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The ultrastrong-coupling regime, where the atom-cavity coupling rate reaches a considerable frac-
tion of the cavity or atom transition frequencies, has been reported in a flux qubit superconducting
quantum circuit coupled to an on-chip coplanar resonator. In this regime situations may arise where
the resonator field X̂ = â + â† acquires a nonzero expectation value in the system ground state.
We demonstrate that in this case the parity symmetry of an additional artificial atom with an
even potential is broken by the interaction with the resonator. Such mechanism is analogous to
the Higgs mechanism where the gauge symmetry of the weak force’s gauge bosons is broken by the
nonzero vacuum expectation value of the Higgs field. The results here presented open the way to
controllable experiments on symmetry breaking mechanisms induced by nonzero vacuum expecta-
tion values. Moreover the here proposed mechanism can be used as a probe of the ground state
macroscopic coherence emerging from quantum phase transitions with vacuum degeneracy.

PACS numbers: 42.50.Pq, 03.70.+k, 05.30.Rt

Superconducting circuits based on Josephson junctions
received considerable attention during recent years be-
cause they are considered promising fundamental build-
ing blocks for quantum computing [1–4]. Experimen-
tal progress on superconducting resonator-qubit systems
have also inspired theoretical and experimental investi-
gations of quantum optics in the microwave regime [5].
These recent advances in the engineering and control
of quantum fields in superconducting circuits have also
opened up the possibility to explore quantum vacuum ef-
fects with these devices [6–9]. Superconducting circuits
have also been used for the realization of systems with ul-
trastrong qubit-resonator coupling [10, 11]. This regime,
where the coupling rate g becomes comparable to the res-
onance frequency of the fundamental resonator mode, is
attracting interest because of the possibility of manipu-
lating the cavity quantum electrodynamic vacuum with
controllable physical properties and it has been realized
in a variety of solid state quantum systems [12–17]. The
most puzzling property of light-matter systems display-
ing ultrastrong coupling (USC) is that their ground state
|G〉 is a squeezed vacuum containing correlated pairs of
matter excitations and cavity photons [18, 19]. The pho-
tons in the ground state |G〉 are, however, virtual and
cannot be detected, although the intracavity mean pho-
ton number is not zero, 〈â†â〉 6= 0. However it has been
theoretically shown that in the presence of non adiabatic
modulations, induced Raman transitions, sudden on/off
switches of the light-matter interaction or spontaneous
decay mechanisms these virtual photons can be converted
to real ones giving rise to a stream of quantum vacuum
radiation (see e.g. [20–24]).

Here we investigate the cavity quantum electrody-
namic ground state and its properties in superconducting
resonators coupled with one or more flux qubits subject
to parity symmetry breaking. The symmetry breaking
can be induced by an external flux Φext 6= Φ0/2 thread-

ing the artificial atoms, where Φ0 is the magnetic flux
quantum [25, 26], or can be spontaneous, arising from the
degeneracy or the quasidegeneracy of the ground state in
USC cavity-QED systems [27–29]. In the latter case the
two degenerate ground states are the product of a “fer-
romagnetic” state for the artificial atoms and coherent
states for the resonator modes. In the USC regime the
resonator field X̂ = â+ â† acquires a nonzero vacuum ex-
pectation value (〈G|X̂|G〉 6= 0) displaying a high degree
of first order coherence |〈G|â|G〉|2/〈G|â†â|G〉 ' 1 also
when the symmetry breaking is induced by an external
flux offset f = Φext − Φ0/2. The coherence properties
of this peculiar ground states can be directly probed by
fast modulating or switching the resonator-qubit interac-
tion rate. Specifically we show that such a modulation
or switch gives rise to quantum vacuum radiation with a
high degree of first-order optical coherence. The strong
coupling between states with different number of exci-
tations determined by symmetry breaking induced by a
flux offset in the USC regime has been demonstrated in
a flux qubit interacting with an on-chip resonator in the
USC regime [10].

The nonzero vacuum expectation value of the resonator
field is reminescent of the Higgs scalar field φ̂ whose ex-
pectation value in the vacuum state 〈0|φ̂|0〉 = v is dif-
ferent from zero [30]. In the standard model, the W±

and Z weak gauge bosons would be massless as a con-
sequence of the electroweak (SU(2) × U(1)) gauge sym-
metry. However, according to the Higgs mechanism, the
gauge symmetry is broken and the mass is gained by the
interaction of gauge bosons with a scalar field (so-called
Higgs field) having a nonzero vacuum expectation value
as a consequence of spontaneous symmetry breaking [31].
Here we show that the parity symmetry of an artificial
atom with an even potential is broken by the interaction
with a resonator with a nonzero field vacuum expecta-
tion value 〈G|X̂|G〉 6= 0 in close analogy with the Higgs
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mechanism (Fig.1). The signature of symmetry break-
ing is the appearance of two-photon transitions among
levels with opposite parity which are forbidden by parity
selection rules (See Appendix A). It is worth noting that
of course it is not possible to reproduce the Higgs model
with just a single mode resonator and a few two level
systems. The Higgs model has more degrees of freedom
and distinguishes the Goldstone and Higgs mode, which
is not present here. Moreover the gauge theory describes
quantum field theories with Lagrangians invariant under
a continuous group of local transformations. Parity is in-
stead a discrete symmetry. Hence the analogy among the
Higgs mechanism and our study consists only of one key
feature: in both cases symmetry is broken by a nonzero
vacuum (ground state) expectation value of a quantum
field.

Spontaneous symmetry breaking is a widespread phe-
nomenon in physics, nevertheless controllable experi-
ments where the nonzero vacuum expectation value of
a field breaks the symmetry of a quantum system are ab-
sent at our knowledge. Spontaneous symmetry breaking
is an important feature of quantum phase transitions and
typically implies the appearance of degenerate ground
states. One example is given by the Dicke model [27],
describing a collection of two-level systems interacting
with a single-mode bosonic field. Recently an experimen-
tal realization with pump-dressed atoms embedded in an
optical cavity has been reported [32]. In order to have a
Dicke phase transition with a time-independent Hamil-
tonian and a true ground state, settings based on su-
perconducting circuit QED have been proposed [28, 29].
One drawback however of systems with these features is
that the macroscopic coherence of the resonator field in
the ground state cannot give rise to a detectable optical
signal [20, 33]. The here proposed symmetry-breaking
mechanism can thus be exploited as a means to probe
the occurrence of vacuum coherence in this kind of quan-
tum phase transitions.

We start considering a quantum circuit constituted by
a coplanar resonator interacting with a number of flux
qubits in the USC regime (Fig.1). For suitable junction
sizes, the qubit potential landscape can be reduced to a
double-well potential, where the two minima correspond
to states with clockwise and anticlockwise persistent cur-
rents ±Ip [10]. At f = 0, the lowest two energy states
are separated by an energy gap ∆. In the qubit eigenba-
sis, the qubit Hamiltonian reads Ĥq = h̄ωqσ̂z/2, where

h̄ωq =
√

∆2 + (2Ipf)2 is the qubit transition frequency
with f = Φext−Φ0/2. We note that the two-level approx-
imation is well justified because of the large anharmonic-
ity of this superconducting artificial atom. The funda-
mental resonator mode is described as a harmonic oscil-
lator Ĥc = h̄ωc(â†â+1/2), where ωc is the resonance fre-
quency; generalization to include higher frequency modes
is straightforward.

The total Hamiltonian for this quantum circuit can be

b)
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vacuum of space is not empty but filled with a sea of virtual particles. A direct evidence

of the existence of such virtual particles is provided by the dynamical Casimir e↵ect [1].

It predicts that vacuum amplification e↵ects, resulting in the creation of real particles out

of vacuum fuctuations, are induced by rapidly modulating the boundary conditions of a

quantum field. This phenomenon is closely related to other pair creation mechanisms [2]

as the parametric amplification, the Schwinger process [3], the Unruh e↵ect [4] and the

Hawking radiation [5] by which vacuum fluctuations are amplified into real photons. For

many years, almost all of these e↵ects could not be experimentally verified due to the extreme

conditions under which these dynamical phenomena become appreciable. Specifically, to

observe the dynamical Casimir e↵ect, a rapid modulation of the boundary conditions of the

electromagnetic field with peak velocities close to the speed of light was required. This fact

led to a great variety of proposals [6–9] to create physical systems able to generate the desired

amplification e↵ects, for instance using surface acoustic waves, nanomechanical resonators,

or modulation of the electrical properties of a cavity. Recently, due to the experimental

progress in the development of circuit QED systems [10–13], the dynamical Casimir e↵ect has

been observed in superconducting circuits [14, 15]. Actually, by modulating the inductance

of a superconducting quantum interference device (SQUID) connected to the extremity

of a coplanar transmission line, it is e↵ectively possible to change the electrical length

of the circuit with a very fast change rate (a substantial fraction of the speed of light)

providing the necessary time-dependent boundary conditions for real photons to be emitted.

The dynamical Casimir e↵ect has also been demonstrated using a Josephson metamaterial

embedded in a microwave cavity [16]. In this case, the modulation of the e↵ective length

of the cavity is obtained by flux-biasing the metamaterial consisting of an array of SQUIDs

which form the e↵ective signal line of a superconducting coplanar waveguide.

As superconducting circuits based on Josephson junctions can behave like artificial atoms,

thanks to the recent technological advances it was also possible to exploit them for the im-

plementation of a wide variety of atomic-physics and quantum-optics experiments on a chip

[13]. Because these artificial atoms display very high coupling rates with microwave cav-

ity photons, it is easy to obtain the strong coupling regime even with a single artificial
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FIG. 1: (Color online) Schematic representation of the sys-
tem. The quantum circuit (dashed black box) is constituted
by a coplanar waveguide transmission line resonator ultra-
strongly interacting with embedded identical flux qubits (only
one is depicted in the figure).

written as,

ĤUSC = Ĥc +
∑
j

[Ĥ(j)
q + h̄gjX̂(cos θj σ̂

(j)
x + sin θj σ̂

(j)
z )] .

(1)

Here σ̂
(j)
x,z are Pauli operators for the j-th qubit, g is

the coupling rate of the qubits to the cavity mode, and
the dependence on the external magnetic fluxes thread-
ing the qubits is encoded in the angles θj by the rela-

tion cos θj = ∆/(h̄ω
(j)
q ). When f = 0 the potentials of

the artificial atoms are symmetric double-well potentials
then, below critical coupling rates, the selection rules are
the same as the ones for the electric-dipole transitions in
usual atoms. This situation corresponds to θj = 0. In
this case Eq. (1) reduces to the standard Dicke Hamilto-
nian. When f 6= 0 (θ 6= 0), the parity symmetry is broken
and one- and two- photon transitions can coexist [25]. In
the following, for the sake of simplicity we will consider
equal qubits all with the same coupling rates (gj = g,
θj = θ). Qubits displaying different coupling rates do
not change the present scenario as shown in Appendix B
where approximate results for qubits with different cou-
pling rates are presented.

The Hamiltonian (1) can be diagonalized numerically.
When the coupling rate reaches a considerable fraction of
the cavity mode resonance frequency ωc, the ground state
|G〉 acquires a non-negligible amount of excitations. Fig-
ure 2a displays a contour plot of the vacuum expectation
value v = 〈G|X̂|G〉 as a function of the coupling rate g
and the angle θ at positive detuning δ = ωq−ωc = 0.7 ωc

obtained for a resonator coupled to three qubits. For
θ = 0 , the ground state contains only states with an even
number of excitations so that 〈G|X̂|G〉 = 0. On the con-
trary, when θ 6= 0 the ground state contains also odd exci-
tations so that v ≡ 〈G|X̂|G〉 6= 0. At large coupling rates,
when the ground state becomes quasidegenerate [28], the
resonator field acquires a significant vacuum expectation
value even for θ ' 0 when the double well potential of
the qubits tends to be even: a clear example of a vacuum
field (ground state) expectation value induced by sponta-
neous symmetry breaking. The quasi-degeneracy of the
two lowest energy levels implies that even a very low-
temperature reservoir could be able to affect coherence
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inducing incoherent jumps among the two levels. How-
ever it has been shown that specific choices of the system
coupling with the reservoir and/or reservoir density of
states can prevent these transitions [34]. As mentioned
above, these virtual photons in the ground state cannot
be detected. If it would be possible to abruptly switch-off
the coupling rate g, the bound (virtual) photons present
in the ground state could be released producing an output
photon flux φout = γc〈G|â†â|G〉 ≥ γc|〈G|â|G〉|2, where
γc is the resonator loss rate due to external coupling. A
more feasible way to detect such an extracavity quantum
vacuum radiation is to apply a harmonic temporal mod-
ulation of the cavity-atom coupling rate [20] of the form
g = g0 + g1 sinωt. Such switches and modulations of
the coupling rate the coupling strength g, while keeping
the resonance frequency of the flux qubit constant, can
be realized by suitable schemes applying external time-
dependent magnetic fields [35]. Figure 2b displays the
extracavity emission rate (See Appendix C) from a res-
onator coupled to a single flux qubit as a function of
the modulation frequency ω. The dashed-dotted line
displays φout/γc for θ = π/10. The peaks correspond
to the system dressed energy-levels. The lowest energy
peak is a cavity-like peak, while the second one is the
atom-like peak. The dashed curve describes the coher-
ent part of the emission rate. The lowest energy peak
is fully coherent; the Fano-like lineshape of the higher
energy peaks origins from interference effects due to the
alternate phases (0,π) of the dressed states. The results
in Figure 2b demonstrate that it is possible to observe
quantum vacuum radiation out from vacuum fluctuations
with a high degree of first order coherence. The contin-
uous line describes the emission rate predicted for θ = 0.
At such an angle and coupling g0 the coherent part is
strictly zero and the first two resonances are not present
owing to the parity selection rule.

We now study the influence of the nonzero vacuum
expectation value of the resonator on an additional flux
qubit (P qubit). Specifically we consider the P qubit in-
teracting with the resonator at negative detuning δ′ =
ω′q−ωc � −g′ (see e.g [36]), where h̄ω′q = ∆′ is the tran-
sition energy of this second qubit and g′ < g is its cou-
pling rate with the resonator. This P qubit is subject to
an even potential landscape and it can be directly excited
by a microwave antenna. The total system Hamiltonian
can thus be written as

Ĥ = ĤUSC + ∆′σ̂′z/2 + h̄g′X̂ σ̂′x + h̄E(t) σ̂′x , (2)

where σ̂′x(z) are Pauli operators acting on the Hilbert

space of the P qubit, the third term in Eq. (2) de-
scribes the interaction of the qubit with the resonator
and the last one describes the qubit excitation by an
applied time-dependent microwave electromagnetic field.
We start with an approximate theoretical analysis, then
we will show the results of a full numerical test. In the
dispersive regime, if the probe qubit is excited with a
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FIG. 2: (Color online) a) Contour plot of the vacuum expec-

tation value v ≡ 〈G|X̂|G〉 of a resonator- three qubit system
in the dispersive regime (δ = ωq − ωc = 0.7 ωc) as a function
of the coupling rate g and the external magnetic flux (encoded
in the angle θ) threading the qubit. b) Extracavity emission
rate φout/γc as a function of the modulation frequency of the
resonator-qubit interaction rate g = g0 + g1 sinωt for θ = 0
(solid grey line) and θ = π/10 (dot-dashed red line). Numeri-
cal values for the costant part g0 of the coupling rate and the
modulation amplitude g1 are, respectively, g0 = 0.15 ωc and
g1 = 9× 10−4 ωc. The loss rates for the cavity and the qubit
are γc = γq = 10−3 ωc. The dashed blue line describes the
coherent part |〈G|â|G〉|2 of the emission rate for θ = π/10.

low frequency field (ω << ωc), the USC system (res-
onator plus embedded qubits) can be assumed to be into
the ground state. In this case the effective Hamilto-
nian felt by the probe qubit is Ĥ ′ = 〈G|Ĥ|G〉. Drop-
ping a constant contribution, Ĥ ′ can be written as
Ĥ ′ = ∆′σ̂′z/2 + h̄g′v σ̂′x + h̄E(t) σ̂′x. The term h̄g′v σ̂′x
arising from the vacuum expectation value of the res-
onator field induces a symmetry breaking on the P qubit.
Changing the qubit basis in order to diagonalize the
time-independent part of the above equation, we ob-
tain H̃ ′ = ω′qσ̂

′
z/2 + h̄E(t) (sinα σ̂′z + cosα σ̂′x), where

ω′q =

√
∆′/h̄

2
+ (2g′v)2 and sinα = 2g′v/ω′q. By consid-

ering a monochromatic excitation signal E(t) = E0 sin(ωt)
and applying standard time-dependent second-order per-
turbation theory, we obtain the two-photon transition
rate Pg′→e′ = πE2

0 (sin2 2α)/(h̄2ω′2q )δ(2ω − ω′q). As ex-
pected by dipole selection rules, this transition rate is
zero for a zero vacuum expectation value of the resonator
field (v = 0 ⇒ α = 0). On the contrary a nonzero vac-
uum expectation value activates two-photon transitions
giving rise to an absorption peak at ω = ω′q/2 which is a
direct evidence of the parity-symmetry breaking mecha-
nism induced by the vacuum field of the resonator. The
two-photon transition rate is maximum at α = π/4. As
shown in Fig. 2a, the vacuum expectation value v can
reach values of the order of 2 already with only three
qubits coupled to the resonator. In the presence of quite
large v values, the angle α can reach nonnegligible values
even for a relatively small coupling g′ (e.g. g′ = 0.05ωc

and v = 4 imply sinα = 0.4).

In order to highlight the analogy with the Higgs mech-
anism, let us describe this quantum circuit analogy from
the point of view of experimenters with limited resources.
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Specifically we assume that they have direct access only
to the P qubit and that in their laboratory they have only
excitation sources with a limited energy range h̄ω < h̄ωc.
They know that the artificial atom P under investiga-
tion has an even potential. They probe the qubit and
find a resonance at ω = ω′q being very surprised to find
also an additional resonance at ω = ω′q/2. The observed
coexistence of one- and two-photon processes is a sig-
nature of parity symmetry-breaking. Hence they start
searching for a mechanism explaining it. One of them
conjectured that this effect can originate from the inter-
action of the qubit with a quantum field displaying a
nonzero vacuum expectation value (the resonator in the
USC regime). This additional quantum field is expected
to be in its ground state since in the investigated en-
ergy range no additional resonances are found. Moreover
they are aware that if this ghost field actually interacts
with the qubit, it should be possible to excite it probing
the qubit with an higher energy source. Finally they get
such a source and will find at higher energies a new peak
corresponding to the dressed resonance frequency of the
resonator. Such a peak will be shown in the subsequent
full numerical demonstration.

To provide full evidence for the above reasoning, we
present a numerical demonstration based on the solu-
tion of a master equation in the dressed-states basis that
takes into account the influence of the qubits-resonator
coupling in the interaction of each subsystem with the en-
vironment [37–39]. We calculate numerically the system
dynamics under the effect of Hamiltonian (2) and inter-
acting with zero temperature reservoirs (See Appendix
D). According to Eq. (2) the P qubit is excited by an ap-
plied monochromatic microwave field E(t) = E0 sin(ωt).
Figure 3 displays the excited state population of the P
qubit. The lowest energy peak corresponds to the dressed
resonance frequency ω′q of the P qubit. The inset in Fig.
3 shows that an additional absorption peak, correspond-
ing to two-photon absorption, is observed at ω = ω′q/2.
As this absorption peak describes a two-photon process, a
larger modulation amplitude than that used for obtaining
the main spectrum displayed in Fig. 3 has been applied.
The appearence of this two-photon transition is a clear
signature of the parity simmetry breaking of the P qubit
induced by its interaction with a resonator displaying a
nonzero field vacuum expectation value. The basic idea
under the search for the Higgs boson is that symmetry-
breaking fields, when suitably excited, must bring forth
characteristic particles: their excitation quanta. The
peak at higher energy ' h̄ωc in Fig. 3 arises from the
excitation of the quantum field (the resonator in the USC
regime) via its interaction with the P qubit. Such a res-
onance confirms that the violation of parity symmetry of
the P qubit can be attributed to the vacuum expecta-
tion value of a quantum field, the analogous of the Higgs
field whose resonance energy is at about h̄ωc. The used
parameters are provided in the figure caption. Higher

x10-2 

FIG. 3: (Color online) Absorption spectrum as a function of
the driving frequency of the coherent drive E(t) = E0 sin(ωt)
probing the probe qubit. The resonator is ultrastrongly cou-
pled with one qubit (at positive detuning δ = ωq − ωc =
0.7 ωc) and at the P qubit (at negative detuning δ′ =
ωq′ − ωc = −0.6 ωc) with coupling rates g = 0.5 ωc and
g′ = 0.2 ωc, respectively. The flux offset applied to the qubit
coupled with the resonator corresponds to θ = π/4, while it is
zero for the P qubit (θ = 0). Loss rates for the cavity and the
qubits are γc = γq = γq′ = 5 × 10−4 ωc. The lowest energy
peak corresponds to the dressed resonance frequency ω′q of
the P qubit. The higher energy peak arises from the excita-
tion of the quantum field (the resonator in the USC regime)
interacting with the P qubit.

values of two-photon excitation rate can be obtained for
resonators coupled in the USC regime with more artifi-
cial atoms, even in the presence of a lower coupling with
the P qubit. In this case the very interesting situation of
an Higgs-like symmetry breaking mechanism induced by
a resonator field vacuum expectation value arising from
spontaneous symmetry breaking can be realized.

In conclusion we have shown that superconducting cir-
cuits can be used to realize a symmetry-breaking quan-
tum vacuum. Specifically we have shown that the parity
symmetry of an artificial atom (P qubit) with an even po-
tential is broken by the interaction with a resonator field
displaying a nonzero vacuum expectation value in close
analogy with the symmetry-breaking Higgs mechanism.
We have also shown that when the P qubit is excited
at suitable energy its interaction with the resonator field
determines the excitation of a detectable field excitation,
the analog of the so-called Higgs-particle [30, 31, 40]. The
present study is based on superconducting quantum cir-
cuits, but it can in principle be implemented also with
other solid state systems sharing two key features, light
matter ultrastrong coupling and parity symmetry break-
ing as e.g. asymmetric, doped quantum wells embedded
into a planar photonic cavity [41]. The here proposed
Higgs-like mechanism can also be exploited to probe the
occurrence of vacuum quantum coherence in quantum
phase transitions occurring in systems with time inde-
pendent Hamiltonians and true ground states.
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APPENDIX A: RELEVANT ENERGY DRESSED
LEVELS AND ELECTRIC DIPOLE

TRANSITIONS
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FIG. 4: (Color online) Sketch of the relevant dressed energy
levels and electric dipole transitions.

The probe qubit is under the influence of an even po-
tential, as a consequence its quantum states |g′〉 and
|e′〉 have definite parity. Hence, according to selection
rules for electric-dipole transitions, two photon transi-
tions |g′〉 → |e′〉 are forbidden (left panel). However,
the parity symmetry of the probe qubit is broken when
the probe qubit is coupled to a resonator of higher en-
ergy excitations and with a nonzero vacuum (ground)
expectation value v = 〈G|X̂|G〉 6= 0 (right panel) so that
two-photon transitions become allowed.

APPENDIX B: ANALYTICAL DERIVATION OF
THE VACUUM EXPECTATION VALUE OF THE

RESONATOR FIELD

In this section we consider a system constituted by
a coplanar waveguide transmission line resonator ultra-
strongly interacting with N embedded flux qubits and
derive an analytical expression for the vacuum expecta-
tion value of the resonator field X̂ ≡ â+ â†.
The total system Hamiltonian is given by

HUSC = Ĥc +
∑
j

[Ĥ(j)
q + h̄gj X̂(cos θj σ̂

(j)
x + sin θj σ̂

(j)
z )] ,

(B1)
where Ĥc = h̄ωc(â†â + 1/2) describes the cavity mode

with resonance frequency ωc and Ĥ
(j)
q = h̄ω

(j)
q σ̂

(j)
z /2 is

the j-th qubit Hamiltonian. ω
(j)
q and σ̂

(j)
x,z are the transi-

tion frequency and the Pauli operators for the j-th qubit,
respectively; gj is the coupling rate of the j-th qubit to
the cavity mode, and the dependence on the external
magnetic flux threading the j-th qubit is encoded in the

angle θj by the relation cos θj = ∆/h̄ω
(j)
q .

In the dispersive regime at positive detuning (δj =

ω
(j)
q − ωc > 0), the transition frequencies ω

(j)
q are far

off resonance and all the qubits can be assumed to be

in their ground state (σ
(j)
z
∼= −1). This approximation

leads to the effective Hamiltonian

H
′

USC
∼= Ĥc −

∑
j

h̄gj (â+ â†) sin θj , (B2)

The Hamiltonian (B2) describes a displaced harmonic os-
cillator and is easily diagonalized by the following trans-
formation,

b̂ = â−
∑
j

(gj sin θj)/ωc . (B3)

By applying the operator b̂ to the ground state |G〉 of the
system we obtain

b̂|G〉 = (â−
∑
j

gj sin θj/ωc)|G〉 = 0 , (B4)

so that

â|G〉 =
∑
j

gj sin θj/ωc|G〉 . (B5)

Finally, using Eq.(B5) we obtain the approximate analyt-
ical expression for the vacuum expectation value of the
resonator field

〈G|X̂|G〉 = 〈G|â+ â†|G〉 = 2
∑
j

gj sin θj/ωc . (B6)

APPENDIX C: PHOTODETECTION IN THE
USC REGIME

One of the most inconvenient issue arising in the ul-
trastrong coupling regime is that the usual normal order
correlation functions fail to describe the output photon
emission rate and photon statistics [33]. An incautious
application of these standard relations for an USC system
in its ground state |G〉, which now contains a finite num-
ber of photons due to the counter-rotating terms in the
system Hamiltonian, would therefore predict an unphys-
ical stream of output photons so that 〈G|â†â|G〉 6= 0 .

In order to derive the correct output photon emission
rate (e.g. physical photons that can be experimentally
detected), the cavity-electric field operator X̂ = â + â†

has to be expressed in the atom-cavity dressed basis [34].
Once the field operator is expressed in the energy eigen-
states |j〉 of the total system Hamiltonian, it can be easily
separated in its positive and negative frequency compo-
nents, X̂+ and X̂−, leading to the relations:

X̂+ =
∑
j,k>j

Xjk|j〉〈k| ; X̂− = (X̂+)† , (C1)
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where Xjk ≡ 〈j|â† + â|k〉.
It is important to notice that the positive frequency com-
ponent of X̂, according to its actual dynamics, is not
simply proportional to the photon annihilation operator
â. Moreover, the expected result X̂+|G〉 = 0 is correctly
obtained for the system in its ground state in contrast to
â|G〉 6= 0.
According to the input-output theory for resonators, the
output field operator can be related through a bound-
ary condition to the intracavity field and the input field
operators. We consider the specific case of a resonator
coupled to a semi-infinite transmission line, pointing out
that while the resonator is ultrastrongly coupled with the
qubit, its interaction with the reservoir (e.g. the trasmis-
sion line) is weak. By the Markovian approximation, the
input-output relation can be written as

Aout(t) = Ain(t)−
√

h̄γc

2ωcv
X(t) , (C2)

where

Aout = A+
out +A−out , (C3)

with

A+
out(t) =

1

2

∫ ∞
0

dω

√
h̄

πωcv
a(ω, t1)e−iω(t−t1) , (C4)

and A−out = [A+
out]
†. Here, v is the phase velocity of the

trasmission line, the operators a(ω, t1) are the output
Bosonic annihilation operators associated to the external
(transmission line) continuous modes and t1 > t can be
assumed in the remote future. The rate γc represents
the cavity damping due to the interaction of the single
cavity mode with the continuum of the external modes.
An analogous expression can be written for A+

in(t) just
replacing in Eq. (C4) t1 with t0 < t in the remote past.
By taking the Fourier transform of Eq. (C2) and sum-
ming up only the components at positive frequency, we
obtain

A+
out = A+

in −
√

h̄γc

2ωcv
X+ . (C5)

By applying the input-output relation (C5), we readily
obtain the extracavity emission rate 〈A−outA

+
out〉 for the

case of an input in the vacuum [23]

2ωcv

h̄
〈A−outA

+
out〉 = γc〈X−X+〉 (C6)

Following an analogous procedure, it can be shown
that the emission rate from a qubit is proportional to
〈σ̂′−

x σ̂
′+
x 〉, where

σ̂
′+
x =

∑
j,k>j

σjk
x |j〉〈k| ; σ̂

′−
x = (σ̂

′+
x )† , (C7)

with σjk
x ≡ 〈j|σ̂x|k〉.

APPENDIX D: MASTER EQUATION

In order to correctly describe the quantum dynamics
of the system, dissipation induced by its coupling to the
environment needs to be considered. Assuming that the
cavity and the two level system are weakly coupled with
two different baths of harmonic oscillators, the standard
approach where the coupling g is ignored while obtaining
the dissipative part of the master equation would lead,
for a T = 0 reservoir, to the well known standard master
equation. The standard quantum optical master equa-
tion can be safely used to describe the dynamics of the
system in the weak and strong coupling regimes, in which
the ratio g/ωc is small enough for the RWA approxima-
tion to be still valid.
In the ultrastrong coupling regime however, owing to the
high ratio g/ωc, the standard approach fails to correctly
describe the dissipation processes and leads to unphys-
ical results as well. In particular, it predicts that even
at T = 0, relaxation would drive the system out of its
ground state |G〉 generating photons in excess to those
already present.
The right procedure that solves such issues consists in
taking into account the atom-cavity coupling when deriv-
ing the master equation after expressing the Hamiltonian
of the system in a basis formed by the eigenstates |j〉 of
the total system Hamiltonian [33,37,38]. The dissipation
baths are still treated in the Born-Markov approxima-
tion. Following this procedure it is possible to obtain
the master equation in the dressed picture [37,38]. For a
T = 0 reservoir, one obtains:

ˆ̇ρ(t) = −i
[
ĤS, ρ̂(t)

]
+ Laρ̂(t) + Lxρ̂(t) . (D1)

Here La and Lx are the Liouvillian superoperators cor-
rectly describing the losses of the system where Lsρ̂(t) =∑

j,k>j Γjk
s D[|j〉〈k|]ρ̂(t) for s = a, σ− and D[Ô]ρ̂ =

1
2 (2Ôρ̂Ô†− ρ̂Ô†Ô− Ô†Ôρ̂). ĤS is, in general, the system
Hamiltonian in the absence of the thermal baths. In the
limit g → 0, standard dissipators are recovered.

The relaxation rates Γjk
s = 2πds(∆kj)α

2
s(∆kj)

∣∣∣Cs
jk

∣∣∣2
depend on the density of states of the baths ds(∆kj) and
the system-bath coupling strength αs(∆kj) at the respec-
tive transition frequency ∆kj ≡ ωk − ωj as well as on
the transition coefficients Cjk = 〈j|ŝ+ ŝ†|k〉 (ŝ = â, σ̂−).
These relaxation coefficients can be interpreted as the full
width at half maximum of each |k〉 → |j〉 transition. In
the Born-Markov approximation the density of states of
the baths can be considered a slowly varying function of
the transition frequencies, so that we can safely assume it
to be constant as well as the coupling strength. Specifi-
cally, we assume α2

s (∆kj) ∝ (∆kj)
2 so that the relaxation

coefficients reduce to Γjk
s = γs

(
∆kj

ωs

)2

Cs
jk where γs are
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the standard damping rates. Equation (D1) can be easily
extended to take into account T 6= 0 reservoirs [38].
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