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Abstract

We consider a mesoscopic region coupled to two leads under the influence of

external time-dependent voltages. The time dependence is coupled to source

and drain contacts, the gates controlling the tunnel-barrier heights, or to

the gates which define the mesoscopic region. We derive, with the Keldysh

nonequilibrium Green function technique, a formal expression for the fully

nonlinear, time-dependent current through the system. The analysis admits

arbitrary interactions in the mesoscopic region, but the leads are treated as

noninteracting. For proportionate coupling to the leads, the time-averaged

current is simply the integral between the chemical potentials of the time-

averaged density of states, weighted by the coupling to the leads, in close

analogy to the time-independent result of Meir and Wingreen (Phys. Rev.
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Lett. 68, 2512 (1992)). Analytical and numerical results for the exactly

solvable non-interacting resonant-tunneling system are presented. Due to the

coherence between the leads and the resonant site, the current does not follow

the driving signal adiabatically: a ”ringing” current is found as a response to a

voltage pulse, and a complex time-dependence results in the case of harmonic

driving voltages. We also establish a connection to recent linear-response

calculations, and to earlier studies of electron-phonon scattering effects in

resonant tunneling.
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I. INTRODUCTION

The hallmark of mesoscopic phenomena is the phase coherence of the charge carriers,

which is maintained over a significant part of the transport process. The interference effects

resulting from this phase coherence are reflected in a number of experimentally measur-

able properties. For example, phase coherence is central to the Aharonov-Bohm effect, [1]

Universal conductance fluctuations, [1] and weak localization, [2] and can be affected by

external controls such as temperature or magnetic field. The study of stationary mesoscopic

physics is now a mature field, and in this work we focus on an alternative way of affecting

the phase coherence: external time-dependent perturbations. The interplay of external time

dependence and phase coherence can be phenomenologically understood as follows. If the

single-particle energies acquire a time dependence, then the wave functions have an extra

phase factor, ψ ∼ exp(−i
∫ t dt′ǫ(t′)). For a uniform system such an overall phase factor is

of no consequence. However, if the external time dependence is different in different parts

of the system, and the particles can move between these regions (without being ’dephased’

by inelastic collisions), the phase difference becomes important.

The interest in time-dependent mesoscopic phenomena stems from recent progress in

several experimental techniques. [3] Time dependence is a central ingredient in many different

experiments, of which we mention the following: (i) Single-electron pumps and turnstiles.

Here time-modified gate signals move electrons one by one through a quantum dot, leading to

a current which is proportional to the frequency of the external signal. These structures have

considerable importance as current standards. The Coulombic repulsion of the carriers in the

central region is crucial to the operational principle of these devices, and underlines the fact

that extra care must be paid to interactions when considering time-dependent transport in

mesoscopic systems. (ii) ac response and transients in resonant-tunneling devices. Resonant

tunneling devices (RTD) have a number of applications as high-frequency amplifiers or

detectors. For the device engineer a natural approach would be to model these circuit

elements with resistors, capacitances, and inductors. The question then arises as to what, if
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any, are the appropriate ’quantum’ capacitances and inductances one should ascribe to these

devices. Answering this question requires the use of time-dependent quantum-transport

theory. (iii) Interaction with laser fields. Ultrashort laser pulses allow the study of short-

time dynamics of charge carriers. Here again, coherence and time dependence combine with

the necessity of treating interactions.

A rigorous discussion of transport in an interacting mesoscopic system requires a formal-

ism which is capable of including explicitly the interactions. Obvious candidates for such a

theoretical tool are various techniques based on Green functions. Since many problems of

interest involve systems far from equilibrium, we cannot use linear-response methods, such

as those based on the Kubo formula, but must use an approach capable of addressing the

full nonequilibrium situation. The nonequilibrum Green function techniques, as developed

about thirty years ago by Kadanoff and Baym, [5] and by Keldysh, [6] have during the re-

cent years gained increasing attention in the analysis of transport phenomena in mesoscopic

semiconductors systems. [7] In particular, the steady state situation. has been addressed

by a large number of papers [8–13] Among the central results obtained in these papers is

that that under certain conditions (to be discussed below) a Landauer type conductance

formula [14] can be derived. This is quite appealing in view of the wide spread success of

conductance formulas in the analysis of transport in mesoscopic systems.

Considerably fewer studies have been reported where an explicit time dependence is an

essential feature. We are aware of an early paper in surface physics, [15] but only in the

recent past have groups working in mesoscopic physics addressed this problem. [16–21] The

work reported in this paper continues along these lines: we give the full details and expand

on our short communication. [18]

Our main formal result from the nonequilibrium Green function approach is a general

expression for the time-dependent current flowing from non-interacting leads to an inter-

acting region. As we will discuss in Section II, the time dependence enters through the

self-consistent parameters defining the model. We show that under certain restrictions, to

be specified below, a Landauer-like formula can be obtained for the time-averaged current.
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To illustrate the utility of our approach we give results for an exactly solvable non-interacting

case, which displays an interesting, and experimentally measurable, nonadiabatic behavior.

We also establish a link between the present formulation and recently published results for

linear-response and electron-phonon interactions, obtained by other techniques.

The paper is organized as follows. We examine in Section II the range of experimental

parameters in which we expect our theoretical formulation to be valid. In Section III we

briefly review the physics behind the nonequilibrium Green function technique of Keldysh,

and Baym and Kadanoff, which is our main theoretical tool, and then introduce the specific

model Hamiltonians used in this work. We derive the central formal results for the time-

dependent current in Section IV. We also derive, under special restrictions, a Landauer-

like formula for the average current. In Section V we apply the general formulae to an

explicitly solvable resonant-tunneling model. Both analytical and numerical results are

presented. We also show that the linear ac-response results of Fu and Dudley [22] are

contained as a special case of the exact results of this section. In Section VI we illustrate the

utility of our formulation by presenting a much simplified derivation of Wingreen et al’s [23]

results on resonant tunneling in the presence of electron-phonon interactions. Appendix A

summarizes some of the central technical properties of the Keldysh technique: we state the

definitions, give the basic equations, and provide the analytic continuation rules employed

below. In Appendices B and C we present proofs for certain statements made in the main

text, and, finally, in Appendix D we describe some transformations which facilitate numerical

evaluation of the time-dependent current.

II. APPLICABILITY TO EXPERIMENTS

A central question one must address is: under which conditions are the non-equilibrium

techniques, applied successfully to the steady-state problem, transferrable to time-dependent

situations, such as the experiments mentioned above?

The time-dependent problem has to be formulated carefully, particularly with respect
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to the leads. It is essential to a Landauer type of approach, that the electrons in the leads

be non-interacting. In practice, however, the electrons in the leads near the mesoscopic

region contribute to the self-consistent potential. We approach this problem by dividing the

transport physics in two steps: [24] (i) the self-consistent determination of charge pile-up

and depletion in the contacts, the resulting barrier heights, and single-particle energies in

the interacting region, and (ii) transport in a system defined by these self-consistent pa-

rameters. Step (i) requires a capacitance calculation for each specific geometry, [24] and we

do not address it in this paper. Instead, we assume the results of (i) as time-dependent

input parameters and give a full treatment of the transport through the mesoscopic region

(ii). In practice, the interactions in the leads are absorbed into a time-dependent potential

and from then on the electrons in the leads are treated as non-interacting. This means that

when relating our results to actual experiments some care must be exercised. Specifically, we

calculate only the current flowing into the mesoscopic region, while the total time-dependent

current measured in the contacts includes contributions from charge flowing in and out of

accumulation and depletion regions in the leads. In the time-averaged (dc) current, how-

ever, these capacitive contributions vanish and the corresponding time-averaged theoretical

formulae, such as Eq.(27), are directly relevant to experiment. It should be noted, though,

that these capacitive currents may influence the effective time-dependent parameters in step

(i) above.

Let us next estimate the frequency limits that restrict the validity of our approach. Two

criteria must be satisfied. First, the driving frequency must be sufficiently slow that the

applied bias is dropped entirely across the tunneling structure. When a bias is applied to a

sample, the electric field in the leads can only be screened if the driving frequency is smaller

than the plasma frequency, which is tens of THz in typical doped semiconductor samples.

For signals slower than this, the bias is established entirely across the tunneling structure by

accumulation and depletion of charge near the barriers. The unscreened Coulomb interaction

between net excess charge is quite strong, and hence the bias across a tunneling structure

is caused by a relatively small excess of charge in accumulation and depletion layers. The
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formation of these layers then causes a rigid shift (see Eq.(2) below) of the bottom of the

conduction band deeper in the leads, which is the origin of the rigid shift of energy levels in

our treatment of a time-dependent bias.

The second frequency limit on our approach is that the build-up of electrons required

for the formation of the accumulation and depletion layers must not significantly disrupt

the coherent transport of electrons incident from the leads. One way to quantify this is to

ask – what is the probability that an electron incident from the leads participates in the

build-up of charge associated with a time-dependent bias? This probability will be the ratio

of the net current density flowing into the accumulation region to the total incident flux of

electrons. For a three dimensional double-barrier resonant-tunneling structure (see Fig. 1)

the ac-current charging the accumulation layer is Irms
acc = 2πνCV rms/A, where ν is the driving

frequency, C is the capacitance, V rms is the applied bias, and A is the area. In comparison,

the total incident flux is Iinc = 3/8 envF. Using the parameters appropriate for a typical

experiment (we use that of Brown et al. [4]), we find that up to 10 THz the probability of

an electron participating in the charge build-up is only 1%. Summarizing, these estimates

indicate that our approach should be accurate up to frequencies of tens of THz, which are

large by present experimental standards [Ref. ?], and consequently the analysis presented

in what follows should be valid for most experimental situations.

III. THEORETICAL TOOLS, AND THE MODEL

A. Baym-Kadanoff-Keldysh nonequilibrium techniques

Here we wish to outline the physical background behind the Keldysh formulation, and

in particular its connection to tunneling physics. Readers interested in technical details

should consult any of the many available review articles, such as Refs.[ [25–27]]. The basic

difference between construction of equilibrium and nonequilibrium perturbation schemes is

that in nonequilibrium one cannot assume that the system returns to its ground state (or
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a thermodynamic equilibrium state at finite temperatures) as t → +∞. Irreversible effects

break the symmetry between t = −∞ and t = +∞, and this symmetry is heavily exploited

in the derivation of the equilibrium perturbation expansion. In nonequilibrium situations

one can circumvent this problem by allowing the system to evolve from −∞ to the moment of

interest (for definiteness, let us call this instant t0), and then continues the time evolvement

from t = t0 back to t = −∞. [28] (When dealing with quantities which depend on two time

variables, such as Green functions, the time evolution must be continued to the later time.)

The advantage of this procedure is that all expectation values are defined with respect to a

well defined state, i.e. the state in which the system was prepared in the remote past. The

price is that one must treat the two time branches on an equal footing (See Fig. 2).

A typical object of interest would be a two time Green function (see Appendix A); the

two times can be located on either of the two branches of the complex time path (e.g.,

τ and τ ′ in Fig. 2). One is thus led to consider 2 × 2 Green function matrices, and the

various terms in the perturbation theory can be evaluated by matrix multiplication. Since

the internal time-integrations run over the complex time path, a method of book-keeping

for the time-labels is required, and there are various ways of doing this. In the present work

we employ a version of the Keldysh technique.

In the context of tunneling problems the time-independent Keldysh formalism works as

follows. In the remote past the contacts (i.e. the left and right lead) and the central region are

decoupled, and each region is in thermal equilibrium. The equilibrium distribution functions

for the three regions are characterized by their respective chemical potentials; these do not

have to coincide nor are the differences between the chemical potentials necessarily small.

The couplings between the different regions are then established and treated as perturbations

via the standard techniques of perturbation theory, albeit on the two-branch time contour.

It is important to notice that the couplings do not have to be small, e.g. with respect level

spacings or kBT , and typically must be treated to all orders.

The time-dependent case can be treated similarly. Before the the couplings between

the various regions are turned on, the single-particle energies acquire rigid time-dependent
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shifts, which, in the case of the non-interacting contacts, translate into extra phase factors

for the propagators (but not in changes in occupations). The perturbation theory with

respect to the couplings has the same diagrammatic structure as in the stationary case. The

calculations, of course, become more complicated because of the broken time translational

invariance.

B. Model Hamiltonian

We split the total Hamiltonian in three pieces: H = Hc +HT +Hcen, where Hc describes

the contacts, HT is the tunneling coupling between contacts and the interacting region, and

Hcen models the interacting central region, respectively. Below we discuss each of these

terms.

1. Contacts, Hc

Guided by the typical experimental geometry in which the leads rapidly broaden into

metallic contacts, we view electrons in the leads as non-interacting except for an overall

self-consistent potential. Physically, applying a time-dependent bias (electrostatic-potential

difference) between the source and drain contacts means that the single-particle energies

become time-dependent: ǫ0kα → ǫkα(t) = ǫ0kα + ∆α(t) (here α labels the channel in the

left (L) or right (R) lead). The occupation of each state kα, however, remains unchanged.

The occupation, for each contact, is determined by an equilibrium distribution function

established in the distant past, before the time dependence or tunneling matrix elements

are turned on. Thus, the contact Hamiltonian is

Hc =
∑

k,α∈L,R

ǫkα(t)c†kαckα , (1)

and the exact time-dependent Green functions in the leads for the uncoupled system are

g<
kα(t, t′)≡ i〈c†kα(t′)ckα(t)〉
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= if(ǫ0kα) exp [ − i
∫ t

t′
dt1ǫkα(t1)]

gr,a
kα(t, t′)≡ ∓iθ(±t∓ t′)〈{ckα(t), c†kα(t′)}〉

= ∓iθ(±t ∓ t′) exp [ − i
∫ t

t′
dt1ǫkα(t1)] . (2)

One should note that our model for g< differs from the choice made in the recent study of

Chen and Ting: [16] these authors allow the electrochemical potential in the distribution

function f to vary with time: µL − µR = e[V + U(t)], where U(t) is the ac signal. This

assumption implies that the total number of electrons in the contacts varies with time.

This behavior is inconsistent of what happens in real devices: it is only the relatively small

number of electrons in the accumulation/depletion layers that is time-dependent. In addition

to the unphysical charge pile-up in the contacts, the model of Chen and Ting leads to an

instantaneous loss of phase-coherence in the contacts, and hence does not display any of the

interesting interference phenomena predicted by our phase-conserving model.

2. Coupling between leads and central region, HT

The coupling between the leads and the central (interacting) region can be modified

with time-dependent gate voltages, as is the case in single-electron pumps. The precise

functional form of the time-dependence is determined by the detailed geometry and by the

self-consistent response of charge in the contacts to external driving. We assume that these

parameters are known, and simply write

HT =
∑

k,α∈L,R
n

[Vkα,n(t)c
†
kαdn + h.c.] . (3)

Here {d†
n} and {dn} form a complete orthonormal set of single-electron creation and anni-

hilation operators in the interacting region.
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3. The central region Hamiltonian Hcen

The form chosen for Hcen in the central interacting region depends on geometry and on

the physical behavior being investigated. Our results relating the current to local properties,

such as densities of states and Green functions, are valid generally. To make the results more

concrete, we will discuss two particular examples in detail. In the first, the central region is

taken to consist of noninteracting, but time-dependent levels,

Hcen =
∑

m

ǫm(t)d†
mdm (4)

Here d†
m(dm) creates (destroys) an electron in state m. The choice (4) represents a simple

model for time-dependent resonant tunneling. Below we shall present general results for an

arbitrary number of levels, and analyze the case of a single level in detail. The latter is

interesting both as an exactly solvable example, and for predictions of coherence effects in

time-dependent experiments.

The second example we will discuss is resonant tunneling with electron-phonon interac-

tion,

Hel−ph
cen = ǫ0d

†d + d†d
∑

q

Mq[a†
q

+ a−q] , (5)

In the above, the first term represents a single site, while the second term represents in-

teraction of an electron on the site with phonons: a†
q
(aq) creates (destroys) a phonon in

mode q, and Mq is the interaction matrix element. The full Hamiltonian of the system

must also include the free-phonon contribution Hph =
∑

q h̄ωqa
†
q
aq. This example, while

not exactly solvable, is helpful to show how interactions influence the current. Furthermore,

we can directly compare to previous time-independent results [23] using (5) to demonstrate

the power of the present formalism.

IV. TIME-DEPENDENT CURRENT AND KELDYSH GREEN FUNCTIONS
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A. General expression for the current

The current from the left contact through left barrier to the central region can be calcu-

lated from the time evolution of the occupation number operator of the left contact:

JL(t) = −e〈ṄL〉 = −
ie

h̄
〈[H,NL]〉 , (6)

where NL =
∑

k,α∈L c
†
kαckα and H = Hc +HT +Hcen. Since Hc and Hcen commute with NL,

one readily finds

JL =
ie

h̄

∑

k,α∈L
n

[Vkα,n〈c
†
kαdn〉 − V ∗

kα,n〈d
†
nckα〉] . (7)

Now define two Green functions:

G<
n,kα(t, t′)≡ i〈c†kα(t′)dn(t)〉 (8)

G<
kα,n(t, t

′)≡ i〈d†
n(t′)ckα(t)〉 . (9)

Using G<
kα,n(t, t) = −

[

G<
n,kα(t, t)

]∗
, and inserting the time labels, the current can be ex-

pressed as

JL(t) =
2e

h̄
Re

{

∑

k,α∈L
n

Vkα,n(t)G
<
n,kα(t, t)

}

. (10)

One next needs an expression for G<
n,kα(t, t′). For the present case, with non-interacting

leads, a general relation for the contour-ordered Green function Gn,kα(τ, τ ′) can be derived

rather easily (either with the equation-of-motion technique, or by a direct expansion of the

S-matrix; the details are given in Appendix B), and the result is

Gn,kα(τ, τ ′) =
∑

m

∫

dτ1Gnm(τ, τ1)V
∗
kα,m(τ1)gkα(τ1, τ

′) . (11)

Here Gnm(τ, τ1) is the contour-ordered Green function for the central region, and the τ -

variables are now defined on the contour of Fig. 2. Note that the time-dependence of the

tunneling matrix elements and single-particle energies has broken the time-translational

invariance. The analytic continuation rules (A3) of Appendix A can now be applied, and

we find
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G<
n,kα(t, t′) =

∑

m

∫

dt1V
∗
kα,m(t1)[G

r
nm(t, t1)g

<
kα(t1, t

′)

+G<
nm(t, t1)g

a
kα(t1, t

′)] , (12)

where the Green functions g<,a for the leads are defined in (2) above. Combining (2),(10),

and (12), yields

JL(t) = −
2e

h̄
Im

{

∑

k,α∈L
n,m

Vkα,n(t)
∫ t

−∞
dt1e

i
∫ t

t1
dt2ǫkα(t2)

×V ∗
kα,m(t1)[G

r
nm(t, t1)fL(ǫkα) +G<

nm(t, t1)]
}

. (13)

The discrete sum over k in
∑

kα can be expressed in terms of densities of states in the leads:

∫

dǫρα(ǫ). Then it is useful to define

[ΓL(ǫ, t1, t)]mn = 2π
∑

α∈L

ρα(ǫ)Vα,n(ǫ, t)V ∗
α,m(ǫ, t1)

× exp[i
∫ t

t1
dt2∆α(ǫ, t2)] , (14)

where Vkα,n = Vα,n(ǫk). In terms of this generalized line-width function (14), the general

expression for the current is

JL(t) = −
2e

h̄

∫ t

−∞
dt1

∫

dǫ

2π
ImTr

{

e−iǫ(t1−t)ΓL(ǫ, t1, t)

×[G<(t, t1) + fL(ǫ)Gr(t, t1)]
}

. (15)

Here the bold-face notation indicates that the level-width function Γ and the central-region

Green functions G<,r are matrices in the central-region indeces m,n. An analogous formula

applies for JR(t), the current flowing into the central region through the right barrier.

This is the central formal result of this work, and the remainder of this paper is devoted to

the analysis and evaluation of Eq.(15). The current is expressed in terms of local quantities:

Green functions of the central region. The first term in Eq.(15), which is proportional

to the lesser function G<, suggests an interpretation as the out-tunneling rate (recalling

ImG<(t, t) = N(t)). Likewise, the second term, which is proportional to the occupation

in the leads and to the density of states in the central region, can be associated to the

13



in-tunneling rate. However, one should bear in mind that all Green functions in Eq.(15)

are to be calculated in the presence of tunneling. Thus, G< will depend on the occupation

in the leads. Furthermore, in the presence of interactions Gr will depend on the central

region occupation. Consequently, the current can be a non-linear function of the occupation

factors. This issue has recently been discussed also by other authors. [29]

B. Time-independent case

1. General expression

In the time-independent limit the line-width function simplifies: Γ(ǫ, t1, t) → Γ(ǫ), and

the t1-integrals in Eq.(15) can be performed:

∫ t

−∞
dt1

∫ dǫ

2π
ImTr

{

e−iǫ(t1−t)ΓL(ǫ)G<(t− t1)
}

= −
i

2

∫

dǫ

2π
Tr{ΓL(ǫ)G<(ǫ)} , (16)

and

∫ t

−∞
dt1

∫

dǫ

2π
ImTr

{

e−iǫ(t1−t)ΓL(ǫ)fL(ǫ)Gr(t− t1)
}

= −
i

2

∫

dǫ

2π
Tr

{

ΓL(ǫ)fL(ǫ)[Gr(ǫ) −Ga(ǫ)]
}

. (17)

When these expressions are substituted to Eq.(15), the current from left (right) contact to

central region becomes

JL(R) =
ie

h̄

∫

dǫ

2π
Tr

{

ΓL(R)(ǫ)(G<(ǫ)

+fL(R)(ǫ)[G
r(ǫ) − Ga(ǫ)])

}

. (18)

In steady state, the current will be uniform, so that J = JL = −JR , and one can symmetrize

the current: J = (JL + JL)/2 = (JL − JR)/2. Using Eq.(18) leads to the general expression

for the d.c. current:

J =
ie

2h̄

∫

dǫ

2π
Tr{[ΓL(ǫ) − ΓR(ǫ)]G<(ǫ)

+[fL(ǫ)ΓL(ǫ) − fR(ǫ)ΓR(ǫ)][Gr(ǫ) − Ga(ǫ)]} . (19)
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This result was reported in Ref. [8], and applied to the out-of-equilibrium Anderson impurity

problem.

2. Proportionate coupling

If the left and right line-width functions are proportional to each other, i.e. ΓL(ǫ) =

λΓR(ǫ), further simplification can be achieved. We observe that the current can be written

as J ≡ xJL − (1 − x)JR, which gives, using Eq.(18),

J =
ie

h̄

∫

dǫ

2π
Tr

{

ΓR(ǫ)[(λx− (1 − x))G<(ǫ)

+(λxfL − (1 − x)fR)(Gr(ǫ) − Ga)(ǫ)]
}

. (20)

The arbitrary parameter x is now fixed so that the first term vanishes, i.e x = 1/(1 + λ),

which results in

J =
ie

h̄

∫

dǫ

2π
[fL(ǫ) − fR(ǫ)]

×Tr
{ ΓL(ǫ)ΓR(ǫ)

ΓL(ǫ) + ΓR(ǫ)
(Gr(ǫ) − Ga(ǫ))

}

. (21)

The ratio is well-defined because the Γ-matrices are proportional. The difference between

the retarded and advanced Green functions is essentially the density of states. Despite of

the apparent similarity of (21) to the Landauer formula, it is important to bear in mind that

in general there is no immediate connection between the quantity Tr
{

(ΓL(ǫ)ΓR(ǫ)/[ΓL(ǫ) +

ΓR(ǫ)])[Gr(ǫ) − Ga(ǫ)]
}

, and the transmission coefficient. In particular, when inelastic

scattering is present, we do not believe that such a connection exists. In Section V, where

we analyze a non-interacting central region, a connection with the transmission coefficient

can be established. Further, in the next section we shall see how an analogous result can be

derived for the average of the time-dependent current.
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C. Average current

In analogy with the previous subsection, where we found a compact expression for the

current for the case of proportionate coupling, the time-dependent case allows further sim-

plification, if assumptions are made on the line-width functions. In this case, we assume a

generalized proportionality condition:

ΓL(ǫ, t1, t) = λΓR(ǫ, t1, t) . (22)

One should note that in general this condition can be satisfied only if ∆L
α(t) = ∆R

α (t) =

∆(t). However, in the Wide-Band Limit (WBL), to be considered in detail below, the

time-variations of the energies in the leads do not have to be equal.

We next consider the occupation of the central region N(t) =
∑

m〈d
†
m(t)dm(t)〉 and apply

the continuity equation:

e
dN(t)

dt
= JR(t) + JL(t) , (23)

which allows one to write for arbitrary x:

JL(t) = xJL(t) + (1 − x)[e
dN(t)

dt
− JR(t)] . (24)

Choosing now x ≡ 1/(1 + λ) leads to

JL(t) =
( λ

1 + λ

)

[

e
dN

dt
−

2e

h̄
ImTr

{

∫ t

−∞
dt1

∫

dǫ

2π

×e−iǫ(t1−t)ΓR(ǫ, t1, t)G
r(t, t1)[fL(ǫ) − fR(ǫ)]

}

]

. (25)

The time-average of a time-dependent object F (t) is defined by

〈F (t)〉 = lim
T→∞

1

T

∫ T/2

−T/2
dtF (t) . (26)

If F (t) is a periodic function of time, it is sufficient to average over the period. Upon time-

averaging, the first term in Eq.(25) vanishes, 〈dN/dt〉 → 0, because the occupation N(t) is

finite for all T . The expression for the time-averaged current further simplifies if one can
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factorize the energy- and time-dependence of the tunneling coupling, Vkα,n(t) ≡ u(t)Vα,n(ǫk).

We then obtain

〈JL(t)〉 = −
2e

h̄

∫

dǫ

2π
[fL(ǫ) − fR(ǫ)]

×ImTr
{ ΓL(ǫ)ΓR(ǫ)

ΓL(ǫ) + ΓR(ǫ)
〈u(t)A(ǫ, t)〉

}

, (27)

where

A(ǫ, t) =
∫

dt1u(t1)G
r(t, t1)

× exp[iǫ(t− t1) + i
∫ t

t1
dt2∆(t2)] . (28)

Due to Eq.(22) we do not have to distinguish between L/R in the definition of A(ǫ, t); below

we shall encounter situations where this distinction is necessary.

The expression (27) is of the Landauer type: it expresses the current as an integral over

a weighted density of states times the difference of the two contact occupation factors. It is

valid for arbitrary interactions in the central region, but it was derived with the somewhat

restrictive assumption of proportional couplings to the leads.

V. NON-INTERACTING RESONANT-LEVEL MODEL

A. General formulation

In the non-interacting case the Hamiltonian is H = Hc + HT + Hcen, where Hcen =

∑

n ǫnd
†
ndn. Following standard analysis (an analogous calculation is also carried out in

Appendix B), one can derive the Dyson equation for the retarded Green function,

Gr(t, t′) = gr(t, t′)

+
∫

dt1

∫

dt2g
r(t, t1)Σ

r(t1, t2)G
r(t2, t

′) , (29)

where

Σr
nn′(t1, t2) =

∑

kα∈L,R

V ∗
kα,n(t1)g

r
kα(t1, t2)Vkα,n′(t2) , (30)
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and gr
kα is given by Eq.(2). From (A4) the Keldysh equation for G< is [32]

G<(t, t′) =
∫

dt1

∫

dt2G
r(t, t1)Σ

<(t1, t2)G
a(t2, t

′)

= i
∫

dt1

∫

dt2G
r(t, t1)

[

∑

L,R

∫

dǫ

2π
e−iǫ(t1−t2)

×fL/R(ǫ)ΓL/R(ǫ, t1, t2)
]

Ga(t2, t
′) . (31)

Provided that the Dyson equation for the retarded Green function can be solved, Eq.(31)

together with the current expression Eq.(15) provides the complete solution to the nonin-

teracting resonant-level model. Below we examine special cases where analytic progress can

be made.

B. Time-independent case

In the time-independent case the time-translational invariance is restored, and it is ad-

vantageous to go over to energy variables:

Gr(ǫ) = [(gr)−1 − Σr(ǫ)]−1

G<(ǫ) = Gr(ǫ)Σ<(ǫ)Ga(ǫ) . (32)

In general the Dyson equation for the retarded Green function requires matrix inversion. In

the case of a single level, the scalar equations can be readily solved. The retarded (advanced)

self-energy is

Σr,a(ǫ) =
∑

kα∈L,R

|Vkα|
2

ǫ− ǫkα ± iη
= Λ(ǫ) ∓

i

2
Γ(ǫ) , (33)

where the real and imaginary parts contain ’left’ and ’right’ contributions: Λ(ǫ) = ΛL(ǫ) +

ΛR(ǫ) and Γ(ǫ) = ΓL(ǫ) + ΓR(ǫ). The lesser self-energy is

Σ<(ǫ) =
∑

kα∈L,R

|Vkα|
2g<

kα(ǫ)

= i[ΓL(ǫ)fL(ǫ) + ΓR(ǫ)fR(ǫ)] . (34)
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Using the identities GrGa = (Gr − Ga)/(1/Ga − 1/Gr) = a(ǫ)/Γ(ǫ) [here a(ǫ) = i[Gr(ǫ) −

Ga(ǫ)] is the spectral function], one can write G< in a ’pseudoequilibrium’ form:

G<(ǫ) = ia(ǫ)f̄(ǫ) , (35)

where

f̄(ǫ)=
ΓL(ǫ)fL(ǫ) + ΓR(ǫ)fR(ǫ)

Γ(ǫ)

a(ǫ)=
Γ(ǫ)

[ǫ− ǫ0 − Λ(ǫ)]2 + [Γ(ǫ)/2]2
. (36)

With these expressions the evaluation of the current (19) is straightforward:

J = −
e

2h̄

∫ dǫ

2π
a(ǫ)

[

(ΓL(ǫ) − ΓR(ǫ))f̄(ǫ)

−(fL(ǫ)ΓL(ǫ) − fR(ǫ)ΓR))
]

=
e

h̄

∫

dǫ

2π

ΓL(ǫ)ΓR(ǫ)

[ǫ− ǫ0 − Λ(ǫ)]2 + [Γ(ǫ)/2]2

×[fL(ǫ) − fR(ǫ)] . (37)

Note that this derivation made no assumptions about proportionate coupling to the leads.

The factor multiplying the difference of the fermi functions is the elastic transmission coeffi-

cient. It is important to understand the difference between this result and the result obtained

in Section III.B.2 (despite the similarity of appearance): There Eq.(21) gives the current for

a fully interacting system, and the evaluation of the retarded and advanced Green functions

requires a consideration of interactions (e.g., electron-electron, electron-phonon, and spin-

flip) in addition to tunneling back and forth to the contacts. Suppose now that the Green

function for the interacting central region can be solved: Gr,a(ǫ) = [ǫ−ǫ0−λ(ǫ)± iγ(ǫ)/2]−1,

where λ and γ/2 are the real and imaginary parts of the self-energy (including interactions

and tunneling). Then the interacting result for proportionate coupling (21) becomes
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J =
e

h̄

∫

dǫ

2π
[fL(ǫ) − fR(ǫ)]

ΓL(ǫ)ΓR(ǫ)

ΓL(ǫ) + ΓR(ǫ)

×
γ(ǫ)

[ǫ− ǫ0 − λ(ǫ)]2 + [γ(ǫ)/2]2
. (38)

This result coincides with the noninteracting current expression (37) if λ(ǫ) → Λ(ǫ) and

γ(ǫ) → Γ(ǫ) = ΓR(ǫ) + ΓL(ǫ). In a phenomenological model, where the total level width is

expressed as a sum of elastic and inelastic widths, γ = γe + γi, one recovers the results of

Jonson and Grincwajg, and Weil and Vinter. [30]

C. Wide-band limit

1. Basic formulae

For simplicity, we continue to consider only a single level in the central region. As in the

previous section, we assume that one can factorize the momentum and time-dependence of

the tunneling coupling, but allow for different time-dependence for each barrier: Vkα(t) ≡

uL/R(t)Vα,n(ǫk). Referring to Eq.(33), the wide-band limit (WBL) consists of i) neglecting

the level-shift Λ(ǫ), ii) assuming that the line-widths are energy independent constants,

∑

α∈L,R Γα = ΓL/R, and (iii) allowing a single time-dependence, ∆L/R(t), for the energies in

each lead. The retarded self-energy in Eq.(29) thus becomes

Σr(t1, t2)=
∑

α∈L,R

u∗α(t1)uα(t2)e
−i

∫ t1
t2

dt3∆α(t3)

×
∫

dǫ

2π
e−iǫ(t1−t2)θ(t1 − t2)[−iΓα]

= −
i

2
[ΓL(t1) + ΓR(t1)]δ(t1 − t2) . (39)

(Here we have introduced the notation ΓL/R(t1) ≡ ΓL/R(t1, t1) = ΓL/R|uL/R(t1)|
2.) With

this self-energy, the retarded(advanced) Green function becomes [17,23]

Gr,a(t, t′) = gr,a(t, t′) exp
{

∓
∫ t

t′
dt1

1

2
[ΓL(t1) + ΓR(t1)]

}

(40)
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with

gr,a(t, t′) = ∓iθ(±t∓ t′) exp
[

−i
∫ t

t′
dt1ǫ0(t1)

]

. (41)

This solution can now be used to evaluate the lesser function Eq.(31), and further in Eq.(15),

to obtain the time-dependent current. In the WBL the ǫ- and t1-integrals in the term

involving G< are readily evaluated, and we write the current as (using Im{G<(t, t)} = N(t),

where N(t) is the occupation of the resonant level)

JL(t)= −
e

h̄

[

ΓL(t)N(t) +
∫

dǫ

π
fL(ǫ)

×
∫ t

−∞
dt1Γ

L(t1, t)Im{e−iǫ(t1−t)Gr(t, t1)}
]

. (42)

For a compact notation we introduce

AL/R(ǫ, t) =
∫

dt1uL/R(t1)G
r(t, t1)

× exp[iǫ(t− t1) − i
∫ t1

t
dt2∆L/R(t2)] . (43)

Obviously, in the time-independent case A(ǫ) is just the Fourier transform of the retarded

Green function Gr(ǫ). [33] In terms of A(ǫ, t) the occupation N(t) (using Eq.(31) for G<) is

given by

N(t) =
∑

L,R

ΓL/R
∫

dǫ

2π
fL/R(ǫ)|AL/R(ǫ, t)|2 . (44)

We write the current as a sum of currents flowing out from the central region into the

left(right) contact (see also Fig. 9), and currents flowing into the central region from the

left(right) contact, JL/R(t) = Jout
L/R(t) + J in

L/R(t): [31]

Jout
L/R(t)= −

e

h̄
ΓL/R(t)N(t) (45)

J in
L/R(t)= −

e

h̄
ΓL/RuL/R(t)

∫

dǫ

π
fL/R(ǫ)Im{AL/R(ǫ, t)} . (46)

It is readily verified that these expressions coincide with Eq.(37) if all time-dependent quan-

tities are replaced by constants.
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Employing the same approach as in Section IV C, and provided that uL(t) = uR(t) =

u(T ), we find that the time-averaged current in the WBL is given by

〈J〉 = −
2e

h̄

ΓLΓR

ΓL + ΓR

∫ dǫ

2π
Im{fL(ǫ)〈u(t)AL(ǫ, t)〉

−fR(ǫ)〈u(t)AR(ǫ, t)〉} . (47)

Unlike the general case of Eq. (27), there is no restriction in the WBL that the energy

dependence be the same in the two leads. Eq. (47) can therefore be used for the case of

a time-dependent bias, where ∆L(t) and ∆R(t) will be different. It is interesting to note

that the function of energy appearing in the time-averaged current is positive definite. In

particular, as is shown in Appendix C,

− 〈Im{uL/R(t)AL/R(ǫ, t)}〉 =
Γ

2
〈|AL/R(ǫ, t)|2〉 . (48)

One consequence of (48) is that if only the level is time dependent the average current cannot

flow against the bias.

In the next two sections we consider specific examples for the time variation, which are

relevant for experimental situations.

2. Response to harmonic modulation

Harmonic time modulation is probably the most commonly encountered example of time

dependence. Here we treat the case when the contact and site energy levels vary as

∆L/R,0(t) = ∆L/R,0 cos(ωt) (49)

It is easy to generalize the treatment to situations where the modulation frequencies and/or

phases are different in different parts of the device. Assuming that the barrier heights do

not depend on time (uL/R = 1), and substituting (49) in the expression (43) for A(ǫ, t), one

finds [34]

AL/R(ǫ, t) = exp [−i
(∆0 − ∆L/R)

ω
sin(ωt)]

×
∞
∑

k=−∞

Jk

(

∆0 − ∆L/R

ω

)

eikωt

ǫ− ǫ0 − kω + iΓ/2
, (50)
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where J−k(x) = (−1)kJk(x). Figures 3 (a) and (b) show |A(ǫ, t)|2 and ImA(ǫ, t) as a func-

tion of time, respectively. We recall from Eqs.(44-45) that the current at a given time is

determined by integrating |A(ǫ, t)|2 and ImA(ǫ, t) over energy, and thus an examination of

Figure 3 helps to understand to complicated time dependence discussed below. (We show

only AL; similar results hold for AR.) The physical parameters used to generate these plots

are given in the figure caption. The three-dimensional plot (top part of figure) is projected

down on a plane to yield a contour plot in order to help to visualize the time dependence.

As expected, the time variation is periodic with period T = 2π/ω. The time dependence is

strikingly complex. The most easily recognized features are the maxima in the plot for |A|2;

these are related to photon side-bands occuring at ǫ = ǫ0 ± kω (see also Eq.(51) below). [35]

The current is computed using the methods described in Appendix B, and is shown in

Fig. 4. We also display the drive voltage as a broken line. Bearing in mind the complex

time dependence of |A|2 and ImA, which determine the out- and in-currents, respectively,

it is not surprising that the current displays a non-adiabatic time dependence. The basic

physical mechanism underlying the secondary maxima and minima in the current is the

line-up of a photon-assisted resonant-tunneling peak with the contact chemical potentials.

The rapid time variations are due to J in (or, equivalently, due to ImA): the out-current Jout

is determined by the occupation N(t), and hence varies only on a time-scale Γ/h̄, which is

the time scale for charge density changes.

We next consider the time-average of the current. For the case of harmonic time depen-

dence, we find [34]

〈ImAL/R(ǫ, t)〉= −
Γ

2

∞
∑

k=−∞

J2
k

(

∆0 − ∆L/R

ω

)

×
1

(ǫ− ǫ0 − kω)2 + (Γ/2)2
. (51)

Figure 5 shows the resulting time-averaged current Jdc. A consequence of the complex

harmonic structure of the time-dependent current is that for temperatures kBT < h̄ω the

average current oscillates as function of period 2π/ω. The oscillation can be understood by

examining the general expression for average current Eq.(27) together with (51): whenever
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a photon-assisted peak in the effective density of states, occuring at ǫ = ǫ0 ±kω in the time-

averaged density of states 〈ImAL/R, moves in or out of the allowed energy range, determined

by the difference of the contact occupation factors, a maximum (or minimum) in the average

current results.

3. Response to steplike modulation

We give results for the case when the central site level changes abruptly at t = t0:

ǫ0 → ǫ0 + ∆. If the contacts also change at the same time, the corresponding results are

obtained by letting ∆ → ∆ − ∆L/R. Thus, simultaneous and equal shifts in the central

region and the contacts have no effect. Assuming that the barrier heights do not depend on

time (uL/R ≡ 1), one finds for t > t0 from Eq.(43)

A(ǫ, t) =
1

ǫ− ǫ0 + iΓ/2

×
{

1 + ∆
[1 − exp [i(ǫ− (ǫ0 + ∆) + iΓ/2)(t− t0)]

ǫ− (ǫ0 + ∆) + iΓ/2

}

. (52)

This result is easily generalized (See Eq.(14) in Ref.[ [18]]) to a pulse of duration s, and

numerical results are discussed below.

It is instructive to study analytically the long and short-time behavior of A(ǫ, t). It easily

verified that A(ǫ, t) has the expected limiting behavior:

A(ǫ, t→ ∞) = [ǫ− (ǫ0 + ∆) + iΓ/2]−1 . (53)

Thus, when the transients have died away, A(ǫ, t) settles to its new steady-state value.

Consider next the change in current at short times after the pulse, t−t0 ≡ δt≪ h̄/Γ, h̄/ǫ.

Note that the second inequality provides an effective cut-off for the energy integration re-

quired for the current. In this limit we may write

A(ǫ, t) ≃
1 − i∆δt

ǫ− ǫ0 + iΓ/2
. (54)

Since δJout(t) ∝ |A(ǫ, t)|2 ∝ (δt)2, the leading contribution comes from J in(t). For low

temperatures we find
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δJL/R(t) ≃
eΓL/R

πh̄

∫ µL/R

−h̄/δt
dǫImδA(ǫ, t)

≃
eΓL/R

πh̄
∆δt log δt . (55)

We next discuss the numerical results for a step-like modulation. Just like in the case

of harmonic modulation, it is instructive to study the time dependence of |A|2 and ImA;

these are shown in Figures 6(a) and (b), respectively. The observed time dependence is

less complex than in the harmonic case. Nevertheless, the resulting current, which we have

computed for a pulse of duration s, and display in Fig. 7, shows an interesting ringing

behavior. The ringing is again due to the movement of the sidebands of ImAL/R through

the contact Fermi energies.

Due to the experimental caveats discussed in Section II, the ringing showed in Fig. 7

may be masked by capacitive effects not included in the present work. However, the ringing

should be observable in the time-averaged current by applying a series of pulses such as that

of Fig. 7, and then varying the pulse duration. [36] In Fig. 8 the derivative of the dc current

with respect to pulse length is plotted, normalized by the repeat time τ between pulses. For

pulse lengths s of the order of the resonance liftime h̄/Γ, the derivative of the dc current

mimics closely the time-dependent current following the pulse, and, likewise, asymptotes to

the steady-state current at the new voltage.

4. Linear-response

For circuit modeling purposes it would often be desirable to replace the mesoscopic

device with a conventional circuit element, with an associated complex impedance Z(ω), or

admittance Y (ω). Our results for the nonlinear time-dependent current form a very practical

starting point for such a calculation. For the non-interacting case, the current is determined

by A(ǫ, t) (see Eq.(44-45)), and all one has to do is to linearize A (Eq.(43)) with respect to

the amplitude of the drive signal, i.e., ∆ − ∆L/R. It is important to notice that we do not

linearize with respect to the chemical potential difference: the results given below apply to

25



an arbitrary static bias voltage.

Performing the linearization, one finds

|A
(1)
L/R(ǫ, t)|2 =

∆ − ∆L/R

ω
Re

{ 1

ǫ− ǫ0 + iΓ/2

×[
e−iωt

ǫ− ǫ0 − ω − iΓ/2
−

eiωt

ǫ− ǫ0 + ω − iΓ/2
]
}

, (56)

and

ImA
(1)
L/R(ǫ, t) =

∆ − ∆L/R

2ω
Im

{ eiωt

ǫ− ǫ0 − ω + iΓ/2

−
e−iωt

ǫ− ǫ0 + ω + iΓ/2
+

e−iωt − eiωt

ǫ− ǫ0 + iΓ/2

}

. (57)

At finite temperature the energy integration must be done numerically, as explained in

Appendix B, while at T = 0 they can be done analytically. In the latter case, all the

integrals can be cast into the form

∫ µ

−∞

dǫ

(ǫ− ǫ1 + iΓ1/2)(ǫ− ǫ2 + iΓ2/2)
=

1

ǫ1 − ǫ2 + i(Γ2 − Γ1)/2
log

µ− ǫ1 + iΓ1/2

µ− ǫ2 + iΓ2/2
. (58)

Using log(x+ iy) = 1/2 log(x2 + y2) + i tan−1(y/x) yields

J
(1),in
L/R =

e

h̄
ΓL/R ∆ − ∆L/R

2πω
[cos(ωt)FL/R(ω)

+ sin(ωt)GL/R(ω)] (59)

and

J
(1),out
L/R =

e

h̄
ΓL/R

∑

L,R

ΓL/R ∆ − ∆L/R

2πω

{

cos(ωt)[
ω

ω2 + Γ2
GL/R(ω) −

Γ

ω2 + Γ2
FL/R(ω)]

− sin(ωt)[
Γ

ω2 + Γ2
GL/R(ω) +

ω

ω2 + Γ2
FL/R(ω)]

}

,

(60)

where we defined
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GL/R(ω) = log
|µL/R − ǫ0 + iΓ/2|2

|(µL/R − ǫ0 + iΓ/2)2 − ω2|
(61)

and

FL/R(ω) = tan−1 µL/R − ǫ0 − ω

Γ/2

− tan−1 µL/R − ǫ0 + ω

Γ/2
. (62)

These expressions give the linear ac current for an arbitrarily biased double barrier structure,

where both contacts and the central region energies are allowed to vary harmonically. As a

check, it is instructive to verify that the finite temperature results of Appendix B.2 contain

Eqs.(59-60) as a special case; this is a rather straightforward calculation using the limiting

behavior of the Digamma function.

Considerable simplification occurs, if one considers a symmetric structure at zero bias:

ΓL = ΓR = Γ/2, and µL = µR ≡ µ, respectively. Following Fig. 9, the net current from left

to right is J (1) = 1/2[J
(1),in
L +J

(1),out
R −J

(1),out
L −J

(1),in
R ]. Using Eq.(59-60), one finds that the

’out’ contributions cancel, and that the ’in’-currents combine to give the net current

J (1)(t) = −
e

h̄

Γ

4

∆L − ∆R

2πω
[cos(ωt)F (ω) + sin(ωt)G(ω)] . (63)

Here the functions F (ω) and G(ω) are given by Eq.(62-61), but using µ and Γ/2 as param-

eters. This result exactly coincides with the recent calculation of Fu and Dudley, [22] which

employed a different method.

We now wish to apply the formal results derived in this section to an experimentally

relevant system. The archetypal mesoscopic with potential for applications is the resonant-

tunneling diode. The key feature of a resonant-tunneling diode is its ability to show negative

differential resistance (NDR). The WBL model studied in this section does not have this

feature: its IV-characteristic, which is readily evaluated with Eq.(37), is a monotonically

increasing function. A much more interesting model can be constructed by considering a

model where the contacts have a finite occupied bandwidth; this can achieved by introducing

a low energy cut-off DL/R (in addition to the upper cut-off provided by the electro-chemical

potential). The zero-temperature IV-characteristic is now
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Jdc(V ) =
e

h

2ΓLΓR

Γ
[tan−1 µL − ǫ0(V )

Γ/2
− tan−1 µL −DL − ǫ0(V )

Γ/2

− tan−1 µR(V ) − ǫ0(V )

Γ/2
+ tan−1 µR(V ) −DR − ǫ0(V )

Γ/2
] .

(64)

Here we assume that the right chemical potential is field dependent: µR(V ) = µR − eV ,

and that the field-dependence of the central region level is given by ǫ0(V ) = ǫ0 − V/2.

The resulting current-voltage characteristic is depicted in Fig. 10. We note that the strong

increase in current, which is observed in experimental systems at very high voltages, is not

present in our model: this is because we have ignored the bias-dependence of the barrier

heights as well as any higher lying resonances. The only generalization required for Eqns.(59

-60) is to modify the F and G functions: Fµ → F̃ = Fµ − Fµ−D, and analogously for Gµ.

We show in Fig. 11 the resulting linear-response admittance Y (ω) for a symmetric structure

(ΓL = ΓR). Several points are worth noticing. For dc bias eV = 5 (energies are given in

units of Γ) the calculated admittance resembles qualitatively the results reported by Fu and

Dudley for zero external bias, except that the change in sign for the imaginary part of Y (ω)

is not seen. For zero external bias (not shown in the figure) our finite band-width model

leads to an admittance, whose imaginary part changes sign, and thus the behavior found by

Fu and Dudley cannot be ascribed to an artefact of their infinite band-width model. More

interestingly, for dc bias in the NDR regime, the real part is negative for small frequencies.

This simply reflects the fact that the device is operating under NDR bias conditions. At

higher frequencies the real part becomes positive, thus indicating that further modeling along

the lines sketched here may lead to important implications on the high-frequency response

of resonant-tunneling structures.

In concluding this section, we wish to emphasize that the linear-response analysis pre-

sented above is only a special case of the general results of Section IV, which seem to have

the potential for many applications.
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VI. RESONANT TUNNELING WITH ELECTRON-PHONON INTERACTIONS

As a final application, we establish a connection to previous calculations on the effect of

phonons on resonant tunneling. [23] For simplicity, we consider a single resonant level with

energy-independent level widths ΓL and ΓR (i.e. the WBL). The expression for the current

Eq.(21) becomes now

J =
e

h̄

ΓLΓR

ΓL + ΓR

∫

dǫ

2π
[fL(ǫ) − fR(ǫ)]

∫ ∞

−∞
dteiǫta(t) , (65)

where a(t) = i[Gr(t) − Ga(t)] is the interacting spectral density. In general, an exact eval-

uation of a(t) is not possible, however, if one ignores the Fermi sea, Gr(t) (and hence a(t))

can be calculated exactly: [38]

Gr(t) = −iθ(t) exp[−it(ǫ0 − ∆) − Φ(t) − Γt/2] , (66)

where

∆ =
∑

q

M2
q

ωq

, (67)

and

Φ(t) =
∑

q

M2
q

ω2
q

[Nq(1 − eiωqt) + (Nq + 1)(1 − e−iωqt)] , (68)

and the electron-phonon interaction is given by Eq.(5). When substituted in the expression

for current, one recovers the result of Ref.[ [23]], which originally was derived by analyzing the

much more complex two-particle Green function G(τ, s, t) = θ(s)θ(t)〈d(τ−s)d†(τ)d(t)d†(0)〉.

The advantage of the method presented here is that one only needs the single-particle Green

function to use the interacting current formula (21). Other systematic approaches to the

single-particle Green function can therefore be directly applied to the current (e.g. pertur-

bation theory in the tunneling Hamiltonian).
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VII. CONCLUSIONS

Here, we summarize the main results of this study. We have derived a general formula for

the time-dependent current through an interacting mesoscopic region, Eq.(15). The current

is written in terms of local Green functions. This general expression is then examined in

several special cases: (i) It is shown how earlier results for time-independent current are

contained in it [Eqs. (19) and (21)]. (ii) An exact solution, for arbitrary time-dependence,

for a single non-interacting level coupled to two leads is given [Eqs.(44-45)]. This calculation

leads to a prediction of ’ringing’ of current in response to abrupt change of bias, or in response

to an ac-bias. We believe that this prediction should be experimentally verifiable. (iii) We

derive a Landauer-like formula for the average current, Eq.(27), and apply it to a simple

model of dynamical disorder. Finally, as applications, we discuss (iv) a.c. linear-response

at arbitrary dc-bias and finite temperature, and (v) find a connection to earlier results on

resonant tunneling in the presence of optical phonons.

We hope that time-dependence will provide a new window on coherent quantum-

transport, and will lead to significant new insights in the future.
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APPENDIX A: NONEQUILIBRIUM GREEN FUNCTIONS

The most important result (see, e.g., Refs.[ [25], [26], [27]]) of the formal theory of

nonequilibrium Green functions is that the perturbation expansion has precisely the same

structure as the T = 0 equilibrium expansion. Instead of a time-ordered Green function,

one works with the contour-ordered Green function,

G(τ, τ ′) = −i〈TC{ψ(τ)ψ†(τ ′)}〉 , (A1)

where the contour C is shown in Fig. 2. The contour-ordering operator TC orders the

operators following it in the contour sense: operators with time labels later on the contour

are moved left of operators of earlier time labels. Thus, once the self-energy functional,

Σ = Σ[G], has been specified, the contour-ordered Green function obeys formally the same

Dyson equation as in T = 0 theory,

G = G0 +G0 ΣG , (A2)

with the modification that internal time-integrations run along the (complex) path discussed

in section II.A. It follows from this structural equivalence that one can derive equations of

motion just as in the T = 0 case, and that the passage to nonequilibrium takes place by

replacing the time-ordered Green functions by contour-ordered Green functions, and by

replacing the real-time integration by an integration along the time-contour. In practical

calculations, however, the contour ordered Green functions are inconvenient, and it is expe-

dient to perform an analytic continuation to the real axis. The first step in this procedure

consists of expressing the contour ordered Green functions in terms of 2×2 matrices, whose

elements are determined by which branches of the contour the two time labels are located

on. The four elements of the matrix Green function are not linearly independent, and it is

useful to perform a rotation of this matrix. A particularly convenient set of operational rules

has been given by Langreth: [25] If one has an expression A =
∫

BC on the contour (this is

the generic type of term encountered in the perturbation expansion), then the retarded and

lesser components are given by
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Ar(t, t′)=
∫

dt1B
r(t, t1)C

r(t1, t
′)

A<(t, t′)=
∫

dt1[B
r(t, t1)C

<(t1, t
′)

+B<(t, t1)C
a(t1, t

′)] (A3)

These results are readily generalized to products involving three (or more) Green functions

or self-energies.

The equation of motion for G< can be derived by applying the rules (A3) to the Dyson

equation for the contour-ordered Green function. The Dyson equation can be written either

in a differential form, or in an integral form, as in Eq.(A2). The former leads to the Baym-

Kadanoff transport equation, while the latter (which is employed in the present work) yields

the Keldysh equation for the lesser function:

G< = (1 +GrΣr)G<
0 (1 + ΣaGa) +GrΣ<Ga , (A4)

where the retarded and advanced Green functions satisfy

Gr,a = Gr,a
0 +Gr,a

0 Σr,aGr,a . (A5)

The physical modeling goes in the choice of the self-energy functional Σ, which contains the

interactions (carrier-impurity scattering, phonon scattering, carrier-carrier scattering etc.).

Once Σ is given, for example in terms of diagrams, the retarded, or ’lesser’ components of

the self-energy can be worked out according to the rules (A3), and one can proceed to solve

the coupled equations (A4) and (A5).

APPENDIX B: DYSON EQUATION FOR Gt
N,Kα

1. Equation-of-motion method

According to Appendix A it is sufficient to consider the T = 0 equation of motion for

the time-ordered Green function Gt
n,kα:
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− i
∂

∂t′
Gt

n,kα(t− t′)= ǫkG
t
n,kα(t− t′)

+
∑

m

V ∗
kα,mG

t
nm(t− t′) , (B1)

where we defined the central region time-ordered Green function function Gt
nm(t − t′) =

−i〈T{d†
m(t′)dn(t)}〉. Note that it is crucial that the leads be non-interacting: had we

allowed interactions in the leads the equation of motion technique would have generated

higher order Green functions in Eq.(B1), and we would not have a closed set of equations.

We can interpret the factors multiplying Gt
n,kα(t− t′) as the inverse of the contact Green

function operator, and introduce a short-hand notation: Gt
n,kαg

−1
kα =

∑

m G
t
nmV

∗
kα,m. By

operating with gt
kα from right, we arrive at

Gt
n,kα(t− t′) =

∑

m

∫

dt1G
t
nm(t− t1)V

∗
kα,mg

t
kα(t1 − t′) . (B2)

According to the rules of the nonequilibrium theory, this equation has in nonequilibrium

precisely the same form, except that the intermediate time integration runs on the complex

contour:

Gn,kα(τ, τ ′) =
∑

m

∫

dτ1Gnm(τ, τ1)V
∗
kα,m(τ1)gkα(τ1, τ

′) . (B3)

This is Eq.(11) of the main text. The analytic continuation rules (A3) can be applied, and

the desired Dyson equation is obtained.

2. S-matrix expansion

We write the Green functionGn,kα(t, t′) in terms of interaction-picture operators (denoted

by a tilde) by invoking the S-matrix:

Gn,kα(τ, τ ′) = −i〈TC{Sd̃n(τ)c̃
†
kα(τ ′)}〉 , (B4)

where

S = TC{exp[−i
∫

C
dτ1H̃T (τ1)]} (B5)
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is the contour-ordered S-matrix, and HT is the tunneling Hamiltonian of Section II.B2. We

expand the exponential function in (B5); the zeroth order term does not contribute, and we

find

Gn,kα(τ, τ ′) = −i〈TC

{

d̃n(τ)c̃†kα(τ ′)
∞
∑

n=0

(−i)n+1

(n+ 1)!

×[
∫

C
dτ2

∑

k′α′,m

[Vk′α′,m(τ2)c̃
†
k′α′(τ2)d̃m(τ2)

+V ∗
k′α′,m(τ2)d̃

†
m(τ2)c̃k′α′(τ2)]]

n+1
}

〉 . (B6)

Since, by assumption, the leads are non-interacting, result will only be non-zero if c̃†kα(τ ′) is

contracted with c̃kα(τi) from one of the n+ 1 interaction terms. The n + 1 possible choices

cancels a factor of n+ 1 in the factorial in the denominator, leaving

Gn,kα(τ, τ ′)=
∑

m

∫

C
dτ2(−i)〈TC{c̃kα(τ2)c̃

†
kα(τ ′)}〉

×V ∗
kα,m(τ2)(−i)〈TC{Sd̃

†
m(τ2)d̃n(τ)}〉 . (B7)

Eq.(B7) is completely equivalent to the result (B3) obtained in the previous subsection.

APPENDIX C: PROOF OF EQ.(48)

In this Appendix, we prove that for a single level in the WBL (see Section V C) there is

a definite relation,

− 〈uL/R(t)Im{AL/R(ǫ, t)}〉 =
Γ

2
〈|AL/R(ǫ, t)|2〉, (C1)

between the time averages of the quantities that, respectively, determine the current and

the occupation. For the case of the occupation, one can explicitly write out 〈|AL/R(ǫ, t)|2〉

and then use the identity

Gr(t, t1)G
a(t′1, t) = iθ(t− t1)θ(t− t′1)

×
[

e−Γ(t−t′
1
)Gr(t′1, t1) − e−Γ(t−t1)Ga(t′1, t1)

]

(C2)

to obtain

34



〈|A|2〉 = lim
T→∞

i

TΓ

∫ T/2

−T/2
dt1

∫ T/2

−T/2
dt′1uL/R(t1)uL/R(t′1)

×(Gr(t′1, t1) −Ga(t′1, t1)) exp[iǫ(t′1 − t1) +
∫ t

1′

t1
dt2∆(t2)].

(C3)

Writing out 〈uL/R(t)Im{AL/R(ǫ, t)}〉 explicitly then yields Eq. (C1).

APPENDIX D: NUMERICAL INTEGRATION

In this Appendix we describe methods to facilitate numerical calculations in the wide-

band limit (Section VC). While the numerical integrations required for the occupation and

for the current can be done directly, it is often difficult to obtain sufficient accuracy. We

have found that it is useful to do the integrations analytically by contour integration, and

then sum the resulting residues. We have also checked for a few selected parameter values

that the two methods give identical results.

1. Steplike modulation

We illustrate the somewhat cumbersome but straightforward formulae by giving the

expressions for the deviation of the occupation from its asymptotic value following a steplike

modulation of the level energy (Section VC3): δN(t) = N(t) − N(t = ∞). We find from

Eqs.(44) and (52)

δN(t) =
1

2π
∆2e−Γ(t−t0)[ΓLD(µL) + ΓRD(µR)]

−
1

2π
∆e−Γ(t−t0)/2[ΓL2Re{E(µL)} + ΓR2Re{E(µR)}] , (D1)

where

D(µ) =
∫

dǫ
f(ǫ)

(ǫ− ǫ0 − ∆)2 + (Γ/2)2
·

1

(ǫ− ǫ0)2 + (Γ/2)2

E(µ) =
∫

dǫ[
f(ǫ)

(ǫ− ǫ0 − ∆)2 + (Γ/2)2
·
ei(ǫ−ǫ0−∆)(t−t0)

ǫ− ǫ0 − iΓ/2
,

(D2)
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where f(ǫ) is the Fermi function with chemical potential µ. The poles of the integrands are at

ǫ = ǫ0± iΓ/2, ǫ = ǫ0 +∆± iΓ/2, and ǫ = µ± i2π(n + 1/2)/β, respectively. Upon closing the

contour in the upper-half-plane, one obtains three different contributions; the terms arising

from ǫ = ǫ0 + iΓ/2 and ǫ = ǫ0 + ∆ + iγ/2 obviously lead to no problems, while the sum over

n converges either as n−4 (the term originating from D(µ)), or as n−3 exp(−2πn(t− t0)/β)

(the term due to E(µ)), and hence also converges rapidly.

2. Harmonic modulation

In principle, the calculation proceeds as in the previous section. However, the sum over

the residues, which results from the contour integration, converges very slowly. A typical

term in the resulting lengthy expressions converges only as n−2. Significantly improved

convergence can be obtained by making use of the relation

∞
∑

n=0

1

(n + a)(n+ b)
=

1

a− b
[Ψ(a) − Ψ(b)] , (D3)

where Ψ is the digamma function. In what follows, we give the results for linear-response.

The occupation [which also gives the current flowing out from the central region via (44)] is

N(t)=
1

2π

∑

L,R

∆0 − ∆L/R

ω2 + Γ2

ΓL/R

ω

[

sin(ωt)(2Γr
L/R
0

+ω(I
L/R
+ − I

L/R
− ) − Γ(R

L/R
+ +R

L/R
− ))

+ cos(ωt)(−2ωr
R/L
0 + ω(R

L/R
+ +R

R/L
− )

+Γ(I
L/R
+ − I

L/R
− ))

]

. (D4)

Here

I
L/R
± = Im

[

Ψ(1/2 −
β

2πi
(µL/R − ǫ0 ∓ ω − iΓ/2))

]

R
L/R
± = Re

[

Ψ(1/2 −
β

2πi
(µL/R − ǫ0 ∓ ω − iΓ/2))

]

r
L/R
0 = Re

[

Ψ(1/2 +
β

2πi
(µL/R − ǫ0 + iΓ/2))

]

. (D5)

The current flowing into the central region can also be expressed in terms of similar functions:
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J in
L/R(t)=

e

h̄
ΓL/R ∆ − ∆L/R

2πω
[cos(ωt)(i

L/R
− − i

L/R
+ )

+ sin(ωt)(2r
L/R
0 − r

L/R
+ − r

L/R
− )] , (D6)

with

i
L/R
± = Im

[

Ψ(1/2 +
β

2πi
(µL/R − ǫ0 ∓ ω + iΓ/2))

]

r
L/R
± = Re

[

Ψ(1/2 +
β

2πi
(µL/R − ǫ0 ∓ ω + iΓ/2))

]

. (D7)

By recalling limz→∞ Ψ(z) → log(z), it is straightforward to check that these results reduce

to the T = 0 case discussed in the main text.
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FIGURES

FIG. 1. Sketch of charge distribution in a three-dimensional resonant-tunneling device under

dc-bias Vbias = µL − µR with a time-modulation of amplitude ∆L/R superposed on the leads. As

argued in the text, only a tiny fraction of charge carriers participates in setting up the voltage drop

across the structure.

FIG. 2. The complex-time contour on which nonequilibrium Green function theory is con-

structed. In the contour sense, the time τ1 is earlier than τ2 even though its real time projection

appears larger.

FIG. 3. (a)|A(ǫ, t)|2 as a function of time for harmonic modulation for a symmetric structure,

ΓL = ΓR = Γ/2. The unit for the time-axis is h̄/Γ, and all energies are measured in units of Γ,

with the values µL = 10, µR = 0, ǫ0 = 5,∆ = 5,∆L = 10, and ∆R = 0. The modulation frequency

is ω = 2Γ/h̄. (b) The time-dependence of ImA(ǫ, t) for the case shown in Fig 3(a).

FIG. 4. The time-dependent current J(t) for harmonic modulation corresponding to the pa-

rameters of Figure 3. The dc bias is defined via µL = 10 and µR = 0, respectively. The dotted

line shows (not drawn to scale) the time dependence of the drive signal. The temperature is

kBT = 0.1Γ.

FIG. 5. Time averaged current Jdc as function of the ac oscillation period 2π/ω. The dc

amplitudes are the same as those in Fig. 4.

FIG. 6. (a) |A(ǫ, t)|2 as a function of time for step-like modulation. At t = 0 the resonant-level

energy ǫ0 suddenly decreases by 5Γ. (b) The time dependence of ImA(ǫ, t) for the case shown in

Fig 6(a).
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FIG. 7. Time-dependent current J(t) through a symmetric double-barrier tunneling structure

in response to a rectangular bias pulse. Initially, the chemical potentials µL and µR and the

resonant-level energy ǫ0 are all zero. At t = 0, a bias pulse (dashed curve) suddenly increases

energies in the left lead by ∆L = 10 and increases the resonant-level energy by ∆ = 5. At t = 3,

before the current has settled to a new steady value, the pulse ends and the current decays back

to zero. The temperature is kBT = 0.1Γ.

FIG. 8. Derivative of the integrated dc current Jdc with respect to pulse duration s, normalized

by the interval between pulses τ . For pulse durations much longer than the resonance lifetime h̄/Γ,

the derivative is just the steady-state current at the bias voltage, but for shorter pulses the ringing

response of the current is evident.

FIG. 9. Linear-response configuration.

FIG. 10. IV-characteristic for a model resonant-tunneling device (quantum dot). The system

is defined by parameters ǫ0(V = 0) = 2, µL = µR(V = 0) = 0, and DL = DR = 2, and the current

is given in units of eΓ/h.

FIG. 11. In-phase and out-of-phase components of the linear response current (in units of eΓ/h

and normalized with the amplitude of the drive signal ∆L to yield admittance) for two bias points,

eV = 5 (continuous line) and eV = 10 (dashed line). Other parameters are as in Figure 10.

The out-of-phase components (or, equivalently, imaginary parts) always tend to zero for vanishing

frequency, while the in-phase component can have either a positive or negative zero-frequency limit

depending on the dc bias.
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