) direction. The dark regions are step bunches
formed by steps bending in the opposite direction to
those individual steps (black lines) on the terraces. As
in the previous case, following the bias (−y) direction,
there are regions of steps going up, and regions of anti-
step bunches going down. We derive elsewhere39 from
a 2D BCF-like model a new linear instability when the
diffusion bias is parallel to the step edge direction that
we believe underlies the patterns seen here.
These features obtained from simulations of the new

SOS model are quite different from the ripple structure
reported by Dobbs and Krug11 using Metropolis dynam-
ics, where there are no distinct steps and facets after the
surface develops large structures. Here the steps and
terraces are easily discernible. Because of our more re-
alistic treatment of the physics of surface diffusion and
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attachment at steps and the favorable comparison with
experiment, we believe that modified Arrhenius dynam-
ics provides a better description for current-induced step
bunching on Si(111).

VIII. CONCLUSION

In summary, the evolution of the structure of Si(111)
surfaces during electromigration at 900◦ can be under-
stood quantitatively using a one-dimensional step model,
with parameter values and the mass transport mecha-
nism determined from experiment. Specifically, the t1/2

power law growth rate for step bunch sizes is reproduced.
We concentrate on the case where mass transport is lim-
ited by the rate of adatom attachment to a step edge,
but the method can be easily generalized, as illustrated
by our discussion of direct adatom hopping between dif-
ferent terraces.
The 1D step model has averaged over the individual

movement of adatoms and atomic scale fluctuations of
the steps, thus permitting simulations of the long time
behavior using realistic parameter values. However, at
higher temperatures, when 2D effects such as step bend-
ing can be seen, even the quasi-2D step models consid-
ered to date5,24 may not be sufficient. Moreover an exact
BCF-like treatment of full 2D diffusion problem seems
prohibitively difficult. To examine these issues, we car-
ried out Monte-Carlo simulations of a 2D solid-on-solid
model, using physically motivated assumptions about
the dynamics of surface diffusion and attachment at step
edges. In particular we used modified Arrhenius dynam-
ics with an extra barrier for attachment of adatoms at
step edges and find good qualitative agreement with ex-
periment. A new step bending instability is seen when
there is a force acting on adatoms along the step edge
direction that may be related to experiments by Laty-
shev et al.35 In general we believe that this approach
of combining information from experiment, microscopic
simulations, and mesoscopic step models may prove use-
ful in a number of different problems in surface science.
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APPENDIX A:

By requiring j+n = jn = j−n+1 and imposing periodic
boundary conditions in Eqs. (18a) and (18b), we arrive

at the following system of linear equations for the terrace
chemical potentials for a system of N steps:













c0 c1 0 · · · c1
c1 c0 c1 · · · 0
0 c1 c0 · · · 0
...

...
...

. . .
...

c1 0 0 · · · c0

























µt
1

µt
2

µt
3
...

µt
N













= κ













µ1 + µ2

µ2 + µ3

µ3 + µ4

...
µN + µ1













(A1)

where

c0 = 2(κ+ p) c1 = −p, (A2)

and µt
i = µt(xi+xi+1

2 ). µt
i can be solved for analyti-

cally since the matrix on the LHS of the equation is
a circulant40 matrix. The result can be expressed as

µt
n =

∑

m

Km(µn+m + µn+m+1), (A3)

where in the limit N → ∞

Km =
κ

2(κ+ p)

1√
1− a2

(

1−
√
1− a2

a

)m

, (A4)

and

a =
p

κ+ p
. (A5)

Km describes the correlation between the adatom chemi-
cal potential at a given terrace with the adatom chemical
potential m steps away. Km decays exponentially as m
increases. It is convenient to define Nc as the number of
steps over which Km decreases by half, i.e.,

KNc
= K0/2. (A6)

When p ≫ κ, we have

Nc ≈ log(2)

√

p

2κ
. (A7)

Since Nc is the range of correlation between the chemi-
cal potential values on different terraces, the mass trans-
port is effectively non-local over a number of steps much
smaller than Nc, and is local over a number of steps
much larger than Nc.
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