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Electronic friction coefficients from the atom-in-jellium model for Z = 1–92
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The breakdown of the Born-Oppenheimer approximation is an important topic in chemical dynamics on metal
surfaces. In this context, the most frequently used work horse is electronic friction theory, commonly relying on
friction coefficients obtained from density-functional theory calculations from the early ’80s based on the atom-
in-jellium model. However, results are only available for a limited set of jellium densities and elements (Z = 1 −
18). In this paper, these calculations are revisited by investigating the corresponding friction coefficients for the
entire periodic table (Z = 1 − 92). Furthermore, friction coefficients obtained by including the electron density
gradient on the generalized gradient approximation level are presented. Finally, we show that spin polarization
and relativistic effects can have sizable effects on these friction coefficients for some elements.

DOI: 10.1103/PhysRevB.102.155130

I. INTRODUCTION

Dynamics of surface-molecule reactions are of fundamen-
tal importance for a variety of chemical processes, e.g., in
heterogeneous catalysis (Haber-Bosch cycle [1]). Fundamen-
tally, the understanding of these dynamics at the atomic scale
has so far generally relied on the Born-Oppenheimer (BO)
approximation [2,3]. However, in metals, due to the absence
of an energy gap for electronic excitations, energy dissipa-
tion via electron-hole pair (ehp) excitations could be easily
facilitated due to the motion of adsorbate or metal atoms.
Therefore, the validity of the BO approximation has been
questioned for a long time [4,5]. Even though ehp excitations
have been neglected in many theoretical studies in the past,
which could also explain experimental data [6–12], recent
studies indicate that ehp excitations can play an important role
in the dynamics of molecule-surface reactions [13–22]. For
example, vibrational lifetimes of simple diatomic molecules
adsorbed on metal surfaces were only explained by going
beyond the BO approximation [17,23–34]. Furthermore, ex-
periments with atomic hydrogen beams have confirmed the
importance of ehp excitations [35–37].

Since the BO approximation is a very fundamental ap-
proximation in theoretical chemistry, going beyond imposes
a severe conceptual challenge. Alternatively, solving the fully
coupled electron-nuclear time-dependent Schrödinger equa-
tion to completely avoid the BO approximation altogether will
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remain computationally intractable for the foreseeable future,
even for systems with only very few degrees of freedom.
For going beyond the BO approximation, a commonly used
approach is combining ab initio molecular dynamics with
electronic friction theory [16,20]. Using the local density fric-
tion approximation (LDFA) is a way to include the dissipative
effect of electron-hole pair excitations in molecular dynam-
ics [14] that is computationally much more convenient than
other approaches [21,22,38–41]. Within the LDFA, including
the independent atom approximation, the so-called electronic
friction coefficient η is required. η only depends on the nuclear
charge of the moving atom and the electron density of the
metal surface at its pointlike nucleus or different atoms-in-
molecule decompositions of the latter [17,42,43]. The friction
coefficient is obtained by using the atom-in-jellium model,
where the atom is embedded in an infinitely extended ho-
mogeneous electron gas of that density. The energy loss in
the jellium model is caused by the momentum loss of the
nucleus due to the scattering of the electrons from the gas.
The electronic friction coefficient is obtained from the elec-
tronic structure of the atom in jellium, which is obtained from
density-functional theory (DFT) [44,45].

The local (spin) density approximation (L(S)DA) for the
exchange-correlation functional in DFT is by construction
exact for the jellium background, which is why the electronic
structure of atoms in jellium has traditionally also been ob-
tained at this level of theory [46–48]. However, the electronic
structure of the atom in jellium is not homogeneous and thus
LDA is not exact. For jellium spheres containing only a finite
number of electrons, quantum Monte Carlo techniques have
been employed [49–51]. For infinitely extended jellium, on
the other hand, going beyond DFT is much more involved [52]
and has never been used for the calculation of electronic
friction coefficients. Earlier work at the generalized gradient
approximation (GGA) to DFT has been done in the context of
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the effective medium theory (EMT) [53–55]. EMT parameters
have been obtained from immersion energies calculated with
the atom-in-jellium model [54–56] and both are modified
when using GGA instead of LDA [56,57]. However, the effect
of employing GGA instead of LDA on the friction coeffi-
cients has not been investigated before. Therefore, friction
coefficients are calculated at the GGA level in this work and
compared with those obtained with LDA.

Furthermore, spin polarization can affect the value of
the friction coefficient for atoms in jellium at low jellium
densities, though it is still a matter of discussion whether
spin-polarization effects should be included within the LDFA
scheme when it is applied to molecules [10,56–58]. For
carbon, it was found that spin-polarized calculations could
result in a 70% reduction of the friction coefficient at low
jellium density. Nevertheless, this did not alter results for
the dissociative chemisorption of methane on Ni(111) [10].
Moreover, a large amount of other elements across the pe-
riodic table were found to exhibit a spin moment when
spin polarization was allowed within the atom-in-jellium
model [57,58]. Furthermore, the jellium can also be spin
polarized to reflect the magnetic moment in ferromagnetic
metals [59] and spin friction has also been observed in STM
experiments [60,61]. A thorough study into the effect of spin
polarization on the friction coefficient will be presented in this
paper.

Finally, the atom-in-jellium model is not only important for
gas-surface reactions but also for other kinds of experiments,
e.g., analysis of the energy loss of swift (heavy) ions in solids
and surfaces [62–76]. However, the tabulated data of Puska
and Nieminen [45] that is commonly used in this context
is limited to the first three, incomplete rows of the peri-
odic table—which is insufficient for studies involving energy
dissipation of heavier atoms on metal surfaces [77–79]. To
extend the amount of elements for which the atom-in-jellium
model can be applied, we present here the electronic friction
coefficients from hydrogen up to uranium for a variety of
jellium densities. Although it is well known that relativistic
effects can influence the electronic structure of heavier free
atoms [80,81], to the best of our knowledge friction coeffi-
cients have not been obtained whilst employing relativistic
LDA. Therefore, we will also investigate the role of relativistic
effects for friction coefficients.

The organization of the present paper is as follows: In
Sec. II, first the theory behind the atom-in-jellium model
is summarized (Sec. II A 1) before relativistic extensions
(Sec. II A 2) and computational details (Sec. II B) specific
to this paper are described. In Sec. III A, a comparison be-
tween the results for electronic friction coefficients obtained
with LDA and GGA is made. Section III B concerns spin
polarization. Relativistic effects are discussed in Sec. III C.
Finally, in Sec. IV we summarize the main conclusions of this
paper.

II. METHODS

A. Theory

Throughout this work Hartree atomic units (h̄ = e = me =
1, c = 1

α
≈ 137) are used.

1. Nonrelativistic atom in jellium

The homogeneous electron gas (jellium) is a model for
simple metals that consists of a constant positive background
and negative electron charge density resulting in an overall
neutral system. Both densities are characterized by the den-
sity parameter n0 � 0 a−3

0 and commonly quantified by the
Wigner-Seitz radius r−3

s = 4
3πn0, which is the sphere radius

of the mean volume of an electron.
Using spherical coordinates, the radial parts of the corre-

sponding continuum of states are given by spherical Bessel
functions jl (kr). The (integer) quantum number l � 0 char-
acterizes the angular momentum, whereas the continuous
quantum number k ∈ [0; kF] describes the momentum of the
state. The highest occupied state is given by the Fermi energy
EF and the concomitant Fermi momentum kF:

EF = 1
2 k2

F = 1
2 ( 3

√
3π2n0)2. (1)

Summing over momenta and (an infinite amount of) angular
momenta yields the electron probability density of jellium,

nJ(r) =
∑

l

2l + 1

π2

∫ kF

0
j2
l (kr)k2 dk , (2)

which is constant due to
∑

l (2l + 1) j2
l (kr) = 1.

Spin-polarized jellium is a simple model for ferromagnetic
metals [82], which introduces homogeneous electron proba-
bility densities nσ

J (r), σ ∈ {↑,↓} in the case of collinear spin
considered here, such that

nJ(r) = n↑
J (r) + n↓

J (r) =
∑
σ,l

2l + 1

2π2

∫ kσ
F

0
j2
l (kr)k2 dk . (3)

The spin-dependent Fermi momenta are given by

k↑,↓
F = 3

√
6π2

n↑,↓
J

1 ± ζ
. (4)

The strength of the magnetism is characterized by a homoge-

neous spin polarization ζ = n↑
J −n↓

J
n0

, where ζ = 0 corresponds

to the original, non-spin-polarized jellium (n↑
J = n↓

J = n0
2 ) and

ζ = 1 to the ferromagnetic case (n↑
J = n0, n↓

J = 0). Through-
out the rest of this paper, the spin-up channel represents the
majority spin channel, i.e., ζ � 0, n↓

J (r) � n0 � n↑
J (r) and

k↓
F � 3

√
3π2n0 � k↑

F .
In the atom-in-jellium model, homogeniety is destroyed

by immersing an atom in a jellium background with den-
sity rs. This model can be solved approximately using DFT.
Assuming spherical symmetry, the following one-electron
Kohn-Sham equations for the radial part of the atom, which
is centered at the origin, need to be solved numerically,[

− 1

2r2

∂

∂r

(
r2 ∂

∂r

)
+ l (l + 1)

2r2
+ V σ (r)

]
ψσ (r) = εσ ψσ (r),

(5)
where ψσ (r) and εσ are the radial part and the corresponding
eigenenergy for the Kohn-Sham orbitals. Due to the spherical
symmetry these orbitals are (2l + 1) degenerate in the (omit-
ted) magnetic quantum number m. The spectrum consists of
(localized) bound states ψb,σ

n,l (r), which are characterized by
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the main (n) and angular (l) quantum numbers, and (delo-
calized) scattering states ψ sc,σ

l (r; k), which yield the total
electron probability density

nAIJ(r) = n↑
AIJ(r) + n↓

AIJ(r),

=
∑
σ,n,l

(2l + 1)
∣∣ψb,σ

n,l (r)
∣∣2

+
∑
σ,l

2l + 1

2π2

∫ kσ
F

0

∣∣ψ sc,σ
l (r; k)

∣∣2
k2 dk , (6)

analogously to Eq. (3), where n↑
AIJ(r) = n↓

AIJ(r) in the non-
spin-polarized case. The potential V σ (r) in Eq. (5) is
given by

V σ (r) =
∫

nAIJ(r′) − n0

|r′ − r| dr′ − Z

r

+ V σ
xc(r; n↑

AIJ, n↓
AIJ) − V σ

xc(r; n↑
J , n↓

J ), (7)

where Z is the nuclear charge of the immersed atomic impu-
rity and V σ

xc is the exchange-correlation potential. Choosing
V σ

xc of the jellium background as the zero reference of the
potential [as done in Eq. (7)] yields energy eigenvalues εb,σ

n,l <

0(0 < εsc,σ
l (k) < (kσ

F )2) for the bound (scattered) states. Since
V σ depends on the electron distribution, Eq. (5) needs to be
solved self-consistently.

The scattering states are normalized by matching them at
the cutoff radius R to their asymptotic limit [83],

ψ sc,σ
l (R; k) = cos δσ

l (k) · jl (kR) − sin δσ
l (k) · nl (kR), (8)

where jl and nl are the spherical Bessel and Neumann func-
tions, respectively. The phase shift δσ

l (k) is given by

δσ
l (k) = tan−1

( (
ln ψ sc,σ

l

)′
(R; k) · jl (kR) − k · j′l (kR)(

ln ψ sc,σ
l

)′
(R; k) · nl (kR) − k · n′

l (kR)

)
,

(9)
where

(
ln ψ sc,σ

l

)′
(R; k) =

(
ψ sc,σ

l

)′
(R; k)

ψ sc,σ
l (R; k)

. (10)

The electronic friction coefficient η can be calculated from
the difference between the phase shifts δl (kF) of the scattering
states at the Fermi energy [44,84]:

η =
∑
σ,l

(
kσ

F

)2

3π
(l + 1) sin2 (

δσ
l+1

(
kσ

F

) − δσ
l

(
kσ

F

))
. (11)

If the jellium background is not spin polarized and the atomic
impurity does not induce spin polarization, the summation
over the σ in Eq. (11) simply yields a factor two, since the
phase shifts for spin up and spin down are identical. Due to
the complete screening of the nuclear charge Z by the jellium
background, the phase shifts obey the Friedel sum rule [85],

1

π

∑
σ,l

(2l + 1)
(
δσ

l

(
kσ

F

) − δσ
l (0)

) = Z − Zb, (12)

with Zb being the amount of bound electrons. The atom-
induced density of states per unit momentum is given by

d�Nσ (k)

dk
=

∑
l

2l + 1

π

dδσ
l (k)

dk
. (13)

2. Full and scalar relativistic extension

a. RLDA. We have extended the atom-in-jellium model to
account for relativistic effects. In the fully relativistic case
the following Kohn-Sham-Dirac radial equations need to be
solved [86],

∂g(r)

∂r
= −κ + 1

r
g(r) + 2MR(r) c f (r), (14a)

∂ f (r)

∂r
= VR(r) − ε

c
g(r) + κ − 1

r
f (r) , (14b)

where

MR(r) = 1 + 1

2c2
(ε − VR(r)). (15)

The zero of the energy is chosen such that ε = 0 describes
electrons with zero kinetic energy in the jellium background
(i.e., the rest mass of the electron, c2 in present units, has been
taken out). g(r) and f (r) are the radial parts of the large and
small components of the two-component Pauli spinors that
describe the Kohn-Sham states, respectively. They are char-
acterized by the relativistic quantum number κ that is related
to the total angular momentum quantum number j = l ± 1

2
according to

κ =
{l if j = l − 1/2
−l − 1 if j = l + 1/2.

(16)

The potential VR in Eqs. (14) and (15) has the same form
as in Eq. (7). In the relativistic local-density approximation
(RLDA) used in this paper, a relativistic correction to the
(nonrelativistic LDA) is included in the exchange-correlation
potential [87]. Again, a self-consistent solution is required
because VR depends on the total electron probability density,
which is obtained like in the nonrelativistic case [see Eqs. (6)]
as a sum over bound and scattering states resulting from
Eqs. (14). For the latter, the boundary conditions of the radial
parts of the large and small components are [88,89]

gsc
κ (R; k) = cos δκ (k) · jl (kR) − sin δκ (k) · nl (kR) (17a)

and

f sc
κ (R; k) = Aκ (k) [cos δκ (k) · jl̄ (kR) − sin δκ (k) · nl̄ (kR)],

(17b)

respectively, where l̄ = l − sgn(κ ) and

Aκ (k) = kc · sgn(κ )

ε(k) + 2c2
. (18)

The phase shift is then [86,88,89]

δRLDA
κ (k) = tan−1

(
Lκ (k) · jl (kR) − Aκ (k) · jl̄ (kR)

Lκ (k) · nl (kR) − Aκ (k) · nl̄ (kR)

)
,

(19)
where

Lκ (k) = f sc
κ (R; k)

gsc
κ (R; k)

. (20)
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This yields electronic friction coefficient ηRLDA according to
Eq. (11) by summing over κ instead of l and σ .

b. ScRLDA. In addition to the fully relativistic treatment,
we have also implemented a scalar-relativistic description
according to the approximation proposed by Koelling and
Harmon [90]: Eliminating the small component and averaging
over the spin-orbit components in Eqs. (14) leads to[

− 1

2r2

∂

∂r

(
r2 ∂

∂r

)
+ l (l + 1)

2r2
+ V σ

ScR(r)

− 1

4c2

∂V σ
ScR(r)

∂r

∂

∂r

]
g̃σ (r)

Mσ
ScR

= εσ g̃σ (r). (21)

MScR is defined analogously to Eq. (15) using the potential
VScR. In the scalar relativistic local-density approximation
(ScRLDA), VScR corresponds to VR but is based on the electron
distribution that is obtained self-consistently with Eq. (21).
The total electron probability density is calculated as before
[see Eqs. (6)] as a sum over bound and scattering states,
which are characterized by the same quantum numbers as in
the nonrelativistic case. For c → ∞ (and thus Mσ

ScR → 1),
Eq. (21) reduces to the nonrelativistic case given by Eq. (5).
After substituting the corresponding nonrelativistic quantum
numbers into Eq. (17a), the boundary conditions for the scat-
tering states are identical to the nonrelativistic case given by
Eq. (8). Consequently, the phase shift is obtained in the same
way as in Eq. (9),

δScRLDA,σ
l (k)

= tan−1

( (
ln g̃sc,σ

l

)′
(R; k) · jl (kR) − k · j′l (kR)(

ln g̃sc,σ
l

)′
(R; k) · nl (kR) − k · n′

l (kR)

)
,

(22)

where the logarithmic derivative (ln g̃sc,σ
l )′(R; k) is defined

analogously to Eq. (10). The corresponding electronic fric-
tion coefficients ηScRLDA can then be calculated according to
Eq. (11) using δScRLDA,σ

l (kσ
F ) instead of δσ

l (kσ
F ).

B. Computational details

Starting from the atomic solver dftatom by Čertík
et al. [91], we have developed an in-house code LDFAtom that
allows us to numerically solve the atom-in-jellium model. We
have coupled our code to LibXC [92], which implements a
large number of commonly used exchange-correlation func-
tionals. LDFAtom reproduces the NIST reference for electronic
properties of the (free) atoms [80,81] across the periodic table
(Z = 1 − 92) using L(S)DA and (Sc)RLDA through LibXC
(like dftatom does with its respective direct implementa-
tions of these functionals). We have verified that LDFAtom
reproduces immersion energies (see appendix A) for different
elements given by Puska et al. [53], Duff and Annett [49] as
well as Nazarov et al. [57]. Further numerical details are given
in Appendix B.

For calculations of friction coefficients at the LDA level,
the parametrization by Perdew and Zunger [93] (PZ-LDA) is
used, including relativistic corrections suggested by MacDon-
ald and Vosko [87] when needed. The GGA according to by
Perdew, Burke, and Ernzerhof [94] is used as a representative

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10  20  30  40  50  60  70  80  90

η 
(a

0−
2 )

Z

LDA
GGA

FIG. 1. The friction coefficients for Z = 1 − 92 at rs = 2 using
LDA (red circles) and GGA (blue crosses). Lines are merely to
guide the eye. The numerical data is tabulated in the Supplemental
Material [95].

example for the GGA level. All the friction coefficients that
are discussed in the following section are tabulated in the
Supplemental Material [95].

III. RESULTS

A. Generalized gradient approximation

Figure 1 compares the friction coefficients for Z = 1 − 92
at rs = 2 using LDA and GGA. We reproduce the results
presented by Puska and Nieminen [45] for Z = 1 − 18 at
various densities and for Z = 1 − 40 at rs = 2 using LDA.
The differences between friction coefficients obtained with
LDA and GGA are negligible. This is also observed at other
jellium densities. The lack of difference between LDA and
GGA is also found for the induced density of states. Since
the difference between the induced density of states obtained
with LDA and GGA is negligible, it is not surprising that the
friction coefficients remain unchanged.

This is at odds with the fact that previously it has been re-
ported that including the gradient has an influence on the EMT
parameters [56], specifically the neutral sphere radius and
cohesive function, within the same atom-in-jellium model.
Puska and Nieminen [56] have used the GGA parametriza-
tion by Perdew and Wang [96] (PW86). Here we confirm to
have obtained similar results for the cohesive function us-
ing the PBE parametrization. In general, the neutral sphere
radius is larger when using GGA compared to LDA. Fur-
thermore, the cohesive function is shifted to higher energies
(making the cohesive energy larger) and the cohesive func-
tion’s minimum is at a lower background density compared
to LDA. Since the LDA and GGA yield different immer-
sion energies and potentials, different EMT parameters are
obtained [56].

On closer inspection, the main correction of GGA over
LDA comes from spatial regions where the reduced density
gradient ( ∇n(r)

n(r)4/3 ) is large. This correction is particularly rele-
vant wherever the total electron probability density n is low
and its gradient is large—as is the case in the exponential
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−2
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−1

−0.5

 0
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V
(r

) 
· r

2  (
H

a/
a 0

2 )

r (a0)

LDA
GGA

FIG. 2. The total potential [see Eq. (7)] multiplied with r2 for
carbon at rs = 5 using LDA (red) and GGA (blue).

tail of the free atom electron density at large distances. Con-
sequently, the exchange-correlation energy and thus the total
energy of the free atom is significantly different. Since the lat-
ter enters the expression of the immersion energy [Eq. (A1)],
GGA yields significantly different values for this EMT param-
eter.

Friction coefficients, on the other hand, are entirely defined
by the potential that enters the Kohn-Sham equations for the
atom in jellium [Eq. (7)]. Figure 2 compares this potential
for LDA and GGA (multiplied with r2) for carbon at rs = 5.
The differences between the potentials are relatively small and
largest in the vicinity of the nucleus. This is not surprising
because, unlike for the free atom, the aforementioned decay of
the total electron probability density does not occur. Electrons
at the jellium’s Fermi level hardly notice these differences of
the potentials close the nucleus. Consequently, the phase shifts
and the concomitant friction coefficient are practically unaf-
fected. Another EMT parameter, on the other hand, namely,
the neutral sphere radius [Eq. (A8)], is very sensitive to
changes in the electron probability density close to the nucleus
mitigated by the GGA potential and thus significantly affected
as shown by Puska and Nieminen [56].

B. Spin polarization

Figure 3 compares the friction coefficients obtained with
LDA and LSDA across the periodic table for rs = 2.5 and
3.5. At rs = 2.5, spin polarization affects the friction coef-
ficient only for vanadium, chromium, and the majority of
the lanthanides and actinides. The differences here are small,
ranging from a 15% reduction to 15% increase of the friction
coefficients. However, when the background density is lower,
spin polarization becomes increasingly more important. Not
only are more elements affected by spin polarization but the
differences are relatively larger at lower densities, ranging
from a 90% reduction to a 30% increase of the friction coeffi-
cients at rs = 3.5. Free atoms with a half-filled d or f orbital
are the most affected by spin polarization. At even lower
densities (rs > 5), this effect is also observed for half-filled
p orbitals. In general, spin-polarized friction coefficients tend
to be lower than non-spin-polarized ones. However, a higher

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

rs=2.5

η 
(a

0−
2 )

LDA
LSDA

 0
 0.1
 0.2
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10 20 30 40 50 60 70 80 90

rs=3.5

η 
(a

0−
2 )

Z

FIG. 3. The friction coefficients for Z = 1 − 92 at rs = 2.5 (top
panel) and rs = 3.5 (bottom panel). Results obtained with LDA and
LSDA are indicated by the red circles and blue crosses, respectively.
Lines are merely to guide the eye. The numerical data is tabulated in
the Supplemental Material [95].

friction coefficient is also possible, seen most prominently for
free atoms with an almost empty or completely filled orbital.

To understand what is causing the difference between the
friction coefficients, we first compare the trends in total spin
and the difference between the friction coefficients due to spin
polarization across the periodic table in Fig. 4 at rs = 3.5. The
appearance of a (nonzero) total spin coincides with the change
in the friction coefficient and is only observed at this density
for free atoms with partially filled d and f orbitals. The total
spin is caused by a difference in the amount of scattering
spin-up and -down electrons. The maximum total spin found
for atoms with a partially filled f orbital is 3.5. Moreover,
for atoms with a partially filled d orbital the maximum total
spin is 2.5. At lower density (rs > 5), a total spin for atoms
with a p orbital is also observed, with 1.5 being its maximum
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FIG. 4. The red circles are the total spin 1/2
∫

[n↑(r) − n↓(r)] dr
for Z = 1 − 92 at rs = 3.5. The blue triangles are the corresponding
normalized difference between the friction coefficients obtained with
LDA and LSDA �relη = (ηLDA − ηLSDA)/ηLDA. Lines are merely to
guide the eye.
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FIG. 5. The induced density of states (DOS) of vanadium (Z =
23, top panel) and cobalt (Z = 27, bottom panel) at rs = 3.5 from
k = 0.4 to kF. DOSs obtained with LDA and LSDA are shown in
red and blue, respectively, with the spin-up (spin-down) channels for
LSDA being indicated by dashed purple (green) lines.

value. The maximum total spin that is observed in the scat-
tering states corresponds to half-filled f , d , and p orbitals,
respectively.

The appearance of a total spin and its effect on the friction
coefficient can be understood by looking at the induced den-
sity of states [see Eqs. (11) and (13)] of vanadium (Z = 23)
and cobalt (Z = 27) at rs = 3.5 in Fig. 5 for LDA and LSDA.
In these cases, the sharp resonance peak near the Fermi energy
corresponds to the d scattering states. A small peak at the
bottom of the band is also observed for vanadium, caused by
the s scattering states. The p scattering states do not contribute
significantly to the induced density of states. The magnitude
of the induced density of states at the Fermi energy relates
to the magnitude of the friction coefficient. For example, the
reduction of the friction coefficient for vanadium (up to 90%)
is caused by a split in the sharp resonance peak near the
Fermi energy. The spin-up states are lowered in energy while
the spin-down states are higher in energy, causing them to
partially be pushed out of the band, effectively lowering the
induced density of states at the Fermi energy by 90% and thus
a lower friction coefficient is obtained.

As said before, sometimes spin polarization can also cause
an increase in the friction coefficient. Once more, this can be
understood from the induced density of states. For example,
the induced density of states resonance peaks of Cobalt are at
a lower energy compared to vanadium. When the resonance
peak of Cobalt is split due to spin polarization, the spin down
resonance peak is still within the band since the non-spin-
polarized resonance peak for Cobalt is at a significantly lower
energy than, e.g., for vanadium. The spin-down resonance
peak, being closer to the Fermi energy than the non-spin-
polarized resonance peak, causes a higher induced density of
states at the Fermi energy (increase of 60%) and concomitant
larger friction coefficient (increase of 30%). The split in the
resonance peak near the Fermi energy is also observed for
other elements for which spin polarization yields a total spin.
Which specific scattering states contribute significantly to the

FIG. 6. Difference in friction coefficients between spin-polarized
jellium, with ζ ranging from 0.1 to 0.5, and non-spin-polarized
jellium, i.e., ζ = 0, obtained with LDA for Z = 1 − 92 at rs = 2 and
rs = 4. The lines guide the eye. The numerical data for the friction
coefficients is tabulated in the Supplemental Material [95].

induced density of states close to the Fermi energy, varies with
elements and densities. Furthermore, using GGA instead of
LDA does not produce different results.

The differences in the friction coefficients using a spin-
polarized jellium compared to a non-spin-polarized jellium
(ζ = 0) are presented in Fig. 6. As the spin polarization be-
comes larger, the differences increase as well. Whether the
friction coefficient increases or reduces is dependent on the
element and density, and as such no clear trend is observed.
Again, these differences in the friction coefficients are not
caused by the bound states, but by the scattering states. This
can also be seen in Fig. 7 where the induced density of
states for Ca are given at rs = 2 and rs = 4 for varying spin
polarization of the jellium. Again, we see that the magnitude
of the induced density of states at the Fermi energy plays an
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FIG. 7. The induced density of states obtained with LSDA for
Z = 20 at rs = 2 and rs = 4 up to kF for spin-polarized jellium, with
ζ ranging from 0.0 to 0.5. The solid and dashed lines are the spin-
up and -down channels, respectively. Note that kF depends on the
jellium density and therefore also on the spin polarization, resulting
in different kF values for the spin-up and -down channels.
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FIG. 8. The bottom panel shows the friction coefficients ηLDA

and ηScRLDA obtained with LDA and ScRLDA, respectively, for
Z = 1 − 92 at rs = 1.5. The top panel shows the normalized dif-
ference between the friction coefficients using LDA and ScRLDA
�relη = (ηLDA − ηScRLDA)/ηScRLDA. The red and blue lines are LDA
and ScRLDA, respectively. The lines are merely to guide the eye.
The numerical data for the friction coefficients is tabulated in the
Supplemental Material [95].

important role. In general, if the induced density of states of
the spin up channel at the Fermi energy increases, the friction
coefficient increases as well, and vice versa. This is similar to
what has been observed for Fig. 5.

C. Relativistic effects

The friction coefficients across the periodic table obtained
with LDA and ScRLDA are shown in the bottom panel and
the corresponding normalized difference in the top panel of
Figs. 8 and 9 at rs = 1.5 and 5, respectively. Relativistic ef-
fects influence the friction coefficient significantly for Z = 45
and heavier atoms, with a maximum difference with respect
to the nonrelativistic friction coefficients of 20% at rs = 1.5.
At lower density, these effects are relatively larger, especially
for atoms with partially filled d and f orbitals, ranging from
a 40% reduction to 180% increase of the friction coefficient
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FIG. 9. Same as fig. 8 at rs = 5.
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FIG. 10. The induced density of states of tungsten (Z = 74) in
the top panel and radon (Z = 86) in the bottom panel at rs = 3 from
k = 0 to kF. The red and blue lines are LDA and ScRLDA.

at rs = 5. The common trend is that relativistic effects lower
the friction coefficient for atoms with partially filled s and p
orbitals and increase the friction coefficient for partially filled
d and f orbitals.

Another look at the induced density of states is required in
order to explain the differences caused by relativistic effects.
Figure 10 shows the induced density of states for tungsten
(Z = 74), for which relativistic effects increase the friction
coefficient and radon (Z = 86), which is affected in the op-
posite way. In general, the induced density of states at low
energies is higher due to relativistic effects. Furthermore, the
resonance peak near the Fermi energy is lower and is shifted
to a higher energy compared to LDA. How this affects the
friction coefficient depends on the induced density of states
at the Fermi energy. Typically, the induced density of states
will be lower within the ScRLDA if the peak is relatively
close to the Fermi energy due to the smaller resonance peak,
resulting in a reduced friction coefficient. Otherwise, when the
resonance peak is at a comparatively lower energy, the shift of
the resonance peak increases the induced density of states at
the Fermi energy and the friction coefficient.

Finally, we have a few short remarks on relativistic effects.
First, the 6s electrons are bound less strongly for 5d elements
when using ScRLDA compared to LDA. This causes the 6s
bound states to more easily disappear into the continuum.
Nevertheless, this has no significant effect on the friction co-
efficient. Moreover, spin polarization with the ScRLDA gives
the same differences for the friction coefficient as obtained
with the LDA. The exception is the 5d elements, for which
the total spin is partially due to the presence of more bound
spin up than spin down electrons originating from the 6s
orbital, but this results only in a slight increase of the friction
coefficients (<10%). This effect was not observed with the
LDA. Additionally, in Table I friction coefficients are given
for a few heavy elements obtained with ScRLDA and RLDA
at rs = 1.5 and 5. Fully relativistic calculations did not alter
results significantly compared to ScRLDA. At high density
(rs = 1.5), the differences were smaller than 5%. Spin-orbit
coupling has a slightly bigger effect (<10%) at low densi-
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TABLE I. Friction coefficients for a few heavy elements obtained
with ScRLDA and RLDA at rs = 1.5 and 5.

rs = 1.5 rs = 5

Element Z ηScRLDA

(
a−2

0

)
ηRLDA

(
a−2

0

)
ηScRLDA

(
a−2

0

)
ηRLDA

(
a−2

0

)
Pm 61 4.285 4.111 0.123 0.111
Dy 66 3.896 3.920 0.037 0.043
Re 75 2.466 2.447 0.290 0.278
Tl 81 1.172 1.152 0.128 0.124
Pb 82 1.144 1.120 0.129 0.127
Ra 88 2.518 2.400 0.087 0.076

ties (rs = 5), but the absolute differences at low densities are
small, especially compared to the differences between LDA
and ScRLDA.

IV. CONCLUSIONS

In this paper, the electronic friction coefficients are cal-
culated using DFT within the atom in jellium model for the
entire periodic table (Z = 1 − 92) in the range of rs = 1.5 −
5. Furthermore, the influence of a variety of modifications
to the widely used atom-in-jellium model on the electronic
friction coefficient has been investigated. Using GGA for
the xc functional only affects EMT parameters, the friction
coefficient is unaffected. Furthermore, spin polarization can
play a significant role, especially for atoms with a half filled d
or f orbital. This effect becomes increasingly more dominant
when the embedding density is lower and is caused by the
polarization of the scattering states. Moreover, having a spin-
polarized jellium can heavily influence the friction coefficient,
but no clear trend with the atomic number or background
density was observed. Finally, at high-jellium densities, rel-
ativistic effects have only a minor influence on the friction
coefficient for heavy elements. However, at low densities
these effects are more important, with lanthanides, actinides,
and 5d elements being affected the most.
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APPENDIX A: IMMERSION ENERGY AND EFFECTIVE
MEDIUM THEORY PARAMETERS

The immersion energy, which describes the energy cost or
gain of placing an atom in jellium, is obtained from the atom-
in-jellium model by taking the energy difference between the
atom in jellium, and the pure jellium and free atom [53,83],

Eimm = EAIJ − EJ − Eatom, (A1)
where the energy difference between the atom in jellium and
pure jellium can be obtained from a single calculation of the
atom in jellium:

EAIJ − EJ = �T + �Ecoul + �Exc. (A2)

The difference in kinetic energy is

�T =
∑
σ,i

Eσ
i −

∑
σ

4π

∫
nσ

AIJ(r)V σ (r)r2 dr

+
∑
σ,l

2l + 1

π

(
kσ

F

)2
δσ

l

(
kσ

F

)

−
∑
σ,l

2l + 1

π

∫ kσ
F

0
kδσ

l (k) dk . (A3)

The difference in Coulomb energy is given by

�Ecoul

=
∫ (

1

2

∫
nAIJ(r′) − n0

|r − r′| dr′ − Z

r

)
· (nAIJ(r) − n0)) dr

(A4)

and the exchange-correlation energy difference is

�Exc = Exc[n↑
AIJ, n↓

AIJ] − Exc[n↑
J , n↓

J ] + �E corr
xc , (A5)

where the last term is a correction that accounts for the
influence of Friedel oscillations beyond the cutoff radius
R [53]—which are most pronounced for the contribution of
�Exc to Eimm. For the verification of our implementation
LDFAtom as described in Sec. II B, we have used the correction
originally suggested by Puska et al. [53],

�E corr
xc =

(
εxc[n↑, n↓]

∣∣∣∣n↑=n↓= n0
2

+ n0
dεxc

[
n↑, n↓ = n0

2

]
dn↑

∣∣∣∣
n↑= n0

2

)
·
(

Z − 4π

∫ R

0
(nAIJ(r) − n0) r2 dr

)
, (A6)

to calculate immersion energy curves for various first and second row atoms without spin polarization.
Important parameters for the EMT can be obtained from the atom in jellium model [55]. The so-called cohesive function,

Ec = Eimm(n0) + n0

∫ s

0

(∫
nAIJ(r′) − n0

|r − r′| dr′ − Z

r

)
dr , (A7)

deserves particular attention in this context. Here the Coulomb
interactions are subtracted from the immersion energy inside

the neutral sphere defined by the radius s. The latter is an
EMT parameter that is obtained from the electron distribution
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according to the charge neutrality condition [56]:

4π

∫ s

0
nAIJ(r)r2 dr = Z . (A8)

Minimizing Ec with respect to n0 yields the cohesive energy
Ecoh = |Ec(ncoh

0 )| and the concomitant density parameter ncoh
0 ,

which are two very important EMT parameters. We have
implemented the calculation of Ec and s into LDFAtom, but
have not made use of it in the scope of this paper.

APPENDIX B: NUMERICAL DETAILS

1. Radial Kohn-Sham equations

In our implementation LDFAtom, the radial Kohn-Sham
equations [Eqs. (5), (14) and (21)] are solved by rewrit-
ing them for the nonrelativistic (Schrödinger), RLDA, and
ScRLDA in the form of two coupled first-order differential
equations that are completely equivalent to the respective for-
mulation in Sec. II.

Using the substitutions P(r) = r ψ (r) and Q(r) = ψ (r) +
r ∂ψ (r)

∂r together with Eq. (5), the two equations that are solved
in the nonrelativistic case are

∂P(r)

∂r
= Q(r), (B1a)

∂Q(r)

∂r
= 2

[
l (l + 1)

2r2
+ V (r) − ε

]
P(r). (B1b)

For the fully relativistic case, the large and small com-
ponents are substituted by P(r) = r g(r) and Q(r) = r f (r),
respectively, in Eqs. (14), which gives

∂P(r)

∂r
= −κ

r
P(r) +

[
ε − VR(r)

c
+ 2c

]
Q(r), (B2a)

∂Q(r)

∂r
= −

[
ε − VR(r)

c

]
P(r) + κ

r
Q(r). (B2b)

Finally, as shown by Koelling and Harmon [90], Eq. (21) in
the scalar-relativistic case can be conveniently solved by the
substitutions P = r g̃(r) and Q(r) = r

2MScR(r)
∂ g̃(r)
∂r , resulting in

∂P(r)

∂r
= 2 MScR(r) Q(r) + P(r)

r
, (B3a)

∂Q(r)

∂r
= −Q(r)

r
+

[
l (l + 1)

2 MScR(r) r2
+ VScR(r) − ε

]
P(r).

(B3b)

2. Grids

Using the fourth-order Adams-Bashforth integration
method [97] already implemented in dftatom [91], the equa-
tions presented in the preceding Appendix B 1 are solved on a
real-space grid,

ri = r0 + rN − r0

�α,is (N )

[
�α,is (i) − N − i

N
�α,is (0)

]
, (B4)

with i ∈ {0, 1, 2, . . . , N} and where

�α,x0 (x) = − ln
(
G−α,x0 (x)

)
(B5)

is based on the logistic function:

Gα,x0 (x) = 1

1 + exp ( − α(x − x0))
, (B6)

This grid enables adequate sampling near the atomic impurity
at the origin because the grid points being logarithmically
distributed for r0 � ri < ris . For ris < ri � rN , grid points
become more and more equidistant, which adequately sam-
ples the long-range part at large distances from the impurity
where perturbation of the jellium has (almost) decayed. We
have found empirically by extensive convergence tests that
α = 36a−1

0 , is = 
 2
5 N�, and N = 6000 provide a very accu-

rate solution of all calculated properties. After introducing
analytic continuations of the spherical Bessel functions jl (kr)
for small arguments (kr � 10−7), we have set r0 = 10−7a0.
rN = R has been varied individually for each atom in a range
from 18a0 to 28a0 until the Friedel sum rule Eq. (12) is
numerically fulfilled within 10−4 in each case.

A sufficient number of angular momenta (lmax) needs to be
included in the calculation of the scattering states, which is
ensured by mandating | nJ (r0 )

nJ (rN ) − 1| < 10−6 in a separate calcu-
lation for the unperturbed jellium background [see Eq. (2)].
Integrations over k [like e.g., in Eqs. (6)] are performed with
an equidistant grid of 250 points.

3. Self-consistent solution

For the initial guess of the atom in jellium, the self-
consistent density of the free atom is added to the background
density of the jellium. The mixing between self-consistent
field (SCF) cycles is performed with a limited memory version
of Broyden’s second method [98–100]. The self-consistency
is evaluated by checking the convergence of the Kohn-Sham
effective potential the concomitant eigenenergies. For the
former, the Euclidian norm of each spin component of the
potential [see Eq. (7)]

∥∥V σ
begin(r)

∥∥
2 =

√
4π

∫ R

0

(
V σ

begin(r)
)2

r2 dr (B7)

is calculated at the beginning of each SCF cycle. Likewise,
after the potential has been updated to Vend(r) at the end of
each SCF cycle, the Euclidean norm of the difference with

respect to Vbegin(r) is calculated. If
‖V σ

end(r)−V σ
begin(r)‖2

‖V σ
begin(r)‖2

< 10−6

for both spin channels, then the potential is considered to
be (sufficiently) self-consistent. For the Kohn-Sham eigenen-
ergies, only the largest difference between the current and
previous SCF cycle is considered and only when the potential
already fulfills the aforementioned self-consistency criterion.
When this difference is smaller than 5 ∗ 10−6 a0 · Ha, the
eigenenergies are considered to be self-consistent as well
and convergence is achieved, i.e., the ground-state solution is
obtained.

Weakly bound states can cause calculations not to reach
self-consistency. This is caused by the appearance and sub-
sequent disappearance of bound states into the continuum
between SCF cycles due to the close proximity of these states
to the bottom of the continuum at 0 Ha (for the energy
zero chosen in LDFAtom, see Sec. II A 1). To stabilize the
SCF convergence—i.e., for purely numerical convenience and
without any physical meaning—a broadening scheme is intro-
duced for the occupation of such weakly bound states using a
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Fermi-Dirac distribution:

f FD(εnl ) = 2l + 1

exp(εnl/εB) + 1
. (B8)

Here f FD(εnl ) is the occupation number of the bound Kohn-
Sham state with energy εσ

n,l and εB is the broadening

parameter. The bound state search is stopped when εσ
n,l > 5εB.

We have used 10−3 Ha < εB < 10−2 Ha and confirmed that
this does not affect the friction coefficients significantly. How-
ever, even with this approach, SCF convergence could not
be achieved in some cases, mainly d and f elements at low
jellium densities.
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