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Abstract 

 We propose a machine-learning-based (ML-based) method for efficiently predicting atomic 

diffusivity in crystals, in which the potential energy surface (PES) of a diffusion carrier is partially 

evaluated by first-principles calculations. To preferentially evaluate the region of interest governing 

the atomic diffusivity, a statistical PES model based on a Gaussian process (GP-PES) is constructed 

and updated iteratively from known information on already-computed potential energies (PEs). In the 

proposed method, all local energy minima (stable & metastable sites) and elementary processes of 

atomic diffusion (atomic jumps) are explored on the predictive mean of the GP-PES. The uncertainty 

of jump frequency in each elementary process is then estimated on the basis of the variance of the 

GP-PES. The acquisition function determining the next grid point to be computed is designed to 

reflect the impacts of the uncertainties of jump frequencies on the uncertainty of the macroscopic 

atomic diffusivity. A numerical solution of the master equation is here employed to readily estimate 

the atomic diffusivity, which enables us to design the acquisition function reflecting the centrality of 

each elementary process. 
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I. INTRODUCTION 

 Atomic transport in solids is of significance in a wide range of phenomena concerning solid 

state physics and chemistry, metallurgy, and materials science. Theoretical approaches based on first-

principles calculations are powerful techniques to clarify the microscopic picture of the atomic 

transport and to estimate the atomic diffusivity. There are two conventional atomic-scale simulations 

for estimating the atomic diffusivity, i.e., the molecular dynamics (MD) method [1-3] and the 

combination technique of the nudged elastic band (NEB) method [4,5] and the kinetic Monte Carlo 

(KMC) method [6,7]. The MD method reveals the time evolution of a system by numerically solving 

Newton's equations of motion with a fine time step. It has an advantage that the time evolution exactly 

follows classical Newtonian dynamics, but has a practical disadvantage, so-called time-scale 

limitation due to the fine time step of ~ 10-15 s in the case of solid systems. 

The latter technique of the NEB and KMC methods overcomes the time-scale limitation in the 

MD method. In the KMC method, a state transition and the elapsed time are stochastically determined 

at each KMC step according to the frequencies of all possible state transitions. Therefore, an atomic 

jump occurs at any step even if all possible atomic jumps at the step are rare events. In such a case, 

the elapsed time becomes longer at the step according to the low jump frequencies. An important task 

in this technique is preparing the list of all possible atomic jumps and their frequencies before the 

KMC simulations. The NEB method is often used for exploring possible elementary processes in a 

crystal, which finds valley lines on the potential energy surface (PES) of a diffusion carrier, so-called 

minimum energy paths (MEP). However, the NEB method requires prior knowledge on the initial and 

final states and the initial trajectory connecting the two states. The requirements are too demanding 

in complicated systems with low crystallographic symmetry, in which it is difficult to identify local 

minima on the PES and to specify an appropriate initial trajectory for each elementary process. The 

preparation of all possible elementary processes is therefore at risk of missing a key elementary 

process governing the atomic diffusivity, even though using our knowledge in solid state physics and 
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chemistry. 

 An entire PES mapping for a diffusion carrier in a host crystal is a solid methodology for 

avoiding such a risk in the NEB method. The most straightforward method is that the potential energy 

(PE) of a diffusion carrier is computed at every grid point on a fine grid introduced in the host crystal. 

The PEs at the grid points only in the asymmetric unit should be computed, which are here called 

irreducible grid points. The number of the irreducible grid points drastically increases with lowering 

the crystallographic symmetry, proportional to the volume of the asymmetric unit. According to the 

Inorganic Crystal Structure Database (ICSD) [8], the asymmetric units of some oxides are larger than 

1000 Å3, meaning that the total number of the irreducible grid points is more than 105 even in the 

case of a somewhat rough grid (grid interval: ~ 0.2 Å). Therefore, the computational cost of the 

straightforward PES mapping is comparable to the MD method in some cases. 

 Recently, we have proposed two machine-leaning-based (ML-based) methods for efficient 

PES mapping [9,10], in which the PEs are computed preferentially from region of interest 

characterizing the atomic diffusivity. In both previous methods, the statistical PES model based on a 

Gaussian process (GP-PES) is constructed and updated iteratively using the already-computed PE 

information at earlier steps. On the basis of the GP-PES, the grid point with the highest probability 

that the grid point is located in the region of interest is selected as the next grid point to be computed. 

A notable advantage of the ML-based methods is versatility in the sense that these methods are 

applicable to different host crystals without any prior knowledge on the physical and/or chemical 

properties unlike the NEB method. 

The major difference between the two previous methods is in the definition of the region of 

interest. In the first method [9], the region of interest is defined as the low-PE region which should 

include multiple local energy minima and elementary processes for the long-range migration. The 

first method however has the critical issue that the maximum reduction rate of the computational cost 

is governed by the ratio of the low PE region to the host crystal. In the case of the proton diffusion in 
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barium zirconate with the cubic perovskite structure (c-BaZrO3), the low PE region occupies ~ 20 % 

of the host crystal [9], meaning that the computational cost can be reduced by 80 % at most. In the 

second method [10], the region of interest is ultimately limited to overcome the efficiency limitation 

of the first method. The region of interest is defined as only a few dominant points, i.e., the global 

minimum point and the saddle point with the highest PE on the long-range migration path with the 

lowest potential barrier (called the bottleneck point on the optimal path, hereafter). Since the number 

of grid points characterizing the optimal path is much smaller than that in the low PE region, the 

second method is much more efficient than the first method. However, the second method cannot 

accurately evaluate the diffusivity and cannot clarify the detailed diffusion mechanism, because it 

focuses only on the potential barrier along the optimal path. 

Thus, the first previous method is accurate but less efficient because the goal is to completely 

identify the PES in the low PE region containing a number of grid points. On the other hand, the 

second previous method is efficient but less accurate because the goal is to identify only a few 

dominant points characterizing the optimal path. In the present study, an ML-based method with both 

accuracy and efficiency has been proposed on the basis of the GP-PES model. In the rigorous manner, 

the jump frequencies of all elementary processes are required to accurately estimate the atomic 

diffusivity. However, a part of elementary processes have slight impact on the macroscopic diffusivity, 

whose jump frequencies are allowed to be roughly estimated. In the present proposed method, the 

acquisition function is designed to reflect the impact of the uncertainty of the jump frequency on the 

uncertainty of the diffusivity. A numerical solution of the master equation is here employed to quickly 

estimate the diffusivity and the impacts of the uncertainties of all jump frequencies, which enables 

the proposed method to be feasible. The efficiency and versatility of the proposed method are 

demonstrated on two examples, the isotropic and anisotropic proton diffusivities in c-BaZrO3 and t-

BaTiO3 with the cubic and tetragonal perovskite structures.  
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II. PROPOSED METHOD 

 In order to accurately and efficiently predict atomic diffusivity, computational techniques in 

physics and materials science are effectively combined with ML techniques such as a GP model and 

Bayesian optimization. The proposed ML-based method in the present study is the procedure with 

multiple steps as follows: 

(0) Computing the PEs at initial grid points sampled at random (10 grid points in the present study). 

(1) Constructing (updating) the GP-PES model based on the already-computed PEs. 

(2) Identifying all elementary processes for atomic jumps on the predictive mean of the GP-PES. 

(3) Estimating the jump frequency and the uncertainty in each elementary process. 

(4) Calculating the acquisition value at each grid point based on the acquisition function reflecting the impact 

of the uncertainty of the jump frequency on the uncertainty of the atomic diffusivity. 

(5) Selecting the next grid point with the highest acquisition value and computing the PE. 

Procedures (1)-(5) are iteratively performed until the uncertainty of the diffusivity converges within 

a given accuracy. The details in each step are described in the following subsections. The major 

difference from the previously-proposed methods is in the sampling strategy for the next grid point 

to be computed, which is here designed suitable for converging the predicted atomic diffusivity with 

accuracy. 

 

A. PE computations 

In the present study, the proton diffusion in c-BaZrO3 and t-BaTiO3 are taken as model systems 

for the application of the proposed method. The PE of a proton at each grid point in the host crystals 

was computed using first-principles calculations on the basis of the projector augmented wave (PAW) 

method as implemented in the VASP code [11-14]. The 5s, 5p, 6s and 5d orbitals for Ba, 3p, 4s and 

3d orbitals for Ti, 4s, 4p, 5s and 4d orbitals for Zr, 2s and 2p orbitals for O, and 1s orbital for H were 

treated as valence states in the PAW potentials. The generalized gradient approximation (GGA) 

parameterized by Perdew, Burke, and Ernzerhof was used for the exchange-correlation term [15]. The 
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plane wave cut-off energies for the basis set and the augmentation charges were set to 400 eV and 

605.4 eV, respectively. A supercell consisting of 3×3×3 unit cells were used with a 2×2×2 mesh for 

the k-point sampling, in which the atomic positions were optimized with fixing the proton at the grid 

point and the farthest cation from the proton. The numbers of irreducible grid points in c-BaZrO3 and 

t-BaTiO3 are 286 and 720, respectively (See Figs. 3(a) and 7(a)). 

 

B. Statistical PES model based on Gaussian process 

 In the present study, a statistical PES model based on a GP [16,17] is employed as in our 

previous studies [9,10]. Using the GP model, the predictive distributions of the potential energy Ei at 

each irreducible grid point i (i = 1, …, nasym) is completely characterized by the mean function (x) 

and the covariance function k(x, x’), where x is the three-dimensional coordinates of the grid point. 

k(x, x’) is the so-called kernel function, interpreted as the similarity between the coordinates x and x’. 

One of the most commonly used kernel functions is the RBF kernel, given by 

f
2 ,      (1) 

where σf and l (> 0) are tuning parameters, which are determined by maximizing the marginal 

likelihood at each iteration. On the other hand, the constant function is commonly used for the mean 

function (x), i.e., (x) = 0. 

The GP-PES model based on the already-computed PEs at m grid points provides the 

predictive distribution of the entire PES in the form of a normal distribution N[μm(x), σm
2(x)] at each 

grid point x. The predictive mean and variance are given by 

m(x) = (x)＋k(x)TK–1(E－),      (2) 

σm
2(x) = k(x, x) −k(x)TK−1k(x),      (3) 

where k(x) = [k(x, x1), ..., k(x, xm)]T, E = [E1, ... , Em]T, ＝ [(x1), ... , (xm)]T, and K is the so-called 

kernel matrix defined as 
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   .     (4) 

Thus, the GP-PES provides not only the predictive PES (mean) but also the uncertainty (variance), 

which enables us to make a sampling strategy for the next grid point to be computed. The conventional 

strategies are based on the probability of improvement (PI) and the expected improvement (EI), which 

are often used in the literature of Bayesian optimization including one of our previous studies [9,18-

25]. 

 

C. Elementary processes and jump frequencies 

 All elementary processes in the unit cell are explored on the predictive mean of GP-PES with 

two steps, i.e., identifying all local energy minima (sites) and finding elementary processes (atomic 

jumps) connecting adjacent sites. 

At the first step, all local minima on the predictive mean of GP-PES are identified by 

comparing the PE at every grid point with the PEs at all adjacent grid points. Specifically, the grid 

point i is a local energy minimum if satisfying the following condition, 

,        (5) 

where  is the predicted PE at the grid point i, and Ai is the set of all grid points adjacent to the grid 

point i. 

 At the second step, all valley lines connecting adjacent sites are explored on the predicted PES. 

G and S are defined as the sets of the indexes of all grid points and the identified local minima (sites) 

in the unit cell, respectively, 

  ,        (6) 

  ,        (7) 

where ngrid and nsite are the numbers of all grid points and sites in the unit cell, respectively, and si is 

the grid point indexes of all sites. Here a basin is defined around each site, which is separated by 
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several saddle surfaces as shown in Fig. 1. Bi is defined as the set of grid point indexes in the basin 

around a site si. As the initial operations before exploring elementary processes for atomic jumps, the 

grid point index of each site i is extracted from the set G (G ← G \ {si}) and added into the basin set 

Bi (Bi ← Bi  {si}). Then, every grid point k is extracted from the set G one by one in ascending order 

of the predicted PE (G ← G \ {k}). If the extracted grid point k is an adjacent point to a grid point in 

the set of Bi ( ), k is added into the basin set Bi (Bi ← Bi  {k}). When a grid point is 

added into two basin sets Bi and Bj at the same time, an elementary process exists between the two 

sites where the added grid point is the saddle point. The trajectory of the elementary process is 

identified by tracing the adjacent grid point from the saddle point in the steepest descent direction. 

Note that the adjacent basins are separated by not only the saddle point but the saddle surface 

consisting of several grid points. Therefore, a common grid point is added into two basin sets (Bi and 

Bj) only when the product set is empty (Bi ∩ Bj = ). This enables us to explore several elementary 

processes for atomic jumps from a single site. 

 The jump frequency from site i to site j, ij, is estimated on the basis of the transition state 

theory (TST) [26-28] as follows: 

  mig
B ,       (8) 

where  is the vibrational prefactor, mig is the potential barrier, kB is the Boltzmann constant, and 

T is the temperature. In the present study, for all paths were set to a typical value for ionic jumps 

in crystals, i.e., 10 THz [29-33]. 

 

D. Numerical solution of diffusivity by master equation 

In the proposed method, the sampling strategy is based on atomic diffusivity, which therefore 

have to be estimated frequently during the PES mapping. The conventional KMC method is cumbrous 

for the frequent estimation of atomic diffusivity due to setting the simulation conditions, i.e., the 

numbers of steps and trials. Instead of the KMC method, a numerical solution of the master equation 
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[34,35] is employed in the present study, which finally results in a simple eigenvalue problem of a 

matrix. 

Under the independent-particle approximation, the master equation corresponding to the 

balance of the existence probability of a single particle at each site i, pi, is given by 

       

where t is the time, and ij is zero in the case of no elementary process between sites i and j. The first 

and second terms in the brackets on the right side are the inflow and outflow of the existence 

probability, respectively. In an N-site system (N: number of sites), the jump frequency matrix  is 

defined as the negative of the N×N Laplacian matrix for a weighted directed graph, in which the off-

diagonal elements are ij and the diagonal elements are . Using the matrix , Eq. (9) can be 

expressed simply as 

,          (10) 

where p is the vector of the existence probabilities of the single particle at all N sites, p = [p1(t), ... , 

pN(t)]T. The solution of the master equation is expressed using a given initial condition p0 at t = 0, 

.         (11) 

The diffusivity can thereby be evaluated by estimating the mean square displacement of the particle 

from the time dependence of the existence probability. 

In a crystal, the number of sites N is extremely large in general, but the dimensions of the 

matrix  and the vector p can be reduced drastically by exploiting the translational symmetry. The 

existence probability pi is hereafter redefined as a function of the position r in addition to the time t, 

pi(r, t), where i is the site index in the unit cell (i = 1, …, nsite) and r is defined in the global coordinate 

system. The master equation of Eq. (9) is rewritten as 

,

( , )
( , ) ( , )i

ji j ij ij i
j

p t
p t p t

t
  



       r
r s r      
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The summation on the right side is made for all adjacent sites beyond the periodic boundaries around 

site i in the focused unit cell. When site i has several adjacent sites j in different unit cells, they are 

distinguished by the unit cell index . ij
s  is the jump vector from site i in the focused unit cell to site 

j in unit cell . 

The reduced master equation (Eq. (12)) can easily be solved in the reciprocal space rather than 

in the real space. With the Fourier transform, pi(r, t) is transformed into Pi(Q,t), 

,        

where Q is the Fourier variable corresponding to position r. Eq. (12) is also transformed as follows: 

  

.    

When the jump matrix  is defined as an nsite×nsite matrix with the elements ij, 

  (ij: Kronecker delta),   (15) 

the master equation in the reciprocal space is simply expressed as 

 T ,          (16) 

which is the similar matrix expression to that in the real space (Eq. (10)). P is the vector of the 

existence probabilities at all nsite sites in the reciprocal space, P = [ , …, ]T. Thus, 

the dimensions of the existence-probability vector and the jump-frequency matrix are reduced from 

N and N×N” to “nsite and nsite×nsite” by exploiting the translational symmetry. 

All the eigenvalues of T are negative real numbers for any Q vector with a non-zero magnitude. 

When T is expressed as XYX-1 using the eigenvalue diagonal matrix Y (eigenvalues: i) and the 

transformation matrix X for the diagonalization, the solution is transformed as follows: 

T   

.    (17) 
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This indicates that the existence probability distribution of a single particle in the reciprocal space 

 is expressed as the summation of multiple exponential terms. 

To connect the solution of the master equation in the reciprocal space with the diffusion 

coefficient tensor D, the following Fick’s second law defined in continuous space is solved. 

         

where p(r, t) is the existence probability distribution of a single particle at time t. With the Fourier 

transform, Eq. (18) and the initial condition of p(r, 0) = (r) are transformed into 

       

P(Q, 0) =           

where Dmn is the elements of the diffusion coefficient tensor D. The solution of Eq. (19) is expressed 

as a single exponential term, 

     

Considering the time and spatial scales of atomic diffusion ( t    and 0Q , Eq. (17) having 

multiple exponential terms coincides with Eq. (21) expressed by a single exponential term, that is, 

the maximum eigenvalue 1 is equal to . Consequently, all the elements Dmn 

can be obtained by solving the eigenvalue problems for properly-selected Q vectors with a small 

magnitude relative to the scale of Brillouin Zone. The diffusion coefficient tensor D is a real 

symmetric matrix, which can be diagonalized to transform the Cartesian coordinate system to the 

principal-axis coordinate system, Ddiag, if necessary. 

 

E. Acquisition function 

 The acquisition function in the present study is designed to reflect the impact of the uncertainty 

for each jump frequency on the atomic diffusivity. Figure 2(a) shows the schematic diagram of the 

GP-PES along the trajectory of an elementary process from the initial point i to the final point j 
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through the saddle point s. The uncertainty of the jump frequency ij involves two major factors 

concerning the uncertainties of the initial and saddle points. Based on the lower confidence bound 

(LCB), the PE in the initial state can become lower from  to the lowest PE between the initial and 

saddle points on the LCB, . Similarly, the PE in the saddle-point state can become higher from 

 to the highest PE between the initial and final points on the upper confidence bound (UCB), . 

These two uncertainties lead to the uncertainty of the jump frequency in the elementary process. The 

95% confidence interval was employed for the LCB and UCB in the present study. Note that 

 does not exactly correspond to the 95 % confidence interval of the potential barrier. 

The above two uncertainties are limited only to those along the trajectory of the elementary 

process found on the predictive mean of the GP-PES. The uncertainty of the trajectory itself should 

also be taken into consideration, particularly around the initial and saddle points. In the present study, 

the most likely grid points to be the initial and saddle points are explored around the initial and saddle 

points i and s on the predictive mean of the GP-PES (Fig. 2(b)). Specifically, on the LCB, the grid 

point with the lowest PE in all adjacent grid points to the initial point i is regarded as the initial point 

candidate (grid points i”), i.e., . Similarly, the saddle point candidate is the grid 

point s” satisfying the following equation,  . Note that the grid points on the 

trajectory of the elementary process are here excluded in the sets of adjacent grid points Ai and As.  

 In the present study, the four uncertainties of the jump frequency for an elementary process 

are individually treated as follows: 

 B ,       (22) 

 B ,       (23) 

 B ,       (24) 

 B .       (25) 
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The acquisition values at the four grid points i’, s’, i’’, and s’’ are defined as the change ratio in the 

estimated diffusivity, 

 ,   (26) 

where  (n = 1, 2, 3) are the three elements in the diagonalized diffusion coefficient tensor Ddiag 

estimated on the predictive mean of the GP-PES, and  are those in the case that  is replaced by 

. All jump frequencies for the equivalent elementary processes in the unit cell are replaced by  

to estimate the  . Consequently, the acquisition function a(x) has a finite value only when x 

corresponds to grid points i’, i’’, s’, or s’’ for any elementary process, and zero otherwise. 

 The stopping criterion for the PES mapping is based on the acquisition function in the present 

study. Specifically, the grid point sampling is stopped when all the acquisition values become less 

than a given threshold, e.g., 10-5. 
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III. RESULTS & DISCUSSION 

A. Proton PES in BaZrO3 

 The proposed method in the present study is first applied to the isotropic proton diffusion in 

c-BaZrO3, which is characterized only by a single diffusion coefficient. Figure 3 shows all irreducible 

grid points (286 points) in the asymmetric unit and the entire PES of a single proton obtained by 

exhaustive PE computations at all irreducible grid points by first-principles calculations. The yellow 

surface is the PE isosurface (isosurface level: 0.3 eV vs. the global minimum point), indicating the 

low PE regions. The pale red and blue spheres denote the global minimum points (min 1) and the 

trajectories of proton jumps connecting the global minimum points, respectively. There are eight 

global minimum points around a single oxide ion, all of which are equivalent crystallographically in 

this crystal. The closest two global minimum points are connected by the trajectory through a saddle 

point (saddle 1) with a quite low PE (0.01 eV), which can be regarded as oscillatory proton transfer. 

The other two trajectories through saddle 2 and saddle 3 correspond to proton rotation around an 

oxide ion and proton hopping between two adjacent oxide ions, respectively. The calculated potential 

barriers of proton rotation and hopping are 0.19 and 0.29 eV, respectively. 

In the literature, the atomic-scale picture of proton diffusion in c-BaZrO3 has intensively been 

investigated in a first-principles manner [36-42]. The first-principles MD simulations [36] already 

revealed the rotation and hopping mechanism of proton diffusion in the crystal. In our previous study 

based on the NEB method [41], the calculated potential barriers for the proton rotation and hopping 

in undoped BaZrO3 are 0.17 eV and 0.25 eV, respectively. The slight differences in potential barrier 

between the present and previous studies are due to the relatively coarse grid for the PES mapping in 

the present study. Actually, the calculated potential barriers on the PES with a finer grid (40×40×40 

in the unit cell) [9,10] are 0.18 and 0.25 eV, almost equal to the potential barriers by the NEB method. 

The presence or absence of the oscillatory proton transfer also depends on the computational 

conditions. According to our recent study [41], the global minimum point in a larger supercell 
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consisting of 4×4×4 unit cells is located at the saddle point of the oscillatory proton transfer (saddle 

1), meaning that the supercell of 3×3×3 unit cells employed in the present study is rather small for 

describing the local structural relaxation around a single proton and that such oscillatory proton 

transfer does not occur in the case of dilute protons. Nevertheless, the proton PES with three types of 

proton jumps is here regarded as a true PES for the performance test of the proposed method, which 

is more difficult to predict than the simple PES with only proton rotation and hopping. The estimated 

diffusion coefficient of protons on the true PES is 4.3 × 10-5 cm2/s at 1000 K. 

 Figure 4 shows a typical profile of the predicted diffusion coefficient of protons at 1000 K as 

a function of the number of PE computations, which includes 10 PE computations at the initial grid 

points randomly sampled. The red line shows the diffusion coefficient on the predictive mean of the 

GP-PES, and the pale red region denotes the uncertainty estimated from the 95 % confidence interval 

of the GP-PES. The uncertainty is two order of magnitude at the beginning of the preferential 

sampling, but it gradually decreases, finally to be negligible after 30 PE computations. The converged 

diffusion coefficient is 4.3 × 10-5 cm2/s, exactly equal to the true one estimated using the entire PES. 

Figure 5 shows the sampled grid points and the PE isosurface (isosurface level: 0.3 eV) on the 

predictive mean of the GP-PES after 10, 15, 20, 25, 30, and 35 PE computations. After the 10 PE 

computations at the initial grid points (white spheres), the predicted PES is different from that on the 

true entire PES (Fig. 3(b)). During the preferential sampling, the grid points at the vicinity of the 

global minimum point and the three saddle points are preferentially sampled (black spheres), and the 

predicted PES becomes similar to the true one gradually. The single type of the global minimum 

points and the trajectories of elementary processes on the predictive mean of the GP-PES at each 

iteration are also shown in the figure. At the beginning, the position and the number of the global 

minimum points are incorrect, but they all are correctly identified after 25 PE computations. The 

predicted trajectories of elementary processes for proton jumps also converge after 30 PE 

computation, although the rotational trajectory is slightly different from the true one (Fig. 3(b)). 
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Figures S1(a) in the Supplementary Materials shows the profiles of the predicted diffusion 

coefficients in ten trials with different initial grid points. For comparison, those by the previous 

method [10] to preferentially sample only the global minimum and bottleneck points are also shown 

in Fig. S1(b). The present method requires 33–42 PE computations until the uncertainty of the 

predicted diffusion coefficient is negligible, which are comparable to the numbers of PE computations 

in the previous method (32–47 PE computations). Of particular note is that all predicted diffusion 

coefficients converge to the true value 4.3 cm2/s in the present method, in contrast to the scattering of 

the final values in the previous method (2.3–4.3 cm2/s). This excellent performance of the present 

method reflects the sampling strategy to converge the diffusion coefficient directly. In the previous 

method, the next grid point is sampled as the uncertainty of the potential barrier along the optimal 

path decreases, meaning that only the global minimum point and the saddle point of the proton 

hopping (bottleneck point) are sampled preferentially. Figure 6 shows the number of times that the 

global minimum and the three saddle points were sampled in the ten trials. The present method never 

fail to sample the four dominant points, while the previous method sometimes fail to sample some 

saddle points except for the global minimum and bottleneck points, leading to the misprediction. 

 

B. Sampling profiles in t-BaTiO3 

 The next example is the anisotropic proton diffusion in t-BaTiO3, characterized by two 

independent diffusion coefficients in the ab-plane and along the c-axis. Figure 7(a) shows the 

irreducible grid points in the asymmetric unit (720 points), which are more than those in c-BaZrO3 

reflecting the lower crystallographic symmetry of the tetragonal perovskite structure. In the 

converged crystal structure after the structural optimization, the Ti ion is displaced by ~ 0.1 Å along 

the c-axis with reference to the anion sublattice. The symmetry reduction results in several types of 

local energy minima (proton sites) in t-BaTiO3. Figure 7(b) shows six types of local minimum points 

on the entire PES of a single proton in the crystal obtained by exhaustive PE computations at all 
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irreducible grid points by first-principles calculations (min 1–6). The blue spheres denote the global 

minimum points (min 1), located around O2 ions. The other two types of local minima around O2 

ions (min 2 & 3) have a higher PE than the global minima by ~ 0.25 eV. On the other hand, the PEs 

of the local minima around O1 ions (min 4–6) are relatively high, in the range of 0.29–0.36 eV. The 

yellow surface in the figure is the PE isosurface (isosurface level: 0.5 eV vs. the global minima), 

showing the proton migration pathways. According to this figure, protons can migrate over a long 

range by way of only O1 ions in the ab-plane, while the long-range migration along the c-axis requires 

going through both O1 and O2 ions. As a result, the potential barrier of the optimal path along the c-

axis is higher than that in the ab-plane, 0.48 eV vs. 0.32 eV. 

 Figure 8 shows the profiles of the predicted diffusion coefficients of protons at 1000 K in the 

ab-plane and along the c-axis as a function of the number of PE computations. Reflecting a lot of 

irreducible grid points and the complicated migration pathways, many PE computations (~ 150 grid 

points) are required in this system. The converged diffusion coefficients are 7.1 × 10-5 cm2/s in the 

ab-plane and 4.3 × 10-5 cm2/s along the c-axis, which are in reasonable agreement with the true 

diffusion coefficients estimated on the true PES (7.5 × 10-5 cm2/s in the ab-plane and 4.3 × 10-5 cm2/s 

along the c-axis). Figure S2 in the Supplementary Materials shows the profiles of the predicted 

diffusion coefficients in ten trials with different initial grid points sampled at random. For comparison, 

those by the previous method [10], which preferentially samples only the global minimum and 

bottleneck points, are also shown in the figure. Although the present method requires more PE 

computations (150–190 computations) than the previous method (90–140 computations), the 

converged diffusion coefficients in the present method are closer to the true diffusion coefficients 

than those in the previous method. The root mean square errors (RMSEs) of the predicted diffusion 

coefficients are 0.4 × 10-5 cm2/s in the ab-plane and 0.2 × 10-5 cm2/s along the c-axis in the present 

method. On the other hand, the RMSEs are 0.9 × 10-5 cm2/s in the ab-plane and 0.8 × 10-5 cm2/s along 

the c-axis in the previous method, less accurate than the present method. 
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 The difference in the accuracy between the two methods is attributed to the sampled grid 

points for PE computations. Figure 9 shows the numbers of times that the true local minima (min 1–

6) and the true saddle points (saddle 1–14) were sampled in the ten trials. In the present method, 5 

local minima and 10 saddle points were sampled in all trials without fail, while only 2 local minima 

and 3 saddle points were robustly sampled in the previous method. Focusing on the three dominant 

points, both methods almost certainly sampled the global minimum point and the two bottleneck 

points, all of which are indispensable to predict the diffusivity and the potential barriers. A few failures 

of sampling the bottleneck point on the optimal path in the ab-plane (bottleneck 1) is due to the 

alternate pathway through another saddle point (saddle 6). The PE at the saddle point along the 

alternate pathway (0.33 eV) is comparable to that at the bottleneck point (0.32 eV), leading to the 

reasonable prediction of the diffusivity even without the bottleneck point. Actually, the predicted 

potential barriers accurately converge to the true ones in both methods, as shown in Fig. S3 in the 

Supplementary Materials. 

 Thus, the performances of the present and previous methods mean the trade-off relation 

between the accuracy and the computational cost, suggesting that the two methods should be 

employed depending on the research purpose. The present method is better for understanding the 

detailed diffusion mechanism and estimating the accurate diffusivity, even if it requires higher 

computational cost. On the other hand, the previous method should be used for roughly estimating 

the diffusivity with as low computational cost as possible, e.g., screening a lot of candidates for 

materials exploration. 

  



19 
 

IV. CONCLUSIONS 

 In the present study, a ML-based method for efficient PES mapping of a diffusion carrier in a 

host crystal was proposed, in which the region of interest governing the atomic diffusivity are 

preferentially evaluated. During the PES mapping, a GP-PES model is constructed and updated 

iteratively from known information on already-computed PEs. In the proposed method, all local 

energy minima and elementary processes of atomic diffusion are explored on the predictive mean of 

the GP-PES. The uncertainty of jump frequency in each elementary process is then estimated on the 

basis of the LCB and UCB of the GP-PES. The acquisition function determining the next grid point 

to be computed is designed to reflect the impacts of the uncertainties of jump frequencies on the 

atomic diffusivity. The numerical solution of the master equation is here employed to frequently 

estimate the atomic diffusivity, which enables us to design the acquisition function reflecting the 

centrality of each elementary process. 

 The proposed method in the present study was applied to the isotropic and anisotropic proton 

diffusion in c-BaZrO3 and t-BaTiO3. In the case of c-BaZrO3, the present method can accurately and 

robustly estimate the diffusion coefficient of protons with ~ 35 PE computations for 286 irreducible 

grid points. The required number of PE computations is comparable to that at the previous method 

focusing only on the two dominant points, i.e., the global minimum and bottleneck points. The present 

method exhibits higher accuracy of the diffusivity prediction, which is the advantage over the 

previous method. Even in the case of t-BaTiO3 with more complicated PES, the present method still 

has the advantage of the accurate diffusivity prediction, but requires more PE computations than the 

previous method. This is due to the difference in the number of grid points to be explored between 

the two methods. In the previous method, only a type of the global minima and two types of bottleneck 

points are explored out of 6 local minima and 14 saddle points, while more dominant points are 

required to estimate the diffusion coefficient accurately. Actually, the present method sampled 5 local 

minima and 10 saddle points in all 10 trials without fail. The difference in performance between the 
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present and previous methods indicates the trade-off relation between the accuracy and the 

computational cost, suggesting that the two methods should be employed depending on the research 

purpose. 
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Figure captions 

FIG. 1. (Color online) A basin surrounded by the four saddle surfaces (yellow lines) on a synthetic 

2D-PES. 

FIG. 2. (Color online) (a) Schematic diagram of the GP-PES along the trajectory of an elementary 

process from the initial point i to the final point j through the saddle point s. The red line and the pale 

blue area denote the predictive mean and the confidence interval, respectively. (b) Candidates of 

points i” and s” on the predictive mean of the GP-PES (two-dimensional PES), which are adjacent to 

the initial and saddle points, respectively. Note that the grid points on the trajectory of the elementary 

process are excluded from the i” and s” candidates. 

FIG. 3. (Color online) (a) All irreducible grid points in the asymmetric unit of the c-BaZrO3 crystal. 

(b) The global minimum points (pale red spheres) and the trajectories (pale blue spheres) of three 

types of elementary processes for proton jumps in c-BaZrO3 (oscillatory proton transfer, proton 

rotation, and proton hopping). The yellow surface denotes the PE isosurface (isosurface level: 0.3 eV 

vs. the global minimum point). 

FIG. 4. (Color online) The predicted diffusion coefficient of protons at 1000 K in c-BaZrO3 with the 

uncertainty as a function of the number of PE computations. The first ten PE computations 

corresponds to the initial points sampled at random. The red line is the diffusion coefficient on the 

predictive mean of the GP-PES. The pale red region denotes the uncertainty of the predicted diffusion 

coefficient estimated from the 95 % confidence interval of the GP-PES. 

FIG. 5. (Color online) The sampled grid points (white and black spheres), local minima (pale red 

spheres) and trajectories of elementary processes for proton jumps (pale blue spheres) on the 

predictive mean of the GP-PES after 10, 15, 20, 25, 30, and 35 PE computations. The white and black 

spheres correspond to the initial random sampling and the subsequent preferential sampling, 

respectively. The yellow surface denotes the PE isosurface on the predictive mean of the GP-PES 

(isosurface level: 0.3 eV vs. the global minimum point). 
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FIG. 6. (Color online) The comparison between the present method and the previous method [10] in 

the number of times that the global minimum and three saddle points in c-BaZrO3 were sampled in 

the ten trials. 

FIG. 7. (Color online) (a) All irreducible grid points in the asymmetric unit of the t-BaTiO3 crystal. 

(b) The six local energy minima (small spheres bonding to single oxide ions) in t-BaTiO3. The relative 

potential energies at the local energy minima are shown in parentheses. The yellow surface denotes 

the PE isosurface (isosurface level: 0.5 eV vs. the global minimum point). 

FIG. 8. (Color online) The predicted diffusion coefficients of protons at 1000 K in t-BaTiO3 with the 

uncertainty as a function of the number of PE computations. The first ten PE computations correspond 

to the initial points sampled at random. The red and blue lines are the diffusion coefficients in the ab-

plane and along the c-axis on the predictive mean of the GP-PES, respectively. The pale red and blue 

regions denote the uncertainties of the predicted diffusion coefficients estimated from the 95 % 

confidence interval of the GP-PES. 

FIG. 9. (Color online) The comparison between the present method and the previous method [10] in 

the number of times that the true local minima and saddle points in t-BaTiO3 were sampled in the ten 

trials. 
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FIG. 1. (Color online) A basin surrounded by the four saddle surfaces (yellow lines) on a synthetic 
2D-PES. 
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FIG. 2. (Color online) (a) Schematic diagram of the GP-PES along the trajectory of an elementary 
process from the initial point i to the final point j through the saddle point s. The red line and the pale 
blue area denote the predictive mean and the confidence interval, respectively. (b) Candidates of 
points i” and s” on the predictive mean of the GP-PES (two-dimensional PES), which are adjacent to 
the initial and saddle points, respectively. Note that the grid points on the trajectory of the elementary 
process are excluded from the i” and s” candidates. 
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FIG. 3. (Color online) (a) All irreducible grid points in the asymmetric unit of the c-BaZrO3 crystal. 
(b) The global minimum points (pale red spheres) and the trajectories (pale blue spheres) of three 
types of elementary processes for proton jumps in c-BaZrO3 (oscillatory proton transfer, proton 
rotation, and proton hopping). The yellow surface denotes the PE isosurface (isosurface level: 0.3 eV 
vs. the global minimum point). 
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FIG. 4. (Color online) The predicted diffusion coefficient of protons at 1000 K in c-BaZrO3 with the 
uncertainty as a function of the number of PE computations. The first ten PE computations 
corresponds to the initial points sampled at random. The red line is the diffusion coefficient on the 
predictive mean of the GP-PES. The pale red region denotes the uncertainty of the predicted diffusion 
coefficient estimated from the 95 % confidence interval of the GP-PES. 
 

  



30 
 

 

FIG. 5. (Color online) The sampled grid points (white and black spheres), local minima (pale red 
spheres) and trajectories of elementary processes for proton jumps (pale blue spheres) on the 
predictive mean of the GP-PES after 10, 15, 20, 25, 30, and 35 PE computations. The white and black 
spheres correspond to the initial random sampling and the subsequent preferential sampling, 
respectively. The yellow surface denotes the PE isosurface on the predictive mean of the GP-PES 
(isosurface level: 0.3 eV vs. the global minimum point).  
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FIG. 6. (Color online) The comparison between the present method and the previous method [10] in 
the number of times that the global minimum and three saddle points in c-BaZrO3 were sampled in 
the ten trials. 
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FIG. 7. (Color online) (a) All irreducible grid points in the asymmetric unit of the t-BaTiO3 crystal. 
(b) The six local energy minima (small spheres bonding to single oxide ions) in t-BaTiO3. The relative 
potential energies at the local energy minima are shown in parentheses. The yellow surface denotes 
the PE isosurface (isosurface level: 0.5 eV vs. the global minimum point). 
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FIG. 8. (Color online) The predicted diffusion coefficients of protons at 1000 K in t-BaTiO3 with the 
uncertainty as a function of the number of PE computations. The first ten PE computations correspond 
to the initial points sampled at random. The red and blue lines are the diffusion coefficients in the ab-
plane and along the c-axis on the predictive mean of the GP-PES, respectively. The pale red and blue 
regions denote the uncertainties of the predicted diffusion coefficients estimated from the 95 % 
confidence interval of the GP-PES. 
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FIG. 9. (Color online) The comparison between the present method and the previous method [10] in 
the number of times that the true local minima and saddle points in t-BaTiO3 were sampled in the ten 
trials. 
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 The proposed method in the present study has been developed for preferential potential 

energy surface (PES) mapping to efficiently predict atomic diffusivity in crystals. This method is 

applied to two examples, i.e., the isotropic and anisotropic proton diffusion in c-BaZrO3 and 

t-BaTiO3 with the cubic and tetragonal perovskite structures. Ten trials with different initial grid 

points were performed for each of the example systems. 

Figures S1(a) shows the profiles of the predicted diffusion coefficient of protons in 

c-BaZrO3 in the ten trials. For comparison, Fig. S1(b) shows the profiles of the diffusion coefficient 

estimated on the predictive mean of GP-PES in our previous method*. 

Figures S2 and S3 show the profiles in the case of the anisotropic proton diffusion in 

t-BaTiO3, which are characterized by two diffusion coefficients in the ab-plane and along the c-axis. 

(a)(b) and (c)(d) correspond to the proton diffusion in the ab-plane and along the c-axis, 

respectively. (a)(c) and (b)(d) are the results by the present method and the previous method*, 

respectively. 

 

 

 

 

 

* K. Kanamori, K. Toyoura, J Honda, K Hattori, A Seko, M Karasuyama, K. Shitara, M. Shiga, A. Kuwabara, and 

I. Takeuchi, Phys. Rev. B 97, 125124/1-6 (2018).   
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FIG. S1. (Color online) Profiles of the predicted diffusion coefficient of protons in ten trials with 

different initial grid points in the case of the isotropic proton diffusion in c-BaZrO3. (a) and (b) 

show the profiles in the present method and the previous method*, respectively. The solid symbols 

denote the final values at these trials.  
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FIG. S2. (Color online) Profiles of the predicted diffusion coefficients of protons in ten trials with 

different initial grid points in the case of the anisotropic proton diffusion in t-BaTiO3. (a)(b) and 

(c)(d) correspond to the diffusion coefficients in the ab-plane and along the c-axis, respectively. 

(a)(c) and (b)(d) show the profiles in this method and the previous method*, respectively. The solid 

symbols denote the final values at these trials.  
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FIG. S3. (Color online) Profiles of the predicted potential barriers of ten trials with different initial 

grid points in the case of the anisotropic proton diffusion in t-BaTiO3. (a)(b) and (c)(d) correspond 

to the potential barriers in the ab-plane and along the c-axis, respectively. (a)(c) and (b)(d) show the 

profiles in this method and the previous method*, respectively. The solid symbols denote the final 

values at these trials. 

 


	MS_toyoura_rev
	SM_toyoura

