
ar
X

iv
:0

90
9.

25
15

v1
  [

co
nd

-m
at

.q
ua

nt
-g

as
] 

 1
4 

Se
p 

20
09

Background atoms and decoherence in optical lattices

Krzysztof Pawłowski1 and Kazimierz Rzążewski1, 2

1Center for Theoretical Physics, Polish Academy of Sciences,

Al. Lotników 32/46, 02-668 Warsaw, Poland

2Faculty of Mathematics and Sciences,

Cardinal Stefan Wyszyński University,

ul. Dewajtis 5, 01-815, Warsaw, Poland

Abstract

All experiments with ultracold atoms are performed in the presence of background residual gas.

With the help of a suitable master equation we investigate a role of these fast atoms on the loss

of coherence in optical lattices. We present an exact solution of the master equation and give the

analytic formulas for all correlation functions in the presence of one body losses. Additionally we

discuss existing of a Schrödinger cat state predicted in this system in [1].
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I. INTRODUCTION

Ultracold bosonic atoms placed in wells of the optical dipole potential formed by the

interference of counter-propagating laser beams are studied in many recent experiments

[2, 3, 4, 5]. A Mott insulator state [2], a collapse and revivals of the coherence in the

superfluid state [1], a massive entanglement between atoms [6] and an Anderson localization

[7] were all achieved. In a recent paper [8] a single site addressability has been demonstrated

- a property essential for the future application of atoms in optical lattices in the quantum

information processes. In all these processes a potentially significant role is played by losses.

As always, the losses generate decoherence, a deterioration of the ability to interfere. In

particular even the best achievable vacuum in the cell holding the ultracold atoms is never

perfect. There are background atoms that are very fast. From time to time they collide with

the relevant bosons that are practically at rest. As a result the atom trapped in the well

is rapidly ejected and flies away. We are losing one atom but also the phase of the system

undergoes a jolt. As a result, the atomic interference gets smeared-out. In this paper we are

studying in some detail this phenomenon. To this end we use a suitable master equation.

We present an analytical solution for the evolution of a large class of correlation functions.

Then, we use these solutions to discuss the first order coherence for the model of a perfect

Mott insulator initial state and a model of a superfluid initial state. In the latter case we

show that often used the coherent state as a representation of the state in a single well is

sick. While correctly representing the distribution of the number of atoms found in a single

site, it incorrectly breaks the U(1) symmetry of this state. We point out that discussed by

some authors [1, 9] Schrödinger cat state is an artifact of the coherent state representation.

II. MODEL

A motivation of our work is an experimental demonstration of a collapse and revivals of

matter waves described in [1]. The authors of this paper prepared bosonic 87Rb atoms in

the superfluid state in the optical lattice. Suddenly they increased the intensity of lasers

creating the deep optical lattice, such that the tunneling between lattice sites was completely

suppressed. They hold the system during time t and then switch-off the trapping potential,

allowing cold atoms to expand. Next they take a picture of interfering matter waves. They
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were repeating the experiment extending only the holding time t. In the first few photos

they recognized an interference pattern typical for a superfluid state [2]. Then this pattern

had vanished just to a Gaussian noise, but at the time t = trev it appeared again. We study

the sensitivity of these revivals to decoherence due to non-perfect vacuum. Atoms from the

residual thermal gas collide with ultracold atoms. We assume that the typical energy of an

incoming atom from the background is so high that during the collision the condensed atom

is kicked out from the lattice. This kind of one body losses leads inevitably to a reduced

coherence in the system.

In order to describe the evolution of cold atoms in an optical lattice that includes these

collisions we derived the following master equation:

∂tρ̂ = − i

~

[

ĤA, ρ̂
]

+ γ
K
∑

k=1

([

âk, ρ̂â
†
k

]

+
[

âkρ̂, â
†
k

])

, (1)

where âk annihilates one boson in the kth lattice site, K is the number of lattice sites, γ is

a damping coefficient, and

ĤA = ~ω0

K
∑

k=1

â†kâk +
U

2

K
∑

k=1

â†kâ
†
kâkâk, (2)

is the Bose-Hubbard Hamiltonian for atoms in an optical lattice in the absence of tunneling.

The parameter ~ω0 in (2) describes the kinetic and potential energy of one atom in the

lattice, and U is an average interaction energy per a pair of atoms. The details of the

Hamiltonian ĤA are given in [10]. We estimate the damping coefficient γ and sketch the

derivation of (1) in the appendix. Having analytical form of all coefficients in this model we

are able to compare our theoretical results of this papers with the experimental papers.

We assume that atoms in each well evolve independently so the final master equation is

a simple extension of the master equation for a single well, examined more generally in [11].

This type of master equation (1) was also a starting point in [12, 13, 14].

In this paper we expand all states in the Fock basis, where | n1, · · · , nK〉, means n1 atoms

in the first well, n2 atoms in the second, etc. Here are three interesting states:

• The superfluid state, called also multinomial state, with N particles in K potential
wells

| ψ〉 = 1

KN/2

∑

n1,··· ,nK

√

(

N

n1, · · · , nK

)

| n1, n2, · · · , nK〉. (3)
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The sum in expression (3) is over all non-negative integers, which adds-up to the initial

number of atoms N , and
(

N
n1,··· ,nK

)

= N !
n1!···nK !

is the multinomial symbol. This state is

in fact a SU(K) coherent state [15].

• The Mott insulator state, which describes the system with exactly n atoms in each
well:

| ψ〉 =
K
⊗

k=1

| n〉. (4)

• The coherent state

| ψ〉 =
K
⊗

k=1

(

∞
∑

n=0

αne−|α|2/2

√
n!

| n〉
)

. (5)

Although the coherent state violates the barionic superselection rule, it seems to work

quite well as an approximation of the superfluid with the total number of atoms

N = K |α|2. The evolution of this state in a context of optical lattices was considered
i.e. in [1, 13].

III. GENERATING FUNCTION

The master equation (1) describes a system of K independent modes, with the interaction

in each mode and with the one body losses. In the next section IV we use this model to

describe the influence of background atoms for coherence properties in optical lattices. We

stress that equation (1) has quite general form and might be appropriate for other systems.

In this section we present the exact solution of a master equation of this type.

Let us consider a dynamics of an average value of the normal ordered operator:

〈

K
∏

k=1

(

â†k

)rk
K
∏

k=1

âlkk

〉

. (6)

At this point we assume for simplicity that for all indices k, coefficient rk or lk is equal

to 0. It means rk + lk = max(rk, lk).

We focus on the most important case of expression (6), correlation functions, where the

number of creation operators and annihilation operators is the same. It means
∑K

k=1 lk =
∑K

k=1 rk = R, where R is the order of correlation function. Below we will often use this

property.
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The density operator has the following matrix form in the Fock basis:

ρ̂ =

N
∑

n1,··· ,nK
m1,··· ,mK

ρn1,··· ,nK
m1,··· ,mK

| n1, · · · , nK〉〈m1, · · · , mK | . (7)

The density matrix elements which are appropriate to calculate (6) are of the form

ρn1+r1,··· ,nK+rK
n1+l1,··· ,nK+lK

, where nk are non-negative integer numbers. We introduce a shorter no-

tation for indices {n1 + l1, · · · , nK + lK} = n + l. Thus l belongs to NK and with εk we

denote the versor in the kth direction in this space ((εk)i = δk,i). From the master equation

(1) we know their evolutions

∂tρ
n+r

n+l
= ı̇λ

∑K
k (rk − lk) (2nk + rk + lk − 1) ρn+r

n+l
+

+2γ
∑K

k

√

(nk + 1)(nk + rk + lk + 1)ρn+r+εk
n+l+εk

−γ
∑K

k (2nk + rk + lk)ρ
n+r

n+l
, (8)

where λ = U/(2~).

We define the generating function hr
l
:

hr
l
(x; t) =

∑

n

xn1
1 . . . xnK

K ρn+r

n+l

K
∏

k=1

rk+lk
∏

m=1

√
nk +m, (9)

where x is any vector in RK space. The function hr
l
in (9) is defined in such a way that

along a line x1 = · · · = xK = 1 is just equal to (6). Multiplying the equation (8) by
∏K

k=1 x
nk
k

∏rk+lk
m=1

√
nk +m and then taking the sum over all indices nk we derive an equation

for hr
l

∂th
r

l
=

K
∑

k=1

(2γ − (2γ − 2ı̇λ (rk − lk)) xk) ∂xk
hr
l
+

+
K
∑

k=1

(

ı̇λ
(

r2k − l2k
)

− 2γR
)

hr
l
.

This is the first order partial differential equation, so one can find the solution by the method

of characteristics:

hr
l
(x1, · · · , xK , t) = e

PK
k=1(ı̇λ(r2k−l2k)−2γR)t ×

×hr
l
(f (x1, r1 − l1, t) , · · · , f (xK , rK − lK , t) , 0) , (10)

where f (x, r, t) = 2γ−(2γ−κrx)e−κrt

κr
and κr = 2γ − 2ı̇λr.
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From the generating function one can easily extract all density matrix terms:

ρn+r

n+l
=

∂n1
x1
. . . ∂nK

xK
hr
l
(0, · · · , 0; t)

∏K
k=1

√

(nk + lk)! (nk + rk)!
(11)

Solutions (10) and (11) are valid for all initial states and any number of wells. They cover

exact solutions of papers [12, 16, 17] as special cases. The paper [16] treats all correlation

functions in optical lattices but without losses. The papers [12, 17] are interesting discussions

of one, two and three body losses in two mode system. There are presented exact solution

for low order correlation function in the case of one body losses using the stochastic wave

approximation.

The equation (11) says that the terms of density matrix decay exponentially with the rate

growing as we go away from the diagonal. For long times all off-diagonal terms vanish and

the state of the system becomes completely mixed, in agreement with the general properties

of the decoherence.

IV. DECOHERENCE

In this section we will use the general solution (11) for the three states introduced in the

section III. Subscripts ’coh’, ’sf’ and ’mi’ denote the coherent state, the superfluid state

and the Mott insulator, respectively. For shorter notation we omit indices r and l, namely

hr
l
≡ h. The appropriate generating functions have forms

hsf (x; t) =

∏R−1
j=0 (N − j)

KN
e−γRt+ı̇λ

PK
k=1(r2k−l2k)t ×

×
(

K
∑

k=1

f (xk, rk − lk, t)

)N−R

(12)

hcoh (x; t) =

K
∏

k=1

(α∗)rk (α)lk e|α|
2(f(xk,rk−lk,t)−1) (13)

hmi (x; t) =
K
∏

k=1

(

1− (1− xke
−2γt)

)N/K
(14)

Using these functions we can analyze all correlation functions for these three different initial

states. It is not surprising that for all three states the average number of atoms per well is

given by the same formula

〈â†kâk〉 = ∂xk
h0
0
(1, · · · , 1; t) = N

K
e−2γt. (15)
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This exponential decay of the particle number was observed in several experiments. The

coefficient (2γ)−1 is known in literature as the lifetime of the trap. In the appendix we give

the straightforward but lengthy derivations of γ:

γ = σcrossρb〈v〉/
√
6,

where σcross is a cross section for the collision between ’hot’ and cold atoms, ρb is a density

of the background atoms and 〈v〉 is their average velocity. We compare measured values
of γ with our analytical estimation getting quantitative agreement [18, 19, 20], except the

experiments with the metastable helium ∗He [21, 22]. We suppose that in experiments with

helium the interaction with background atoms is not the main source of one body losses.

A. First order correlation function

More interesting is the evolution of the first order correlation function

g1 =
〈â†i âj〉

√

〈â†i âi〉〈â†jâj〉
,

which in the experiment of Bloch [1], is responsible for the revivals and collapses of the

interference pattern. For the Mott insulator state this function is just equal to 0 – to describe

interference of matter waves in this state higher order correlation function are needed. If

the initial state is a superfluid or a coherent state one get

g1sf =

(

1 +
w(t)

K

)N−1

(16)

g1coh = e|α|
2w(t), (17)

where w(t) = 2

(

γ2+(γλ sin(2λt)+λ2 sin(2λt))e−2γt

γ2+λ2 − 1

)

. In the limit of large number of wells

and large number of atoms, both first order correlation functions are identical and equal

to g1 = 1 + |α|2w(t). Thus, in typical experiments with optical lattice the damping of
coherence is the same for superfluid and coherent state. It suggests that the coherent state

can be used instead of multinomial one also for studying the decoherence in optical lattice,

but in the next section we are showing the limitation of this replacement.

We present these functions in figure 1. Indeed the evolution of the first order correlation

function has a structure of collapses and revivals at the multiples of the revival time trev =
π
λ
.
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FIG. 1: (Color online)The first order correlation function for systems initially in superfluid or

coherent state. Solid red line, – the damping like in recent experiments γ = 0.001/s, green dashed

line – with much stronger damping γ = 10.0/s. Number of wells 8000 and number of atoms 20000

– like in the experiment [1].

2

For experimental value of parameter γ no effects of decoherence can be seen. It means that

in the experiment [1] there are more important sources of decoherence. As authors of this

paper suggest it can be the noise of the laser beams.

We investigate the decoherence varying the experimental parameters - the number of

atoms, the number of potential wells and the damping parameter γ, but holding constant

the interaction parameter U . We observe that for bigger ratio K/N revivals are broader and

collapses of coherence are not complete (see figure 2a). In it case even for large damping, the

function g1 tends nor to 0, but to some positive value. In the case of strong damping it is

difficult to determine if the master equation is still valid – it should be verified experimentally.

On the other hand if we increase the total number of atoms, the revival becomes extremely

narrow and extremely hard to detect. It is worth to stress again, that we hold the parameter

U constant and equal to the value from the experiment [1]. In fact U can be changed so

the time scale might be totally different (like in typical experiments with a double well

potential).

We present this two regimes in the figure 2. One can easily see that the first regime,

where the number of potential wells is bigger than the number of atoms is less susceptible

to decoherence. Increasing the number of atoms leads to a fast decay of coherence.
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FIG. 2: (Color online)Two different regimes for evolution first order correlation function: a)

number of atoms 1000 and wells: solid red line 1000, dashed green line 10000. b)number of wells

1000 and atoms: green line 10000, red line 100000. Damping coefficient in all cases γ = 10/s.

.

V. Q-FUNCTIONS – DEATH OF A SCHRÖDINGER CAT

Up to now we haven’t seen any notable consequences of using coherent states for the

superfluid state. Despite the coherent state in the context of matter wave violates the fun-

damental law of nature, the barionic number superselection, it seems to be indistinguishable

from the superfluid state. In the kind of thermodynamic limit the distribution of number of

atoms per one well is identical, the damping of number of particle is the same, and the first

and the second order correlation functions are so similar in both cases that in any experi-

ment they cannot be distinguished [16]. On the other hand the coherent state is much easier

to handle than the multinomial one. Hence it is no wonder that instead of multinomial

state usually only its coherent counterpart is investigated. In its evolution at the time 1
2
trev

surprisingly appears a Schrödinger catlike state – the state of the system is a superposition
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of two coherent states with opposite phases [1]. It was even predicted in [9] that this super-

position state may stable even in the presence of one and three body losses. To shed some

light on this issue we compute one of quasiproababilty functions. The simplest here is the

Husimi Q-function:

Qρ̂ (β) =
1

πK
〈β | ρ̂ | β〉,

where β is a vector in K dimensional complex space CK and | β〉 =
⊗K

k=1 | βk〉 is a product
of coherent states in each well.

We use the generating functions (13), (14) and (12) and the general form for the denisty

matrix (11) to calculate the Husimi functions for our three initial states in the simplest

γ = 0 case:

Qcoh (β; t) =
1

πK

K
∏

k=1

∞
∑

n,m

(αβk)
n (α∗β∗

k)
m

n!m!
×

×e|α|2−|βk|
2

eı̇λt(m−n)(m+n−1),

Qsf (β; t) =
1

πKKNN !

∣

∣

∣

∣

∣

N
∑

n

(

N

n1, · · · , nk

)

eı̇λtn
2
k

K
∏

k=1

βnk
k

∣

∣

∣

∣

∣

2

,

Qmi (β; t) =
1

πK

K
∏

k=1

e−|βk|
2N/K |βk|2n

(N/K)!
.

The immediate conclusion is that the Q-functions for the coherent and the superfluid

state are quite different. The first one at time t = 0 is a product of Gaussian functions

around points α, while the second function depends only on the absolute value of α, so it

is symmetric around 0. To visualize the Husimi functions, we integrate them over (K − 1)

lattice sites

Q (β; t) =

∫

dβ2 · · ·dβK Q (β, β2, · · · , βK ; t)

These reduced Husimi functions are presented in figures 3 and 4. The reduced Husimi

function of the superfluid and the Mott insulator state is time independent.

Thus, we conclude that the much discussed Schrödinger cat for atoms in the optical lattice

is an artifact of the coherent state representation of the superfluid state. Our conclusion

would be the same if we used the Wigner function rather than the Husimi function.
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FIG. 3: (Color online)The Husimi function Q(t) at times a) 0, b) 1
2 trev if the initial state is

coherent. At the time 1
2trev the system is a superposition of two coherent states.

VI. CONCLUSIONS

The most important result of this paper is the exact solution for the master equation (1).

We use this solution to discuss the influence of ’hot’ background atoms for the coherence

properties of ultracold atoms in optical lattices. The calculated damping of the average

number of particles agrees with experiments. In the main experiment under consideration

[1] the damping of g1 due to collisions with the background atoms in negligible. We consider

additional isotropic harmonic confinement also. Then in each potential well atoms have an

additional energy shift which value depend on the position of the site. The spread of the

shift’s values is however so small, that the effects related to them are negligible. Studying

further this model we find interesting regimes in which the function g1 does not collapse,

even for large losses. It means that the interference pattern should be seen in this regime at

any time so the decoherence is quenched. Furthermore we have shown that using a coherent
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FIG. 4: (Color online)The Husimi functions for a) the Mott insulator state b) the superfluid state.

The Husimi function in both cases is time independent and has U(1) symmetry.

state for description of cold atoms might lead to wrong conclusions. The Schrödinger cat is

an example.
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APPENDIX: COEFFICIENT γ

We present an estimation of the coefficient γ in the master equation (1). To calculate

this parameter one must follow whole derivation of the master equation. The origin of γ lies

in the second term in the Hamiltonian:
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Ĥ =

∫

d3rψ̂† (r)H0ψ̂ (r) +
1

2

∫

d3rd3r′ψ̂† (r) ψ̂† (r′) V (r − r′) ψ̂ (r′) ψ̂ (r) + · · · , (A.1)

where an operator ψ̂† (r) creates a bosonic field, H0 = −~2∇2

2m
+ V (r) consists of the kinetic

energy and a periodic potential and V (r − r′) is a potential of interaction between particles.

We represent the field operator ψ̂ (r) as a superposition of BEC and background gas modes

ψ̂† (r) = φ (r) â +
1√
V

∑

k

eı̇kr
(

ĉk + d̂k

)

, (A.2)

where â annihilates one boson in a ground state, φ (r) is a spatial representation of the

ground state fo H0, ĉk annihilates one background atom with wave-vector k and d̂k an-

nihilates one boson with wave-vector k, which has been kicked out from the condensate.

All non-condensed bosons are modeled by the plane waves in quantization volume V . We

introduce two annihilation bosonic operator d̂k and ĉk, because in general, ultracold atoms

and background gas might be formed from different species.

At this point we make the crudest simplification, we replace V (r − r′) with the contact

pseudo-potential 4π~2a
m

δ (r − r′), where a is th s-wave scattering length, and m is a reduced

mass of colliding particles. This approximation works quite well for collision of two ultracold

atoms and it is not justified for a collision between one cold and one ’hot’ background atom.

Still, this simplification offers some insight into this process. We expect that the final result

is at least of the same order of magnitude as the accurate damping constant γ.

We limit our consideration only to the first two terms in (A.1). Substitution (A.2) into

(A.1) leads to plenty of terms. Most of them have no influence on the values of γ. The

significant part is given by the Bose-Hubbard Hamiltonian

Ĥ = ĤA + Ĥenv + Ĥint.

It consists of three terms.

• The free evolution of ultracold gas in an optical lattice.

ĤA = ~ω0â
†â+ U

2
â†â†ââ,

where ~ω0 is the energy of a single atom in an optical lattice, U is an interaction

coefficient

13



• The term which describes the evolution of free ’hot’ atoms Ĥenv =

~
∑

k
ωk

(

ĉ†
k
ĉk + d̂†

k
d̂k

)

, where ~ωk = ~2k2

2m
is a kinetic energy of a free particle

of mass m and momentum ~k.

• The interaction between cold and ’hot’ atoms

Hint =
g

2V 3/2

∫

d3r
∑

k1,k2,k3

ĉ†
k1
d̂†
k2
ĉk3â φ (r) e

ı̇(k1−k2−k3)r + h.c. =

= γ̂k1,k2,k3 ĉ
†
k1
d̂†
k2
ĉk3â+ h.c., (A.3)

where g = 4π~2a
m
. For shorter notation we have introduced in (A.3) the operator γ̂k1,k2,k3.

We follow the derivation of master equation based on [23]. Our derivation is simplified in

comparison with [11]. We quote it here to obtain the expression for the damping coefficient

γ. We write the von Neumann equation in the interaction picture

dρ̃

dt
= − ı̇

~

[

H̃int (t) , ρ̃
]

,

where with a tilde we denote the transformation

Õ = eı̇(ĤA+ĤE)t/~Ôe−ı̇(ĤA+ĤE)t/~

Using the von Neumann equation one can easily write the first two terms of perturbation

series of the formal solution of the density matrix (Born approximation):

dρ̃

dt
= − ı̇

~

[

H̃int (t) , ρ̃ (0)
]

− 1

~2

∫ t

0

dτ
[

H̃int (t) ,
[

H̃int (τ) , ρ̃ (τ)
]]

(A.4)

In the next steps we trace both sides over the environment and transform it back to the

Schrödinger picture. We assume that initially the density operator of the system has a form

ρ̂ = ρ̂BEC ⊗ ρ̂E,

where ρ̂BEC is a density operator of BEC and ρ̂E is a density operator of the environment.

In the derivation we also assume that the change of ρ̃BEC during time t is negligible and

the evolution is well approximated by the Markov process. All this operation one can find

in the following formula for coefficient γ:

γâρ̂BEC â
† = − 1

~2

∫

dτγ̂k1,k2,k3γ̂k′

1,k
′

2,k
′

3
âρ̂BEC â

†eı̇(τ−t)∆Tr
{

ĉ†
k1
ĉk3 d̂k2 ρ̂E d̂

†
k′

2
ĉ†
k′

3
ĉk′

1

}

, (A.5)

where ∆ = U/~ â†â+ ω0 + ωk1 − ωk2 − ωk3.
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We assume that the background atoms are in a thermal state and the atoms from d-modes

are initially in the vacuum state |0〉〈0|. Thus
Tr
{

ĉ†
k1
ĉk3 d̂k2 ρ̂E d̂

†
k′

2
ĉ†
k′

3
ĉk′

1

}

= 〈ĉ†
k1
ĉk1〉

(

1 + 〈ĉ†
k3
ĉk3〉

)

δ
k
′

1
k1
δ
k
′

2
k2
δ
k
′

3
k3

For high temperature the average occupation of any energy level, 〈ĉ†
k
ĉk〉, is much less

than unity what justifies the approximation:

〈ĉ†
k1
ĉk1〉〈1 + ĉ†

k3
ĉk3〉 ≈ 〈ĉ†

k1
ĉk1〉

After that the formula for γ is reduced to:

γâρ̂BEC â
† = − 1

~2
γ̂2
k1,k2,k3

âρ̂BEC â
†eı̇(τ−t)∆〈ĉ†

k1
ĉk1〉, (A.6)

The operator γ̂k1,k2,k3 = g
2

∫

d3r
∑

k1,k2,k3
φ (r) eı̇(k1−k2−k3)r contains Fourier transform of

φ (r). We approximate this function by a Gaussian with the width σ:

φ (r) =

(

1

2πσ2

)3/4

e−
r
2

4σ2

Then the operator γ̂ is simplified to γ̂k1,k2,k3 =
g(8πσ2)

3/4

2

∑

k1,k2,k3
e−σ2(k1−k2−k3)

2

We use the next approximations, typical for derivation of a master equation

∑

k

=
V

8π3

∫

d3k

∫

d3ke−2σ2(k2−(k1−k3))
2

e−ı̇τ
~
2k22
2m =

( π

2σ3

)3/2

e−ı̇τ
~
2((k1−k3))

2

2m

∫

dτeı̇τ∆̂ = πδ
(

∆̂
)

+ ı̇P
1

∆̂
,

where P 1
x
is a principal value. After using these three approximations the expression (A.6)

has a form

γâρ̂BEC â
† = − g2

4~2 (2π)6

∫

d3k1

∫

d3k3 âρ̂BEC â
†πδ

(

∆̂
)

〈ĉ†
k1
ĉk1〉, (A.7)

In (A.7) we have omitted the term with a principal value. This term should give infinite

shift to the energy levels, but does not change the damping coefficient. It appears in many

calculations, for example in description of a spontaneous emission – after the renormalization

it represent the Lamb shift. We don’t want to discuss this term – our aim is only a very

rough estimation of the damping coefficient.

In the expression (A.7) appears the operator
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∆̂ = ω0 + λâ†â− ~2k23
2m

+
~

m
k1k3

We assume that background atoms have much higher energy than cold atoms. Further-

more in typical experiments with optical lattices in each lattice site the average number of

atoms is small, so the contribution of interaction energy is negligible. Finally with good

approximation we have

∆̂ ≈ −~
2k23
2m

+ ~

m
k1k3 = ∆

Then δ
(

−~2k23
2m

+ ~

m
k1k3

)

= − m
~k1k2

δ
(

cosθ − k3
k1

)

,

where θ is an angle between the wave-vectors k1 and k3.

After integrating over k3 the equation (A.7) has a form

γ = − g2πm

4~3 (2π)4

∫ ∞

0

dk1k
3
1〈ĉ†k1 ĉk1〉, (A.8)

We calculated the quantity 〈ĉ†
k
ĉk〉 from the grand canonical ensemble using the bound 〈n̂〉 =

∑

k
〈ĉ†

k
ĉk〉 = N, where N is the total number of background atoms, and get

〈ĉ†kĉk〉 =
n

V

(

4π~2

2mkBT

)3/2

e
− ~

2k2

2mkBT .

Finally we can integrating over wave-vectors of incoming background atoms and simplify

equation (A.8):

γ =

√

2

3
πa2ρb〈v〉, (A.9)

where ρb = N/V is a density of background atoms and 〈v〉 is an average velocity of them.
The last formula up to a constant can be deduced classically.
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