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Abstract

We solve analytically the Schrödinger equation for the N -dimensional inverse square potential
in quantum mechanics with a minimal length in terms of Heun’s functions. We apply our results
to the problem of a dipole in a cosmic string background. We find that a bound state exists only
if the angle between the dipole moment and the string is larger than π/4. We compare our results
with recent conflicting conclusions in the literature. The minimal length may be interpreted as
a radius of the cosmic string.

1 Introduction

We recently studied [1] the attractive inverse square potential in three dimensional quantum
mechanics with a generalized uncertainty relation implying the existence of a nonzero minimal
uncertainty in position measurement (minimal length) [2]. This study showed that this potential
remained regular in this framework; the elementary length, plays the role of a regulator cutoff
at short distances, and may be interpreted as an intrinsic dimension of the system under study.

In this paper, we generalize the aforementioned work to N dimensions and arbitrary orbital
momentum quantum number, and apply it to the problem of the dipole dynamics in the back-
ground of a cosmic string, where the interaction is known to be described by a two dimensional
1/R2 potential [3]. Cosmic strings are very interesting one dimensional topological defects of
space-time [4]. Other types of defects are; point defects (monopoles), planar defects ( domain
walls) and textures. Such defects are hypothesized to form in the phase transition of the early
universe due to the process of spontaneous symmetry breaking and some of them could have
survived to much later time, perhaps even to the present day [4, 5, 6].

The quantum dynamics of a point dipole in nonrelativistic quantum mechanics in a cosmic
string background has been considered by several authors (see, for instance, Refs. [7, 8, 3, 9]). In
Ref. [9], the author was interested in the case where the angle θ between the dipole moment and
the cosmic string is such that θ ≤ π/4, in which case the potential is repulsive. The author used
the method of self-adjoint extensions [10] and found that the cosmic string can bind the dipole
if the potential is weakly repulsive, i.e., if one has 2Mδ/~2 < 1, where M is the particle mass
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and δ is the strength of the potential. The author claims that this result is an example of the
classical scale symmetry breaking of the system due to a ”quantum anomaly”. Note that from a
mathematical view point, a bound state may exist in a weakly repulsive 1/R2 potential because
the corresponding Hamiltonian has square integrable solutions [10]. Given the counterintuitive
feature of this result (i.e., the existence of a bound state in a repulsive potential), it is interesting
to study the existence of bound states of that system in quantum mechanics with a minimal
length and to examine whether a cosmic string keeps binding the dipole when the potential is
repulsive.

The idea of modifying the standard Heisenberg uncertainty relation in such a way that it
includes a minimal length has first been proposed in the context of quantum gravity and string
theory [11]. It is assumed that this elementary length should be on the scale of the Planck
length of 10−35m, below which the resolution of distances is impossible. The formalism based
on this modified uncertainty relation, together with the concepts it implies has been discussed
extensively by Kempf and his collaborators [2, 12]. Various topics were studied over the last ten
years within this formalism: the hydrogen atom problem [13], the harmonic oscillator potential
[14], the Casimir effect [15], the Dirac oscillator [16] and the problem of a charged particle of
spin one-half moving in a constant magnetic field [17]. The modifications of the gyromagnetic
moment of electrons and muons due to the minimal length have been discussed in Ref [18].
More recently several papers have been devoted to the study of the black hole thermodynamics
within the minimal length formalism [19]. For a review of different approaches of theories with
a minimal length scale and the relation between them, we refer the reader to Ref. [20].

For the sake of completeness, let us mention that the 1/R2 interaction that we study here in
two spatial dimensions occurs in many problems of great physical interest. Indeed, this potential
appears in the study of electron capture by polar molecules with static dipole moments [21, 22].
The problem of atoms interacting with a charged wire is known to provide an experimental
realization of an attractive 1/R2 potential [23, 24]. The Efimov effect in three-body systems [25]
arises from the existence of a long range effective 1/R2 interaction, where R is built from the
relative distances between the three particles. Finally, in black hole physics, the inverse square
type interaction occurs naturally in the analysis of the near-horizon properties of black holes,
the Bekenstein-Hawking entropy and black holes decay [26]. Note finally that the singular 1/R2

potential provides a simple example of a renormalization group limit cycle in nonrelativistic
quantum mechanics [27]. Let us mention that the condition of square integrability of the
Schrödinger wave function for a singular 1/R2 potential does not lead to an orthogonal set of
eigenfunctions with their corresponding eigenvalues [28, 29, 30]. This is due to the fact that
the Hamiltonian operator is not essentially self-adjoint [10], so that one must define self-adjoint
extensions of the Hamiltonian or equivalently require orthogonality of the wave functions [28].
The other technique used to deal with this potential is the standard regularization by a cutoff
at short distances [31].

Our paper is organized as follows. In Sec. II, we study the 1/R2 potential in N dimensional
(ND) quantum mechanics with a minimal length, using the momentum representation. In Sec.
III, we study the problem of a dipole in a cosmic string background. Our main result is that
a bound state exists only if the angle between the dipole and the cosmic string is larger than
π/4; the minimal length may be associated with the size of the cosmic string. Some concluding
remarks are reported in the last section.
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2 N dimensional 1/R2 potential in quantum mechanics

with a generalized uncertainty relation

In Ref. [1] we have solved the s-wave Schrödinger equation for the three dimensional 1/R2

potential in quantum mechanics when the position and momentum operators satisfy the following
modified commutation relations:

[X̂i, P̂j] = i~[(1 + βP̂ 2)δij + β
′

P̂iP̂j ], (β, β
′

) > 0.

[P̂i, P̂j] = 0, (1)

[X̂i, X̂j] = i~
2β − β

′

+ β(2β + β
′

)P̂ 2

1 + βP̂ 2

(
P̂iX̂j − P̂jX̂i

)
.

These commutators imply the generalized uncertainty relation

(∆Xi) (∆Pi) ≥
~

2

(
1 + β

N∑

j=1

[(∆Pj)
2 +

〈
P̂j

〉2
] + β

′

[(∆Pi)
2 +

〈
P̂i

〉2
]

)
. (2)

which leads to a lower bound of ∆Xi, given by

(∆Xi)min = ~

√
(Nβ + β ′), ∀i. (3)

Equation (2) embodies the UV/IR mixing: when ∆P is large (UV), ∆X is proportional to
∆P and, therefore, is also large (IR). This phenomenon is said to be necessary to understand
the cosmological constant problem or the observable implications of short distance physics on
inflationary cosmology; it has appeared in several contexts: the AdS/CFT correspondence, in
noncommutative field theory and in quantum gravity in asymptotically de Sitter space [14, 33].
Another fundamental consequence of the minimal length is the loss of localization in coordinates
space, so that, momentum space is more convenient in order to solve any eigenvalue problem.

In the momentum representation, the following realization satisfies the above commutation
relations:

X̂i = i~

(
(1 + βp2)

∂

∂pi
+ β

′

pipj
∂

∂pj
+ γpi

)
, P̂i = pi. (4)

The arbitrary constant γ does not affect the observable quantities, its choice determines the
weight factor in the definition of the scalar product as follow:

〈ϕ |ψ 〉 =
∫

dNp

[1 + (β + β ′) p2]1−α
ϕ∗(p)ψ(p), α =

γ − β
′
(
N−1
2

)

β + β ′
. (5)

In the following, we generalize the work aforementioned to arbitrary dimensions N and arbi-
trary orbital momentum quantum number l.

We proceed, as in Ref. [1], by writing the Schrödinger equation, for a particle of mass M in
the external potential V (R) = δ/R2, in the form

(R2P 2 + 2Mδ) |ψ 〉 = 2MER2 |ψ 〉 . (6)

Because of the rotational symmetry of the Hamiltonian, we can assume that the momentum
space energy eigenfunctions can be factorized as [14]:

ψN (~p) = Yl(N−1)...l2l1(Ω)ϕN(p). (7)
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Using Eq. (4) with γ = 0, we obtain the following expression for R2 ≡
N∑
i=1

XiXi [1, 14]:

R2 = (i~)2
{[

1 + ω1p
2
]2 d2

dp2
+
[
1 + ω1p

2
] [

(N+β + 2β
′

)p+
N−

p

]
d

dp

−L
2

p2
− 2βL2 − β2L2p2

}
, (8)

where we have used the notations

ω1 = β + β
′

, N± = N ± 1, L2 = l(l +N − 2).

From Eqs. (6), (7) and (8) the radial Schrödinger equation for the δ/R2 potential in the
presence of a minimal length takes the form

d2ϕN(p)

dp2
+

{
4p

p2 − 2ME
+

(N+β + 2β
′

)p+ N−

p

1 + ω1p2

}
dϕN(p)

dp
+

+

{
2p

[(
(N + 2)β + 3β

′

)
p+

N

p

]
+

1

1 + ω1p2
[
−β2L2p4 + 2βL2(MβE − 1)p2

+ (4MβE − 1)L2 − 2Mδ

~2
+

2MEL2

p2

]}
ϕN(p)

(1 + ω1p2) (p2 − 2ME)

= 0. (9)

In the case L = 0, this equation reduces to Schrödinger equation of Ref. [1].
Introducing the dimensionless variable z, defined as

z =
(β + β

′

)p2 − 1

(β + β ′)p2 + 1
, (10)

which varies from −1 to +1, and using the following notations:

ω4 =
β

β + β ′
, ω = −Mω1E, κ =

Mδ

2~2
, (11)

we obtain the differential equation

(1− z2)
d2ϕN

dz2
+

{(
N+β + 2β

′

2ω1
− 3

2

)
(1 + z) +

N

2
(1− z) +

4(1 + z)

(1 + 2ω) + (1− 2ω)z

}
dϕN

dz

+

{
1

1− z

[
−
(
(ω4ω +

1

4
)L2 + κ

)
(1− z)2 − ω2

4L
2

4
(1 + z)2 +N−(1− z)

+
N+β + 2β

′

ω1

(1 + z) + 2

]
−

ωL2

2
(1− z)2

1 + z
− ω4L

2

2
(ω4ω + 1)(1 + z)

}

ϕN

(1 + 2ω) + (1− 2ω)z

= 0. (12)

To show that this equation can be transformed in the form of a Heun differential equation,
as in the 3D case with l = 0 [1], we make the following transformation:

ϕN(z) = (1− z)λ(1 + z)λ
′

f(z), (13)
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where λ and λ
′

are arbitrary constants. Then, the equation for f(z) is

d2f

dz2
+





N+β+2β
′

2ω1
− 3

2
− 2λ

(1− z)
+

2λ
′

+ N
2

(1 + z)
+

4

(1− z) [(1 + 2ω) + (1− 2ω)z]




df

dz

+
1

(1− z2)2 [(1 + 2ω) + (1− 2ω)z]

{
[(1 + 2ω) + (1− 2ω)z]

[
λ(λ− 1)(1 + z)2

− 2λλ′(1− z2) + λ′(λ′ − 1)(1− z)2 − λ(N+β+2β′

2ω1
− 3

2
)(1 + z)2 − N

2
λ(1− z2)

+λ′(N+β+2β′

2ω1
− 3

2
)(1− z2) +

N

2
λ′(1− z)2

]
+ (N+β+2β′

ω1
− 4λ)(1 + z)2

+ (N− + 4λ′)(1− z2)− ((ω4ω +
1

4
)L2 + κ)(1 + z)(1− z)2

−ω4L
2

2
(ω4ω + 1)(1 + z)2(1− z)− ω2

4L
2

4
(1 + z)3 − ωL2

2
(1− z)3 + 2(1 + z)

}
f

= 0. (14)

We choose λ and λ
′

by requiring that the coefficient of f(z) in Eq. (14) vanishes for z = ±1;
this leads to the two equations for λ and λ

′

as follow:

λ2 − (3
2
+ N+β+2β′

2ω1
)λ+ 1

2
+ N+β+2β′

2ω1
− ω2

4L
2

4
= 0,

λ
′2 + (N

2
− 1)λ

′ − L2

4
= 0.

(15)

The values of λ and λ
′

satisfying this system are

λ± = 1
4
(3 + N+β+2β′

ω1
±∆1),

λ′
±
= 1

2
(1− N

2
±∆2),

(16)

where

∆1 =

√(
Nβ+β′

ω1

)2
+ 4ω2

4L
2, ∆2 =

√
(
N

2
− 1)2 + L2. (17)

We select the set (λ, λ′) = (λ−, λ
′

+); so the transformation (13) becomes

ϕN(z) = (1− z)
1
4
(3+

N+β+2β′

ω1
−∆1)(1 + z)

1
2
(1−N

2
+∆2)f(z). (18)

By substituting λ and λ
′

with their values in Eq. (14), we obtain after some calculations

d2f

dz2
+

{
1− ∆1

2

z − 1
+

1 + ∆2

z + 1
+

2

z − z0

}
df

dz
+

{
ρz + σ

(z − 1)(z + 1)(z − z0)

}
f = 0, (19)

where

z0 =
2ω + 1

2ω − 1
,

ρ =
10−N

4
+
N(Nβ + β ′)

8ω1

− 3∆1

4
+

3∆2

2
− ∆1∆2

4

+
1

1− 2ω

{[
ω2
4

2
− ω4ω +

ω4

2
(ω4ω + 1)

]
L2 − κ

}
, (20)

σ =
1

1− 2ω

{
1

4
(1 + 2ω)

(
N(Nβ + β ′)

2ω1

+ 2−N

)
+

1

4
(2ω − 3)∆1

+
1

2
(6ω − 1)∆2 −

1

4
(1 + 2ω)∆1∆2 +

[
ω2
4

2
+ ω4ω +

ω4

2
(ω4ω + 1)

]
L2 + κ

}
.
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Equation (19) is a linear homogeneous second-order differential equation with four singular-
ities z = −1, 1, z0,∞, all regular. So, Eq. (19) belongs to the class of Fuchsian equations, and
can be transformed into the canonical form of Heun’s equation, having regular singularities at
z = 0, 1, ξ0,∞ [35, 34]. The simple change of variable

ξ =
z + 1

2

leads to the following canonical form of Heun’s equation:

d2f(ξ)

dξ2
+

(
c

ξ
+

e

ξ − 1
+

d

ξ − ξ0

)
df(ξ)

dξ
+

(
abξ + q

ξ(ξ − 1)(ξ − ξ0)

)
f(ξ) = 0, (21)

with the parameters

a =
3

2
− ∆1

4
+

∆2

2
− ν̃

2
,

b =
3

2
− ∆1

4
+

∆2

2
+
ν̃

2
, c = 1 +∆2, d = 2, e = 1− ∆1

2
, ξ0 =

2ω

2ω − 1
,

q = − 1

1− 2ω

{
1 + (

N

4
− 3)ω − N(N − 1)

4
ω4ω +

ω∆1

2
+ (1− 3ω)∆2 +

ω∆1∆2

2
− ω4ωL

2 − κ

}
,

ν̃ =

√(
N − 1

2

)2

(ω4 − 1)2 +
1

1− 2ω
{[(1− 2ω)(1− 2ω4)− ω2

4(4ω + 1)]L2 + 4κ}, (22)

which are linked by the Fuchsian condition

a+ b+ 1 = c+ d+ e. (23)

In the neighborhood of ξ = 0, the two linearly independent solutions of Eq. (21) are [35]

f1(ξ) = H(ξ0, q, a, b, c, d; ξ), (24)

f2(ξ) = ξ1−cH(ξ0, q
′, 1 + a− c, 1 + b− c, 2− c, d; ξ), (25)

where
q′ = q − (1− c) [d+ ξ0(1 + a+ b− c− d)] .

H(ξ0, q, a, b, c, d; ξ) is the Heun function defined by the series

H(ξ0, q, a, b, c, d; ξ) = 1− q

cξ0
ξ +

∞∑

n=2

Cnξ
n, (26)

where the coefficients Cn are determined by the difference equation:

(n+ 2)(n+ 1 + c)ξ0Cn+2 =
{
(n+ 1)2(ξ0 + 1) + (n+ 1) [c+ d− 1

+ (a+ b− d)ξ0]− q}Cn+1 − (n+ a)(n + b)Cn, (27)

with the initial conditions

C0 = 1, C1 =
−q
cξ0

, and Cn = 0, if n < 0.

Now, we can write the solution of the deformed Schrödinger equation (9) for the N dimen-
sional 1/R2 potential . Thus, by using Eq. (18) the solution ψ(ξ), which is regular (finite) in the
neighborhood of ξ = 0, is given by

ϕN(ξ) = ANξ
1
2
(1−N

2
+∆2)(1− ξ)

1
4
[5+(N−1)ω4−∆1]H(ξ0, q, a, b, c, d; ξ), (28)
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where AN is a normalization constant.
This formula generalizes that of Ref. [1], which can be recovered in the special case: N = 3

and l = 0.
In the following section, we study in more detail the 2D case, by considering a dipole in the

presence of a cosmic string.

3 Dipole dynamics in a cosmic string background

Consider a particle of mass M , dipole moment D moving in the background field of a cosmic
string. In non relativistic quantum theory the interaction between the dipole and the cosmic
string is described by the potential [3, 7, 8, 9]

V (R) =
(1− α2)D2

48πα2R2
cos 2θ, (29)

where θ is the angle between the string and the dipole moment and α = 1−4Gµ < 1 characterizes
the cosmic string, with µ is the linear mass density of the string and G is the gravitational
constant.

The potential (29) is computed by considering the electromagnetic self-energy of the dipole
due to the non-flat geometry. The space-time metric of the cosmic string background in cylin-
drical coordinate (R, φ, z) is [3, 7, 8, 9]

ds2 = dt2 − dz2 − dR2 − α2R2dφ2. (30)

Because of the cylindrical symmetry of the space, the motion of the particle along the z
direction is a free particle motion. By considering a cosmic string of infinite length along the z
direction, one only has to discuss the motion of the particle on the plane perpendicular to the z
direction.

The wave fuction of the dipole reads: ψ2(~p) = e−imφϕ2(p). The radial part, ϕ2(p), can be

computed directly from Eq. (28) by setting N = 2, and taking 4κ = M(1−α2)D2

24πα2~2
cos 2θ. We

obtain the following expression:

ϕ2(ξ) = Aξ
m

2 (1− ξ)
1
4

[

5+ω4−

√
(1+ω4)2+4ω2

4m
2
]

H(ξ0, q2, a2, b2, c2, d; ξ), (31)

with the parameters

a2 =
1

4

(
6 + 2m−

√
(1 + ω4)2 + 4ω2

4m
2

)
− 1

2
ν̃2,

b2 =
1

4

(
6 + 2m−

√
(1 + ω4)2 + 4ω2

4m
2

)
+

1

2
ν̃2,

c2 = 1 +m, d = 2, e2 = 1− 1

2

√
(1 + ω4)2 + 4ω2

4m
2, ξ0 =

2ω

2ω − 1
,

q2 =
−1

1− 2ω

{
1− ω

2
(5 + ω4) +m(1− 3ω)− ωω4m

2 +
ω

2
(m+ 1)

√
(1 + ω4)2 + 4ω2

4m
2 − κ

}
,

ν̃2 =

√
1

4
(ω4 − 1)2 +

1

1− 2ω
{4κ+ [(1− 2ω)(1− 2ω4)− ω2

4(4ω + 1)]m2}. (32)

We now study the special case m = 0 (ground state), and for convenience we take β ′ = 0. In
this case one has e2 = 0 and q2 = −a2b2, so Heun’s equation (21) reduces to a hypergeometric
equation [1] and the wave function becomes

ϕ2(ξ) = A(1− ξ)F (a∗2, b
∗

2, c
∗

2;
ξ

ξ0
), (33)
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where

a∗2 = 1− ν̃∗2
2
, b∗2 = 1 +

ν̃∗2
2
,

c∗2 = 1, ν̃∗2 =

√
4κ

(1− 2ω)
, (34)

ξ =
(β + β

′

)p2

(β + β ′)p2 + 1
, ξ0 =

2ω

2ω − 1
.

We are now ready to investigate the existence of bound states. Let us observe that, since
cos 2θ varies from −1 to +1, the parameter κ of the dipole in the cosmic string background can
be positive or negative. The author of Ref. [9] considered the repulsive case, i.e., θ ≤ π

4
, and

using the method of self-adjoint extensions [10], found that the system would have a bound state
in a weakly repulsive potential (0 ≤ 4κ ≤ 1). This bound state would be a consequence of a
”quantum anomaly” [10].

As discussed in detail in Ref. [1] for the 3D case, the physical eigenfunctions of the Hamil-
tonian must behave at large momenta as p2ϕ2(p) =

p→∞

0. This boundary condition emerged

naturally from the integral equation corresponding to the differential equation. It determines
the physical behavior of the wave function in this asymptotic region.We get from Eq. (33) the
following quantization condition:

F (a∗2, b
∗

2, c
∗

2;
2ω − 1

2ω
) = 0 (35)

In order to examine the existence of bound states for the dipole in a cosmic string background,
we have plotted the hypergeometric function in Eq. (35) as a function of ω = −MβE for fixed

4κ = M(1−α2)D2

24πα2~2
cos 2θ. The energy eigenvalues ωn are determined by the zeros of the function

F (a∗2, b
∗

2, c
∗

2;
2ω−1
2ω

) of Eq. (35). Figure 1 shows that there are no bound states for a weakly repulsive
potential. The parameters are taken identical to that used in Ref. [9], namely θ = π/12, D = 1,
α = 0.2 for the dashed curve and θ = π/8, D = 1.6, α = 0.2 for the solid curve. In Ref. [9]
one predicts one bound state depending on the value of the self-adjoint extensions parameter
(
∑

). In quantum mechanics with a minimal length, for any value of β and β ′, there is no bound
state in the weakly repulsive potential. Figure 2 shows that in the case θ = π/4 (absence of
interaction, i.e., κ = 0) the cosmic string cannot bind the dipole. In Ref. [9], on the other hand,
one bound state exists even if the strength of the potential is zero.

Figure 1: h ≡ F (a∗2, b
∗

2, c
∗

2;
2ω−1
2ω

) as a function of ω, the dashed curve corresponds to 4κ = 0.2758
and the solid curve corresponds to 4κ = 0.5767. All quantities a∗2, b

∗

2, c
∗

2, ω, κ are dimensionless.
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Figures 3 and 4 show the appearance of bound states for θ > π/4 (attractive potential). The
energy of the ground state (ω0) is finite; for κ = −1/20, ω0 = 5.10−4 and for κ = −3/2, ω0 = 0.52.
As in Ref. [8] for ordinary quantum mechanics, there are many almost identical, excited states
with ω ≃ 0 (accumulation point). In Fig. 4, we can see the energy of the first excited state.
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Ω

0.05

0.1

0.15

0.2

h

Figure 2: h ≡ F (a∗2, b
∗

2, c
∗

2;
2ω−1
2ω

) as a function of ω, for κ = 0. All quantities a∗2, b
∗

2, c
∗

2, ω, κ are
dimensionless.
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-0.00005
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0.0001

0.00015

0.0002
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h

Figure 3: h ≡ F (a∗2, b
∗

2, c
∗

2;
2ω−1
2ω

) as a function of ω, for 4κ = −1/5. All quantities a∗2, b
∗

2, c
∗

2, ω, κ
are dimensionless.

For the sake of completeness, we consider now the case where θ > π
4
(ν =

√
4κ is now

imaginary) and a sufficiently small deformation parameter β such that ω = −βME ≪ 1. The
quantization condition (35) yields the following expression for the energy levels [1]:

En =
−~

2

M(~
√
2β)2

exp

{
2

ν2

[
ϕ− (n+

1

2
)π

]}
, (36)

ν2 =
√
−4κ, ϕ = arg

[
Γ(iν2)

Γ(1 + iν2
2
)Γ( iν2

2
)

]

as one has

|En| ≪
1

Mβ
n = 0, 1, 2, ... .
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Figure 4: h ≡ F (a∗2, b
∗

2, c
∗

2;
2ω−1
2ω

) as a function of ω, for 4κ = −6. All quantities a∗2, b
∗

2, c
∗

2, ω, κ are
dimensionless.

This expression is similar to what was obtained in Ref. [8], in which a cutoff a is introduced
by hand to regularize the interaction at short distances. In the above equation, the minimal
length (∆R)min = ~

√
2β plays the same role as a. The author interpreted the extra parameter

a as characterizing the radius of the string. We argue here that this elementary length can be
associated in this problem considered with the finite size of the cosmic string.

4 Summary and conclusion

The problem of the N dimensional singular inverse square potential has been solved exactly for
all values of the orbital momentum quantum number in the framework of quantum mechanics
with a minimal length. In the momentum representation, the wave function is a Heun function
for any dimension N , and reduces to a hypergeometric function in some special cases. This result
generalize that of Ref. [1]. As an application, we have considered a dipole in a cosmic string
background. This system is described by a two-dimensional 1/R2 potential in non relativistic
quantum theory, where the coupling constant depends on the angle between the string and the
dipole moment (θ). We have given the eigenfunctions of the Hamiltonian in the presence of a
minimal length, and the corresponding bound states equation. We find that the cosmic string
cannot bind the dipole for θ ≤ π

4
. This result is in contrast with that of Ref. [9]. In the case

where θ > π
4
we found that there exist many bound states and the energy spectrum is bounded

from below. We gave an expression for the energy levels of bound states in the limit β, β ′ ≪ 1.
Our results agree with what was obtained in Ref. [8], where the same problem is solved using
the standard regularization technique by a cutoff (a) at short distances. The minimal length
appears to be a natural regulator and plays the same role as a. We argue with the author of Ref.
[8] that this elementary length should be viewed as characterizing the finite radius of the cosmic
string.
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H. Fanchiotti, and C. A. Garćı, Phys. Rev. Lett. 85, 1590 (2000); S. A. Coon and B. R.
Holstein, Am. J. Phys. 70, 513 (2002); H.-W. Hammer and B. G. Swingle, Anal. Phys, 321,
306 (2006).

[32] Milton Abramowitz and Irene A. Stegum, Handbook of Mathematical Functions With For-
mulas, Graphs, and Mathematical Tables; Fifth Printing (U. S. Government Printing Office,
Washington D. C., 1966), pp. 556-565.

[33] S. Benczik et al, Phys. Rev. D 66, 026003 (2002), and references therein.

[34] A. Ronveaux, Heun’s Differential Equations. Oxford, England : Oxford University Press
(1995).

[35] C. Snow, Hypergeometric and Legendre Functions With Applications to Integral Equations
of Potential Theory, National Bureau of Standards Applied Mathematics Series (U. S. Gov-
ernment Printing Office, Washington D. C. 1952), Vol. 19, pp. 87-101.

12


	1 Introduction
	2 N dimensional 1/R2 potential in quantum mechanics with a generalized uncertainty relation
	3 Dipole dynamics in a cosmic string background
	4 Summary and conclusion

