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We examine how to signify and quantify the mesoscopic quantum coherence of approximate two-
mode NOON states and spin-squeezed two-mode Bose-Einstein condensates (BEC). We identify two
criteria that verify a nonzero quantum coherence between states with quantum number different by
n. These criteria negate certain mixtures of quantum states, thereby signifying a generalised n-scopic
Schrodinger cat-type paradox. The first criterion is the correlation 〈â†nb̂n〉 6= 0 (here â and b̂ are
the boson operators for each mode). The correlation manifests as interference fringes in n-particle
detection probabilities and is also measurable via quadrature phase amplitude and spin squeezing
measurements. Measurement of 〈â†nb̂n〉 enables a quantification of the overall n-th order quantum
coherence, thus providing an avenue for high efficiency verification of a high-fidelity photonic NOON
states. The second criterion is based on a quantification of the measurable spin-squeezing parameter
ξN . We apply the criteria to theoretical models of NOON states in lossy interferometers and double-
well trapped BECs. By analysing existing BEC experiments, we demonstrate generalised atomic
“kitten” states and atomic quantum coherence with n ' 10 atoms.

I. INTRODUCTION

In 1935 Schrodinger considered the preparation of a
macroscopic system in a quantum superposition of two
macroscopically distinguishable states [1]. Such systems
are called “Schrodinger cat-states” after Schrodinger’s ex-
ample of a cat in a superposition of dead and alive states.
The preparation of such states in the laboratory is dif-
ficult due to the existence of external couplings, which
cause the superposition state to decohere to a classical
mixture [2, 3]. While for the mixture the “cat” is prob-
abilistically “dead” or “alive”, the paradox is that for the
superposition the “cat” is apparently neither “dead” or
“alive”. Developments in quantum optics and the cooling
of atoms and mechanical oscillators have made the gen-
eration of mesoscopic cat-states feasible [4, 5]. This is
interesting for atomic systems where a superposition of a
massive system being in two states at different locations
might be created. Ghirardi, Rimini, Weber [6] and Diosi
[7] and Penrose [8] have proposed that for such systems
decoherence mechanisms would prevent the formation of
the Schrodinger cat superposition states. To carry out
tests, firm proposals are required for the creation and
detection of cat-states.

A major consideration for cat-state experiments is that
the generation of the cat-state is not likely to be ideal.
This is especially true for larger N . One of the most
well-studied cat-states is the NOON state [9–14]

|ψNOON 〉 =
1√
2
{|N〉a|0〉b + eiφ|0〉a|N〉b} (1)

where N particles or photons are superposed as being
in the spatial mode a or the spatial mode b. Ideally, a
cat-state requires N → ∞ but “N -scopic kitten-state”
realisations focus on finite N > 1. Here |n〉a (|m〉b) are
the eigenstates of particle number n̂a = â†â (n̂b = b̂†b̂),
respectively, and â, â† (b̂, b̂†) are the boson operators
for mode a (b). The NOON states have been generated

in optics for N up to 5 [13] and with atoms for N =
2 [15]. At low N however photon detection efficiencies
are usually very low and results are often obtained by
postselection processes.

Generating for higher N is challenging. Proposals ex-
ist to exploit the nonlinear interactions formed from Bose
Einstein condensates (BEC) trapped in the spatially sep-
arated wells of an optical lattice [16–24]. Under some
conditions, theory shows that the atoms can tunnel be-
tween the wells, resulting in the formation of a NOON
superposition. However, it is known that for realistic pa-
rameters, the states generated are in fact of the type

|ψ〉 =

N∑
m=0

dm|N −m〉a|m〉b (2)

where there exist nonzero probabilities for numbers other
than 0 or N [19, 21–23, 25]. (The dm are probability
amplitudes). Oscillation between two BEC states with
significantly different mode numbers has been experimen-
tally observed [26], presumably resulting in the formation
of a superposition of type (2) at intermediate times.

A key question (raised by Leggett and Garg [27]) is
how to rigorously signify the Schrodinger cat-like prop-
erty of the state in such a non-ideal scenario. In this
paper we propose quantifiable “catness” signatures that
can be applied to nonideal NOON-type states generated
in photonic and cold atom experiments. The signatures
that we examine exclude all classical mixtures of suffi-
ciently separated quantum states, so that it is possible
to exclude all classical interpretations where the “cat”
is “dead” or “alive” (see the Conclusion for a qualifica-
tion). For the cat-system that can be found in one of
two macroscopically distinguishable states ρD and ρA, a
rigorous signature must negate all mixtures of the form

ρmix = PDρD + PAρA (3)

where PD and PA are probabilities and PD + PA = 1.
In our treatment, the ρD (ρA) are density operators for

ar
X

iv
:1

60
9.

06
02

8v
2 

 [
qu

an
t-

ph
] 

 7
 M

ar
 2

01
7



2

quantum states otherwise unspecified except that they
give macroscopically distinct outcomes (“alive” or “dead”)
for a measurement of quantum number n̂a − n̂b.

The first step is to generalise this approach for the non-
ideal case (2), where there are nonzero probabilities for
obtaining outcomes in an intermediate (“sleepy”) domain
over which the cat cannot be identified as either dead or
alive. In Sections II and III, we follow Refs. [27, 29, 30]
and consider states ρDS and ρSA that give outcomes in
the combined “dead/ sleepy” and “sleepy/ alive” regions
respectively. The states have overlapping outcomes indis-
tinguishable over a range n. We explain how the negation
of all mixtures of the type

ρmix = P−ρDS + P+ρSA (4)

(where P− and P+ are probabilities and P− + P+ = 1)
will imply a generalised n-scopic cat-type paradox, in the
sense that the system cannot be explained by any mixture
of quantum superpositions of states different by up to n
quanta. It is proved that the observation of the nonzero
n-scopic quantum coherence term

〈0|〈n|ρ|0〉|n〉 6= 0 (5)

(ρ is the density operator) will negate all mixtures of
type (4), thus signifying a generalised n-scopic “kitten”
quantum superposition. We identify two criteria that
verify the n-scopic quantum coherence (5). In a separate
paper, we examine a third criterion based on uncertainty
relations and Einstein-Podolsky-Rosen steering [31].

Previous studies have proposed signatures (criteria or
measures) for mesoscopic “cat” states (see for instance
[3, 4, 22, 25, 29–39]). These include proposals based
on interference fringes, entanglement measures, uncer-
tainty relations, negative Wigner functions and state fi-
delity. Not all of these signatures however provide a di-
rect negation of all the mixtures (3), (4). Further, most
of these studies do not address the nonideal case where
there may be a range of outcomes not binnable as either
“dead” or “alive”. Exceptions include the work of Refs.
[22, 27, 29, 30, 32–35, 40] which (like the work of this pa-
per) are based on the observations of a nonzero quantum
coherence.

The first criterion that we consider is a nonzero nth
order correlation

〈â†nb̂n〉 6= 0 (6)

This criterion is necessary and sufficient for the nth or-
der quantum coherence (5). While normally evidenced
for NOON states by fringe patterns formed from n-fold
photon count coincidences, we show in Section VII how
this moment can also be measured for small N using
highly efficient homodyne detection and Schwinger-spin
moments. In Section IV, we show that the value of the
coherence 〈â†nb̂n〉 when suitably normalised translates
to an effective fidelity measure of the n-scopic “catness”
property of the state (which is not given directly by the

state fidelity). We provide (in Section V) a theoretical
model for the NOON state with losses, thus examining
the degradation of the fidelity measure in that case. We
also show how the fidelity measure can be applied to
quantify mesoscopic quantum coherence for the case of
number states |N〉 incident on a beam splitter (the lin-
ear beam splitter model). The quantum coherence (5) is
optimally robust with respect to losses when n� N , but
this can be achieved for high n.

The criterion (6) was proposed by Haigh et al to signify
NOON-type superposition states created from nonlinear
interactions in two-well BECs [22]. In Section VI, we
evaluate 〈â†nb̂n〉 in dynamical regimes suitable for the
formation of approximate NOON states, using a two-
mode Josephson model (the nonlinear beam splitter). In
Section VII, we analyse the measurement strategy using
multi-particle interferometry. For the case of n = 2, 3,
the moment (6) is readily measured in terms of Schwinger
spin observables. In fact by analysing spin squeezing data
reported from the atomic BEC experiment of Esteve et al
[41], we infer (in Section VIII) the existence of two-atom
(n = 2) generalised (sometimes called “embedded” [21])
kitten-states.

The second criterion that we consider for an n-scopic
quantum coherence (5) is based on spin squeezing [42,
43]. The amount of squeezing observed for a given num-
ber of atoms N is quantified by a squeeze parameter
ξN < 1 [41, 44–46]. In Section IIIb, we apply the meth-
ods of Ref. [30] and prove that a given measured amount
of squeezing places a lower bound of

√
N
ξN

on the value of n
for which the quantum coherence 〈0|〈n|ρ|0〉|n〉 is nonzero:

n >

√
N

ξN
(7)

This criterion requires 〈â†b̂〉 6= 0 and is not therefore use-
ful to identify ideal NOON states. However the squeezing
signature (7) is very effective in confirming a high degree
of mesoscopic quantum coherence for states (2) where ad-
jacent dm and dm+1 are nonzero. This occurs in systems
with high losses or linear couplings. In Section IIIb we
apply this signature to published experimental data, and
confirm a mesoscopic coherence (with n ∼ 10 atoms) in
two-mode BEC systems. We note this is consistent with
the recent work of Ref. [32, 35] which proposes quanti-
fiers (measures) of mesoscopic quantum coherence based
on Fisher information and reports significant values of
atomic coherence for BEC systems.

II. n-SCOPIC QUANTUM COHERENCE

We begin by considering the outcomes of observable
2ĴZ = (â†â − b̂†b̂). For the ideal NOON state (1) these
are −N and N . In the limit of large N , we identify the
two outcomes as “dead (D)” and “alive (A)” in order to
make a simplistic analogy with the Schrodinger cat ex-
ample. How does one signify the superposition nature of
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the NOON state? The density matrix ρ for the superpo-
sition |ψNOON 〉 has nonzero off-diagonal coherence terms
〈0|〈N |ρ|0〉|N〉 6= 0 that distinguish it from the classical
mixture (PD and PA are probabilities, PD + PA = 1)

ρmix = PD|0〉|N〉〈N |〈0|+ PA|N〉|0〉〈0|〈N | (8)

Thus, the detection of the nonzero coherence
〈0|〈N |ρ|0〉|N〉 serves to signify an N -scopic cat-state in
this case.

The ultimate objective of a “Schrodinger cat” experi-
ment is to negate classical realism at a macroscopic level.
The accepted definition of macroscopic realism is that
a system must be in a classical mixture of two macroscop-
ically distinguishable states [27]. Similarly, we take as the
definition of N-scopic realism is that a system must be
in a classical mixture of two states that give predictions
different by N quanta. In this paper, the meaning of
classical mixture is in the quantum sense only, that the
density operator ρ for the system is equivalent to a clas-
sical mixture of the two (quantum) states, as in (8).
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Figure 1: Nonideal scenarios for NOON generation: Proba-
bility P (2jz) of an outcome of 2Ĵz for the NOON state after
attenuation as modelled by a beam splitter coupling. (a)
N = 50, η = 0.8 (b) η = 0.05. Similar plots are obtained for
pure NOON-type states (2) generated via a Josephson two-
mode interaction. The right graph shows how to confirm an
n-scopic quantum coherence, as explained in the text.

More generally, the states generated in the experiments
give outcomes for n̂a and n̂b different to 0 and N , as a
result of even a small amount of loss or noise in the sys-
tem (real predictions are illustrated in Figure 1). The
question becomes how to confirm by experiment that the
system is indeed in a superposition of two mesoscopi-
cally distinguishable quantum states, as opposed to any
alternative classical description where there would be no
mesoscopic “cat” paradox. This question was examined
in Ref. [29, 30] for continuous outcomes realised from
quadrature phase amplitude measurements and we ap-
ply the approach given there. The following is a result
found in that paper as applied to this case.
Result 1:− An n-scopic quantum coherence and

generalised n-scopic cat-paradox : Consider the fol-
lowing mixture sketched in Figure 1b (for jc = 0).

ρmix = P−ρDS + P+ρSA (9)

where P− and P+ are probabilities and P− + P+ = 1.
Here, ρDS is a quantum state whose two-mode number

state expansion may only include eigenstates with out-
come 2Jz < jc + n; and ρSA is a quantum state whose
expansion only includes eigenstates with 2Jz > jc − n.
The outcome 2Jz ≥ jc + n is interpreted as “alive” and
the outcome 2Jz ≤ jc − n is interpreted as “dead”. The
intermediate overlapping regime is “sleepy”. The nega-
tion of all mixtures of the type (9) will imply a gen-
eralised n-scopic “cat-type” paradox, in the sense that
the system cannot be viewed as either “dead/ sleepy” or
“alive/ sleepy”− and cannot therefore be explained by
any mixture of superpositions of states different by up
to n quanta. If (9) can be negated, then there is an n-
scopic generalised quantum coherence (cat-type paradox).
The negation of (9) implies that for some n′,m′

b〈n+m′|a〈n′|ρ|n+ n′〉a|m′〉b 6= 0 (10)

(in fact jc = n′ −m′). The converse is also true. Condi-
tions that negate (9) equivalently demonstrate (10), and
we refer to these conditions as signatures of n- scopic
quantum coherence, or of an n-scopic generalised cat
paradox.
Proof: The justification is that if (9) fails, then the

system cannot be thought of as being in one quantum
state ρ1 or the other ρ2. We have not constrained the ρ1

or ρ2, except to say they cannot include both “dead” and
“alive” states (each one is orthogonal to either the dead
or alive state). Hence there is a negation of the premise
that the system must always be either “ dead or alive”.
In that sense we have an analogy with the Schrodinger
“cat” paradox but where the “dead” and “alive” states are
separated by n quanta. That the coherence is nonzero
follows on expanding the density matrix in the number
state basis. �

We note that the nonzero n-scopic quantum coherence
has a physical significance, in that it is then possible (in
principle) to filter out the intermediate “sleepy states” us-
ing measurements of |ĴZ | > n/2 to create a conditional
cat-state where the separation in JZ of the “dead” and
“alive” states is of order n. This method of preparation
has been carried out experimentally [10]. However, where
the n-scopic coherences are small, the heralding probabil-
ity for the cat-state also becomes small, making the states
increasingly difficult to generate. This motivates Section
V which examines how to quantify the quantum coher-
ence through experimental signatures. First, we identify
two criteria for the condition Eq. (10).

III. TWO CRITERIA FOR n-SCOPIC
QUANTUM COHERENCE

A. Correlation test

It is well known that higher order correlations can de-
tect NOON states. We clarify with the following result.
Result 2:−The n-th order correlation test: Re-

stricting to two-mode quantum descriptions for ρ, the



4

observation of

〈â†nb̂n〉 6= 0 (11)

is a signature of the n-scopic quantum coherence (10).
The Result can be proved straightforwardly by expand-

ing the operator â†nb̂n in terms of the Fock basis elements
|na〉|nb〉〈mb|〈ma| or equivalently by considering an ar-
bitrary density matrix ρ written in the two-mode Fock
basis and noting that the condition (11) is equivalent
to (10). We will find it useful to note the following: If
the moment 〈â†nb̂n〉 is nonzero then there is a nonzero
probability that the system is in the following generalised
n-scopic superposition state:

|ψn〉 = a
(n)
n′m′ |n

′〉|m′ + n〉+ b
(n)
n′m′ |n

′ + n〉|m′〉
+d|ψ0〉 (12)

The a
(n)
n′m′ , b

(n)
n′m′ , d are probability amplitudes satisfy-

ing a
(n)
n′m′ ,b

(n)
n′m′ 6= 0, the d being unspecified. |ψ0〉 is

an unspecified quantum state orthogonal to the states
|n′〉|m′ + n〉 and |n′ + n〉|m′〉. The meaning of “nonzero
probability that the system is in” in this context is that
the density operator for the quantum system is necessar-
ily of the form ρ =

∑
R PR|ψR〉〈ψR| where at least one

of the states |ψ〉R with nonzero PR is an n-scopic super-
position state |ψn〉. The Appendix A gives a detailed
explanation of this last result.�

B. Spin squeezing test and application to
experiment

Significant nth order quantum coherence can also in
some cases be detected by observation of spin squeezing.
We define the standard Schwinger operators

ĴX =
(
â†b̂+ âb̂†

)
/2

ĵY =
(
â†b̂− âb̂†

)
/(2i)

ĴZ =
(
â†â− b̂†b̂

)
/2

N̂ = â†â+ b̂†b̂ (13)

We consider a system described by a superposition of
two-mode number states as in (2). Thus we specify a
generalised superposition as

|ψ〉 =
∑
i,j

cij |ni〉|mj〉

≡
∑
k

dk|ψk〉 (14)

where the last line relabels (for convenience) all states of
the ij array by an index k. In (2) we have a superposition
|ψ〉 =

∑
n=0 dn|n〉|N − n〉 where N (the total number of

particles) is fixed. This case for largeN and where dn 6= 0
for some n 6= 0, N has been described as a superposition
of “dead”, “alive” and “sleepy” cats. Considering the gen-
eral case (14), we can define for each term |ψk〉 such that
dk 6= 0 the spin number difference jk = (ni−mj)/2. The
aim is to put a lower bound on the spread of possible jk
values (depicted in Figure 1). We define the spread as

δ = max{|jk − jk′ |} (15)

such that for jk and jk′ , the coefficients dk, dk′ 6= 0. For
the ideal NOON state, δ = N . Here max denotes the
maximum of the set.

We can show that a certain amount of squeezing in
JY determines a lower bound in the spread of eigen-
states of JZ . The method is similar to that given in Ref.
[30] which studied quadrature phase amplitude squeez-
ing. The spin Heisenberg uncertainty relation is

(∆ĴY )(∆ĴZ) ≥ |〈ĴX〉|/2 (16)

Spin squeezing is obtained when [42, 43]

(∆ĴY )2 < |〈ĴX〉|/2 (17)

It is clear that in that case a low variance (∆ĴY )2 will al-
ways imply a high variance in ĴZ . For many spin squeez-
ing experiments, 〈ĴX〉 ∼ 〈N̂〉/2 which means the Bloch
vector lies on the surface or near the surface of the Bloch
sphere, so that the system is close to a pure state. Squeez-
ing is then obtained when (∆ĴY )2 < 〈N̂〉/4.

For pure states, the high variance in ĴZ is associated
with a minimum spread of the superposition of eigen-
states of ĴZ . Thus, there is a lower bound on the best
amount of squeezing determined by the maximum spread
(extent) δ of the superposition. In the Appendix, follow-
ing the methods of Refs. [30], this connection is gener-
alised for mixed states. We prove the following result.
Result 3:− Spin squeezing test for n-th or-

der quantum coherence: An experimentally measured
amount of spin squeezing in JY is defined in terms of a
“squeezing parameter”

ξN =

(
∆ĴY

)
√
|〈ĴX〉|/2

→

(
∆ĴY

)
〈N〉1/2/2

(18)

where ξN < 1 implies spin squeezing and ξN = 0 is
the optimal possible squeezing (achievable as N → ∞).
Here we have taken the case where 〈ĴX〉 ∼ 〈N̂〉/2.
We can conclude that there exists a nonzero coherence
〈0|〈n|ρ|0〉|n〉 6= 0 for a value n where

n >

√
N

ξN
(19)

Proof: The proof is given in the Appendix. �
The particular test given by Result 3 requires 〈ĴX〉 6=

0. This would imply nonzero single atom coherence terms
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given as 〈â†b̂〉 6= 0. We note that the final result (19)
indicates that the coherence size is of order

√
N . Spin

squeezing with a considerable number N of atoms has
been observed in several atomic experiments and excel-
lent agreement has been obtained for N ∼ 100 with a
two-mode model [41, 44, 45]. Typically, the number of
atoms is N ∼ 100 or more, indicating values of quantum
coherence of order n > 10 atoms.

IV. MEASURABLE QUANTIFICATION OF
THE MESOSCOPIC QUANTUM COHERENCE

A. Catness fidelity and quantum coherence

The observation of 〈â†nb̂n〉 6= 0 certifies the existence of
the (nonzero) n-scopic quantum coherence, but does not
specify the magnitude of the quantum coherence (QC),
originating from terms like

C(n′,m′)
n = 2|b〈n+m′|a〈n′|ρ|n+ n′〉a|m′〉b| (20)

taken from Eq. (10). In fact, we can easily identify states
(such as |α〉|β〉) for which the n-scopic quantum coher-
ence vanishes as n → ∞ (for any m′, n′), but for which
the moment 〈â†nb̂n〉 increases. Put another way, the ob-
servation 〈â†nb̂n〉 6= 0 does not tell us the probability PR
that the system will be found in an associated n-scopic
superposition Eq. (12), nor the values of the probability
amplitudes a(n)

n′m′ ,b
(n)
n′m′ .

We explain in this Section that the measured corre-
lation 〈â†nb̂n〉 when suitably normalised places a lower
bound on the sum of the magnitudes of the nth order
quantum coherences, defined as

Cn = N
∑
n′,m′

C(n′,m′)
n (21)

Here N is a normalisation factor that ensures the max-
imum value of Cn = 1 for the optimal case. The nor-
malised correlation thus gives measurable information
about Cn which is an effective “catness-fidelity”.

The “catness-fidelity” contrasts with the standard
state-fidelity measure F (defined as the overlap between
an experimental state ρexp and the desired superposition
state [47]). The standard measure is not directly suffi-
cient to quantify a cat-state since it may be possible for
mixtures that are not cat-type superpositions to give a
high absolute F as N →∞ [3].

B. General Result for two-mode mixed states

Defining a suitable catness-fidelity is straightforward
for pure states. Any two-mode state |ψ〉 can be expanded
in the number state basis and can thus be written in
terms of a superposition of the states (12) but with a(n)

n′m′ ,

b
(n)
n′m′ arbitrary. The state fidelity F of |ψ〉 with respect
to the symmetric n-scopic superposition

|ψsup〉 = (|n′〉|m′ + n〉+ eiφ|n′ + n〉|m′〉)/
√

2

is

F = |〈ψsup|ψ〉|2

=
1

2

(
|a(n)
n′m′ |

2 + |b(n)
n′m′ |

2 + 2|a(n)
n′m′b

(n)∗
n′m′ |

)
(22)

where the phase φ is chosen to maximise F . We see that
the magnitude of the quantum coherence of the pure state
density operator with respect to the states |n′〉|m′ + n〉
and |n′ + n〉|m′〉 is directly related to the fidelity F :

C(n′,m′)
n = 2|〈m′ + n|〈n′|ρ|n+ n′〉|m′〉|

= 2|a(n)
n′m′b

(n)∗
n′m′ | (23)

We note that F = 1 if and only if a(n)
n′m′b

(n)∗
n′m′ = 1/2, which

implies C(n′m′)
n = 1. Similarly, C(n′,m′)

n = 1 implies F =
1. An arbitrary two-mode pure state is a superposition of
states over different n′,m′ and we may define as the total
“n-scopic catness fidelity” the sum of the magnitudes of
the nth order coherences i.e.

Cn = N
∑
n′,m′ C

(n′,m′)
n = 2N

∑
n′,m′

|a(n)
n′m′b

(n)∗
n′m′ |

(24)

whereN is a normalisation factor to ensure the maximum
value of Cn = 1. A pure two-mode state with fixed N as
given in the Introduction can be written

|ψ〉 =

N∑
m=0

dm|N −m〉a|m〉b

=
∑

m′<N/2

dm′+n|m′〉|m′ + n〉+ dm|n+m′〉|m′〉

(25)

(The simplification in the last line is written for N odd.)
The a(n)

n′m′ and b
(n)
n′m′ can then be given in terms of dm′+n

and dm′ . For a pure state, we see that Cn can be inferred
from the probabilities for the mode number. However,
this is not useful for the practical case of mixtures.

With this motivation, we note that the catness-fidelity
Cn can be expressed in terms of the measurable higher
order moments.

〈â†nb̂n〉 =
∑

n′,m′≥0

a
(n)
n′m′b

(n)∗
n′m′

√
(m′ + n)!

m′!

√
(n′ + n)!

n′!

(26)

For a general two-mode state, using that 〈â†nb̂n〉 =
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Tr(ρa†nbn) =
∑
na,mb

〈na|〈mb|ρa†nbn|na〉|mb, we find

〈â†nb̂n〉 =
∑

n′,m′≥0

√
(n′ + n)!

n′!

√
(m′ + n)!

(m′)!

×〈n′|〈m′ + n|ρ|n′ + n〉|m′〉
(27)

This allows us to deduce the following general result.
Result 4:− Measurable lower bound estimate to

the n-scopic “catness fidelity”, defined as the sum
of the magnitudes of nth order quantum coher-
ences:

The measurable quantity

cn =
2|〈
(
â†
)n
b̂n〉|

S
(28)

gives a lower bound to the true catness-fidelity Cn. Here

S = supn′,m′{
√

(m′+n)!
m′!

√
(n′+n)!
n′! } over values of n′, m′

satisfying that the probability Pm′,n′+n for detecting m′
and n′+n particles in modes b and a is nonzero, and also
that the probability Pm′+n,n′ for detecting m′+n and n′
particles in modes b and a is nonzero.
Proof: The proof follows from (27) using the definition

(21). � Realistically, it is difficult in an experiment to
truly verify that the probability for obtaining a certain
mode number is zero. In light of this, we deduce in the
Appendix C a correction term to the Result 4, assuming
the experimentalist is at least able to verify that the “non-
relevant” probabilities Pm′,n′+n, Pm′+n,n′ are sufficiently
small, and that there is a practical upper bound to the
mode numbers (defined by an energy or atom number
bound).

C. Ideal NOON case

In the ideal NOON case, an experimentalist would ob-
serve N particles in mode a or N particles in mode b.
Consider an experiment where indeed only such proba-
bilities are nonzero. This is not unrealistic for photonic
experiments with small N that use postselection. The
experimentalist could deduce that the most general form
of the density operator in this case is

ρ = PNρN + Paltρalt (29)

where ρN is the density operator of a NOON superpo-
sition (12) (with n′ = m′ = d = 0), and ρalt is an al-
ternative density operator describing classical mixtures
of number states (namely |N〉|0〉 and |0〉|N〉). Here,
PN + Palt = 1 and PN , Palt are probabilities.

We see from (12) that the quantity CN defined as

CN = 2|a(N)
00 b

(N)
00 |PN (30)

gives an effective fidelity measure of the state ρ relative
to the NOON cat state. We call the quantity CN the

catness-fidelity, and note that 0 ≤ CN ≤ 1. Clearly,
the value of CN = 1 is optimal and can only occur if
the system ρ is the pure symmetric NOON state (1) for
which |a(N)

00 | = |b(N)
00 | = 1√

2
. For the ideal NOON state,

the prediction is 〈a†nbn〉 = δNnN !/2 and S = N ! so that
the catness fidelity is indeed 1:

cN = CN =
2

N !
|〈
(
a†
)n
bn〉| = 1 (31)

The value of CN reduces for asymmetric NOON states
or for mixed states where PN < 1.

V. EXAMPLES OF QUANTIFICATION

A. Attenuated NOON states

Photonic NOON states have been reported experimen-
tally for up to N = 5. For a rigorous detection of a cat-
like state, it is necessary to account for losses that may
arise as a result of processes including detection ineffi-
ciencies. To model loss, we use a simple beam splitter
approach [3]. We calculate the moments of final detected
fields âdet, b̂det given by adet =

√
ηa +

√
1− ηav, bdet =

√
ηb +

√
1− ηbv where â, b̂ are the boson operators for

the incoming field modes, prepared in a NOON state, and
av, bv are boson operators for vacuum modes associated
with the environment. Here η is the probability that an
incoming photon/ particle is detected. We find

〈â†ndetb̂
n
det〉 = ηn〈â†nb̂n〉 = ηnδnNN !/2 (32)

The system is a mixture of type ρ = PNρN + Paltρalt
defined in (29). The catness-fidelity signature CN of Eq.
(29) is measurable as cN (S = N !) defined by (28) and
is plotted in Figure 2. Comparing with the distribu-
tions of Figure 1 which are generated for the attenuated
NOON state, we see that only the extremes n = N have
a nonzero coherence. As loss increases, the Nth quan-
tum coherence remains (in principle) rigorously certifi-
able since it is predicted that 〈â†N b̂N 〉 6= 0 for all values
η. However, the fidelity CN is greatly reduced with de-
creasing η, particularly for larger N (Figure 2).
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Figure 2: TheNth order catness-fidelity CN (Eq. (30)) for the
attenuated NOON state versus detection efficiency η. Here
CN = cN = 2〈â†nb̂n〉/N !. cn and 〈â†nb̂n〉 = 0 for n < N .
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B. States formed from number states incident on a
linear beam splitter

Next we consider a two-mode number state |N〉|0〉 in-
cident at the two single-mode input ports of a beam split-
ter, so that N quanta are incident on one arm only. The
output state is the N -scopic superposition (2) but with
binomial coefficients:

|out〉 =

N∑
m=0

dm|m〉a|N −m〉b , (33)

where dm =
√
N !/

√
2Nm!(N −m)!. Different to the

NOON states, nonzero quantum coherences 〈â†mb̂m〉 6= 0
exist for all m ≤ N .

Evaluation gives that the pure state n-scopic catness-
fidelity (24) (defined as the sum of the magnitude of all
the nth order coherences) is

Cn = Nn,N
N−n∑
m=0

|dmd∗m+n| (34)

where Nn,N is a normalisation constant to ensure the
maximum value of Cn is 1. For this system, the normal-
isation Nn,N is determined by the bounds on the coher-
ences of the density matrix for a pure state. For exam-
ple, where n = N , d0d

∗
N ≤ 1/2 and hence NN,N = 2.

The general results for the normalisation Nn,N are given
in the Appendix C. Using Result 4, a measurable lower
bound to the catness-fidelity given by (28) is

cn =
Nn,N |〈a†nbn〉|

S
(35)

where S = max{B(N,n)
m } (for N fixed) with

B(N,n)
m =

√
(m+ n)! (N −m)!

m! (N −m− n)!

The value of m that gives the maximum value of B(N,n)
m

is given by: m = (N − n)/2 if N and n have the same
parity, and m = (N − n± 1)/2 if n and N does not have
the same parity.
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Figure 3: Measures of n-th order quantum coherence (catness-
fidelity) for the output state of the linear beam splitter with
N particles incident in one arm. CN and cn vs n, for N = 5,
10 and 100. Cn ≥ cn as expected.

The expression S can be determined from the values
of N,m, n which are known for the experiment. One
can then experimentally measure the moment 〈â†nb̂n〉 to
obtain a value for cn. The prediction is

〈â†nb̂n〉 =

N−n∑
m=0

d∗m+ndmB
(N,n)
m =

N !

2n(N − n)!
(36)

A comparison is given between the actual catness-fidelity
Cn and the estimated one cn in Figure 3 for this beam
splitter case. We see that in this instance the lower bound
is a good estimate of the actual fidelity. As might be
expected for this system, the first order quantum coher-
ence is significant whereas the highest order coherence
given by n = N is small. In fact all values of fidelity for
n > N/2 are insignificant. We also note that for a fixed
n, a higher fidelity can be obtained by increasing N to
be much greater than n.

With attenuation present for each mode (as described
in the previous section), we evaluate the final detected
moments. The solutions are 〈â†ndetb̂ndet〉 = ηn〈â†nb̂n〉 where
〈â†nb̂n〉 is given by (36). The density matrix has the
same dimensionality as without losses, and the bounds
on the coherences and the normalisation Nn,N are as
above. Figure 4 plots the values of the catness-fidelity
cn versus efficiency η. We note that the first order co-
herence n = 1 is much more robust with respect to loss,
as compared to the higher order coherences. Interesting
is that for a fixed n, the robustness with respect to loss
improves quite dramatically if one increases the value of
N . At high N , the highest order coherences are almost
immeasurable e.g. for N = 100, the quantum coherence
becomes measurable at n < 20. We note also that the
cut-off for a measurable n increases with increasing N ,
making generation of n-scopic cat-states in this gener-
alised sense quite feasible.
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Figure 4: Measures of nth order quantum coherence (catness-
fidelity) for the output of the linear beam splitter versus de-
tection efficiency η. Definitions as for Figure 3. Left N = 5,
Right N = 100.
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VI. MESOSCOPIC QUANTUM COHERENCE
IN DYNAMICAL TWO-WELL BOSE-EINSTEIN

CONDENSATES

A. Hamiltonian and Model

A mesoscopic NOON state can in principle be created
from the nonlinear interaction modelled by the two-mode
Josephson (LMG) Hamiltonian [48, 49]

H = κâ†b̂+ κb̂†â+
g

2
[â†2â2] +

g

2
[b̂†2b̂2] (37)

(~ = 1). This Hamiltonian is well described in the lit-
erature and models a Bose-Einstein condensate (BEC)
constrained to two potential wells of an optical lattice
[16, 17, 19, 21–23, 41, 45, 50]. The occupation of each
well is modelled as a single mode (boson operators â†, â
and b̂†, b̂ respectively). The nonlinearity is quantified by
g and the tunnelling between wells by κ. We consider a
system prepared with a definite number N of atoms in
one mode (well) (that denoted by â). Since the number
of particles is conserved, the state at any later time is
of the form (2). The Hamiltonian can be represented in
matrix form and the time dependence of the dm solved
as explained in Refs. [16, 21, 22, 50].

B. Two-state oscillation and creation of
NOON-states

Solutions give the probability P (m) = |dm|2 of mea-
suringm particles in the well A at a given time. For some
parameters, the population oscillates between wells and
there is an almost complete transfer to the well B at some
tunnelling time TN . For larger nonlinearity g, the system
can approximate a dynamical two-state system, showing
oscillations between the two distinguishable states |N〉|0〉
and |0〉|N〉 over long timescales (Figure 5). At inter-
mediate times (∼ TN/2) before the complete tunnelling
from one state to the other, approximate NOON states
can be formed. Figure 6 depicts the probabilities P (m)
at the intermediate times TN/6 and TN/3 that violate
a Leggett-Garg inequality [27, 28]. It is known however
that even for moderate N , the predicted tunnelling times
TN are typically much longer than practical decoherence
times [19, 21, 51, 52]. For instance, Carr et al report
impossibly long times for the typical parameters of Rb
atoms [21].
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Figure 6: Mesoscopic two-state oscillation and generation of
NOON-type states: Top: N = 100, g = 2, nL = 10. Below:
N = 20, g = 4, nL = 4. Time t is in units κ.
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Figure 5: Two-state mesoscopic dynamics: The creation of
NOON states. Top: Probability P (m) for the number of
atoms in well a at times t1 = 0, t2 = TN/6, t3 = TN/3.
Here 2jz = 2m−N . Beneath shows the two-state oscillation.
We use N = 100, g = 1. Time t is in units κ.
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Figure 7: Signifying the creation of NOON-type states under
the Hamiltonian (37): The n-th order quantum coherence
measure cn versus time t in units κ. Left: N = 5, g = 10,
nL = 0. The NOON state N = 5 is signified by c5 = 1, ci ∼ 0
(i 6= 5) at t = TN/4. Right: N = 20, g = 4, nL = 4 as
for Figure 6b. The large quantum coherence cn for n = 12
signifies the superposition (38) at t = TN/4.
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Figure 8: Plot of P (m) and the nth order quantum coherence
cn for the state of Figure 6b at t = TN/4 (as in Figure 7b).

C. Creation of n-scopic quantum superpositions

It is possible however to generate states with a sig-
nificant mesoscopic coherence by preparing the system
in an initial state |nL〉|N − nL〉 where nL 6= 0, N . As
pointed out by Gordon and Savage [19] and Carr et al
[21], the Hamiltonian (37) predicts (in some parameter
regimes) an approximate two-state oscillation between
the two states |nL〉|N − nL〉 and |N − nL〉|nL〉. At ap-
proximately half the time for oscillation from one state
to the other, an n-scopic superposition state of the type
given by (12) where m′, n′ 6= 0 is formed i.e.

|ψ〉 =
1√
2
{|nL〉|N − nL〉+ |N − nL〉|nL〉} (38)

Here, n = N − 2nL. Such n-scopic superposition states
have been called “embedded” cat-states [21]. These em-

bedded cat-states are identical to those superpositions
(12) discussed in the previous section. Calculations re-
veal that for some parameters, the period of oscillation
reduces to practical values [19, 21]. Two-state oscillation
of the BEC has been experimentally observed [26]. We
present in Figure 6 predictions for this type of oscillation
with N = 20 and nL = 2 where the solutions indicate
states (38) with a separation of n = 16 atoms.

The question becomes how to certify the quantum co-
herence of the embedded cat-states (38) that may be
generated in the experiment where such oscillation is ob-
served. The value of the catness-fidelity signature cn is
calculated and given in Figure 7, for the parameters of
Figure 6. The cn for moderate n would feasibly be mea-
surable using higher order interference in multi-atom de-
tection, as described in Section VII.

VII. MEASUREMENT OF MESOSCOPIC
QUANTUM COHERENCE VIA 〈â†nb̂n〉

Finally, we address how one may measure the corre-
lation 〈â†nb̂n〉. The measurement of JZ is a photon or
atom number difference, achievable with counting de-
tectors or imaging. Schwinger spin operators JX =
(a†b + b†a)/2, JY =

(
a†b− b†a

)
/2i are measured simi-

larly as a number difference, after rotating to a different
mode pair using polarisers [53]; or Rabi rotations with
π/2 pulses [41, 44, 45]; or beam splitters and phase shifts.

A. Interferometric detection

For instance, we consider the measurable output num-
ber difference ID after transforming the incoming modes
a, b to new modes c, d via a 50/ 50 beam splitter and
phase shift ϕ:

ID = ĉ†ĉ− d̂†d̂
= â†b̂eiφ + âb̂†e−iφ

= 2JX cosφ− 2JY sinφ (39)

Here the transformed boson operators for the new modes
are ĉ = (â+ b̂ expiφ)/

√
2, d̂ = (â− b̂ expiφ)/

√
2. Selecting

φ = 0 or φ = −π/2 measures JX or JY . For N = 1,
〈â†b̂〉 = 〈JX + iJY 〉. The first order moment 〈â†b̂〉 is thus
measurable via the fringe visibility in ID as one varies
φ i.e. that 〈a†b〉 is nonzero is detectable via first order
interference. Similar transformations using atom inter-
ferometry give the same results as explained in Ref. [54].
If we have a NOON state incident on the interferometer,
the nonzero value of 〈â†N b̂N 〉 can be deduced by observa-
tion of higher order interference fringes that are signified
by an eiNφ oscillation. This is the usual method for de-
tecting NOON states [11–13, 22].

The method can also be used to detect and quantify
the nth order quantum coherence cn. We consider that
we have a fixed total number N of particles so the input
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state is of the form (2). The probability of detecting N
quanta at the output denoted by mode c is 〈ĉ†N ĉN 〉/N !.
The probability of obtaining M particles at the port c is
a calculable function of the correlation functions 〈ĉ†nĉn〉
where n ≥ M . Suppose we measure 〈ĉ†nĉn〉 for a given
fixed n. Expanding we find

〈ĉ†nĉn〉 =
1

2n
〈(â† + b̂†e−iφ)n(â+ b̂eiφ)n〉

=
1

2n

n∑
m=0

(
n
m

) n∑
`=0

(
n
`

)
×〈(â†)n−m(b̂†)m(â)n−`b̂`〉eiφ(`−m) (40)

The terms that oscillate as einφ are proportional to the
nth order moment 〈â†nb̂n〉. Hence, if we measure 〈ĉ†nĉn〉,
the fringe visibility associated with this oscillation al-
lows determination of the magnitude of 〈â†nb̂n〉. Where
〈â†nb̂n〉 is the only nonzero moment (as for the ideal
NOON states with n = N), only the oscillation einφ

will contribute and the higher order interference enable a
clear signature and quantification of the nth order quan-
tum coherence 〈â†nb̂n〉.

For nonideal NOON states the interference method
becomes less precise. However, the rapidly oscillat-
ing terms can only arise from moments that indicate
a higher order of quantum coherence. This is evident
by the last line of (40). The moments are of form
〈(â†)n−mân−`b̂†mb̂`〉eiϕ(`−m) so the oscillation frequency
where l−m = n requires l = n and m = 0 and therefore
has a nonzero amplitude only if 〈â†nb̂n〉 6= 0, which is a
signature for a quantum coherence of order n. Similarly,
the oscillation frequency l−m = n−1 requires a nonzero
quantum coherence of order n−1. While the 〈ĉ†nĉn〉 can
be evaluated from the probabilities for particle counts,
in practice for large numbers N , resolution of atom or
photon number is difficult. Here one can measure the
probability that n is in a binned region the n e.g. the
region n > M . This probability is given by

P (n ≥M) =
∑
n≥M

ς〈ĉ†nĉn〉/M !

where ς are calculable constants. Here, measurement of
a nonzero amplitude for oscillations eiMφ with frequency
M or greater is evidence of quantum coherence of order
&M . The high frequency oscillation can only arise from
the high order quantum coherence terms. In Figure 9, we
plot P (n > M) and the Fourier analysis for the two-mode
example given in Figure 6b.

B. Spin squeezing observables and quadrature
phase amplitudes

An alternative method is given in Ref. [54] for N = 2.
We note that

〈â†2b̂2〉 = 〈Ĵ2
X〉 − 〈Ĵ2

Y 〉+ i〈{ĴX , ĴY }〉 (41)
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Figure 9: (a) The probability of measuring more or equal to
M photons, for N = 20, g = 4, nL = 4 at t = TN/4 (same as
in Fig. 7b) after a rotation. (b) The Fourier transform of the
curves from (a), plotted against angular frequency (which is
equivalent to the number of oscillations in the range of 2π),
showing a significant peak at ω = 12 (the expected separation
of the state, (|4〉|16〉+ |16〉|4〉) /

√
2) for all M .

where {A,B} ≡ AB + BA. The real part of 〈â†2b̂2〉
can be evaluated by measurement of 〈Ĵ2

X〉 and 〈Ĵ2
Y 〉. We

show that the moment is nonzero if we can show that
〈Ĵ2
X〉 6= 〈Ĵ2

Y 〉. If necessary, the imaginary part can be
determined by measurement of suitably rotated spin ob-
servables defined by Ĵθ = ĴX cos θ − ĴY sin θ.

For N = 3 manipulation gives (see Appendix for de-
tails)

〈
â†3b̂3

〉
= 2

〈
Ĵ3
X

〉
−
√

2(〈Ĵ3
π
4
〉+ 〈Ĵ3

3π
4
〉)

−2i
〈
Ĵ3
Y

〉
+ i
√

2(〈Ĵ3
π
4
〉+ 〈Ĵ3

3π
4
〉) (42)

where 〈Ĵ3
θ 〉 are measurable by standard interferometry/

atom interferometry techniques.
We note that similar expansions can be made express-

ing the a and b operators in terms of quadrature phase
amplitudes X and P . For optical NOON states, this
may be a useful way to accurately measure the moments
〈â†M b̂M 〉 since quadrature phase amplitudes can be mea-
sured with high efficiency. Specifically, we define the am-
plitudes X̂ and P̂ by â = X̂A + iP̂A and b̂ = X̂B + iP̂B .
Hence (we drop the “hats” for convenience)

〈â†b̂〉 = 〈X̂AX̂B〉+ 〈P̂AP̂B〉 − i〈P̂AX̂B + X̂AP̂B〉 (43)
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which is readily measurable. Continuing

〈â†2b̂2〉 = 〈(X̂2
A − P̂ 2

A)(X̂2
B − P̂ 2

B)〉+ 〈{X̂A, P̂A}{X̂B , P̂B}〉
−i〈{X̂A, P̂A}(X̂2

B − P̂ 2
B)〉

+i〈(X̂2
A − P̂ 2

A){X̂B , P̂B}〉 (44)

The anticommutator is measurable by rotation of the
quadratures. We define the measurable rotated quadra-
ture phase amplitudes as X̂θ = X̂ cos(θ) + P̂ sin(θ) and
P̂θ = −X̂ sin(θ) + P̂ cos(θ). Hence, X̂π/4 = 1√

2
{X̂ + P̂}

and P̂π/4 = 1√
2
{−X̂ + P̂} and we note that 〈X̂2

π/4〉 =

〈X̂2 + P̂ 2 + X̂P̂ + P̂ X̂〉/2. Thus, we can deduce ei-
ther {X̂, P̂} by measuring the moments 〈X̂2〉, 〈P̂ 2〉 and
〈X̂2

π/4〉.

C. Experimental certification of atomic quantum
coherence n ∼ 2 by inferring the correlation 〈â†nb̂n〉

from spin squeezing

Esteve et al. experimentally realise the system mod-
elled by the two-mode Hamiltonian [41]. The ground
state solutions have been solved and studied in Ref [23].
Esteve et al report data obtained on cooling their two-
well system, including measurements for the spin mo-
ments 〈Ĵ2

θ 〉 associated with ultra-cold atomic mode pop-
ulations of two wells of the optical lattice [41]. Their
observations analyse the variances of the Heisenberg un-
certainty principle

∆Ĵz∆Ĵy ≥ |〈Ĵx〉|/2 ∼ N/4 (45)

They report spin squeezing in Ĵz with enhanced noise in
Ĵy. They also report 〈Ĵz〉 ∼ 0 and 〈Ĵy〉 ∼ 0. Hence we
can conclude

〈Ĵ2
z 〉 < N/4 < 〈Ĵ2

y 〉 (46)

Thus we deduce

〈Ĵ2
y 〉 − 〈Ĵ2

z 〉 6= 0 (47)

which implies 〈{Ĵcx, Ĵcy}〉 6= 0 where Ĵcx, Ĵcy are
Schwinger operators defined for the rotated modes ĉ =

(â+ b̂)/
√

2 and d̂ = e−iπ/4√
2

(â− b̂). Hence we conclude

|〈ĉ†2d̂2〉| 6= 0 (48)

which (using the Results of Section III) gives evidence in
their BEC system of a two-atom coherence i.e. a gener-
alised n-scopic superpositions with n = 2 of type

|ψ2〉 = c20|2〉c|0〉d + c11|1〉c|1〉d + c02|0〉c|2〉d + ψ0 (49)

where the coefficients satisfy c02 6= 0 and c20 6= 0 and
where ψ0 is orthogonal to each of |2〉c|0〉d, |1〉c|1〉d and
|0〉c|2〉d. We note that this is consistent with the predic-
tions of [23] for the nonzero moments 〈ĉ†2d̂2〉 6= 0 for the

populations of modes c, d in atomic systems with κ < 0.
The observation of 〈â†2b̂2〉 6= 0 would be evidence of a
superposition of atoms constrained to the modes of the
wells

|ψ2〉 = c20|2〉a|0〉b + c11|1〉a|1〉b + c02|0〉a|2〉b + ψ0 (50)

where c02 6= 0 and c20 6= 0. This is predicted for atomic
BEC with κ > 0 [23]. Three-atom superpositions (for
which 〈â†3b̂3〉 6= 0) and higher are also predicted (up to
N) and should be evident via higher order fringe pat-
terns, or else directly via the Jθ measurements as above.

D. Entanglement

The observation of the nth order quantum coherence
〈â†nb̂n〉 6= 0 is not in itself sufficient to imply entangle-
ment. For instance ψ0 in the expression (49) might in-
clude contributions from terms such as |2〉|2〉 and |0〉|0〉.
This means that a separable form for |ψ〉 e.g.

|ψ〉 =
1

2
(|2〉c + |0〉c)(|2〉d + |0〉d)

may be possible. The separable state contrasts with
the “dead here-alive there” entangled superposition state
whose ideal form is precisely the NOON state e.g. for
N = 2

|ψ2〉 =
1√
2
{|2〉c|0〉d + |0〉c|2〉d}

In this paper, we are only concerned with how to cer-
tify an n-scopic quantum superposition, without regard
to entanglement. However, the entangled case is of spe-
cial interest, especially where the two modes are spatially
separated. For the ideal NOON case, we therefore point
out that one can make simple measurements to confirm
the entanglement. If one measures the individual mode
numbers na and nb, the results 0 or N are obtained for
each mode. The observations would be correlated, so that
there is only a nonzero probability to obtain |N〉|0〉 or
|0〉|N〉. This eliminates the possibility of nonzero contri-
butions from terms in ψ0 and it remains only to confirm
the nonzero quantum coherence in order to confirm the
entanglement. The observation of 〈â†N b̂N 〉 6= 0 then be-
comes sufficient to certify the entanglement of the NOON
state. While simple in principle, this procedure is not so
useful in practice. For example, the attenuated NOON
state of Section V would predict a nonzero probability for
obtaining |0〉|0〉 and a more careful analysis is necessary
to deduce entanglement.

VIII. CONCLUSION

We have examined how to rigorously confirm and
quantify the mesoscopic quantum coherence of non-ideal
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NOON states. In this paper, we link the observation of
quantum coherence to the negation of certain types of
mixtures, given as (3) and (4). However it is stressed we
are restricting to mixtures where the “dead” and “alive”
states are quantum states that can therefore be repre-
sented by density operators (ρA and ρD in the equation
(3)). This contrasts with other possible signatures of a
cat-state where the dead and alive states might also be
hidden variable states, as in Ref. [27].

In this paper, we have focused on two criteria for the n-
th order quantum coherence, defined as a quantum coher-
ence between number states different by n quanta. The
first criterion is a nonzero nth order moment 〈â†nb̂n〉 6= 0
and the second is a quantifiable amount of Schwinger
spin squeezing. We have shown how the first criterion
can be a quantifier of the overall nth order coherence.
The second criterion can be a robust and effective sig-
nature for large n, and can verify high orders of coher-
ence in existing atomic experiments, but does not sig-
nify all cases of n-scopic quantum coherence. In Sec-
tions V-VI, we have illustrated the use of the criteria
with the examples of attenuated NOON states, number
states |N〉 that pass through beam spitters, and approxi-
mate NOON states formed fromN particles via nonlinear
interactions. These examples model recent photonic and
atomic BEC experiments.

In Section VII, we have examined how the moments
〈â†nb̂n〉 might be measured. Optical NOON states are
normally verified by nth order interference fringes, which
imply 〈â†nb̂n〉 6= 0. Direct photon detection normally in-
troduces high losses which creates low fidelities that may
make significant statistics difficult, except with post se-
lection. We suggest that to obtain higher cat-fidelities the
moments can be measured via high efficiency quadrature
phase amplitude detection.

Finally, in Section VIII, we analyse data from exper-
iments, noting that the signatures do not directly prove
entanglement i.e. do not distinguish between a local su-
perpositions of type |N〉+ |0〉 for one mode, and the en-
tangled superposition of the NOON state. Hence we can-
not conclude a superposition of states with different mass
locations, although we believe this could be possible us-
ing for instance the entanglement criteria presented in
Refs. [22, 54, 55].
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Appendix A: Result 2

To explain the connection between the condition
〈â†nb̂n〉 6= 0 and the superposition state (12) in detail,
consider the most general two-mode quantum state for
this two-mode system that cannot be a superposition of
two states distinct by n quanta. We note that any pure
state |ψent〉 can be expanded in the two-mode number
(Fock) state basis:

|ψent〉 =
∑
n,m

cnm|na〉|mb〉

= c00|0〉|0〉+ c01|0〉|1〉+ c10|1〉|0〉
+c11|1〉|1〉+ c12|1〉|2〉+ c21|2〉|1〉
+c02|0〉|2〉+ c20|2〉|0〉+ ...

We see that if 〈â†nb̂n〉 6= 0, then the state is necessarily of
the form (12)which involves a superposition of two states
distinct by n quanta. We note that when 〈â†nb̂n〉 6= 0, the
density operator ρ for the system cannot be written in an
alternative form except to provide a nonzero coherence
(10) between states |n′〉|m′+n〉 and |n′+n〉|m′〉. We con-
clude that the diagonal elements b〈m′+n|a〈n′|ρ|n′〉a|m′+
n〉b and b〈m′|a〈n′ + n|ρ|n′ + n〉a|m′〉b are also nonzero.
Thus, there is a nonzero probability PD that the system
is found in state |n′〉|m′ + n〉 (that we call “dead”) and
also a nonzero probability PA that the system is found in
state |n′+n〉|m′〉 (that we call “alive”). Yet, the superpo-
sition state (12) cannot be given as a classical mixture (9)
which has a zero coherence between the states |n′〉|m′+n〉
and |n′ + n〉|m′〉 whose 2Jz values are different by n.

Appendix B: Proof of Result 3 for Spin squeezing
test

We follow from the main text and generalise to con-
sider a two-mode description of the state as given by for
a mixed state by a density operator ρ. We expand in
terms of pure states |ψR〉 so that ρ =

∑
R PR|ψR〉〈ψR|

for some probabilities PR. Each pure state |ψR〉 can be
expressed as a superposition of number eigenstates given
by (14). We know that the variance (∆ĴY )2 of any mix-
ture satisfies (∆ĴY )2 ≥

∑
R PR(∆ĴY )2

R. Thus

(∆ĴY )2 ≥
∑
R

PR(∆ĴY )2
R ≥

∑
R

PR
|〈ĴX〉R|2

4(∆ĴZ)2
R

For all the possible mixtures denoted by a choice of set
{|ψR〉} (where PR 6= 0) we can determine the spread δR
for each state |ψR〉 and then select the maximum of the
set δR and call it δ0. We select the mixture set consistent
with the density operator that has the minimum possible
value of δ0: That is, we determine that the density oper-
ator cannot be expanded in a set |ψR〉 with a smaller δ0.
Then for the pure states of this set |ψR〉, the maximum
variance in ĴZ is (∆ĴZ)2 = δ2

0/4 i.e. (∆ĴZ)2
R ≤ δ2

0/4.
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Then we see that the uncertainty relation (16) implies a
minimum value for the variance in ĴY :

(∆ĴY )2
R ≥

|〈ĴX〉R|2
4(∆JZ)2R

≥ 1

δ2
0

|〈ĴX〉R|2

Simplification gives

(∆ĴY )2 ≥ 1

δ2
0

∑
R

PR|〈ĴX〉R|2 ≥
1

δ2
0

|
∑
R

PR〈ĴX〉R|2

=
1

δ2
0

|〈ĴX〉|2

Taking the case of the spin squeezing experiments where
measurements give 〈ĴX〉 ∼ 〈N〉/2, we see that

(∆ĴY )2 ≥ 1

δ2
0

|〈ĴX〉|2 =
〈N〉2

4δ2
0

(B1)

Thus there is a lower bound on the best amount of squeez-
ing determined by the maximum spread (extent) δ0 of
the superposition. We can now prove the Result 3: The
measured amount of squeezing places a lower bound on
the extent δ0 of the broadest superposition: Thus if the
measured squeezing is ξN , then from (B1) the underly-
ing state has a minimum breadth δ0 of superposition (in
the eigenstates of ĴZ) given by δ0 >

〈N〉
2(∆JY ) =

√
N
ξN

. The
width δ0 of the superposition gives the extent or size of
the coherence i.e. the value of n in the expression (12).

Appendix C: Catness-fidelity quantifier for mixed
states

Discussion in terms of superposition states: We give
the proof of Result (4) in terms of the superposition
states. The experiment may confirm a range of values of
jz for Jz for which 〈â†2jz b̂2jz 〉 6= 0. Take one such value:
2jz = N0. Then we know there is a nonzero probability
PN0

that the system be in a superposition of form

|ψN0
〉nm = a

(n,m)
N0

|n〉|m+N0〉+ b
(n,m)
N0

|n+N0〉|m〉
+c|ψ〉 (C1)

where a(n,m)
N0

,b
(n,m)
N0

6= 0. Based on the measured mo-
ments, we can write the density operator in the general
form

ρ =
∑
n,m

P
(n,m)
N0

ρ
(n,m)
N0

+ Pmixρmix + Pnρn (C2)

where ρN0 = |ψN0〉〈ψN0 |, ρmix is a mixture of states
|n〉|m + N0〉 and |n + N0〉|m〉, and ρn is a state that
gives predictions different to jz = ±N0/2. Only the first
term will contribute a nonzero value of 〈a†N0bN0〉. The
first term can also include superpositions of the differ-
ent |ψN0

〉 with different n,m but evaluation of the mo-
ment 〈a†N0bN0〉 will be the same as if the system were

in a mixture of those states (due to the orthogonality).
The relevant (Re) values of n, m such that probabilities
are nonzero can be determined from the measurements
of mode number and we assume the sums only includes
those nonzero contributions. We note that the first term
is written as a mixture of the NOON-type states. In some
cases, such a mixture can be equivalent to (and therefore
rewritten as) a classical mixture ρmix, but the nonzero
moment 〈â†N b̂N 〉 cannot arise in this case. The value
of 〈â†N b̂N 〉 is zero for any ρmix, and the prediction for
〈â†N b̂N 〉 given by ρ is

|〈â†N0 b̂N0〉| = |
∑
n,m

a
(n.m)
N0

b
(n,m)∗
N0

P
(n,m)
N0

×
√

(m+N0)!

m!

√
(n+N0)!

n!
|

≤ S
∑
n,m

|a(n,m)
N0

b
(n,m)∗
N0

P
(n,m)
N0

| (C3)

We have used the prediction for 〈a†N0bN0〉 for the state
|ψN0

〉 and the definitions of S as in the main text. The
measurement of the moment 〈â†N0 b̂N0〉 thus allows the
determination of a lower bound on an effective fidelity
for the Schrodinger cat NOON state.
Correction term: Now we consider that the experimen-

talist can only confirm that the total probability of the
“nonrelevant” (NRe) outcomes is less than or equal to
ε. The contribution of the “nonrelevant” terms to the
CN0 (the sum of the N0-th order coherences) is bounded
by the probabilities. For any density matrix, the off-
diagonal elements are bounded by the diagonal elements
that give the probabilities: Always a(n.m)

N0
b
(n,m)∗
N0

≤ 1
2 and

assuming
∑
NRe P

(n,m)
N0

≤ ε, we find∑
NRe

a
(n.m)
N0

b
(n,m)∗
N0

P
(n,m)
N0

≤ ε/2

Using that (n+N0)!
n! ≤ (n+N0)N0 , this implies

〈â†N0 b̂N0〉 ≤
∑
Re

a
(n.m)
N0

b
(n,m)∗
N0

P
(n,m)
N0

×
√

(m+N0)!

m!

√
(n+N0)!

n!

+
∑
NRe

a
(n.m)
N0

b
(n,m)∗
N0

P
(n,m)
N0

(Nup +N0)N0

≤ S
∑
n,m

|a(n,m)
N0

b
(n,m)∗
N0

P
(n,m)
N0

|+ ε

2
(Nup +N0)N0

(C4)

Thus we know that

CN0
≥
∑
Re

a
(n.m)
N0

b
(n,m)∗
N0

P
(n,m)
N0

≥ [〈â†N0 b̂N0〉 − ε

2
(Nup +N0)N0 ]/S (C5)
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where Nup is the upper bound for the mode numbers,
given that the system cannot have infinite mode or par-
ticle (atom) number. For the cases of interest to us on
this paper, the total mode number is the atom number
N , which is fixed.

Appendix D: Evaluation of Normalisation

We consider the state

|out〉 =

N∑
m=0

dm|m〉a|N −m〉b , (D1)

We quantify the n-th order quantum coherence by the pa-
rameter Cn (that we have also called the catness-fidelity)

Cn = Nn,N
N−n∑
m=0

|dmd∗m+n| (D2)

where Nn,N is a normalisation constant to ensure the
maximum value of Cn is 1. The normalisation Nn,N is
determined by the bounds on the coherences of the den-
sity matrix for a pure state. For example, where n = N ,
the maximum |d0d

∗
N | is obtained for d0 = dN = 1√

2

with all other amplitudes zero. Hence |d0d
∗
N | ≤ 1/2

and NN,N = 2. Similarly, for n = N − 1 and
N ≥ 3 (so that the d terms in d0d

∗
N−1 + d1d

∗
N are

all different), we find d0d
∗
N−1 + d1d

∗
N ≤ 1/2 where in

this case the maximum
∑N−n
m=0 |dmd∗m+n| is found taking

d0 = dN−1 = d1 = dN = 1
2 . The maximum value for

more general n and N can be found numerically.
(1) We start by analyzing n = N . Then Cn =

Nn,N |d0d
∗
N |. There is only one term in the sum and

therefore only two amplitudes contributing to the sum.
The number of terms is independent of N . We can
show that the maximum value of the sum of the co-
herences (namely

∑N−n
m=0 |dmd∗m+n|) is given when d0 =

dN = 1√
2
, and all other amplitudes zeros. Hence Cn ≤

Nn,N |d0d
∗
N | = Nn,N 1

2 and the optimal normalisation is
Nn,N = 2.

(2) Next we consider n > N/2. Here∑N−n
m=0 |dmd∗m+n| = d0dn + d1dn+1 + ..dN−ndN and

since n > N − n the terms in the summation involve
different di’s which can be therefore be chosen indepen-
dently apart from normalisation requirements. Taking
the 2(N − n + 1) contributing amplitudes as equal, and
all other as zero,

∑N−n
m=0 |dmd∗m+n| = (N−n+1)

2(N−n+1) = 1
2

which we verify is the maximum value.
(3) For the remaining values, we determine the bounds

numerically. We analyse all these cases and fit an expres-
sion for the maximum value of

∑N
2
m=0 |dmd∗m+N

2

|. On nu-
merically analysing the cases n < N/2, we find that to a
good approximation

∑N−n
m=0 |dmd∗m+n| ≤ cos

(
π

[N/n]+2

)
,

where [N/n] denotes the integer part of N/n and hence
Nn,N = 1/ cos

(
π

[N/n]+2

)
. We numerically verified this

bound for all N up to 500.

Appendix E: Evaluation of 〈
(
â†b̂

)3

〉

For N = 3, we would like to measure the expectation
value of the following observable

(
â†b̂
)3

= (Jx + iJy)
3

= J3
x − iJ3

y + i
(
JxJyJx + JyJ

2
x + J2

xJy
)

−
(
J2
yJx + JxJ

2
y + JyJxJy

)
.

In the expansion, we have dropped the “hats” and used
lower case x and y in the subscripts of the ĴX and ĴY
defined in (13) to simplify notation. The first and second
terms can be measured in experiments. However, we need
to express JxJyJx+JyJ

2
x+J2

xJy and J2
yJx+JxJ

2
y+JyJxJy

in terms of some other measurements that can be carried
out in experiments. To this end, we define a rotated
Schwinger operators as follows:

Jθ = Jx cos θ + Jy sin θ

Jθ+π
2
≡ Gθ

= Jx cos
(
θ +

π

2

)
+ Jy sin

(
θ +

π

2

)
= −Jx sin θ + Jy cos θ.

For θ = π
4 , these rotated operators correspond to:

J3
π
4

=
1√
23

[(
J2
yJx + JxJ

2
y + JyJxJy

)
+
(
JxJyJx + JyJ

2
x + J2

xJy
)

+ J3
x + J3

y

]
G3
π
4

=
1√
23

[
−
(
J2
yJx + JxJ

2
y + JyJxJy

)
+
(
JxJyJx + JyJ

2
x + J2

xJy
)
− J3

x + J3
y

]
.

Thus after manipulation we obtain

J2
yJx + JxJ

2
y + JyJxJy =

√
2
(
J3
π
4
−G3

π
4

)
− J3

x

JxJyJx + JyJ
2
x + J2

xJy =
√

2
(
J3
π
4

+G3
π
4

)
− J3

y

Using the above expressions, we can then rewrite the mo-
ment

(
a†b
)3 in terms of the rotated Schwinger operators
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as: (
â†b̂
)3

= J3
x − iJ3

y + i
(
JxJyJx + JyJ

2
x + J2

xJy
)

−
(
J2
yJx + JxJ

2
y + JyJxJy

)
= J3

x − iJ3
y + i

[√
2
(
J3
π
4

+G3
π
4

)
− J3

y

]
−
[√

2
(
J3
π
4
−G3

π
4

)
− J3

x

]
= 2J3

x − 2iJ3
y +
√

2i
(
J3
π
4

+G3
π
4

)
−
√

2
(
J3
π
4
−G3

π
4

)
.

which leads to the required result.
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