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Low-frequency quantum transport in a three-probe mesoscopic conductor
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We investigate the low-frequency quantum transport properties of a three-probe mesoscopic conductor. The
static transmission coefficients and emittance matrix of the system were computed by explicitly evaluating the
various partial density of statéBDOS. We studied the finite-size effect of the scattering volume on the global
PDOS. By increasing the scattering volume we observed a gradual improvement in the agreement of the total
DOS as computed externally or locally. Our numerical data permit a particular fitting form of the finite-size
effect. Finally, we propose a method to solve the finite-size probl&@163-1827)03043-9

I. INTRODUCTION The PDOS possesses interesting propettéesimportant
property which is physically reasonable is the relationship
The concept of partial density of stattBDOS has been between the GPDOS and LPDOS,
found to play an important role in the scattering approach to
the low-frequency ac transport in coherent quantum
conductors:? For a scattering problem involving a multi- dN,g f dngg(r)

probe conductor, each scattering matrix element is associated dE dE d®r. ©)
with a PDOS which describes the density of states for trans-
mission (or reflection. Furthermore, the low frequency ad-

mittance of a conductor is, in principle, calculable if the This expression relates a quantity which is computed at the
PDOS is knowr. Thus from the single-electron-scattering scattering region boundarydN,z/dE, to that evaluated
approach, the problem of predicting low-frequency admit-within the scattering region. This equality also reflects the
tance is reduced to the problem of finding the PDOS. necessary condition of electrical current conservation which
There are two kinds of PDOS which directly contribute tojs a central requirement for low-frequency ac transport. In a
the admittance. First, the global PDOSGPDOS comes  previous workt using a simple buexactlysolvable model,
naturally from theexternalcontribution to the electric cur- the authors have found that the equal sign of &).is not
rent in a conductor when a carrier reservoir increases italways satisfied. The problem seems related to the fact that
electrochemical potential slightly. The scattering théory the left hand side of Eq3) is always evaluated at the bound-
gives GPDOS to be ary of afinite-size scattering region, hence there were finite-
size corrections. The detailed understanding of these correc-
dN,g 1 t ds.g dSZg tions, and more so the solution of this problem, are important
dE _ 4xi \ 2B dE Esaﬁ J 1) issues in analyzing the low-frequency ac transport properties
of mesoscopic conductors. Without the understanding and
wheres,,; is the scattering matrix element which connects awithout a practical way of solving this finite-size problem,
probe of the conductor labeled iBto that bya. Thus know-  numerical calculation will likely produce results inconsistent
ing s,z as a function of the scattering electron eneigyone  with the current conservation requirement. Furthermore,
can compute GPDOS. The second kind of PDOS iddbal  since the low-frequency ac admittance comes from a linear
PDOS(LPDOS), which arises in the scattering theory due to combination of terms involving the GPDOS and the LPDOS,
the present of a displacement current. In other words, thepurious results can be obtained due to the finite-size effect
long-range Coulomb interaction of the charges gives rise tat certain energietee below:.
an internal response to the external perturbation, and this In this work, we shall focus on the finite-size problem of
internal response is naturally expressed in terms of LPDOShe GPDOS, and propose a practical solution of it. While the

The scattering theory prediétsPDOS to be problem has been exposed in our exactly solved mbdel,
practical numerical solution was yet known. Moreover, the
dngg(r) 1 i OSup 55143 exactly solved model is very special, being a two-probe
—=—=—-—TIls - Supl- (2 i-one-di i i - i in-
dE A aB esU(r) esU(r) @A quasi-one-dimensiondlLD) wire with a point scatterer in

side. This is not the typical mesoscopic multiprobe conduc-
Hence if we know the functional dependence of the scattertors fabricated or analyzed. In this work, we shall use a more
ing matrix on the scattering potential landscdpé), LP-  general and typical three-probe system to examine the
DOS can be obtained. Finally, the ac emittance matrix i<GPDOS, and use it to demonstrate a proposal of solving the
calculable from these PDOS. finite-size problem. A spinoff of the work is to obtain the
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wherec,, ande, are transmission amplitudes adg and f,

y are input parameters. The wave function in region IV is a
combination of wave functions in regions |, I, and Ill. At the
3 X boundaries of the various regions, we match the wave func-
— tions and their derivatives and this gives the desired trans-
mission coefficients with which the scattering wave func-
_ tions Eqgs.(4)—(6) are also determined. Finally, if we choose
L3 m IL point O as the origir{see Fig. 1, the scattering matrig, 5 is
e defined a3
1 I VAR 2 Ia
| : : | —b
. . 312: Cleikla,
FIG. 1. Schematic plot of the three-probe quantum wire system.
The scattering volume is defined by the dotted lines. ik-a
S13=€1€71, (7)

low-frequency ac admittance for the three-probe system: s@ghere in generab,, c;, ande; are complex and;a is the

far the only data in the literature for 2D conductors are foradditional phase for outgoing wave functiohs.

two-probe systems. If we expand the ac admittance in powers of the fre-
This paper is organized as follows. In the next section weyuencyw, the coefficient of the linear term is called emit-

present the numerical analysis of the GPDOS and LPDOSance. As mentioned in the introduction, the emittaBigg is

focusing on the finite-size problem. In Sec. Ill we propose &ptained from the various partial density of stdtes:
practical method of solving the problem. Section IV presents

the results for the low-frequency ac admittance. Finally, a dN,g
summary is given in Sec. IV. Eap=|gg ~Desl: (8)
Il. FINITE-SIZE EFFECT TO THE GPDOS The first term in the emittance gives the ac response of the

system to the external potential change, while the second

We analyze the three-probe system shown in Fig. 1 taerm is from the internal potential change induced by the
illustrate the ac transport properties. For clarity we shall fo-external perturbations. We computéN,;/dE by applying
cus on the firsttransport subband by examining energies Eq. (1), with a three-point numerical derivative to compute
within the following range: ¢)°<E<(2w)? in units of ds,g/dE. On the other hand, the internal contributibn
#2/(2ma?) with m the effective mass of the electron aad s related to the local PDOS, and within the Thomas-Fermi
the width of the leadfsee Fig. 1. Multiple subbands can be linear screening model is given by
included without difficulties. The scattering properties of the
three-probe system is then characterized by<@83cattering _ dn(r,B)
matrix S(E)={s,z} with a, 8=1,2,3. The transmission co- Daﬁ:f dE | ©)
efficients can thus be expressed in terms of the scattering o .
matrix, e.g.,T 5= |Saﬂ|2' For the system of Fig. 1, the scat- here theinjectivity is calculable from the LPDOS, it is also
tering matrix has the following symmetrys,|=|s,J, calculable from the scattering wave function which is what
|21/ =512, [Ss1 =532, 519 =S4, and|sig =|s3,|. There- ~ We did in our numerical analysis,
fore, there are only four distinct elements out of nine.

We solve the quantum scattering problem using a mode dn(r, a) => dng(r) _ i|‘1’ ()2 (10)
matching method. The wave function in region | can be writ- dE dE hy' ™« '
ten as

dn(a,r) -1

dE

dn(r)
dE

whereJ is the incident flux andV ,(r) is the scattering wave
' , function for electrons coming from the prole Similarly,
W)= xn(Y)(ane**+b,e™ k), (49 the emissivity di§B,r)/dE equals the sum of LPDOS over
n its first index. In the absence of a magnetic field, the emis-
sivity equals the injectivity. Finally, dn(r)/dE
=2 ,dn(e,r)/dE is the total local density of states.
Let us first analyze the ideal situation. If we sum over the
index « for Eq. (9), we obtain

dn(r, dn,
nérEﬁ)}zg fdr —nd’é(r). (12)

where x,(y) is the transverse wave function,
kﬁzE—(m-r/a)2 is the transport energw,, is the input pa-
rameter, and, is the reflection amplitude. Similarly for re-
gion Il, we have

‘I’u=; Xn(Y)(Cqe™m+d,e k%), (5) ; Dw[,:f dr

If Eq. (3) is precisely obeyed, we then immediately conclude
that the electric current is conservex,E,;=0.

Our finite-size analysis of the GPDOS follows a quantity
P, = x)(e ek + f_eiknyy, 6 which measures the quality of the above current conserva-
=2 xn(x)(€n ne” ) (6 o

For region lll,
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FIG. 2. (a). The differenceg; (in units of 2ma®/#2), of the total
PDOS as computed from the GPDOS and LPDOS from(E2).as
a function of the scattering volume linear sike Solid line: at
energyE=239.466 99; dotted line: at enerdy~=39.453 71; dashed
line: at energyE =39.441 37.(b) The quantity,— In(5,)/(2L+1)/k,

as a function of the linear size for several incoming electron ’
energies as shown. At larde this quantity approaches unity, con- i
firming the form of Eq.(13). Here(as well as in all other figures 0.04 £, ©0000000600060060000
the energy is in units of2/2ma’. I } OOOOO?O
0.02 - ‘ ; : ;
dN 35 36 37 38 39
— apB
5B(L)=§ Ea5=§ (d—E—DaB), (12) Energy E

. . . . . . FIG. 3. Comparison of the total PDOS computed from the GP-
whereL is the scattering region size. Obviously=0 if the 55 a0 LPDOS, as a function of the incoming electron energy for
Cum_am is precisely conserved. ) three different size& =0, 1, and 2 in the transmissive reginia)

_ Figure 2a) shows (L) as a functionl for three ener-  Egjecirons come from probe (b) Electrons come from probe 3. The
gies close to the second subband edge which is located g§reement of the total PDOS is good up to the “critical region”
&,=39.4784. A clear crossover to the large volume limit isnear the onset of the second subband. Insets: corresponding results
revealed ash;—0 whenL is increased. It is also clear that for the total PDOS computed from LPDOS and the locally evalu-
for energy closer t@,, the crossover is slowdsolid ling). ated GPDOS of Eq(15): perfect agreement is now obtained. The
We found that the decay af, is essentially exponential for unit of PDOS is na?/#%2.
all energies examined, and has an interesting form for Iargsv

L hen we calculate the GPDOS from the scattering matrix,

these “leaked” evanescent modes are not explicitly in-
5y ~e kel2L+D) (13) cluded, leading to a finité;. As we increasé, the evanes-

cent modes decays away, aAg is reduced. In the simple
where (2+1) is precisely the scattering volume length model which can be solved exacflyg similar form to Eq.
from probe | to probe I, ank, is the momentum corre- (13) was derived which was needed to correct the GPDOS in
sponding to the second subband enefgyWe have plotted order to satisfy the precise current conservation. Our numeri-
—In(éY/(2L+1)/k, in Fig. 2b) for several energies. Our nu- cal study presented here reinforces the results of Ref. 4.
merical data supports E¢L3) quite well for largeL, and for To further investigate the finite-size effect to GPDOS, in
energies closer t&,. It is not difficult to understand the Figs. 3a), (b) we plot the total DOS as obtained by GPDOS
form of Eq.(13). Due to scattering at the junction where the and LPDOS as functions of energy, for three system dizes
three probes meet, complicated mode mixing takes plac&he current conservation condition is satisfied very well for
While the incoming electron is in the first subband, modemost of the first subband energies. When approaching the
mixing generates wave functions for many higher subbandsnd of first subband, the current conservation condition is
including the second subband, which become evanescent iriolated gradually, i.e.f;#0. We see that for the smallest
the probes. For a scattering volume with a smhalthe eva-  scattering regior. =0, the agreement of the two total DOS
nescent mode may “leak” out of the volume. However is at best reasonable when the incident electron is from probe
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| and is away from the second subband eff§ig. 3@)], and

is quite bad when the electron is coming from probd MHig.
3(b)]. The situation improves considerably when we in-
creased the system size. As shown in Fig. 3,lferl and
L=2, the agreement of the two total DOS are much better.
However there islwaysa divergent behavior near the sec-
ond subband for all sizes examined if the energy is made
close enough t@,. Hence this is an intrinsic problem which
goes away only wheh— . The effect of increasing a finite
size of the scattering volume is to decrease the “critical re-
gion” where the two total DOS disagree.
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lil. A LOCAL APPROACH TO THE GPDOS 005 ¢

To solve the finite-size problem, namely the problem of 01 Lt
61(L) #0, we emphasis that the origin of this difficulty is 10 15 20 25 30 35 40
related to the mode mixing of the 2D scattering. This mode Energy E
mixing is absent in 1D. Due to mode mixing there will be
evanescent modes which “leak” out of the scattering region. FIG. 4. The transmission coefficients and the emittaigg as
However when we calculate the GPDOS from the scatterindunctions of the incoming electron energy without the tunneling
matrix using Eq.(1), these “leaked” evanescent modes are barriers. Solid lineE,,; dotted line:E,,; dashed lineEs;. Inset:
not explicitly included. On the other hand, when we computesolid line is reflection coefficienR,,; dotted line is transmission
the LPDOSinternally using the scattering wave functions coefficient T,;; dashed line isTs;. The unit of emittance is
from Eqg. (10), all the modes, including the evanescent2ma’/#i.
modes, are included. Indeed, as emphasized hik@u,’ the
ac transport formalism guarantees electric current conserv&ompletely expressed by local quantities determined inside
tion when the scattering volume is large enough to ensuréhe scattering volume thus can be computed accurately for
that there is no electric field lines penetrating the surface ofNy System sizes,
the scattering volume. This condition is certainly violated

+

due to the “leaked” evanescent modes when the volume is 9Nag __ i dEl — ﬂ Trl st dsyg _ dsaﬁs

small. dE A dE “f edV edV |
To proceed, we note that since evanescent modes do not (19

contribute to electric curreribut does to the DOSit seems |, yis equation we have restored the Fermi function deriva-

to be natural to use the conservation law to eliminate thefive df/dE for cases involving a nonzero temperature. We
need of computing GPDOSxternaII_y This will be our ap- comment that this equation is valid in 1D as well.
proach. Hence, instead of computing GPDOS from @&j.

we shall instead use E€B) for this purpose. The right hand
side of (3) is entirely a local evaluation within the finite
Scattering region, thus can be Computed aCCUrately. With this Using resun(ls), we have recomputed the total DOS as
in mind, the necessary next step is to evaluate the functiongptained from the GPDOS and LPDOS. The two total DOS
derivative of the scattering matrix with respect to the scatterig plotted in the insets of Fig. 3. They now agree perfectly
ing potential landscape, as expressed in @j. In general  thys the finite-size problem for the emittance is solved. In the
this is the most difficult part, and it is rarely solvable ana-fg|lowing we present the numerical results for the emittance
lytically except in very special caségor 1D systems, this gbtained using Eq¢15) and(9) which guarantee the current
functional derivative can be obtained via the Fisher®Lree conservation.
lation, but this approach is not extendable to 2D. In the Ap- | aJ| the following results we have set the temperature to
pendix we give the 1D approach and outline the difficulty for zero. Figure 4 shows the transmission coefficigintsed and
2D applications. ) the emittancé ,; in the transmissive regime as a function of
In order to compute the GPDOS locally using E8), we  the incoming electron energy. In this case the system does
device the following numerical approach. We make use of gyt show resonance behavior and the transmission coeffi-

IV. THE EMITTANCE

mathematical identity cientsT,4(E) are quite large for most of the energy range
while the reflection coefficienR,, is small[inset of Fig. 4.
ds,p 3. OSup It is interesting to find that theshapeof the emittance is
dv _f SU(r)’ (14 similar to that of the corresponding transmission coefficients.

This is different from cases where quantum resonances
whereds,z/dV is calculated as follows: we add a constantdominate the transpofsee below and for that case the ac
potential vV in the scattering volume and compute the scat+esponses follow the dc transmissions only at the resonances.
tering matrix formally to ges,z=s,5(V), then take the de- There are two different responses to the external time vary-
rivative and seV=0. Numerically the derivative can be eas- ing potential: capacitivelike and inductivelike depending on
ily carried out using finite differencing and we used a threethe sign of the emittance matrix elemegy;. According to
point formula. Using Eqs(3), (14), and(2), the GPDOS is  Eg. (8), E1; consists of two termsiN,,/dE the capacitive-
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FIG. 5. Electron dwell timer; (in units of 4rma¥#) as a )

function of the incoming electron energy in the tunneling regime.
The three peaks indicate three resonance states in the system in this
energy range. Inset;.

like term andD; the inductivelike term. For a two-probe
capacitor there is no dc current so thdiN;,/dE=0. As a
resultE,, is negative. Therefore for a capacité;,= —E;,

is positive. Extending this notion, one concludes that the
system responds capacitivelyHf; is positive. For a ballistic
conductor with complete transmissiahN,;/dE vanishes
and E4; is negative. In other words, negati#g, gives an

inductivelike response. These different responses are clearly — TR TE T B W
shown in Fig. 4. as b B

The ac transport properties are very different in the tun- v 15 20 25 30 35 40
neling regime. To establish such a regime, we have put tun- Energy E

neling barriers inside probes 1 and 2 at the junctions between

the probes and the scattering volume. In particular the barrier FIG. 6. The transmission coefficients and the emittagg as

heights areVy,ie=40E;, and the width is 0.1 where the functions of the incoming electron energy in the tunneling regime.

width of the wirea has been set to one. No barrier is added(@ Solid line:T,,; dotted line:Ej; . (b) Solid line:Ry;; dotted line:

in probe 3. We have also included a potential well with depthE11- Inset of (b): Solid line: T, ; dotted line:Es; .

Vyen= —40E; in the center of the scattering volume with a

size of 2.8<1.9. The well and barriers establish severaltions of energyE are very closely correlated with those of

transport resonances, these are clearly marked by the shaa;(E) and T,3(E) near the resonances. Since there is no

peaks in the electron dwell time defined as tunneling barrier in probe 3, the resonance transmission to

that probe is not as sharp, and the transport behavior shows a
1 23 mixture of tunneling and transmission as shown in the inset
Ta=3 sza(rﬂ d°r, (16) o Fig. 6(b).

In the tunneling regime the ac response changes sharply
where(} is the scattering volumer; is plotted against en- from inductivelike behavior at one side of the resonance en-
ergy in Fig. 5 while the inset shows;. The dwell time ergy to capacitivelike on the other side of the resonance or
measures the duration an electron spends in the scatterimice versa, in distinctive difference as compared to the trans-
volume. Thus if transport is mediated by resonance states waissive case discussed above. Let us exaripeaear reso-
expect much longer dwell tim&sat the resonances. This nanceE;. As the energy approachds;, the system first
idea has recently been proved by lannacotinEigure 5 responds inductively and is followed by a strong capacitive
shows that three resonance states, with enefgies13.2, response. This behavior is clearly related to the fact that the
E,=24.1, andE;=35.6 are established. The quantum reso+esonance is characterized by a compteféectionindicated
nances also leads to sharp peaks in the transmission coefliy the large peak in the reflection coeffici¢aee Fig. &)].
cient T,; and reflection coefficienR;;, as shown by the This behavior has been seen previously in 2D quantum
solid lines of Figs. &), 6(b). At these resonances both the wires? On the other hand, for 1D resonance tunneling, a
GPDOS and LPDOS take maximum values, leading to théreit-Wigner-typetransmissiorresonance gives rise to an ac
sharp jumps in the emittand®;; and E,; as shown by the responsésimilar to that discussed here. When the incident
dotted lines in Fig. 6. The variations &f;; andE,; as func-  energy is near the resonange, the ac response is reversed:
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first capacitivelike and then inductivelike. Hence the behav-computational facilities and the access of SP2 supercom-
ior nearE, andEs are very different. For an energy negy puter.
the emittance behaves like an odd function but rieait is

like an even function. The reason, as we have checked nu- APPENDIX
merically, is that the external and the internal responses do . ) ] . )
(not) reach the maximum at the same energy EonearE, In this appendix, we first outline how to obtain LPDOS

(Ey). This behavior ofE,; is also a manifestation of the dNag/dE for 1D systems following Ref. 1. We then demon-
reflection coefficienR,;. As the energy sweeps through, strate that this 1D method is not easily generahzab_le to 2D.
the strong capacitivelike ac response is due to the complete For an 1D conductor, one makes use of the Fisher-Lee
reflection peak, and the following inductivelike response is'elatior? between the scattering matrix and the retarded
because the reflection coefficieRy,;~0. Hence in the ac Green’s function:

response of a system, near a quantum resonance whether it is ,

voltage following currenfcapacitive first, or current follow- Sap= " Oapt VU0 gG(Xa,Xp), (A1)

ing voltage(inductive first, can only be determined by de- \yherex, is the boundary of the scattering region. The func-

tailed analysis and the outcome depends on the peculiaritig®)na| derivative of the Green’s functiofG/5U is given by
of the system such as the existence of a third probe as we

have studied here. In the inset of Fighpwe show the 8G(XqXp)

emittance matrix element8,3. Although they have much T(X):G(XWX)G(X,XB)- (A2)
smaller values they do exhibit dips around three resonant

energiesE,, E,, andE;. Furthermore one can prove that for 1D systems the following

relation is true*

V. SUMMARY G(X1,X)G(X,Xp) = G(X1,Xp) G(X,X) (A3)

In summary, to obtain precise results of the low-for x, <x<x,. Using Egs.(A1)—(A3), it is not difficult to
frequency emittance from numerical analysis of 2D or 3Dgerive! for 1D systems, the following expressions for the
mesoscopic conductors, we need to solve the problem asspppos,

ciated with the finite-size effect of the scattering region. This

work identifies the origin of the problem as due to the local- dngg(r) 1_ dn(r)

ized modes which were not included in the evaluation of the dE 2 TeBgE (A4)
global partial density of states. Using a quite typical multi-

probe system which is a three-probe 2D quantum wire, wdor a# 8 and

have demonstrated where and how the finite-size effect

shows up. The finite-size effect leads to current nonconser- dngg(r) dn(r,p) 1 ST dn(r)
vation. Increasing the scattering region size does not solve dE =~ dE 2 g P dE
the problem, it only shrinks the nonconservation regime. The

problem goes away only when the system size is infiniteljwhereT,z is the transmission coefficient from legito a.

(A5)

large. In these resultsdn(r,B8)/dE is defined as

To solve the finite-size problem, we proposed a numerical
procedure and a formula for computing the global partial dn(r,8) - dn,g(r) (A6)
density of states which is precise for any finite scattering dE 4 dge

volume of a quantum conductor. As GPDOS plays an impor- o ) )

tant role in the ac transport theory, our result provides avhich is the injectivity introduced in Sec. Il and it measures
useful tool for further numerical investigations of the dy- the additional local charge density brought into the sample at
namic admittance. In this formulation the electric currentPointr by the oscillating chemical potential at proBeFrom
conservation is satisfied automatically. Finally, we mentionEd- (10) the injectivity can be expressed in terms of the
that this formulation of computing the GPDOS locally also Scattering wave functioh.After obtaining the total local
applies to the investigation of nonlinear dc transporp- ~ DOSdn/dE from summing up the injectivity indeg, one is
plying the procedure to the three-probe conductor, the diverable to calculate the LPDOS via Eq#4) and (AS).

gences of the emittance at each subband edge are removed.For 2D systems which is the interest here, the Fisher-Lee
This allows us to present precise results concerning the béelation has the forh

havior of the emittance matrix.
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actly solvable' The Green’s functiorG(r,r’) for this case Interestingly, we found that if the incoming electron en-
can be derived analytically and is given by ergy is restricted to the first subband, E¢54) and(A5) do
, , hold in 2D. For a pipe with & function scatterer this can be
G(r,r')=Go(r,r")+yGo(r,ro) shown analytically. For a T-shaped 2D scattering junction
, we have verified it numerically. However since this is only a
XGo(ro,1)[1=¥Go(ro,f0)],  (A8) Y Y

very special case for 2D conductors, it is not general as we
whereGy is the Green’s function for a pipe with transverse have explicitly checked numerically that these equations do
wave function y,,. From Ref. 5, we haveGgy(r,r') not hold when there is more than one transport subbands
=3 (—i/vm) xm(Y) xm(Y' ) explikx—X']). In this case, one involved in the scattering process. We have also checked
sees that Eq(A3) is not satisfied because of the mode mix- numerically that the semiclassical expression in 2D for the
ing. Hence the 1D procedure outlined in the last paragraph ttPDOS(Ref. 12 is not accurate. Hence a general procedure

obtain LPDOS is not applicable in 2D, in general. discussed in this paper is necessary.
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