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Abstract

In this paper we report simulation studies of equilibrium features, namely

circular islands on model surfaces, using Monte-Carlo methods. In partic-

ular, we are interested in studying the relationship between the density of

vapour around a curved island and its curvature. The “classical” form of

this relationship is the Gibbs-Thomson formula, which assumes the vapour

surrounding the island to be an ideal gas. Numerical simulations of a lattice

gas model, performed for various sizes of islands, don’t fit very well to the

Gibbs-Thomson formula. We show how corrections to this form arise at high

vapour densities, wherein a knowledge of the exact equation of state (as op-

posed to the ideal gas approximation) is necessary to predict this relationship.

By exploiting a mapping of the lattice gas to the Ising model one can compute

the corrections to the Gibbs-Thomson formula using high field series expan-

sions. The corrected Gibbs-Thomson formula matches very well with the

Monte Carlo data. We also investigate finite size effects on the stability of the

islands both theoretically and through simulations. Finally the simulations

are used to study the microscopic origins of the Gibbs-Thomson formula. It

is found that smaller islands have a greater adatom detachment rate per unit

length of island perimeter. This is principally due to a lower coordination of

edge atoms and a greater availability of detachment moves relative to edge
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moves. A heuristic argument is suggested in which these effects are partially

attributed to geometric constraints on the island edge.
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I. INTRODUCTION

The study of the stability and evolution of nanoscale features is useful in understanding

microscopic processes involved in the formation and growth of solids. Theoretical studies of

the coarsening of an ensemble of “islands”2 as well as models for the decay of single nanoscale

“islands”3–5, make use of the fact that there exists a high vapour pressure in equilibrium with

extremely small islands on the surface. These theories which describe systems away from

equilibrium make use of the relationship between the equilibrium vapour pressure around

a circular island and the curvature of the island, which is given by the Gibbs-Thomson

formula. In this paper we shall take a closer look at this formula and show that it needs

important corrections at high vapour densities wherein interaction between atoms of the

vapour cannot be ignored. We will discuss the two dimensional problem of an island in

equilibrium with a vapour of adatoms on the surrounding terrace. We will ignore the (often

small) three dimensional bulk evaporation-condensation and bulk vapour pressure.

For a two dimensional island of radius r in equilibrium with the vapour of adatoms

around it, the Gibbs-Thomson formula6,7 is

p(r) = p∞ exp (γ/ (rρskT )) , (1)

where p∞ is the vapour pressure outside a straight interface between solid and vapour, γ is

the edge free energy per unit length of the two dimensional island on the substrate, ρs is

the density of the solid island, k is Boltzmann’s constant and T the absolute temperature.

This relation assumes that the gas surrounding an island is “ideal” and hence we may write

down a similar expression for the density of the gas in equilibrium with an island of radius

r as

ρ(r) = ρ∞ exp (γ/ (rρskT )) , (2)

The above equation is often seen in the context of nucleation theory of growth in first order

phase transformations6 in addition to its application to the study of equilibrium and decay

of features on surfaces.
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Section II discusses the derivation of the “classical” Gibbs-Thomson formula for a finite

size system having a constant number of atoms. We simulate a two-dimensional lattice gas

on a square lattice, using Monte Carlo techniques, in order to test this relation and find

that the Gibbs-Thomson formula deviates significantly from the data from our simulation

(section III). This is because of the assumption that the vapour around the island is an

ideal gas. In our case, we can map the lattice gas to the Ising model, enabling us to use

high field series expansions to generate an equation of state for the lattice gas that improves

upon the ideal gas assumption. This is used to derive a corrected Gibbs-Thomson formula

in section IV. This corrected Gibbs-Thomson formula gives a very good description of the

data obtained from the simulation. In section V we discuss the constraint of finite size along

with predictions regarding the stability of the islands. We investigate the microscopic origins

of the enhanced vapour pressure around small islands in section VI and present a plausible

argument in which we try to correlate the enhancement with geometric constraints on the

island. We finally conclude with section VII.

II. THE GIBBS-THOMSON FORMULA

The Gibbs-Thomson formula is encountered frequently in the study of curved interfaces

in equilibrium7. It is also encountered in the context of nucleation and critical droplet

theory (for first order phase transformations)6 wherein one studies the formation of droplets

of liquid (analogous to the solid islands mentioned in the introduction) in a supersaturated

gas and the free energy barrier to the formation of these droplets. However, in this context,

the droplet formed is often at a saddle point of the total free energy of the system, in short

an unstable, stationary state. These droplets can be stabilized by finite size effects8. If the

system under study (with a fixed number of atoms) is placed in a box of fixed volume and

temperature then one can show that under certain conditions the global minimum of the

free energy of the system consists of a droplet/island in equilibrium with its vapour and the

relationship between the island size and vapour pressure is given by the Gibbs-Thomson
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formula.

We will now derive the Gibbs-Thomson formula for this system. Consider N atoms of

supersaturated vapour in a two dimensional box of volume V , at a temperature T . The

system is at a metastable state on its phase diagram (point 1 in Fig. 1), because the

supersaturated vapour can lower its Helmholtz free energy by nucleating a solid island

(point 5 on the phase diagram), which would be in equilibrium with the remaining vapour

around it (point 2)9. We will show this explicitly by computing the change in free energy of

the system upon nucleation of an island.

The change in Helmholtz free energy of the system on nucleating a solid island of radius

r, from the supersaturated vapour, has three pieces to it:

a) An increase in edge free energy of the island formed given by

∆Fedge = 2πrγ, (3)

where γ is the line tension or free energy per unit length of the edge.

b) A change in the bulk free energy of the condensing atoms. If the number density of the

solid formed is ρs, the decrease in free energy is computed by considering the free energy

changes along the isotherm 1-2-3-4-5 in Fig. 1 and works out to be

∆Fc = ρsπr
2kT ln

(

ρ∞
ρi

)

− πr2kT (ρ∞ − ρs). (4)

Here ρ∞ is the number density of the gas when it is in equilibrium with a straight interface

at point 3 of the phase diagram and ρi ≡ N/V the initial number density of the vapour. The

free energy changes are computed by integrating the differential change in free energy at

constant temperature, dF = −pdV . The first term represents the change in free energy along

path 1-2-3 assuming the supersaturated vapour to behave as an ideal gas and the second

term represents the free energy change along path 3-4. We have neglected the change in free

energy of the solid when it is compressed to a high pressure along path 4-5. This is equivalent

to assuming zero compressibility for the solid phase. In most physical situations even though

the compressibility of the solid phase is not exactly zero, the slope of the isotherm on the
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P-V curve is very high. Consequently the corresponding contribution to the free energy

change is small and the assumption we make is therefore reasonable. We have also derived

the Gibbs-Thomson formula with a non-zero compressibility for the solid by assuming the

vacancies in the solid to behave as an ideal gas. However we do not describe this here.

The results from such an assumption produce an imperceptible change in the plots of the

Gibbs-Thomson formula at the densities and temperatures of interest to us.

c) A decrease in free energy of the non-condensing atoms as they expand to occupy the

region left vacant by the condensing atoms,

∆Fnc = −
(

N − ρsπr
2
)

kT ln

(

V − πr2

V − ρsπr2V/N

)

. (5)

The total free energy change is the sum of the above three pieces

∆Ftot = 2πrγ + ρsπr
2kT ln

(

ρ∞
ρi

)

− πr2kT (ρ∞ − ρs)−
(

N − ρsπr
2
)

kT ln

(

V − πr2

V − ρsπr2V/N

)

.

(6)

This is plotted for ρs = 0.996, T = 1347K, ρ∞ = 0.0036, γ = 0.1173, N = 150, V = 10, 000

in Fig. 2. This choice of numbers will become clear in sections III and IV where we describe

simulations performed with these parameters. It can be seen from Fig. 2 that the free

energy has four extrema: a minimum (I) at which an island is in true equilibrium with its

surrounding vapour; a maximum (U), at which a smaller island is in metastable equilibrium

with the surrounding vapour; the unstable vapour phase itself (V) and the unstable solid

phase (S). Extremizing the total free energy w.r.t. r yields

ln

(

ρf
ρ∞

)

=
γ

rρskT
+

ρf − ρ∞
ρs

, (7)

where ρf ≡ (N − ρssπr
2)/(V − πr2), is the number density of the vapour surrounding the

island. This form for the relationship between the radius of the island and the density of

vapour surrounding it is true at both the maximum (U) and the minimum (I) and yields

two roots for r at constant N and V , only one of which is stable. The second term on the

right hand side of Eq. (7) is usually small7 and is often neglected to yield a form for the
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density which is identical to Eq. (2). This approximation is justified in our case too; a point

we shall return to at the end of the next section.

III. SIMULATION DETAILS

We perform Monte-Carlo simulations of a lattice gas of “atoms” constrained to a single

layer. The lattice gas Hamiltonian (for a square lattice in two dimensions) can be written

as

HG = −ǫ
∑

<i,j>

ninj , (8)

where ni = 1 or 0 depending on whether site i is occupied by an atom. The sum runs over

nearest neighbour (< i, j >) pairs and reduces the total energy by −ǫ whenever two nearest

neighbour sites are occupied. Thus ǫ represents a bond energy. We now briefly describe

details of the simulation.

We use a continuous time Monte Carlo (MC) scheme10 that helps reduce the time required

to run the simulations. Barriers for moves of atoms in the MC were based on barriers for the

Cu (100) surface calculated using effective medium theory11. They are allowed to depend on

the coordination of the atom both before and after it makes a move. The barriers used are

shown in Table I. The barriers are not all independent since they satisfy the constraint of

detailed balance. Details regarding the choice of barriers as well as the number of barriers can

be found in the paper referring to decay of these island like features4, along with some other

details regarding the simulation. The choice of barriers cannot affect the macroscopic static

equilibrium behaviour of the islands, but definitely plays a role in its dynamics. Macroscopic

static behaviour in equilibrium is governed solely by the bond energy. This is chosen to be

ǫ = 0.341 eV. For this bond energy, the critical temperature (at which all solid melts into

gas) is Tc = 2245 K. This is known from the critical temperature of the Ising model to

which this model can be mapped, as described later on in this section. Simulations were

performed at temperatures of 1347 K and 1000 K, both well below the critical temperature.
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The system size was 100x100 lattice units and we ran the simulation by letting islands of

different sizes come to equilibrium with their vapour. Time scales are governed by a global

attempt frequency which was set to ν = 1012s−1. The initial configuration in each run was

a circular island, with no adatoms around it, sitting at the centre of a vacant terrace, with

periodic boundary conditions. The island would quickly source out atoms onto the terrace

and come to equilibrium with this gas of atoms. The equilibrium between island and vapour

is signalled by an island whose size fluctuates in time around a stable mean value. Fig.

3 shows a snapshot of one of these islands in equilibrium with its vapour as seen in the

simulation. Typically each of these runs made about 40 million to a 100 million MC moves

and took about 4 to 9 hours of CPU time on a IBM RS6000.

Once the island has come to equilibrium with its vapour one can compute its radius

from a knowledge of its average size and one can also compute the average density of the

gas around the island, by averaging at regular intervals of time, uncorrelated reports of

the density. This is done for each of the islands of different initial size that we ran at the

two temperatures mentioned above. There are various definitions possible for the radius

of an island7. We compute its radius using the relation area = πr2, where the area can

be computed from the snapshots of the island that are reported (it includes the area of

vacancies inside the island). The radius thus computed is equivalent to the equimolar radius

re defined by Gibbs7. All length scales are measured in units of the lattice spacing which is

set to 1.

The density of the gas is computed by counting the number of atoms on the terrace and

then dividing this by the area of the terrace that is free for occupation by the gas. Care

is taken to exclude a one-lattice spacing zone around the island as this cannot be occupied

by an atom of the vapour (if it were it would be part of the island). In order to perform

statistics we first compute the correlation time for the data. This is done by computing

the autocorrelation of the island size as a function of time (in equilibrium). Typically the

autocorrelation decays with some time constant τ . We then consider data points which are

separated by more than a couple of time constants, as independent in time. Essentially we
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bin the data into bins of size about 2τ replacing the data with its average value in each

bin. We then take an average of these average values and compute the standard deviation

assuming the average data point in each bin to be uncorrelated with that in xsanother bin.

The same procedure is adopted to determine the density of gas around the island. This is

how the error bars are obtained for plotting purposes.

Fig. 4 shows a plot of the logarithm of the density vapour versus the curvature (1/r) of

the island, for the two different temperatures. In order to compare the data to the prediction

from the Gibbs-Thomson formula [Eq. (2)] we need the edge free energy γ, the density of

the solid deep inside the bulk ρs, and the density of the vapour outside a straight interface

ρ∞. These can be obtained by exploiting a mapping of the lattice gas to the Ising model,

outlined below.

The Hamiltonian for the lattice gas [Eq. (8)] can be made to resemble that of an Ising

model, using the transformation ni = (1 + si)/2, to give

HI = −ǫ/4
∑

<n.n>

sisj − ǫ
∑

i

si −Nǫ/2, (9)

where N is the total number of sites on the lattice and the spin si takes on values of ±1.

The second term would be analogous to a field term in the Ising model with an external

field of strength ǫ.

This mapping helps us determine the parameters γ, ρ∞ and ρs, that are relevant to

this simulation. The edge free energy (i.e., surface tension), γ, is known as a function of

temperature and orientation of the normal to the surface for the case of the 2 dimensional

Ising model12. It varies between a maximum and minimum value indicated in Table II and

we see that the variation is not significant at the two temperatures at which we perform the

simulations. We use an average value for the surface tension which we approximate as

γavg =

∫

γds
∫

ds
≈

∫

γ2dθ
∫

γdθ
. (10)

The results of averaging are also indicated in Table II. Once again note that length scales

are measured in terms of the lattice spacing which is set to 1. The values for ρ∞ and ρs
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are known from the spontaneous magnetization. Using the mapping for lattice gas to Ising

variables these can be calculated as ρ∞ = (1 − m)/2 and ρs = (1 + m)/2, where m is the

spontaneous magnetization. The values of ρ∞ and ρs are also indicated in Table II. Note

that the density of the solid ρs is not identically equal to one. This is because of the presence

of vacancies inside the solid, which can be seen even in the simulation. With this we have

the three parameters necessary to plot the Gibbs-Thomson formula.

The dashed line in Fig. 4 is the “classical” Gibbs-Thomson prediction for the relationship

between the density of vapour and radius of the island as defined in [Eq. (2)]. We see that

the formula is satisfactory at large radii and low temperatures but important corrections

are needed elsewhere. The next section discusses corrections to the “ideal-gas” equation of

state used in the derivation of the Gibbs-Thomson formula13 . Note one may just fit the

data to an exponential form given by the Gibbs-Thomson formula. This yields a value for

the surface tension of 1.59γavg. As one can see this is 60 percent off from the average value

one would expect from the Ising model results. However this is useful in fitting the data to

an analytic expression of the Gibbs-Thomson form with a pre-factor in the exponent viz.,

ρ∞ exp(αγ/(rρskT )), where α = 1.59.

IV. CORRECTED GIBBS-THOMSON FORMULA FOR THE ISING MODEL

The mapping from the lattice gas to the Ising model was discussed in Section III. This

enables us to compute properties of the lattice gas system from a knowledge of the corre-

sponding Ising system. We will be interested in obtaining corrections to the Gibbs-Thomson

formula that take into account the “non-ideal” nature of the gas of adatoms surrounding an

island. To this end we rederive the Gibbs-Thomson formula using a more accurate equa-

tion of state than the ideal gas one for the lattice gas/Ising system, using high field series

expansions.

One can obtain the Helmholtz free-energy per site of the Ising model (as a function of

field, at a fixed temperature) by means of series expansions, starting from a very high value
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of the field. The first 4 terms of such an expansion of the equilibrium free energy for h > 0

are,

f>[h] = −h− ǫ/2− kt(ωx4 + ω2(2x6
− 2.5x8) + ω3(6x8

− 16x10 + 31/3x12)

+ ω4(x8 + 18x10
− 85x12 + 118x14

− 209/4x16) + . . .), (11)

where ω ≡ exp(−2h/(kT )), x ≡ exp(−ǫ/(2kT )), k is Boltzmann’s constant and T the abso-

lute temperature. The coefficients of various terms in this expansion are obtained analogous

to low temperature expansions14,15. We use the first thirteen terms of this expansion in our

analysis. Differentiating the above expansion w.r.t field yields an expansion for the magne-

tization per-site as a function of field, for h > 0. The magnetization is odd in h (note the

expansion isn’t),

m>[h] = 1− 2(ωx4 + 2ω2(2x6
− 2.5x8) + 3ω3(6x8

− 16x10 + 31/3x12)

+ 4ω4(x8 + 18x10
− 85x12 + 118x14

− 209/4x16) + . . .). (12)

The expressions for f[h] and m[h] for h < 0 can be obtained by using the up-down symmetry

of the Ising model. Thus f<[h] = f>[−h] for h < 0 and m<[h] = −m>[−h] for h < 0. This

can be used to plot the equation of state for this system (Fig. 5). For large positive values

of the field the state is essentially one in which all the spins are pointing up (or all n = 1,

the solid phase) Conversely, the spins are all pointing down (gaseous phase of adatoms) for

large negative values of the field. The dashed portions BC and EF on the equation of state

represent metastable states and are analytic continuations of the equilibrium equation of

state m[h], i.e., we use m>[h] as given by Eq. (12) for h < 0 to generate the curve BC, on

the equation of state. Note the similarity between this equation of state and the equation of

state for an ideal gas (Fig. 1). Adatoms and solid can co-exist in equilibrium at zero field.

In this case one has a flat interface between solid and gas. In addition to this one could have

metastable states of the system wherein adatoms and solid co-exist at a finite field (e.g.,

states p and q on the equation of state co-exist at a field value of hf). However, in this case

one could have a solid with a finite radius of curvature (just as in the ideal gas case: points
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5 and 2 in Fig. 1). In order to compute the radius of the solid in equilibrium with the gas of

adatoms around it one can compute the free energy change in nucleating a solid, in a system

of pure gas which is at state F on the phase diagram. The procedure adopted is similar to the

one in Section II. However, one has to minimize the appropriate thermodynamic potential.

For the ordinary Ising model (non-conserved order parameter) the Helmholtz free energy is

at a minimum in the equilibrium state at constant temperature, volume and external field.

Since we work with a constant number of atoms in the lattice gas, the total magnetization

of the Ising model is held fixed (M ≡
∑

i si = const.). Consequently one would have to

minimize the Legendre transform of the Helmholtz free energy, which we shall henceforth

refer to as the free energy, G(T, V,M) = F +Mh, (it could also be called a thermodynamic

potential). Consider starting out with a state consisting of Ni atoms uniformly distributed

on a square lattice of volume V and having a magnetization corresponding to point F on the

phase diagram. This state can lower its free energy by forming a solid island with vapour

around it, the solid island being at point q of the phase diagram and the vapour at point p,

at the same external field hf as the solid. One can compute the change in the free energy

in nucleating an island of up spins of radius r and this change is again composed of three

pieces:

a)An increase in surface free energy given by

∆Gedge = 2πrγ, (13)

where γ is the line tension or edge free energy per unit length of the island.

b)The change in free energy in the region of the island that condenses out. This change is

computed by taking the difference in free energy between the initial state F and final state

q and is given by

∆Gc = πr2(f>[hf ]− f<[hi] + hfm
>[hf ]− him

<[hi]). (14)

c) The change in free energy of the remaining region of volume (V − πr2), as it moves from

point F of the metastable part of the phase diagram to point p,
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∆Gnc = (V − πr2)(f<[hf ]− f<[hi] + hfm
<[hf ]− him

<[hi]). (15)

The total change in free energy is thus

∆Gtot = 2πrγ + πr2(f>[hf ]− f<[hi] + hfm
>[hf ]− him

<[hi]) + (V − πr2)(f<[hf ]− f<[hi] + hfm
<[hf ]− him

<[hi]).

(16)

Note that although the above equation for the free energy makes it look like a function

of two independent variables, r and hf , there is only one independent variable. The second

variable is fixed by the constraint of conservation which can be expressed as

Vmi = πr2m>[hf ] + (V − πr2)m<[hf ]. (17)

Thus ∆Gtot can be looked upon as a function of r alone by replacing the final external

field hf that appears in Eq. (16) with the value obtained by formally solving for hf as a

function of r from Eq. (17). Extremizing Eq. (16) w.r.t r yields the radius of the island in

equilibrium with the gas. This gives us the analog of the Gibbs-Thomson formula for the

lattice gas system,

γ + r (f>[h]− f<[hf ] + hf (m
>[hf ]−m<[hf ])) +

∂hf

∂r

(

πr2hfχ
>[hf ] + (V − πr2) hfχ

<[hf ]

2π

)

= 0,

(18)

where χ[h] ≡ ∂m/∂h is the susceptibility and ∂hf/∂r can be determined from Eq. (17).

Instead of regarding the above equation as an equation in r we substitute for r in terms

of hf using the constraint [Eq. (17)]. This enables us to solve the above equation for

hf numerically after substituting the series expansions for the free energy, magnetization

and susceptibility. We use the first thirteen terms in the series expansion. On finding the

equilibrium final external field hf , for a given initial density of atoms, the equilibrium radius

of the island at the extremum of the free energy can be obtained using the constraint [Eq.

(17)]. The final field also tells us the final magnetization outside the island (point p on Fig.

5) and hence the density of adatoms outside ρf = (1+m<[hf ])/2. This gives us the required

relation between the radius r of the island vs. density of gas outside ρf , which we refer
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to as a corrected Gibbs-Thomson equation. The solid line in Fig. 4 represents the curve

for the corrected Gibbs-Thomson formula. It is clearly seen that the corrected theory gives

better agreement with the simulations than the continuum theory, particularly for islands

of very small radii (r < 8 or 1/r > 0.125). This leads us to believe that the approximation

of an ideal gas of adatoms around the island is the principal cause for the break down of the

classical Gibbs-Thomson formula at high vapour densities.

V. STABILITY OF ISLANDS AND THE THERMODYNAMIC LIMIT

In this section we discuss the effects of finite size on the stability of the islands we see in

the simulation. We first look at finite size effects as predicted by the continuum version of the

model we have for a system of atoms (as in Section II). Figure 2 shows the effect of varying

the number of atoms, N , at constant volume V , on the total free energy change in nucleating

an island. We see that the stable minimum (I) is no longer a global minimum of the free

energy of the system once N falls below a certain value and later this minimum vanishes

completely (the curve becomes flat) below a certain critical value of N which we denote as

Ncr(V ), which evidently depends on V . Similar behaviour is observed if we increase the

volume V , at constant N . However if we take the thermodynamic limit at constant initial

density (ρi = constant, V → ∞) the stable minimum persists and moves off towards r = ∞.

These results can be understood by means of a stability analysis.

The equilibrium between an island and the vapour around it is dynamic in nature and

can be understood as a balance between the rate at which atoms from the vapour attach

themselves to the perimeter of the island and the rate at which atoms detach themselves

from the perimeter of the island to become part of the vapour. The former rate would

be proportional to the density of the vapour surrounding the island while the latter would

be governed purely by temperature and would be independent of the density of vapour

surrounding the island, in the low density limit.

Consider a change in the radius of an island in equilibrium with its vapour. If the island
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grows from an initial radius r to a radius r+ dr by swallowing some atoms from the vapour

phase the concomitant change in the density of the vapour would be

dρf = −
2πr(ρs − ρf )dr

V − πr2
. (19)

If the new island of radius r + dr is to be in equilibrium with vapour around it, one can

compute the change in equilibrium vapour density around it (i.e., the difference between the

vapour density around an island of radius r + dr and the vapour density around an island

of radius r) from the Gibbs-Thomson formula [Eq. (7)],

dρf = −
γρfdr

kTr2(ρs − ρf )
. (20)

The above two equations predict that the density will decrease if the island grows (dr > 0)

which is to be expected. If the actual change in density [Eq. (19)] is larger in magnitude

(smaller in value) than that dictated by equilibrium [Eq. (20)] the island would be stable.

This is because the new density around the island is too low and consequently the new

attachment rate would be lower than the detachment rate. This in turn would force more

atoms to detach from the island thus bringing down the size of the island. From this one

can conclude that for stability one needs

−
2πr(ρs − ρf )dr

V − πr2
< −

γρfdr

kTr2(ρs − ρf)
, (21)

which can be written as

r3 >
γρiV

2πkT (ρs − ρi)2

(

1−
πr2

V

)2 (

1−
ρsπr

2

ρiV

)

, (22)

where ρi = N/V as before. We see from this that for stability the radius of an island should

be greater than a certain minimum value which is obtained by solving

rmin =

(

γρiV

2πkT (ρs − ρi)2

)1/3 (

1−
πr2min

V

)2/3 (

1−
ρsπr

2
min

ρiV

)1/3

. (23)

Along with this if we use the Gibbs-Thomson formula [Eq. (2)] we can obtain a relation for

the critical value Ncr as a function of the volume. All issues of local stability of the islands
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can be resolved using these equations. The curve Ncr(V ) in N−V space defines a boundary

between regions where one can have stable islands and regions where one can have no stable

islands16.

One can show that for large system size the last two terms in the product of Eq. (23)

go to unity and we have

r3min = γρiV/
[

2πkT (ρs − ρi)
2
]

. (24)

This shows that the minimum radius of a stable island grows as the one third power of the

volume of the box in two dimensions.

We now digress to note the behaviour of the unstable root (U) of the free energy in Fig.

2 in the thermodynamic limit. It is seen that the unstable root does not scale with system

size by plotting this root obtained by numerical solutions versus the system volume V. The

unstable root reaches a limiting value in the limit V → ∞, which can be obtained from Eq.

(7) by neglecting terms of order r2/V . The critical radius r⋆, which is obtained by taking

this limit is given by

r⋆ =
γ

kT [ρs ln (ρi/ρ∞) + (ρ∞ − ρi)]
. (25)

This form is identical to the form for the critical radius quoted in the context of nucleation

theory6. The nucleation barrier, which is the free energy barrier the system of supersaturated

vapour should overcome in order to form a stable island plus vapour, attains a limiting value

of

∆F ⋆ =
πγ2 [ρs ln (ρi/ρ∞) + ρ∞ + ρs − 2ρi]

kT [ρs ln (ρi/ρ∞) + ρ∞ − ρi]
2 . (26)

How about seeing the unstable islands in our simulation? We have observed that if we

start out with 109 atoms in a 100x100 system at a temperature of 1347 K, the island size

fluctuates considerably and there are several frames of data where the island breaks up into

many smaller ones. This can be understood within the framework of our theory for the Ising

model. Fig. 6 shows the change in free energy on nucleating an island of radius r in the
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Ising model for 109 particles. From this we see that the island-vapour system is not a point

of global minimum of free energy. Further the nucleation barrier to go from this state to

one of uniform vapour is given by ∆G/kT = 5.26. Also we can see from this figure that the

fluctuations to various other island sizes are not highly unlikely. This would account for the

large fluctuations in island size. The same effect is seen for 25 particles at a temperature of

1000 K.

VI. INVESTIGATION OF MICROSCOPIC ORIGINS

Since these simulations of atomic scale systems exhibit the Gibbs-Thomson effect viz.

an enhanced vapour pressure around islands of small radii relative to the vapour pressure

outside a flat interface, the opportunity arises to investigate the relationship between this

thermodynamic effect and the microscopic dynamics. We may ask, from a microscopic point

of view, what is the origin of the enhanced adatom vapor concentration in equilibrium with

a small island. A complete discussion of this issue involves many details of the microscopic

characteristics of the island-vapor interface, which are beyond the scope of this paper. Here

we outline our main findings; the interested reader is referred to Refs. 17 and 18 for further

details.

As discussed in Section V, equilibrium between the island and vapour implies detailed

balance at the interface: atoms are attaching to and detaching from the island with equal

rates. Analysis of our simulations shows that for small equilibrium islands, the interface

transfer activity is enhanced in proportion to the vapour density. For example, the data

points in Fig. 7 show the rate at which atoms detach from an island per unit length of the

macroscopic island-vapor interface. This leads to the following microscopic interpretation

of the Gibbs-Thomson effect. As the island size decreases, it becomes easier for atoms to

detach from it, raising the detachment current density. However, we find that there is no

noticeable change in the ease with which an atom can attach to the island for islands whose

radii vary between 4 and 35. Therefore, a higher vapour density is required to maintain
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dynamic equilibrium.

The enhanced detachment current density for smaller islands can be ascribed to trends in

the character of the sites on the island edge. On smaller islands, the density of edge atoms

is found to actually decrease, so that there are fewer atoms per unit length of interface

available for detachment. However, the average coordination of the edge atoms is found to

be smaller, which leads to lower energy barriers for edge atom motion. Also, each edge atom

on a smaller island tends to have more detachment moves available to it. That is, when the

edge atom moves it is more likely to detach, as opposed to moving along the edge of the

island. The net result of these trends yields the observed enhancement in detachment.

Note that the above trends, observed in the equilibrium islands (e.g., Fig. 3) of our

simulations also hold true for a square island, although a square is not the thermodynamic

shape of an equilibrium island at finite temperatures. As a square island is made smaller,

the corner sites acquire greater significance. Since the corner sites of a square island have a

lower coordination than sites on the side of a square, the average coordination of edge atoms

on a small square is lower than it is on a large square. Similarly, corner atoms have two

detachment moves available, while side atoms have only one. Therefore a smaller square has

a higher ratio of available detachment moves to number of edge atoms.

This analogy between the simulated islands and square islands suggests that an important

element of the observed behavior is the simple geometric constraint that any closed perimeter

on a square lattice must have four more outward pointing corners than it has inward pointing

crevices. As a test of this idea, Fig. 7 compares the detachment current density observed

in the simulation with that expected for a square island of the same area and at the same

temperature. As expected, the overall detachment current density is lower for the square

island, as it has the smoother edge. However, as the island size is varied, the magnitude

of the enhancement in detachment from the square is comparable to the enhancement in

detachment from the simulated islands. It is therefore clear that it is important to consider

the effect of the ‘four extra corners’ in an understanding of the Gibbs-Thomson effect at a

microscopic level. It is difficult to quantify the effect of this geometrical constraint, as it
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is impossible to label an individual corner on an equilibrium island as being due to either

geometry or thermal roughening. However, comparison with the non-equilibrium square

island gives an indication of the strength of the effect.

VII. CONCLUSIONS

We have simulated a lattice gas to mimic the behaviour of a cluster of atoms, on generic

surfaces, in an effort to study the relationship between the cluster radius and the vapour

density around it. We have shown that the “classical” Gibbs-Thomson relationship one com-

putes assuming an ideal gas of atoms is incorrect at high vapour densities and a knowledge

of the true equation of state is necessary to obtain a better result. We have seen that the

corrected formula can be used down to islands with about 150 atoms at a temperature of

0.6Tc and islands with about 30 atoms at 0.445Tc, in the case of our simulations.

Further we have seen how metastable states in traditional nucleation theories can be

made stable by finite size effects. We have seen how these states may arise in the context of

the Ising model and have explored the metastable continuation of the equation of state in

the Ising model. Simulations performed on the Ising model agree well with our predictions

regarding stability.

As far as experimental observations of the corrections to the Gibbs-Thomson formula are

concerned such an effect would surely be observed in a system with short range interactions

at small island sizes and high temperature (about 60 percent of the melting temperature).

However in real situations in addition to the short range attractive forces that bind atoms

to each other there exist long range dipolar forces at step edges, between the atoms at

the edge and the vapour. This may skew the predictions of a theory like ours which is

simple and ignores such effects. Finally we have looked at the microscopic origins of the

Gibbs-Thomson formula and have offered heuristic arguments that it maybe correlated to

geometric constraints.

19



VIII. ACKNOWLEDGMENTS

BK would like to thank Gerard Barkema for helping out with a lot of information re-

garding the MC method and for the data on energy barriers for which we are grateful to

Rien Breeman. He would also like to thank Mark Newman for help on series expansions. We

would like to thank Eric Chason for a lot of help on details regarding the simulation. BK

wishes to acknowledge financial support from the National Science Foundation and the Ma-

terials Science Centre through grants NSF-GER-9022961 and DMR-91-21654 respectively,

while JM acknowledges support from the Air Force Office of Sponsored Research (grants

AFOSR-91-0137 and AFOSR/AASERT F49620-93-1-0504) and partial support from the

Cornell Materials Science Centre (NSF-DMR-91-21654). This work made use of the MSC

Multi-User-Computer Facility, an MRL Central Facility supported by the National Science

Foundation under Award No. DMR-9121564.

20



REFERENCES

1 Present Address: Dept. of Chemistry, UCSD, La Jolla, CA 92093-0358.

2G. W. Greenwood, Acta Metall., 4, 243, (1956), I. M. Lifshitz and V. V. Slyozov, Zh.

Eksp. Teor. Fiz., 35, 8, (1958), I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids,

19, 35, (1961), C. Wagner, Z. Elektrochem., 65, 581, (1961) and B. K. Chakraverty, J.

Phys. Chem. Solids, 28, 2401, (1967)

3D. R. Peale and B. H. Cooper, J. Vac. Sci. Tech. A, 10, 2210, (1992).

4 J. G. McLean, J. P. Sethna, B. Krishnamachari, B. H. Cooper, D. R. Peale, and E. Chason

in preparation.

5K. Morgenstern, G. Rosenfeld and G. Comsa Phys. Rev. Lett., 76, 2113 (1996).

6 J. E. McDonald, Am. J. of Phys., 30, 12, 870, (1963).

7 J. S. Rowlinson and B. Widom, Molecular Theory of Capillarity , (Clarendon Press, Ox-

ford, 1992), Chap. 2, pp 25-47.

8O. H. Nielsen, J. P. Sethna, P. Stoltze, K. W. Jacobsen, and J. K. Norskov, Europhys.

Lett., 26, 1, pp 51-56, (1994).

9Note that the solid island (point 5) is not at the same pressure as the vapour in equilibrium

around it (point 2) if the island has a finite radius of curvature. The difference in pressure

between the solid and gas is given by the Young-Laplace equation in two dimensions,

∆p = γ/r, where γ is the edge free energy and r the radius of curvature of the island.

10A. B. Bortz, M. H. Kalos and J. L. Lebowitz, J. Comp. Phys., 17, 10, (1975).

11M. Breeman, G. T. Barkema and D. O. Boerma, Surf. Sci., 303, 25 (1994).

12 J. E. Avron, H. Van Beijeren, L. S. Schulman and R. K. P. Zia, J. Phys. A: Math, Gen.

15, L81-L86, (1982).

21



13One may suspect the assumption of zero compressibility for the solid phase may be the rea-

son for the discrepancy between the data and the fit using the Gibbs-Thompson formula,

as opposed to “non-ideal” behaviour of the gas around the island. However this is ruled

out because we have rederived the Gibbs-Thomson formula, assuming the vacancies in the

solid phase to behave as an ideal gas. The curve so obtained is virtually indistinguishable

from the dotted curve in Fig. 4 which represents the classical uncorrected Gibbs-Thomson

formula. The inclusion of the extra term on the right hand side of Eq. (7) does not produce

any discernable change either to the classical uncorrected Gibbs-Thomson curve.

14G. Parisi, Statistical Field Theory, (Addison Wesley, 1988), Chap. 4, pp 46 - 49.

15M.F. Sykes, J. W. Essam and D. S. Gaunt, J. Math. Phys, 6, 2, 283, Feb (1965).

16An alternate route to obtaining these relations would be to make sure that we are at a

local minimum of the total change in free energy that we derived in Section II, Eq. 6, i.e.,

d∆Ftot

dr
= 0, (27)

d2∆Ftot

dr2
≥ 0. (28)

The first of the above two equations is just the Gibbs-Thomson formula as we have seen

in Section II while the second one which expresses the fact that we be at a local minimum

of the free energy, reduces to Eq. 22.

17 J. G. McLean, Ph.D. thesis, Cornell University, 1996.

18 J. G. Mclean, J. P. Sethna and B. H. Cooper, in preparation.

22



TABLE I. Energy barriers for intra-layer atomic moves

Initial Final Coordination

Coordination 0-fold 1-fold 2-fold 3-fold

0-fold 0.697 eV 0.479 eV 0.328 eV 0.166 eV

1-fold 0.820 eV 0.624 eV 0.450 eV 0.275 eV

2-fold 1.010 eV 0.791 eV 0.591 eV 0.377 eV

3-fold 1.189 eV 0.957 eV 0.718 eV 0.462 eV

TABLE II. Constants for the Ising model for bond energy = 0.341 eV

T=1347 K T=1000 K

Tc 2245 K 2245 K

γmin 0.1161 eV 0.1465 eV

γmax 0.1184 eV 0.1543 eV

γavg 0.1173 eV 0.1507 eV

ρ∞ 0.003578 0.000396

ρs 0.996422 0.999602

vapour

P

v

1

2

34

5

solid

FIG. 1. Equation of state for the ideal gas
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FIG. 2. The change in free energy as a function of r, for a system of volume V=10,000, for

various values of N. Notice the global minimum of the Helmholtz free energy is a solid island of

radius r ∼ 5.9, for the case N = 150. Further, if N < 84, the globally stable extremum switches

from island plus vapour (I) to pure vapour (V)

.

FIG. 3. A snapshot of an island with vapour around it as seen in the simulation
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FIG. 4. Plot of the logarithm of the density of vapour outside an island vs. the reciprocal of its

equilibrium radius. The dashed line represents the Gibbs-Thomson prediction assuming an ideal

gas of vapour. The solid curve is the prediction using the corrected Gibbs-Thomson formula for

the Ising model. Fig. a is the data at a temperature of 1000 K while Fig. b is at 1347 K
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FIG. 5. Equation of state for the Ising Model
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FIG. 6. The free energy of an island of radius r plotted for a system of 109 particles with V =

10,000
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FIG. 7. A comparison of the changes in detachment current density found for islands in simula-

tion (Jd), and for a square island treated in the same way (Jsq
d ). The solid line represents Jsq

d +A,

where A is chosen such that it Jd − (Jsq
d +A) → 0 as r → ∞. Lines, to guide the eye, are fits to

the form f(∞) exp(C/r).
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