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Abstract: 

The coupling of resonant light and surface plasmons in metal layer coated optical 

microcavities results in the formation of hybrid photon-plasmon modes. Here, we 

comprehensively investigate the hybridization mechanism of photon-plasmon modes 

based on opto-plasmonic microtubular cavities. By changing the cavity structure and 

the metal layer thickness, weakly, moderately and strongly hybridized resonant modes 

are demonstrated depending on the photon-plasmon coupling strength. An effective 

potential approach is applied to illustrate the hybridization of photon-plasmon modes 

relying on the competition between light confinement by the cavity wall and the 

potential barrier introduced by the metal layer. Our work reveals the basic physical 

mechanisms for the generation of hybrid modes in metal-coated 

whispering-gallery-mode microcavities, and is of importance for the study of 

enhanced light-matter interactions and potential sensing applications. 
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Optical whispering-gallery mode (WGM) microcavities have gained considerable 

interest due to their unique properties such as small mode volume, ultrahigh quality 

factor, low threshold lasing [1,2], ultrasensitive sensing [3-5], optical spin-orbit 

coupling [6], and compatibility with on-chip integration technologies [7-9]. The 

combination of dielectric microcavities and noble metal layers allows for the 

interaction of resonant light with surface plasmons, resulting in novel phenomena 

such as surface plasmon polariton WGMs and hybrid photon-plasmon modes [10-15]. 

In these opto-plasmonic microcavities, the metal layer coated on the microcavity is 

capable of confining intense electromagnetic fields of plasmons localized at the 

metallic surface, which can be exploited for enhanced light-matter interactions. In a 

hybridized photon-plasmon mode the energy is partially stored in the traditional 

optical field located inside of the dielectric cavity and in the plasmon-type field partly 

localized at the metal coating layer. In previous seemingly contradicting reports, the 

plasmon-type fields have been reported to occur either at the inner surface of the 

metal layer coated on a solid microtoroid cavity [10,11], or at the outer surface of the 

metal layer coated on a solid cylinder cavity and a hollow microtube cavity [12,13,15]. 

As a result, the exact mechanism of the plasmon-type field to occur at the inner or 

outer surface of a metal layer has remained unexplored, which is however of 

fundamental interest for the understanding of photon-plasmon hybridization and 

relevant to the design of opto-plasmonic cavities.  

In the present work, the formation of hybridized photon-plasmon modes is 

comprehensively investigated in metal layer coated microtubular cavities. In this kind 

of opto-plasmonic cavity, the thicknesses of both the cavity wall and the metal layer 

provide the degree of freedom to tune the photon-plasmon coupling. Three types of 

photon-plasmon modes are identified as weakly, moderately and strongly hybridized 

modes showing plasmon-type field localized at the inner, both inner and outer and 

outer surface of the metal coating layer, respectively. An effective potential approach 

is used to illustrate the generation and transition of these kinds of hybrid modes based 

on the competition between light confinement in the cavity and the potential barrier 
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induced by the metal layer. Our work reveals the basic physical mechanisms of hybrid 

modes which are also applicable to other types of metal-coated WGM microcavities.  

 

FIG. 1. (a) Sketch of a WGM microtubular cavity. R, r and T are the outer radius, inner radius and 

cavity wall thickness, respectively. (b) WGM resonant wavelengths (with azimuthal mode number M = 

30, 31 and 32) as a function of r/R. Here, the outer radius R is fixed at 2.5 µm. The left and right inset 

indicate the corresponding field distribution in the cavity with r/R = 0.52 and 0.92, respectively. The 

yellow dashed line indicates the relative inner radius where the modes start to shift. (c) Effective 

potential distributed along the relative radial distance (d/R) for a representative microtubular cavity 

with r/R = 0.6 for M = 30. The inset shows the confined optical field distribution along the radial 

direction (d/R). The arrows denote the tunneling of confined photons to the classically forbidden region. 

The red line denotes the energy level of confined photons.  

To investigate the confinement of the resonant light, a dielectric microtubular 

WGM cavity without any metal coating layer is introduced first. The microcavity 

consists of a hollow core and cavity wall, as sketched in Fig. 1(a). For simplicity, in 

the following study the outer diameter is fixed at R = 2.5 μm, and the refractive index 

is set as 1.6. The transverse magnetic (TM) modes (i.e. electric field perpendicular to 

cavity surface) are studied using the finite element method (FEM). In Fig. 1(b), the 

resonant wavelengths (with the azimuthal mode numbers M=30-32 as examples) are 

calculated as a function of r/R. In the range of r/R < 0.75, the resonant wavelengths 

remain constant, and the resonant modes are mainly confined by the outer boundary 

of the cavity. In this case, simple geometric optics or basic electromagnetic equations 

are sufficient to simulate the resonant wavelength neglecting the inner boundary, 

which is equivalent to the case of solid cylinder cavities. For propagating light 

reflected by the outer cavity boundary, the resonance occurs when 

])5.0(856.1)5.0[(22 3/1 MΜR   [16], in which the propagation 

constant 0kncavity  (ncavity = 1.6),   is the extra phase caused by total internal 
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reflections, R is the outer radius and M is the mode number. The calculated results are 

shown by dotted lines in Fig. 1(b), in agreement with the FEM calculations for the 

thick-walled cavities (r/R < 0.75). As r/R increases (> 0.75), the resonant wavelengths 

start to blueshift. In this regime, the conventional resonant condition mentioned above 

is no longer available because the light is effectively “reflected” by both outer and 

inner boundaries acquiring more complex phase corrections related to total internal 

reflections. Instead, the waveguide approach or the Mie scattering method are suitable 

for the calculation of optical resonances in thin-walled cavities [17,18].  

The above analysis can be understood by employing an effective potential 

approach [19]. The radial optical field distribution in a microcavity can be described 

by a quasi-Schrödinger equation: )()()()(2 rErrVr effr   . This equation 

provides a classical interpretation of the electromagnetic wave behavior in analogy to 

the Schrödinger equation. In this approach the effective potential reads 

22

0 )()](1[)(
r

M
rkrVeff    and the eigenenergy is 2

0kE  , where  /20 k  is 

the wave number in vacuum, )(r  is the permittivity along the radial direction and 

M is the azimuthal mode number. Figure 1(c) depicts the effective potential (for M = 

30) in a microtubular cavity with r/R =0.6. The green zone in the potential indicates 

the regime where photons are classically allowed to be confined and have positive 

quasi-kinetic energy ( effVE  ). Obviously, the inner cavity boundary (r/R =0.6) can 

hardly influence the photons confined in the green zone when the cavity wall is thick 

enough. This potential approach well explains the constant resonant wavelengths in 

thick-walled cavities, where the resonant light is only confined by the outer cavity 

boundary and is insensitive to the inner boundary. One should note that the inner 

boundary of the green zone is located at r/R =0.85 (green dashed line) while the 

resonant wavelength starts to change when r/R reaches 0.75 (yellow dashed line, 

determined by rigorous solution shown in Fig. 1(b)). This phenomenon shows that the 

photons confined in the green zone start to “feel” the inner boundary at r/R =0.75 due 

to the tunneling effect as marked by the green arrows. Similarly, the evanescent field 
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at the outer boundary can also be understood as a result of the tunneling effect 

through the outer boundary [19]. 

 

FIG. 2. Energy fraction in the outer surrounding of the cavity as a function of r/R. The left and right 

insets show the field distributions along the radial direction in the cases of r/R = 0.52 and 0.92, 

respectively.  

The evanescent field of WGM cavities determines the strength of light-matter 

interactions and the sensitivity in detection applications. Especially the field strength 

plays a key role in the formation of hybrid photon-plasmon modes when interacting 

with the metal coating layer [15]. The evanescent field at the outer boundary of the 

dielectric microtubular cavity is characterized by the energy fraction found at the 

cavity surface, and is shown in Fig. 2 as a function of r/R. The energy fraction 

remains constant when r/R < 0.75 with a small value of 5.15%. As r/R > 0.75, the 

energy fraction exponentially increases when the cavity wall thickness decreases. For 

example, the energy fraction increases to 29.6% when r/R reaches 0.92, as shown in 

the right inset of Fig 2. The enhancement of the outer evanescent field as the cavity 

wall becomes thinner can be easily explained by the tunneling effect. For the cavity 

with the thick wall (i.e. smaller r/R), the resonant photons are well confined inside the 

cavity and have low kinetic energies. As a result, the tunneling probability is weak, 

and so is the evanescent field. In a thin-walled cavity, however, the photons can more 

easily tunnel out of the cavity boundary because of the higher kinetic energy, 

consequently leading to a stronger evanescent field. The difference in evanescent field 
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intensities results in different interaction strengths, and thus different hybridizations 

when the light interacts with a metal coating layer – which will be discussed in the 

following.   

 

FIG. 3. Field distributions and effective potentials along the radial direction of (a) weakly, (b) 

moderately and (c) strongly hybridized photon-plasmon modes. The thicknesses of the cavity wall (T) 

and the metal coating layer (t) are set as T/R = 0.48 and t/R = 0.032, T/R = 0.48 and t/R = 0.008, T/R = 

0.08 and t/R = 0.008, respectively. 

The gold layer is used to coat the microtubular cavity for the generation of hybrid 

photon-plasmon modes, where the permittivities as function of optical wavelength are 

taken from Ref. [20]. By changing the degree of freedom for both the light 

confinement in the cavity wall and the gold layer thickness, three types of hybrid 

photon-plasmon modes are obtained. For instance, in a microtubular cavity with a 

wall thickness T/R = 0.48, the plasmon-type field of the hybridized mode is 

predominantly located at the inner surface of the metal layer when the gold layer 

thickness t/R = 0.032, as shown in Fig 3(a). As the main field energy is stored in the 

photonic mode part confined in the dielectric cavity, this mode is denoted a weakly 

hybridized photon-plasmon mode. When decreasing the gold layer thickness down to 

t/R = 0.008, an external plasmon-type field, in addition to the inner one, is formed at 

the outer surface of the gold layer, as shown in Fig. 3(b). Compared to the internal 

field shown in Fig. 3(a), the plasmon-type field located at the inner surface decreases 

and transfers to the outer surface. In this case, the plasmon-type field of the 
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hybridized mode stays at both the inner and outer surfaces of the metal coating layer, 

and is regarded as a moderately hybridized photon-plasmon mode. Decreasing the 

cavity wall thickness (e.g. decrease to T/R = 0.08) while maintaining the gold layer 

thickness leads to a plasmon-type field of the hybridized mode which can be only 

seen at the outer surface of the metal layer, manifesting a strongly hybridized 

photon-plasmon mode as experimentally demonstrated in our recent work [15]. The 

absence of the inner plasmon-type field is explained by the fact that the strong 

evanescent field at the thin cavity wall surface directly tunnels out of the metal layer 

without interacting with the inner boundary.  

The competition between light confinement in the cavity and potential barrier 

introduced by the metal layer determines the formation of these kinds of hybrid 

modes, which can be explained by the effective potential approach [11,15]. Potentials 

of three representative hybrid modes are shown in the bottom panels of Fig. 3(a)-(c). 

The green zones indicate the region where the resonant photons are confined. In the 

potential approach model, the deeper potential well confines photons with higher 

kinetic energy, which have a larger capability of tunneling out through the potential. It 

is obvious that the cavities in Fig. 3(a) and (b) have the same wall thickness, thus the 

two potential wells experience almost the same depth, indicating the same kinetic 

energy of the confined photons. In contrast, the thin-walled cavity in Fig. 3(c) has a 

deeper potential well confining photons with higher kinetic energy. On the other hand, 

the metal layer forms a potential barrier due to the negative permittivity. Both the 

width and height of the barrier influence the tunneling probabilities of the photons. 

The barrier width is determined by the thickness of metal layer, and the height is 

determined by the permittivity for the corresponding wavelength. However, for the 

first cavity in Fig. 3(a), the resonant photons confined in the potential well cannot 

tunnel out through the outer boundary as it is effectively screened by the high and 

wide metal barrier. Hence, only an internal field located at the inner metal surface is 

formed. In the second cavity in Fig. 3(b) the potential barrier is narrower, thus the 

photons can tunnel out into the outer surface, generating the extra external field 
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located at the outer surface. For the third cavity in Fig. 3(c), due to the high kinetic 

energy of photons as well as the low metal barrier, the photons can directly tunnel out 

into the outside surface, resulting in the strongly hybridized external field.   

 

FIG. 4. Diagram of three types of hybrid modes in microtubular cavities with different thickness of 

cavity wall and metal coating. The triangles, squares and circles represent the weakly, moderately and 

strongly hybridized photon-plasmon modes, respectively. The typical field distributions of three hybrid 

modes are shown in the right insets. 

The formation of the three types of hybrid modes is systematically investigated as 

a function of thickness of cavity wall and metal coating layer [see Supplemental 

material]. The hybrid modes are classified based on the field strength difference on 

the inner and outer surfaces of the metal coating layers. For the weakly hybridized 

mode, the internal field strength is more than an order of magnitude higher than the 

external field on the metal surface. When the external field intensity exceeds the 

internal one by an order of magnitude, the mode is defined as strongly hybridized. For 

the other situations, they are recognized as moderately hybridized modes, in which the 

plasmon-type fields can be found on both the inner and outer metal surfaces. All 

calculated three types of hybrid modes are respectively denoted by triangles, squares 

and circles, as shown in Fig. 4. The three zones are separated by dashed black curves. 

The two black curves become flat for the region r/R < 0.75, which is in agreement 

with the evolution behavior discussed in Fig. 1 and 2. On one hand, with increasing 

cavity wall thickness, light is better confined inside the dielectric cavity, making it 
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hard to tunnel through the metal layer. On the other hand, the thickness of the metal 

coating layer also plays an important role in the generation of hybrid modes. As the 

coating layer becomes thicker, its shielding effect becomes more significant. In 

addition, the intrinsic absorption loss of the metal layer cannot be neglected, which 

reduces the Q-factor of the hybrid modes and renders the modes hardly detectable for 

thick metal layers, which is marked by the gray zone in Fig. 4.  

In a recent experimental report [13], hybrid modes in a metal-coated 

microcylinder cavity have been discussed, where the field distribution was similar to 

that obtained in thick-wall microtubular cavities coated with thick metal layers (see 

Fig. 3(a)). This similarity is consistent with the above analysis where the inner 

boundary does neither affect the optical resonance nor the evanescent field at the outer 

boundary when the cavity wall is thick enough. However, if a hollow core is 

generated inside the microcylinder, e.g. by means of acid etching or vacuum assisted 

filtration [21-23], a transition to the other two types of hybrid modes with field 

distributions similar to those in Fig. 3(b) and (c), can be expected. Rolled-up nanotech 

is a very efficient way to create microtubular cavities with ultrathin walls by rolling 

up prestrained nanomembranes [17,24,25]. The cavity wall can be scaled down to 100 

nm which supports WGMs with strong evanescent fields. And indeed, strongly 

hybridized photon-plasmon modes have been observed in the rolled-up microtubular 

cavities [15].  

In conclusion, hybridizations of photon-plasmon modes in metal-coated 

microtubular cavities have been investigated. By changing the degree of freedom for 

both the thicknesses of the cavity wall and the metal coating layer, the strength of 

photon-plasmon coupling is tuned, giving rise to weakly, moderately and strongly 

hybridized photon-plasmon modes. The formation of such hybrid modes is illustrated 

by an effective potential approach, where the competition between light confinement 

in the potential well and potential barrier induced by the metal layer determines the 

field distribution of the hybrid modes. Our work provides a universal picture for 

understanding the basic physical mechanisms of photon-plasmon mode hybridization 
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in metal-coated WGM microcavities, and is relevant for opto-plasmonic cavity 

designs. As a novel type of opto-plasmonic microcavity, the metal-coated 

microtubular cavity is promising for both fundamental and application-oriented 

studies such as enhanced light-matter interactions. 
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