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Here, we predict the effect of the spontaneous deformation of a flexible ferromagnetic ribbon
induced by Dzyaloshinskii–Moriya interaction (DMI). The geometrical form of the deformation is
determined both by the type of DMI and by the equilibrium magnetization of the stripe. We found
three different geometrical phases, namely (i) the DNA-like deformation with the stripe central
line in the form of a helix, (ii) the helicoid deformation with the straight central line and (iii)
cylindrical deformation. In the main approximation the magnitude of the DMI-induced deformation
is determined by the ratio of the DMI constant and the Young’s modulus. It can be effectively
controlled by the external magnetic field, what can be utilized for the nanorobotics applications.
All analytical calculations are confirmed by numerical simulations.

I. Introduction

Magnetic soft matter opens new possibilities in con-
struction and fabrication of shapeable magnetoelectron-
ics [1, 2], interactive human-machine interfaces [3, 4], and
programmable magnetic materials [5, 6]. Remote con-
trol of the shape and 3D navigation of the soft magnet
by means of the external magnetic field stimulate inten-
sive investigations in the area of milli- [4–8] and micro-
robotics [9–11] for flexible electronics and biomedical ap-
plications. So far the magneto-sensitive elastomers [12–
17] are the most studied magnetically responsive flexible
materials. The magnetic properties of elastomers are de-
termined by the long range dipole-dipole interaction [18–
21] which results in the relatively large scale of the ge-
ometrical deformations. It is well known that organic,
organic-inorganic hybrid, and molecule-based magnets
exhibiting different types of magnetic ordering [22–29]
and some of them can keep ferromagnetic order even for
a room temperature [30]. In comparison with elastomers,
the dominant interaction in the molecule-based magnets
is a local short-range exchange interaction. Therefore,
the scale of deformations in such systems is in nanoscale
range which allows significantly reduce the size of the
object. The sub-micrometer size of the molecule-based
magnets and possibility to control the geometry of the
magnet by means of magnetic field opens new possibili-
ties in the development of nanorobots in the context of
organic electronics and spintronics [31].

Deformation of a flexible magnet induced by its mag-
netization subsystem was predicted in a number of previ-
ous works [32–35]. Here, we demonstrate that a presence
of intrinsic DMI results in a spontaneous deformation of
a flexible magnetic ribbon. Depending on the mechani-
cal, magnetic, geometric parameters, and the symmetry
of the DMI one can obtain different equilibrium states,

see Table I. A promising feature of the DMI induced de-
formation is its field-controlled reconfigurability, which
is an important issue for the nanorobotics applications.
The numerical simulations confirm our analytical calcu-
lations: shape of the deformed ribbon, phase diagram of
equilibrium states. We used an in-house developed simu-
lating code, which takes into account both magnetic and
geometrical degrees of freedom.

II. Model

We consider a 3D narrow ferromagnetic ribbon of rect-
angular cross section whose thickness h and width w
are small enough to ensure the magnetization unifor-
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DNA-like and helicoid
states
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Undeformed state Cylindrical state

TABLE I. Schematic illustrations of possible DMI-induced de-
formations of flexible ferromagnetic ribbon for different types
of DMI and directions of the magnetization.
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FIG. 1. (Color online) Equilibrium states of flexible ferromagnetic ribbon with DMI in form Ed = Ebd : (a,b) Shapes
of DNA-like (a) and helicoid (b) states. (c) and (d) are phase diagrams of equilibrium states of the flexible ribbon. Symbols
show the results of the numerical simulations: circles and triangles correspond to helicoid and DNA-like states, respectively.
Thick green line in (c) and (d) describes the boundary between equilibrium states, see Appendix B for details. In all cases we
have ν = 1/3.

mity along a ribbon cross section. The ribbon length
L is substantially larger than the transversal dimen-
sions (h � w � L). The space domain occupied by the
ribbon is defined as r(ξ1, ξ2, η) = ς(ξ1, ξ2) + ηn(ξ1, ξ2).
Here, ς determines a 2D surface S embedded in R3 with
ξ1 ∈ [0, L] and ξ2 ∈ [−w/2, w/2] being local curvilinear
coordinates on S. The unit vector n denotes the sur-
face normal and the parameter η ∈ [−h/2, h/2] is the
curvilinear coordinate along the normal direction. The
parametrization ς(ξ1, ξ2) induces the natural tangential
basis gα = ∂ας with the corresponding metric tensor ele-
ments gαβ = gα ·gβ . Here, α, β = 1, 2 and ∂α ≡ ∂ξα . As-
suming that vectors gα are orthogonal, one can introduce
the orthonormal basis {e1, e2,n}, where eα = gα/

√
gαα

and n = e1×e2, see Fig. 1(a)-(b) for detailed notations.
The total energy E = Ee + Em of a flexible ferromag-

netic ribbon is a summation of elastic [36, 37]

Ee =
Y

8(1 + ν)

L∫
0

w/2∫
−w/2

(
hEs +

h3

3
Eb
)√

gdξ1dξ2 (1a)

and magnetic

Em = h

L∫
0

w/2∫
−w/2

(AEex +KEa +DEd)
√
gdξ1dξ2 (1b)

energy terms. Elastic energy is taken for the case of
thin amorphous films where only terms of first and third
order of magnitude with respect to thickness h are taken
into account [36]. Here, g = det ‖gαβ‖ and g = det ‖gαβ‖
with gαβ being the metric tensor for ribbon free of elastic
tensions (we consider a straight ribbon with gαβ = δαβ
as a reference metric). Parameters Y and ν ∈ [0, 0.5] in
(1a) are Young’s modulus and Poisson ratio, respectively.

The first term in elastic energy (1a) de-
termines stretching energy density Es =(

ν
1−ν g

αβgγδ + gαγgβδ
) (
gαβ − gαβ

) (
gγδ − gγδ

)
. The

last term in (1a) corresponds to the bending energy

Eb =
(

ν
1−ν g

αβgγδ + gαγgβδ
)
bαβbγδ with bαβ = n · ∂βgα

being the second fundamental form.

The first term in (1b) is the exchange energy density

with Eex =
∑
i=x,y,z (∂im)

2
, and A is an exchange con-

stant. Here m = M/Ms is the unit magnetization vec-
tor with Ms being the saturation magnetization. The
second term in (1b) is the anisotropy energy density

Ea = 1 − (m · ea)
2

with ea being easy-axis vector. The
vector ea follows either normal or tangential direction
and in this way, the anisotropy term in (1b) realizes the
magneto-elastic coupling. Parameter K > 0 is easy-axial
anisotropy constant. The exchange-anisotropy competi-
tion results in the magnetic length ` =

√
A/K, which

determines length scale of the system. The last term
in (1b) represents DMI contribution Ed with D being
the DMI constant. We consider two types of DMI: (i)
Ebd = m · [∇×m] is typical for systems with T sym-
metry [38]. In the following we call this DMI of Bloch
type, since it results in the domain walls and skyrmions
of Bloch type. (ii) End = mn∇·m−m·∇mn is typical for
ultrathin films [39, 40], bilayers [41] or materials belong-
ing to Cnv crystallographic group. In the following we
call this DMI of Néel type. Recently it was shown that
Neél DMI can be obtained in the Janus monolayers of
chromium trihalides Cr(I,X)3 [42]. It is also important
to note that DMI was recently observed in amorphous
GdFeCo films [43].

A DMI in a rigid magnetic system results in the ap-
pearance of periodical structures (e.g. conical or helical
modulations [44–47]). In systems with strong enough
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FIG. 2. (Color online) Shapes and geometrical parameters of flexible ferromagnetic ribbons as functions of DMI
strength: (a) – (c) are the ribbon shapes obtained by means of numerical simulations. (d),(e) are radius and pitch of DNA-like
state plotted for A/

(
Y h2

)
= 1, respectively. (f) pitch of the helicoid state for A/

(
Y h2

)
= 0.11. (g) Radius of cylindrical state

for A/
(
Y h2

)
= 1. Red lines in (d),(e) and green line in (g) represent analytical predictions (2) and (6), respectively. Blue line

in (f) is obtained from solution of the cubic Eq.(B11). Symbols correspond to data obtained by means of numerical simulations.
All data is presented for ribbons with width w ≈ 2`, thickness h = 0.05`, and Poisson ratio ν = 1/3. The dynamical process of
the DMI induced deformation is illustrated in the Supplemental movie D 4 Movie A.

anisotropy (|D|/
√
AK < 4/π) the periodical structures

are suppressed and we have uniform magnetization dis-
tribution. However, if we add additional elastic degree of
freedom to the system, one should expect realization of a
periodical magnetization distribution due to the 3D de-
formation of the ribbon. Schematic illustrations of the
found DMI-induced deformations of flexible ferromag-
netic ribbons are presented in Table I.

Now we utilize the model (1) to provide an analytic
description for the DMI induced flexible ferromagnetic
ribbon deformation.

III. DMI of Bloch type

Here we consider DMI in form Ed = Ebd . We
start with a tangential easy-axial anisotropy (ea =
e1) [48]. Basing on our numerical simulations we
assume that DMI induced deformation leads to the
formation of two equilibrium states, namely: DNA-
like [Fig. 2(a)] and helicoid [Fig. 2(b)] states. We start
with a DNA-like state. Such a state is parameter-
ized as ςdna (ξ1, ξ2) = R cos (ρ/R) x̂ + R sin (ρ/R) ŷ +
(ξ1 sinψ + ξ2 cosψ) ẑ, where ρ = ξ1 cosψ−ξ2 sinψ, R is a
radius of the central line, and ψ is an angle between vec-
tor e1 and xy-plane, see Fig. 1(a). The pitch of the DNA-
like state is P = 2πR tanψ. And sign of the pitch deter-
mines the geometrical chirality Cdna = signP dna = ±1.
This parameterization results in the Euclidean metrics,
therefore this state is free of the stretching (i.e. gαβ =
gαβ).

We show that the total energy (1) is minimized by a
stationary solution mdna

0 = C e1, where C = ±1 deter-
mines whether magnetization is parallel (C = 1) or an-
tiparallel (C = −1) to the tangential axis (see App. B).

Equilibrium values for the radius R and pitch P are de-
termined as

Rdna
0 =

A

|D|
2 4
√

1 + ζ√
1 + ζ − 1

, P dna
0 =

A

D

4π
√

1 + ζ√
1 + ζ − 1

, (2)

with ζ = 24
(
1− ν2

)
A/
(
Y h2

)
. Radius and pitch

for the DNA-like state as functions of DMI strength
are presented in Figs. 2(d)-(e). For the case of rela-
tively large values of Young’s modulus (A/

(
Y h2

)
�

1) we have Rdna
0 ∝ Y h2/

[
6|D|

(
1− ν2

)]
and P dna

0 ∝
πY h2/

[
3D
(
1− ν2

)]
.

The energy of the DNA-like state is

Edna
0

hwL
= −D

2

4A

√
1 + ζ − 1√
1 + ζ + 1

≈ −3
(
1− ν2

) D2

Y h2
. (3)

The second equilibrium state is referred as a helicoid
state. Such state can be parametrized in the follow-
ing way ςhel (ξ1, ξ2) = ξ2 [cos (kξ1) x̂+ sin (kξ1) ŷ] + ξ1ẑ,
where k is a twist parameter of the helicoid ribbon,
which results in the pitch P hel = 2π/k. The helical
state is also characterized by the geometrical chirality
Chel = signP hel = ±1. The metric tensor for this state
has a diagonal form ‖gαβ‖ = diag

(
1 + k2ξ22 , 1

)
. In con-

trast to the DNA-like state the helicoid geometry has
nonzero Gauß curvature. This means that the metric
tensor can not be transformed to the euclidean form. In
our case it results in the stretching term in the energy (1).

By minimizing enerrgy (1), we obtained similar solu-
tion for the magnetization as for DNA-like state: mhel

0 =
C e1. The equilibrium value of pitch for the case of nar-
row ribbons kw � 1 and large Young’s modulus can be
determined as

P hel
0 ≈ π

3 (1 + ν)

Y h2

D

[
1 + 12 (1 + ν)

A

Y h2

]
. (4)
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Pitch of the helicoid state as a function of the DMI con-
stant is presented in Figs. 2(f).

The energy of the helicoid state is

Ehel
0

hwL
≈ −3 (1 + ν)

D2

Y h2

[
1− 27

40

D2

Y 2h2
w4

h4
(1 + ν)

2

(1− ν)

]
.

(5)

One should note that geometrical chirality of both
states (DNA-like and helicoid) does not depend on the
magnetization orientation and is defined only by the sign
of DMI constant: D > 0 for a left-handed ribbon and
D < 0 for a right-handed ribbon.

The helicoid state appears due to realization of conical
phase allowed by the elastic degree of freedom. This state
is characterized by nonzero stretching. The competition
between the stretching and bending energies results in
the appearance of the DNA-like state for the larger D.
In the limit of small D both energies Ehel

0 ∝ −D2 and
Edna

0 ∝ −D2 demonstrate quadratic dependence on D
and Ehel

0 < Edna
0 . However, for larger D the stretching

induced term ∝ +D4 in (5) results in the preferability
of the DNA state Edna

0 < Ehel
0 . By comparing energies

of different states, we find the energetically preferable
states for different D and Y values. The resulting phase
diagrams are presented in Fig. 1(c)-(d). There are two
phases: (i) The DNA-like state is energetically prefer-
able for relatively large values of D or wide ribbons. (ii)
The helicoid state is realized for relatively small values
of D or narrow ribbons. The magnetization distribution
in both states is uniform in curvilinear reference frame
and it is tangential to the ribbon surface. The boundary
between two phases can be derived by using the con-
dition Ehel

0 (Dc, Y ) = Edna
0 (Dc, Y ). The spontaneous

deformations into the DNA-like and helicoid states are
demonstrated in the supplemental movie D 4 Movie A.

IV. DMI of Néel type

Here we consider DMI in form Ed = End which
is expected to Janus monolayers of Cr(I,Br)3 and
Cr(I,Cl)3 [42]. For ribbons with tangential easy-axial
anisotropy, i.e. easy axis is oriented along the rib-
bon ea = e1, the equilibrium magnetization is aligned
with the tangential direction and DMI does not deform
the shape of the ribbon. While for the easy-normal
anisotropy, DMI results in the deformation to the cylin-
drical structure, see Fig. 2(c). This deformation is a limit
case of a DNA-like state with sinψdna

0 = 0. The equilib-
rium value of the radius is (see App. C)

Rcyl
0 = 2

A

|D|

[
1 +

Y h2

24A (1 + ν)

]
. (6)

Magnetization in this state is normal to the surface, i.e.
mcyl

0 = ±n. The energy of this state behaves as Ecyl
0 ∝

−D2/
(
Y h2

)
. The obtained prediction (6) is in a good

agreement with numerical simulations, see Fig. 2(g).

FIG. 3. (Color online) Influence of the magnetic field on
the geometrical parameters of the ribbon: (a,b) Rela-
tive field induced changes of radius and pitch of the DNA-like
state as a function of applied magnetic field, respectively. (c)
Relative field induced change of the pitch of the helicoid state
as function of applied field. (d) Relative field induced change
of the radius of the cylindrical state as function of applied
field. All data are obtained by means of numerical simula-
tions for ribbons with w ≈ 2`, h = 0.05`, A/

(
Y h2

)
= 1,

and ν = 1/3. Insets demonstrate direction of the magnetic
field H with respect to the deformed ribbon and magnetiza-
tion orientation. Field induced dynamics is illustrated in the
Supplemental movies D 4 Movie B and D 4 Movie D.

The spontaneous deformation into the cylindrical state
is demonstrated in the supplemental movie D 4 Movie C.

For the case of rigid ribbon (Y →∞) or vanishing
DMI (D → 0), one gets values P hel

0 , P dna
0 , Rdna

0 , Rcyl
0 →

∞, which correspond to the straight ribbon.

V. Influence of the external magnetic field

Finally, we studied the influence of external magnetic
field H on the equilibrium states considered above. The
magnetic field was applied along the ẑ axis, i.e. H = Hẑ,
for the DNA-like and helicoid states, while for the cylin-
drical state H = Hx̂. The interaction with magnetic
field is represented by the Zeeman term with energy den-
sity Ez = −Msm ·H. The influence of the magnetic field
was studied by means of the numerical simulations.

Typical values of filed-induced changes of radii and
pitches are presented in Fig. 3. One should note, that the
relative field-induced deformations can reach up to 25–
30 % for the DNA-like and helicoid states, see Fig. 3(a-
c), while for the case of cylindrical state it can reach up
to ∼ 103 %, see Fig. 3(d).
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VI. Conclusions

In conclusion, we predict the effect of spontaneous de-
formation of flexible ferromagnetic ribbon induced by
DMI. The type of deformation depends on the DMI sym-
metry and equilibrium magnetization distribution, see
Tabl. I. For DMI of Bloch type the deformation is possible
only for the tangential magnetization of the ribbon and it
is determined by the geometrical, mechanical, and mag-
netic parameters: DNA-like state takes place for wide
ribbons or relatively large D, while helicoid state is typ-
ical for narrow ribbons or relatively small D, see Fig. 1.
In both cases the geometrical chirality of the ribbon is
determined by the sign of D and does not depend on the
magnetization orientation along the ribbon. For the case
of the Néel type DMI there is only one deformed state,
namely the cylindrical state (limit case of DNA-like state

with ψ = 0). It takes place only for the ribbons magne-
tized in normal direction. Finally, we show that geomet-
rical parameters of the ribbon are significantly influenced
by the external magnetic field, see Fig. 3. This feature
can be used for control of the nanorobots mechanics.

VII. Conclusions
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A. The model of flexible ferromagnetic ribbon

The parametrization ς(ξ1, ξ2) induces the natural tangential basis gα = ∂ας with the corresponding metric tensor
elements gαβ = gα · gβ . Here, α, β = 1, 2 and ∂α ≡ ∂ξα . Assuming that vectors gα are orthogonal, one can introduce
the orthonormal basis {e1, e2,n} with

eα =
gα√
gαα

, n = e1 × e2. (A1)

Using the Gauß-Godazzi formula and Weingarten’s equation [49] one can obtain the following differential properties
of the basis vectors

∇αeβ = hαβn− Ωαεβγeγ , ∇αn = −hαβeβ . (A2)

Here, ∇α ≡ (gαα)
−1/2

∂α (no summation over α) are components of the curvilinear gradient and ‖hαβ‖ =
‖bαβ/

√
gααgββ‖ is modified second fundamental form. The second fundamental form determines the Gauß curva-

ture K = det ‖hαβ‖ and mean curvature H = tr‖hαβ‖. Components of the spin connection vector Ω are determined

by the relation Ωγ =
1

2
εαβeα · ∇γeβ .

Using curvilinear reference frame (A1), we introduce the following magnetization parametrization

m = sin θ ε+ cos θn, ε = cosφ e1 + sinφ e2, (A3)

where θ and φ are magnetic angles, and ε is a normalized projection of the vector m on the tangential plane.
We consider the flexible ferromagnetic ribbon with the following energy functional E = Em + Ee, where

Em = h

∫
(AEex +KEa +DEd)

√
gdξ1dξ2 (A4a)

is a magnetic energy term in total energy while

Ee =
Y h

8(1 + ν)

∫ (
Es +

h2

3
Eb
)√

gdξ1dξ2, (A4b)

is an elastic energy term. Elastic energy taken for the thin ribbons where only terms of first and third order of
magnitude with respect to thickness h are taken into account [36]. Here, g = det ‖gαβ‖, and g = det ‖gαβ‖ with gαβ
being metric tensor for ribbon free of elastic tensions (we consider gαβ = δαβ). Parameters Y and ν ∈ [0, 0.5] in (A4b)
are Young’s modulus and Poisson ratio, respectively.
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The first term in (A4a) is the exchange density Eex =
∑
i=x,y,z (∂im)

2
with A being exchange constant. In the

curvilinear reference frame exchange energy can be written as [50–52]

Eex =∇αmβ∇αmβ +∇αmn∇αmn

+2hαβ (mβ∇αmn −mn∇αmβ) + 2εαβΩγmβ∇γmα

+
(
hαγhγβ + Ω2δαβ

)
mαmβ +

(
H2 − 2K

)
m2
n + 2εαγhγβΩβmαmn.

(A5a)

Using the angular parametrization (A3) one can obtain [50–52]

Eex = [∇θ − Γ]
2

+ [sin θ (∇φ−Ω)− cos θ∂φΓ] , (A5b)

where Γ = ‖hαβ‖ · ε.
The second term in the (A4a) correspond to the Dzyaloshinskii–Moriya interaction (DMI) Ed, with D being DMI

constant. For the case of a Néel type DMI End = mn∇ ·m−m ·∇mn in the curvilinear reference frame this interaction
can be written as [52]

End = mn∇αmα −mα∇αmn − εαβΩβmαmn −Hm2
n. (A6a)

Using the angular parametrization (A3) one can obtain [52, 53]

End = 2 (∇θ · ε) sin2 θ −H cos2 θ, (A6b)

While, for the Bloch type DMI symmetry Ebd = m · [∇×m] this interaction in curvilinear reference frame reads as

Ebd = εαβ (mn∇αmβ −mβ∇αmn) + εαβhβγmαmγ − Ωαmαmn. (A6c)

Substituting the angular parametrization (A3) into (A6c) results in the expression (up to the boundary terms)

Ebd = sin2 θ [(2∇θ − Γ)× ε] · n. (A6d)

Last term in (A4a) corresponds to the uniaxial anisotropy Ea = 1−(m · ea)
2
, with K > 0 being easy-axial anisotropy

constant. In a curvilinear reference frame anisotropy contribution has particularly simple form

Etanga =1− sin2 θ cos2 φ, where ea = e1,

Enorma = sin2 θ, where ea = n.
(A7)

The first term in elastic energy (A4b) corresponds to the stretching energy [36]

Es =

(
ν

1− ν
gαβgγδ + gαγgβδ

)(
gαβ − gαβ

) (
gγδ − gγδ

)
. (A8)

The last term in (A4b) determines the bending energy [36]

Eb =

(
ν

1− ν
gαβgγδ + gαγgβδ

)
bαβbγδ. (A9)

In our analytical calculations we used two different geometry parametrizations: DNA-like and helicoid geometries.

1. Geometrical properties and elastic energy of the DNA-like deformation

DNA-like geometry can be parametrized in the following way [see Fig. 1(a)]

ςdna (ξ1, ξ2) = R cos
( ρ
R

)
x̂+R sin

( ρ
R

)
ŷ + (ξ1 sinψ + ξ2 cosψ) ẑ, ρ = ξ1 cosψ − ξ2 sinψ, (A10)

where R is a radius of the central line, and ψ is an angle between vector e1 and xy-plane in the tangential plane [see
Fig. 1(a)]. The pitch of the DNA-like state defined as P = 2πR tanψ.
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Parametrization (A10) results in the following first, second, and modified second fundamental forms

gαβ = δαβ , ‖bαβ‖ = ‖hαβ‖ =
1

R

∥∥∥∥ − cos2 ψ cosψ sinψ
cosψ sinψ − sin2 ψ

∥∥∥∥ , (A11)

respectively. DNA-like geometry has zero Gauß curvature K = 0, nonzero mean curvature H = −1/R (here minus is
related to the direction of the normal vector), and zero components of spin connection vector Ω = 0.

Using definitions of first and second fundamental forms for DNA-like deformation (A11) one can obtain expressions
for elastic energy densities (A8) and (A9) in form

Es = 0, Eb =
1

(1− ν)R2
. (A12)

From (A12) one can see that DNA-like deformations are free from stretching energy.

2. Geometrical properties and elastic energy of the helicoid deformation

Helicoid geometry can be parametrized in the following way [see Fig. 1(b)]

ςhel (ξ1, ξ2) = ξ2 [cos (kξ1) x̂+ sin (kξ1) ŷ] + ξ1ẑ, (A13)

where k is a twist parameter, which results in the pitch P = 2π/k. Parametrization (A13) results in the following
first, second, and modified second fundamental forms

‖gαβ‖ = diag
(
1 + k2ξ22 , 1

)
, ‖bαβ‖ =

k√
1 + (kξ2)

2
adiag (1, 1) , ‖hαβ‖ =

k

1 + (kξ2)
2 adiag (1, 1) , (A14)

respectively. Helicoid geometry, in contrast to DNA-like (A10), has nonzero Gauß curvature K = −k2/
(
1 + k2ξ22

)
,

zero mean curvature H = 0, and nonzero component of spin connection vector Ω =
k2ξ2

(1 + k2ξ22)
2 e1.

Using definitions of first and second fundamental forms for helicoid deformation (A14) one can obtain expressions
for elastic energy densities (A8) and (A9) in form

Es =
1

1− ν
k4ξ42 , Eb =

2k2

1 + k2ξ22
. (A15)

B. DMI of Bloch type

In this section we consider DMI in form Ed = Ebd which is defined in Eqs. (A6c) and (A6d). Here we also will
consider two different easy-axial anisotropy directions.

1. DNA-like geometry

a. Case of easy-tangential anisotropy

We start with a DNA-like geometry defined in (A10) with easy-tangential anisotropy (ea = e1). We are interested
in the equilibrium states. Therefore, we consider the simplest case when magnetization is uniform in the curvilinear
reference frame, i.e. θ = const and φ = const. The total energy (A4) reads as

Edna

hwL
=

A

R2

[
1− sin2 θ sin2 (φ+ ψ)

]
+
D

R
sin2 θ sin (φ+ ψ) cos (φ+ ψ) +K

(
1− sin2 θ cos2 φ

)
+

Y h2

24R2 (1− ν2)
. (B1)

By minimization of (B1) we obtain that magnetic angles are defined as θdna0 = π/2 and cosφdna0 = C. Here
C = ±1 determines whether magnetization is parallel (C = +1) or antiparallel (C = −1) to the tangential axis (i.e.
mdna

0 = C e1). The equilibrium values of the radius R and angle ψ is defined by the following equations

D

R
cos 2ψ − A

R2
sin 2ψ = 0,

Y h2

12R3 (1− ν2)
+

A

R3
(1 + cos 2ψ) +

D

2R2
sin 2ψ = 0. (B2)
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Equations (B2) results in the following equilibrium geometrical parameters

Rdna
0 =

A

|D|
2 4
√

1 + ζ√
1 + ζ − 1

, cosψdna
0 = − sgn (D)√

1 +
√

1 + ζ
,

P dna
0 =

A

D

4π
√

1 + ζ√
1 + ζ − 1

, ζ = 24
(
1− ν2

) A

Y h2
.

(B3)

The energy of the DNA-like state reads

Edna
0

hwL
= −D

2

4A

√
1 + ζ − 1√
1 + ζ + 1

. (B4)

For the case of large values of Young’s modulus
(
A
Y h2 � 1

)
, equilibrium parameters (B3) can be written as

Rdna
0 ≈ 1

6 (1− ν2)

Y h2

|D|

[
1 + 12

(
1− ν2

) A

Y h2

]
− 9

(
1− ν2

) A

|D|
A

Y h2
,

P dna
0 ≈ π

3 (1− ν2)

Y h2

D

[
1 + 18

(
1− ν2

) A

Y h2

]
− 12π

(
1− ν2

) A
D

A

Y h2
,

cosψdna
0 ≈− sgn(D)√

2

[
1− 3

(
1− ν2

) A

Y h2

]
,

(B5)

with energy

Edna
0

hwL
≈ −3

(
1− ν2

) D2

Y h2

[
1− 6

(
1− ν2

) A

Y h2

]
. (B6)

b. Case of easy-normal anisotropy

For the case of easy-normal anisotropy (ea = n) it is convenient to introduce new parametrization for the unit
magnetization vector

m = cos Θ e1 + sin Θ cos Φ e2 + sin Θ sin Φn. (B7)

Therefore, using parametrization (B7) one can write the total energy (A4) in form (for the case of uniform magneti-
zation distribution in curvilinear reference frame)

Edna

hwL
=

A

R2

[
sin2 Θ + cos2 ψ

(
cos2 Θ− sin2 Θ sin2 Φ

)
− 1

2
sin 2Θ sin 2ψ sin Φ

]
+
D

2R

[
sin 2Θ cos 2ψ cos Φ + sin 2ψ

(
cos2 Θ− sin2 Θ cos2 Φ

)]
+K

(
1− sin2 Θ sin2 Φ

)
+

Y h2

24R2 (1− ν2)
.

(B8)

By minimization of (B8) we obtain that magnetic angles are defined as Θdna
0 = ±π/2 and Φdna

0 = ±π/2, i.e. mdna
0 =

±n. For such magnetization distribution the DMI energy is equal to zero Ed = 0. The letter effect results in not
deformed ribbon with equilibrium values for the geometrical parameters results in sinψdna

0 = 0 and R → ∞, which
correspond to the straight and not deformed ribbon. Total energy of this state (B8) is zero Edna (ea = n) = 0.

2. Helicoid geometry

a. Case of easy-tangential anisotropy

Here, we consider a helicoid geometry (A13) with easy-tangential anisotropy. Similarly to the DNA-like geometry
discussed in B 1, here, we are interested in the equilibrium states with uniform magnetization in the curvilinear
reference frame. Therefore, the total energy (A4) can be written as

Ehel

hwL
= 2A

k

w

 2kw cos2 θ√
4 + (kw)

2
+ arcsinh

(
kw

2

)
sin2 θ

+ 2
D

w
arcsinh

(
kw

2

)
sin2 θ cos 2φ+K

(
1− sin2 θ cos2 φ

)
+

Y

640 (1− ν2)
(kw)

4
+

Y h2

6 (1 + ν)

k

w
arctan

(
kw

2

)
.

(B9)
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FIG. 4. (Color online) Energy of the flexible ribbon: (a) Energies of flexible ribbon in DNA-like, helicoid, and undeformed
states for Bloch type DMI. (b) Energies of flexible ribbon in cylindrical and undeformed states for Néel type DMI. In all cases
ν = 1/3, h = 0.1`, w = 2.5`, A/

(
Y h2

)
= 1.

We consider narrow ribbons and we assume that DMI induced deformations are small kw � 1. Therefore, we will
write energy of the helicoid state as

Ehel

hwL
≈ Ak2

[
1 + cos2 θ − k2w2

24

(
1 + 5 cos2 θ

)]
+Dk

(
1− k2w2

24

)
sin2 θ cos 2φ

−K sin2 θ cos2 φ+
Y h2k2

12 (1 + ν)
+

Y (kw)
4

640 (1− ν2)
,

(B10)

where we save terms up to fourth order of magnitude with respect to kw.

Energy (B10) has minimum for magnetic angles θhel0 = π/2 and cosφhel0 = C. The equilibrium value of the twist
parameter k is defined by the following equation

D

(
1− k2w2

8

)
+ 2Ak

(
1− k2w2

12

)
+

Y h2k

6 (1 + ν)

(
1− k2w2

6

)
+

Y w4k3

160 (1− ν2)
= 0. (B11)

The solution of equation (B11) coincides with the twist parameter which obtained from numerical minimization of
energy (B9) with an accuracy of about 4× 10−3 (for Young’s modulus in the range A/

(
Y h2

)
∈ [0, 1]).

For the case of relatively large Young’s modulus (A/
(
Y h2

)
� 1) the twist parameter and the pitch of helicoid state

can be defined as

khel0 ≈ −6
D

Y h2
1 + ν

1 + 12 (1 + ν)A/ (Y h2)
, P hel

0 = 2π/khel0 . (B12)

The energy of a helicoid state approximately can be determined as

Ehel
0

hwL
≈ −3 (1 + ν)

D2

Y h2

[
1− 27

40

D2

Y 2h2
w4

h4
(1 + ν)

2

(1− ν)

]
. (B13)

By comparing energies of DNA-like state (B4) and helical state (B10) [see Fig. 4(a)] for the easy-tangential
anisotropy and twist parameter from (B11), we find the energetically preferable states for different DMI constants
and Young’s modulus values. The resulting phase diagrams are presented in Fig. 1(c)-(d).
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b. Case of easy-normal anisotropy

Here we will use magnetization parametrization (B7) defined in Sec. B 1 b. The energy for the helicoid geometry
with easy-normal anisotropy can be written as

Ehel

hwL
= 2A

k

w

[
2kw√

4 + k2w2
sin2 Θ sin2 Φ + arcsinh

kw

2

(
cos2 Θ + sin2 Θ cos2 Φ

)]
+K

(
1− sin2 Θ sin2 Φ

)
+2

D

w
arcsinh

kw

2

(
cos2 Θ− sin2 Θ cos2 Φ

)
+

Y

640 (1− ν2)
(kw)

4
+

Y h2

6 (1 + ν)

k

w
arctan

(
kw

2

)
.

(B14)

Energy (B14) has minimum for magnetic angles Θhel
0 = ±π/2 and Φhel

0 = ±π/2 which results in zero DMI
energy Ed = 0. The latter effect results in not deformed ribbon with twist parameter k = 0. Total energy of this
state (B14) is zero Ehel (ea = n) = 0.

C. DMI of Néel type

In this section we consider interfacial DMI Ed = End defined in Eqs. (A6a) and (A6b). Here we will perform the
same calculations as described in Sec. B.

1. DNA-like geometry

a. Case of easy-tangential anisotropy

Here we consider a DNA-like geometry defined in (A10) with easy-tangential anisotropy (ea = e1). For uniform
magnetization distribution in a curvilinear reference frame the energy of the ribbons reads

Edna

hwL
=

A

R2

[
1− sin2 θ sin2 (φ+ ψ)

]
− D

R
cos2 θ +K

(
1− sin2 θ cos2 φ

)
+

Y h2

24R2 (1− ν2)
. (C1)

Energy (C1) has minimum for magnetic angles θdna0 = ±π/2 and cosφdna0 = C (magnetization is align along the
ribbon, i.e. mdna

0 = Ce1), which results in zero DMI energy Ed = 0. The latter effect results in not deformed ribbon
with geometrical parameters ψdna

0 = π/2 and R→∞. Total energy of this state (C1) is zero Edna (ea = e1) = 0.

b. Case of easy-normal anisotropy

Here we will use magnetization parametrization (B7). The energy (A4) for the DNA-like geometry with easy-normal
anisotropy can be written as

Edna

hwL
=

A

R2

[
sin2 Θ + cos2 ψ

(
cos2 Θ− sin2 Θ sin2 Φ

)
− 1

2
sin 2Θ sin 2ψ sin Φ

]
−D
R

sin2 Θ sin2 Φ +K
(
1− sin2 Θ sin2 Φ

)
+

Y h2

24R2 (1− ν2)
.

(C2)

Energy (C2) has minimum for magnetic angles Θdna
0 = ±π/2 and Φdna

0 = ±π/2 with sinψdna
0 = 0 and equilibrium

radius

Rcyl
0 = 2

A

|D|

[
1 +

Y h2

24A (1 + ν)

]
. (C3)

This state has pitch equal to zero P = 0, therfore we refer this state as cylindrical.
The energy of this state is

Ecyl
0

hwL
= − D2

Y h2
6 (1 + ν)

1 + 24A (1 + ν) / (Y h2)
. (C4)

Fig. 4(b) shows the comparison of energies of flexible ribbon with interfacial DMI and easy-normal anisotropy in
DNA-like and helicoid states.
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DMI
type

Magnetization
direction

Equilibrium state Equilibrium parameters
B

u
lk

D
M

I:
Eb d

=
m
·[
∇
×

m
]

m = ±e1

• Rdna
0 =

A

|D|
2 4
√

1 + ζ√
1 + ζ − 1

;

• P dna
0 =

A

D

4π
√

1 + ζ√
1 + ζ − 1

;

• E
dna
0

hwL
= −D

2

4A

√
1 + ζ − 1√
1 + ζ + 1

.

• P hel
0 ≈ π

3 (1 + ν)

Y h2

D

[
1 + 12 (1 + ν)

A

Y h2

]
;

• Ehel
0

hwL
≈ −3 (1 + ν)

D2

Y h2

[
1− 27

40

D2

Y 2h2

w4

h4

(1 + ν)2

(1− ν)

]
.

m = ±n

• R0 →∞;

• P0 →∞;

• E0

hwL
= 0.

In
te

rf
a
ci

a
l

D
M

I:
En d

=
m

n
∇
·m
−

m
·∇

m
n

m = ±e1

• R0 →∞;

• P0 →∞;

• E0

hwL
= 0.

m = ±n

• Rcyl
0 = 2

A

|D|

[
1 +

Y h2

24A (1 + ν)

]
;

• P cyl
0 = 0;

• Ecyl
0

hwL
= − D2

Y h2

6 (1 + ν)

1 + 24A (1 + ν) / (Y h2)
.

TABLE II. Equilibrium states of the flexible ferromagnetic ribbon
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2. Helicoid geometry

a. Case of easy-tangential anisotropy

Here we will consider the ribbon with helicoid parametrization (A13) and easy-tangential anisotropy. The en-
ergy (A4) reads

Ehel

hwL
= 2A

k

w

 2kw cos2 θ√
4 + (kw)

2
+ arcsinh

(
kw

2

)
sin2 θ


+K

(
1− sin2 θ cos2 φ

)
+

Y

640 (1− ν2)
(kw)

4
+

Y h2

6 (1 + ν)

k

w
arctan

(
kw

2

)
.

(C5)

Energy (C5) has zero DMI contribution, therefore one should expect not deformed ribbon. By minimizing (C5) we
obtain that magnetic angles are defined as θhel0 = ±π/2 and cosφhel0 = C with twist parameter k = 0 which correspond
to the straight and not deformed ribbon. Total energy of this state (C5) is zero Ehel (ea = e1) = 0.

b. Case of easy-normal anisotropy

Here we will use magnetization parametrization (B7) defined in Sec. B 1 b. The energy for the helicoid geometry
with easy-normal anisotropy can be written as

Ehel

hwL
= 2A

k

w

[
2kw√

4 + k2w2
sin2 Θ sin2 Φ + arcsinh

kw

2

(
cos2 Θ + sin2 Θ cos2 Φ

)]
+K

(
1− sin2 Θ sin2 Φ

)
+

Y

640 (1− ν2)
(kw)

4
+

Y h2

6 (1 + ν)

k

w
arctan

(
kw

2

)
.

(C6)

Similarly to the case described in C 2 a, here we also have the deformation-independent zero DMI energy, therefore one
should expect not deformed ribbon. By minimizing (C6) we obtain that magnetic angles are defined as Θhel

0 = ±π/2
and Φhel

0 = ±π/2 with twist parameter k = 0 which correspond to the straight and not deformed ribbon. Total
energy of this state (C5) is zero Ehel (ea = n) = 0.

The results obtained in sections B and C presented in the Table II.

D. Details of numerical simulations

In order to verify our analytical calculations we perform a set numerical simulations for a flexible ferromagnetic
ribbon. We consider a ribbon with triangular lattice and lattice constant a. Each node has characterized by magnetic
moment mq(t) which located at position rq(t). Here q = (i, j) is a two dimensional vector which defines magnetic
moment and its position on a lattice with size N1 × N2 (i ∈ [1, N1] and j ∈ [1, N2]). Magnetic moments are
ferromagnetically coupled. The dynamics of magnetic subsystem is govern by Landau–Lifshitz equations

dmq

dτ
= mq ×

∂H

∂mq
+ αmq ×

[
mq ×

∂H

∂mq

]
, (D1a)

while the dynamics of mechanical subsystem is described by the overdamped Newton equation

η
drq
dτ

= −∂H

∂rq
, (D1b)

where τ = ω0t is a reduced time with ω0 = |γ0|K/Ms, α and η = υ|γ0|/Ms are dimensionless damping coefficients with
υ being viscous damping parameter. H is a dimensionless energy normalized by K. We consider five contributions
to the energy of the system

H = Hex + Ha + Hd + Hs + Hb. (D2a)

The first term in (D2a) is the exchange energy

Hex = − `
2

a2

∑
q

mq ·mq+δ, (D2b)
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N2 ν4 Λ/ (Y h) B/
(
Y h3

)
3 0.336974 0.294375 0.0585751
5 0.335962 0.353973 0.0561083
7 0.334573 0.379484 0.0554347
9 0.333438 0.385654 0.0541765
11 0.333345 0.356434 0.0540165

TABLE III. Matching between continuum and discreet models.

where δ runs over nearest neighbors.

The second term in (D2a) is the anisotropy energy

Ha = −
∑
q

(
mq · eaq

)2
, (D2c)

where eaq is easy axis vector at node with coordinate rq. For the case of easy tangential

anisotropy eaq =
(
rq+(i+1,j) − rq

)
/|(rq+(i+1,j) − rq|, while for the easy-normal anisotropy eaq = nq =∑

k

[
S4k (q)n4k (q)

]
/
∣∣∣[S4k (q)n4k (q)

]∣∣∣, where n4k (q) is k-th normal vector to the triangle with vertex in rq and S4k (q)

is an area of this triangle.

The third term in Eq. (D2a) is a DMI energy

Hd = d0
∑
q

dq,δ · [mq ×mq+δ] , (D2d)

with d0 = D/K, and dq,δ being DMI vector. For the case of surface DMI dq,δ = nq × uq,δ with uq,δ =
(rq+δ − rq) / |rq+δ − rq| being a unit vector which connects two nearest neighbors. For other DMI symmetry
dq,δ = uq,δ.

The fourth term in Eq. (D2a) is a stretching energy

Hs = λ
∑
q

[|rq+δ − rq| − a]
2
, (D2e)

with λ = Λ/K being a stretching parameter.

The last term in the Eq (D2a) is a bending energy

Hb = −β
∑
p

n4p · n
4
p+k, (D2f)

where we summarize over all triangle in a lattice and k defines nearest triangles (each triangle has three nearest
triangles except ones which are located near the edges). Here β = B/K defines the bending constant.

1. Matching of elastic parameters in discrete and continuum models

In order to find correspondence between the elastic parameters Y and ν, effective thickness h in continuum
model (A4) and parameters Λ and B in discrete model (D2) we performed two types of numerical simulations of non-
magnetic flexible ribbon. Firstly, we simulate the cylindrical surface, which is free of stretching energy (gαβ = gαβ),
and compared the energies given by Eq. (A9) and energy obtained from simulations. The second type of simulations
was performed for a flat and straight ribbon. We applied external force to the edges of the ribbon in opposite directions
in order to stretch it. In this case the bending energy of the ribbon is equal to zero. By comparing initial and final

geometrical parameter of the ribbon we calculated the Poisson ration for a triangular lattice ν4 = −w
′−w0

w0

L0

L′−L0
,

where w0 and L0 are geometrical parameter before deformation, while w′ and L′ are geometrical parameters after
deformation. For a triangular lattice we obtained the Poisson ratio equal to ν4 = 1/3. Components of actual metric
gαβ were calculated as g11 = L′/L0 > 1, g22 = w′/w0 < 1, and g12 = g21 = 0. Results of simulations are presented in
Table III.
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FIG. 5. (Color online) Geometrical parameters of flexible ferromagnetic ribbons: (a) – (c) are shapes of flexible
ferromagnetic ribbons obtained by means of numerical simulations. (d)-(g) Geometrical parameters as functions of Young’s
modulus: (d) – cylindrical state; (e) and (f) DNA-like state; (g) helicoid state. (h)-(k) Geometrical parameters as functions of
DMI constant: (d) – cylindrical state; (e) and (f) DNA-like state; (g) helicoid state. In all cases ν = 1/3, ` = 4a.

2. Simulation of relaxation dynamics

In order to verify the equilibrium state of the ribbon we performed a set of simulations for various range of
mechanical, magnetic, and geometrical parameters. In each simulation we start with a geometry of straight and flat
ribbon. The initial magnetization state was defined by the easy-axis anisotropy direction, i.e. mq (t = 0) = eaq. The
simulations were performed on a long time interval with α = 0.5 and υ = 0.01Ms/|γ0|. In all cases we consider ` = 4a.
Geometrical parameters as functions of Young’s modulus and DMI constant are presented in Fig. 5.

For the case of bulk DMI (A6c) we performed additional simulations in order to build phase diagrams. We use
magnetization distribution and positions of nodes from DNA-like state and use it as initial conditions for cases where
our analytical calculations predict the helicoid state as equilibrium. The final state with lowest energy is considered
as equilibrium state, see Fig. 1.

3. Simulation with external magnetic field

We also studied the influence of external magnetic field on the equilibrium states studied above. The magnetic
field was applied along the ẑ axis, i.e. H = Hẑ, for the DNA-like and helicoid states, while for the cylindrical state
H = Hx̂. The interaction with magnetic field is represented by the Zeeman term Hz = −1/ (2K/Ms)

∑
qmq ·H,

where H is the magnetic field amplitude. Results of numerical simulations are presented in Fig. 3.

4. Movies of the DMI and field induced deformations

For better illustration of DMI and field induced deformations we provide four movies constructed from our numerical
simulations:
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Movie A Video file ”movie bloch dmi free.mp4” shows the spontaneous deformation of two ferromagnetic ribbons
with DMI of Bloch type and easy-tangential anisotropy. We start with straight ribbons placed in zy plane magnetized
allong z direction (tangential direction). The final state of the ribbons is defined by the DMI strength, i.e. for

D = 1.2
√
AK we have DNA-like state, while for D = 0.45

√
AK we have helicoid state. In movie we have ribbons

with the following parameters L = 25`, w ≈ 2`, h = 0.05`, and A/
(
Y h2

)
= 1.

Movie B Video file ”movie bloch dmi field.mp4” illustrates the field induced deformation of ribbons obtained
from numerical simulations presented in movie movie bloch dmi free.mp4. Here magnetic field is applied along the
z direction with amplitude H/ (2K/Ms) = 0.5.

Movie C Video file ”movie neel dmi free.mp4” shows the spontaneous deformation of the ferromagnetic ribbons
with DMI of Neél type and easy-normal anisotropy. Here, we start with straight ribbons placed in xy plane magnetized
allong x direction (normal direction).In movie we have ribbon with the following parameters L = 10`, w ≈ 2`,

h = 0.05`, D = 1.2
√
AK, and A/

(
Y h2

)
= 1.

Movie D Video file ”movie neel dmi field.mp4” illustrates the field induced deformation of ribbons obtained
from numerical simulations presented in movie movie neel dmi free.mp4. Here magnetic field is applied along the
x direction with amplitude H/ (2K/Ms) = 0.5.
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Sébastien Lecommandoux, “Magnetic responsive poly-
mer composite materials,” Chemical Society Reviews
42, 7099 (2013).

[14] Giselher Herzer, “Modern soft magnets: Amorphous and
nanocrystalline materials,” Acta Materialia 61, 718–734
(2013).

[15] Ren Geryak and Vladimir V. Tsukruk, “Reconfigurable
and actuating structures from soft materials,” Soft Mat-
ter 10, 1246–1263 (2014).

[16] James Townsend, Ruslan Burtovyy, Yuriy Galabura,
and Igor Luzinov, “Flexible chains of ferromagnetic
nanoparticles,” ACS Nano 8, 6970–6978 (2014).

mailto:yershov@bitp.kiev.ua
mailto:vkravchuk@bitp.kiev.ua
mailto:sheka@knu.ua
mailto:j.van.den.brink@ifw-dresden.de
mailto:ybg@bitp.kiev.ua
http://dx.doi.org/10.1063/1.4938497
http://dx.doi.org/10.1088/1674-4926/39/1/011006
http://dx.doi.org/10.1088/1674-4926/39/1/011006
http://dx.doi.org/10.1016/j.mattod.2017.12.006
http://dx.doi.org/10.1016/j.mattod.2017.12.006
http://dx.doi.org/10.1038/nature25443
http://dx.doi.org/10.1073/pnas.1608193113
http://dx.doi.org/10.1073/pnas.1608193113
http://dx.doi.org/10.1073/pnas.1608193113
http://dx.doi.org/ 10.1038/s41586-018-0185-0
http://dx.doi.org/ 10.1038/s41467-018-06491-9
http://dx.doi.org/ 10.1038/s41467-018-06491-9
http://dx.doi.org/10.1089/soro.2017.0126
http://dx.doi.org/10.1089/soro.2017.0126
http://dx.doi.org/10.1038/nmat3090
http://dx.doi.org/10.1038/nmat3090
http://dx.doi.org/ 10.1002/adfm.201707228
http://dx.doi.org/ 10.1002/adfm.201707228
http://dx.doi.org/ 10.1021/acsnano.8b09233
http://dx.doi.org/ 10.1021/acsnano.8b09233
http://dx.doi.org/10.1021/nl051537j
http://dx.doi.org/10.1021/nl051537j
http://dx.doi.org/ 10.1039/c3cs60058k
http://dx.doi.org/ 10.1039/c3cs60058k
http://dx.doi.org/10.1016/j.actamat.2012.10.040
http://dx.doi.org/10.1016/j.actamat.2012.10.040
http://dx.doi.org/ 10.1039/c3sm51768c
http://dx.doi.org/ 10.1039/c3sm51768c
http://dx.doi.org/10.1021/nn501787v


16

[17] E. Lopatina, I. Soldatov, V. Budinsky, M. Marsilius,
L. Schultz, G. Herzer, and R. Schäfer, “Surface crystal-
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