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Template-stripped gold surfaces with 0.4 nm rms roughness
suitable for force measurements. Application to the Casimir force
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Abstract

Using a template-stripping method, macroscopic gold surfaces with
root-mean-square (rms) roughness ≤0.4 nm have been prepared, making
them useful for studies of surface interactions in the nanometer range.
The utility of such substrates is demonstrated by measurements of the
Casimir force at surface separations between 20 and 100 nm, resulting in
good agreement with theory. The significance and quantification of this
agreement is addressed, as well as some methodological aspects regarding
the measurement of the Casimir force with high accuracy.

1 Introduction

More than 50 years ago, Casimir predicted that two parallel conducting plates
attract each other in vacuum [1]. The attraction is the result of a modifica-
tion of the electromagnetic modes between the plates caused by the conducting
boundaries. The magnitude of this force per unit area between parallel plates,
at separation d, is:

F (d)

A
= − π2h̄c

240d4
(1)

Despite its implications in areas as diverse as cosmology, Rydberg atom spec-
troscopy, particle physics, and quantum field theory (see [2, 3] for reviews),
quantitative experimental verification did not appear until very recently, when
Lamoreaux investigated this force in the range 0.6-6 µm using a torsion pen-
dulum [4], and Mohideen and Roy used an atomic force microscope (AFM) for
studies in the 0.1-0.6 µm regime [5, 6]. The agreement with theory was claimed
to be 5% and 1% in these experiments, respectively, but surface roughness,
the use of multi-layer structures, and uncertainty regarding the absolute sur-
face separation complicate the analysis in both cases. The experimental setups
in these experiments were sphere-flat configurations (which is mathematically
equivalent to the crossed-cylinder geometry used in this study). For these cases,
the proximity force theorem [7] (or “Derjaguin approximation” [8]) can be used
to transform the result for parallel flats, yielding instead for a sphere and a flat
(or two crossed cylinders):

F (D) = −π3Rh̄c

360D3
(2)
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where D is the closest separation between the bodies, and R is the radius of the
sphere for the sphere-flat geometry, whereas for crossed cylinders R =

√
R1R2,

where R1 and R2 are the radii of the cylinders. The Casimir result holds for two
smooth and perfectly conducting bodies interacting in vacuum at zero temper-
ature, and considerable effort has been devoted to the derivation of corrections
to Eq. (2) for non-ideal experimental conditions.

The correction for finite temperature has different functional forms depend-
ing on the value of the parameter t = kBTD/h̄c. For the temperatures and
separations considered here, t <

∼
0.01, which is in the low temperature regime

[9, 10]. The relative magnitude of this correction is less than 10−4 in the range
20-100 nm, and is apparently of little importance.

The deviations from the Casimir result due to finite conductivity have been
estimated using a plasma model of the metal with dielectric function ε(ω) =
1− ω2

p/ω
, where ωp is the bulk plasma frequency. The correction has the form

of a series expansion in terms of λp/D [10, 4, 11], and has been determined
at least to the fourth order [12]. At small separations, where the wavelengths
of the lowest possible intersurface modes approach the plasma wavelength, the
correction for finite conductivity based on the plasma model is no longer valid.
Lamoreaux [13] calculated the interaction with Lifshitz teory [14] instead, using
spectroscopic data. This avoids using the plasma model conductivity correction,
but instead introduces the difficulty of determining the frequency dependence
of the permittivity of the metal over a wide frequency range. In this report,
where the separation range is < ωp, a similar method is used.

In the roughness correction by Klimchitskaya [15], the corrugation amplitude
Ar is chosen such that the deviation of the surface shape from the ideally smooth
is described by z = Arfr(x, y), where max |fr(x, y)| = 1. Thus, Ar should be
taken as half the maximum peak-to-trough roughness over the surface, and
assuming a random roughness distribution, the resulting correction is to second
order:

FR (D) = F (D)

(

1 + 6

(

Ar

D

)2
)

(3)

Again, higher order contributions have been calculated for some experimental
conditions [16].

For further investigations of the Casimir force and related phenomena, im-
provements not only of the corrections, but also of the experimental procedures
are required to obtain accurate results. This report describes the implemen-
tation of a surface preparation procedure resulting in macroscopic metal sur-
faces with arbitrary thickness, whose roughness is about one order of magnitude
smaller than reported in previous experiments. The applicability of such sur-
faces to force measurements is demonstrated by measurements of the Casimir
force at separations down to 20 nm.
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2 Numerical procedure

The interaction between the metal surfaces were calculated as follows: For two
gold plates with dielectric function ε1, covered with hydrocarbon layers (ε2, the
purpose of these are explained further down) of thickness a, interacting across
air (for which we assume ε3 = 1), the free energy of interaction per area at a
separation d is given by [17, 18]:

F (d, T ) =
kBT

8πd2

∞
∑

n=0

′I(ξn, d), ξn =
2πnkBT

h̄
(4)

where the prime on the summation means that the term n = 0 should be halved.
The separation d is taken to be zero where the hydrocarbon layers contact each
other, see Figure 1. Further,

I(ξn, d) =
(

2ξnd
c

)2
∫

∞

1

{

ln
(

1−
(

∆31

)2

exp
(

− 2pξnd
c

))

+ ln
(

1− (∆31)
2
exp

(

− 2pξnd
c

))}

pdp

(5)

where

∆31 =
∆32 +∆21 exp

(

− 2ξnas2
c

)

1 + ∆32∆21 exp
(

− 2ξnas2
c

)

(similarly for ∆31). For any two adjacent layers i and j

∆ij =
sjεi − pεj
sjεi + pεj

, ∆ij =
sj − p

sj + p
, sj =

√

p2 − 1 + εj

where εi = εi(iξ). The dielectric function has a real and an imaginary compo-
nent, ε(ω) = ε′(ω) + iε′′(ω). For a given frequency ε′ + iε′′ = n2 − k2 + i2nk,
but only the imaginary part of the dielectric function is required to calculate
ε(iξ) along the imaginary axis, using the Kramers-Kronig relationship:

ε(iξ) = 1 +
2

π

∫

∞

0

xε′′(x)

x2 + ξ2
dx (6)

Tabulated spectroscopic data (n and k) for gold [19] was used to calculate ε(iξ)
using (6) for each frequency ξn. In the low-frequency regime, the dielectric
function was extrapolated using a Drude model:

ε(iξ) = 1 +
ω2
p

(ξ2 + γξ)
(7)
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The plasma frequency ωp = 1.4 ×1016 and the relaxation parameter γ = 5.3
×1013 were obtained as described in [20]. The optical properties of the hydro-
carbon layer were modelled with a single oscillator [17]:

ε(iξ) = 1 +
(n2 − 1)

1 + (ξ/ωUV)
(8)

where n = 1.5 and ωUV = 3.0 × 1015 for a solid hydrocarbon [21]. Beyond
the plasma frequency (ω2

p = Ne2/ε0me) the plasma model was used. The
total interaction does not depend critically on the hydrocarbon layer, and more
elaborate models did not produce significantly different results.

For gold and hydrocarbon, ε(iξ) was calculated from 1014 to 1019 rad/s, by
integration of (6) between 1012 to 1021 rad/s for each frequency ξ. The integral
(5) was then evaluated for p between 1 and 104, and the summation in (4)
continued until doubling the number of terms resulted in a change of less than
0.01%.

To fit the calculated interaction to the measured data the function

ρ =
(

Fexp(d+ δ)− Fcalc(d)−
α

d

)2

(9)

was minimized with respect to δ and α. The first term on the right hand side
is the measured force, where the parameter δ is the deformation of the surfaces
along the symmetry axis, and is used to obtain the true surface separation.
The second term is the calculated interaction as described above, corrected for
surface roughness to the second order. The last term is the electrostatic force
between the surfaces caused by residual potential differences.

3 Experimental procedure

The gold surfaces were prepared by a template-stripping method adapted from
Wagner [22]. Thin (10-15 µm) freshly cleaved mica sheets were cut in 1 ×
1 cm2 pieces using a hot platinum wire, and a 200 nm gold layer was deposited
onto the mica in an ultra-high vacuum evaporator at a rate of 0.5 nm/s, with
the evaporation pressure typically at 3 × 10−8 Torr (considerably thicker gold
layers can be prepared in the same manner with no differences in subsequent
preparation steps, the roughness of the final gold surface remains the same).
The gold-coated mica pieces were glued (Epo-Tek 301-2, Epoxy Technology)
gold-side down onto cylindrical silica discs (R = 10 mm). The day before use,
the discs were immersed in tetrahydrofurane until the mica sheet came loose (a
few minutes). After drying in a gentle N2 flow, 50 µm gold wires were attached
to the bare gold using a gold spring clip, whereupon the surfaces were immersed
into a 1 mM solution of hexadecanethiol (Fluka, 95%) in ethanol, and incubated
overnight. The hexadecanethiol self-assembles into a close-packed crystalline
monolayer, with the hydrocarbon chains facing outwards and the thiol covalently
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attached to the gold substrate [23]. This layer prevents contaminants from the
laboratory atmosphere to adsorb onto the surface [24], and so serves to keep
the surface well-defined, which is necessary for estimating surface deformation
in the force measurements. It also prevents cold welding of clean gold layers in
contact, which would damage the surfaces upon separation. The thickness of
each thiolate layer is approximately 2.1 nm [25]. After removal from the thiol
solution, the samples were sonicated in ethanol to remove physisorbed thiols.
The surfaces were then mounted in a crossed-cylinder configuration in the force
measuring device, and the wires from the two surfaces were connected with a
gold clip, providing an all-gold conducting path between the surfaces (in such
a way that the movement of one surface is not transmitted to the other surface
through the wire).

The surface roughness was measured with an AFM (Nanoscope III, Digital
Instruments) in tapping mode. The roughness parameters are as measured over
1× 1 µm2, and evaluated using the software supplied with the instrument.

The contact angles with water were determined by slowly expanding a droplet
on a flat template-stripped hydrocarbon covered surface, and determining the
angle formed between the water droplet and the substrate with a microscope
goniometer (Rame-Hart NRL 100).

The force measurement device (Figure 2) works in a manner similar to the
AFM, but is designed for measurements between macroscopic surfaces [26]. One
surface is mounted onto a piezoelectric tube, whose position can be adjusted
with a motorised translation stage to within ± 50 nm. A linearly variable dis-
placement transducer (LVDT) is mounted in parallel with the piezo to measure
the tube expansion, in order to eliminate piezotube hysteresis in the subsequent
data analysis. The other surface is mounted onto a piezoelectric bimorph de-
flection sensor [27], acting as a single cantilever spring, and the charge produced
by the bimorph upon deflection is detected with an electrometer amplifier. A
force-distance profile is acquired by moving the surfaces towards each other at a
constant rate from a separation < 3 µm, using the piezotube. When the surfaces
contact each other, the surfaces are moved a further 200-300 nm together while
being in contact (and the expansion of the piezotube is directly transmitted to
the bimorph), before they are separated again. The average approach rate was
approximately 80 nm/s. The distance resolution was ∼ 0.1 nm, and the force
resolution ∼ 10 nN. Data is presented as equivalent free energy of interaction,
i.e. force normalised with 2π×radius (F/2πR); the normalised force resolution
is ∼ 0.1 µN/m (or µJ/m2). The force profiles were averaged by arranging the
force-distance data pairs from five individual approaches into a single column,
sorting the data by distance order and calculating a running average. All ex-
periments were performed in air at 25 ± 1 ◦C, and the relative humidity during
the experiments was ≤ 60%. A set of external caliper gauges with a precision
of ±0.05 mm were used to determine the radii of the surfaces after the exper-
iments. The relatively stiff mica templates used to fix the low viscosity glue
in the preparation step, ensure that the deviations of the local radii from the
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macroscopic radii are small. The studied separation range was determined by
the force measurement device: the force resolution limit approaches the mag-
nitude of the calculated result at separations beyond 100 nm, and at about 20
nm, the gradient of the force is comparable to the stiffness of the measuring
spring, and the surfaces “jump” into contact.

4 Results

Surface preparation

AFM investigation of the template-stripped gold surfaces reveal peak-to-trough
roughness of 3-4 nm, with corresponding root-mean-square (rms) roughness in
the 0.3-0.4 nm range (see Figure 3). A significant contribution to the peak-to-
trough value comes from a sparse population of pinholes in the layer, probably
resulting from insufficient annealing or heterogeneous growth of the gold layer
during the initial stages of the evaporation. Comparing the results with those of
Wagner [22], it appears that annealing the films after evaporation might yield
a further reduction of the roughness. Compared to the 3 nm rms roughness
amplitude reported by Roy in a recent report using a smooth metal coating [6],
the template-stripping method yields a reduction of the roughness with almost
one order of magnitude. With this roughness amplitude, however, the second
order roughness correction is still ∼ 20% at 20 nm, and the calculated Lifshitz
result must be corrected accordingly.

The contact angles with water after adsorption of the thiolates was 110±2◦,
indicating that the surfaces expose a dense hydrocarbon layer.

Force measurements

A force-distance profile for a single approach is shown in Figure 4. There ap-
pears to be no significant electrostatic interaction at large separations, which is
also confirmed by the result of the fitting procedure (see further down). How-
ever, the used method provides only indirect determination of the separation
between the surfaces, and the distance scale has to be corrected for deforma-
tion of the surfaces caused by attractive forces when they are in contact. The
relatively soft glue used to support the gold layer causes the surfaces to deform
substantially, but the layered structure of the surface makes direct application
of continuum theories for surface deformation questionable [28]. The central
displacement δ, i.e. the total compression of the two surfaces along the symme-
try axis has been calculated using finite element analysis for the silica-glue-gold
system under consideration, and was found to be 18-20 nm for surfaces with the
glue thicknesses used here [29]. This implies that the measured force profiles
should be shifted 18-20 nm towards shorter separations.
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Figure 5 shows two force profiles calculated as averages of five different ap-
proaches in two independent experiments. Fitting the averaged data to the Lif-
shitz result using (9) yields a total compression δ of 9 and 12 nm, respectively,
in moderate agreement with the numerical result. However, the calculated value
of the compression corresponds to the contact of ideally smooth surfaces, while
the finite roughness of the real surfaces reduces the adhesion (and the central
displacement), and the calculated value must be used as an upper bound to the
actual central displacement. Taking this into consideration, the deviations are
perfectly reasonable.

The parameter α measuring the electrostatic contribution to the force is
< 1.3×10−23 Nm for both data sets, which results in an electrostatic force of the
order of the instrument resolution at the shortest separation, and it is concluded
that this contribution to the total interaction can be ignored (replacing the 1/d
term with a 1/d2 term, taking patch charges into account, does not improve the
fit).

The absence of charges on the dielectric hydrocarbon surface might be sur-
prising, but is probably a result of the natural humidity in the air surrounding
the surfaces. At the relative humidities (RH) where the experiments were per-
formed (≤ 60%), the amount of water adsorbed from the atmosphere onto the
non-polar hydrocarbon layers is small, however. For similar surfaces the water
coverage at 100% RH has been determined to 0.8 monolayers [30]. For solid
polyethylene with higher affinity to water (contact angle θ = 88◦), water lay-
ers of the order of 0.1 nm at 60% RH have been reported [31], while a surface
conductivity study arrived at a 3 monolayer water thickness at 100% RH for
a surface with θ = 104◦ [32]. Thus, assuming a 0.1 nm thick water layer on
the surfaces appears to be a pessimistic estimate, and the effect on the interac-
tion of such a layer was calculated using an oscillator model for water, where a
Debye relaxation term in the microwave region is added to damped harmonic
oscillators in the IR (5 terms) and UV (6 terms) regions, with parameters as
described by Parsegian [33] and Roth [34]:

ε(iξ) = 1 +
f

1 + gξ
+
∑

j

fj
ω2

j + ξ2 + gjξ
(10)

For equivalent separations between the solid surfaces, the effect of such a water
layer corresponds to an increase in the calculated interaction of ≈ 1% at 20 nm.
Considering the assumption of a rather thick water layer, the error introduced
by neglecting this in the calculations is therefore concluded to be small.

After fitting the data, the total rms force deviation is < 1% of the force at 20
nm. The small differences between the two experimental data sets in Figure 5
after fitting indicate that the precision (repeatability) in the measurements is
good, in fact as good as the agreement with the calculated interaction (the
accuracy), using the same measure as above.
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5 Discussion

The precision of the measurement

Although the rms deviation between the experimental and theoretical results is
<1% at the shortest separation, it appears that this result cannot – for several
reasons – be taken as confirmation of the theory at the same level of agreement.
First, the Lifshitz calculations based on optical data is insecure in that the
optical data is incomplete, and extrapolations have to be made; the potential
errors due to the choice of optical models in the extrapolated regimes (and the
parameters used to describe them) have been reported recently [20, 35], and to
ensure that correct data is used, spectroscopic data should be collected for the
very surfaces that are used in the force experiments.

Further, from the series of reports by Mohideen and co-workers [5, 36, 12],
it seems that the relative rms error at the shortest separation is too blunt a
measure of the agreement between theory and experiment: the first analysis of
their experiment in the range 100-900 nm used a method where the Casimir
force corrections to second order for conductivity, roughness and for the finite
temperature were multiplied together, resulting in an rms deviation (as calcu-
lated over the whole interaction range) corresponding to 1% of the force at the
shortest separation [5]. This analysis was criticized by Lamoreaux [37], claiming
that the agreement must be coincidental, since the corrections for conductiv-
ity and roughness were not sufficiently detailed, and that the potential error
caused by this might be greater than 50%. Subsequently, a different theory,
including the roughness and conductivity corrections to fourth order (and some
“cross-terms” as well), and using a more elaborate quantitative description of
the surface roughness, was used to produce a similar 1% relative precision at
the shortest separation for the same data [12]. Thus, since it is emphasized
in [5, 36, 12] that no adjustable parameters were used, it seems that a 1% rms
agreement at the shortest separation allows for erroneous models to fit the data,
and should perhaps be considered an inappropriate criterion for agreement be-
tween theory and experiment.

One reason for this is that the rms error calculated as σ =
√
∑

(Fexp − Fcalc)2/N
is unsuitable for relative error estimates for non-linear functions with wide vari-
ations in magnitude; even though the relative error in the measurement can
amount to 100% or more at large separations where the magnitude of the mea-
sured force approaches the resolution of the instrument, the average of those
will be a small absolute error when measured relative to the magnitude of the
force at small separations. Averaging further into the region of low magnitude
will continually decrease the rms error. For the data presented in Figure 5, the
rms error decreases if the spearation range used for the calculation is increased,
as is clear from Figure 6. The rms deviation relative to the force at the shortest
separation is 0.48% if the deviation is computed from 20 to 100 nm, decreasing
to 0.36% if the rms error summation is continued to 300 nm instead; indeed a
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meaningless measure of the accuracy. At approximately 100 nm, the calculated
force is of the order of the resolution of the instrument, and beyond this point
the accumulated rms error decreases monotonically, even though the relative er-
ror in the measurement is steadily increasing, see Figure 7. For a single figure to
measure the deviation between theory and experiment, the error at a particular
separation is probably better weighted with the magnitude of the force, and the
averaging certainly should not continue beyond the point where the magnitude
of the calculated interaction approaches the noise level. The rms figures pro-
vided in [12] show a similar trend; for deviations measured over 30, 100 and 223
data points (corresponding to separations 80-200, 80-460 and 80-910 nm) the
rms error is 1.6, 1.5 and 1.4 pN, respectively.

Whenever the separation between the surfaces is not measured directly (and
with high accuracy), the uncertainty in the location of the measured curve along
the separation scale will always be a source of error. In the experiments pre-
sented here, the deformation of the surfaces is the only remaining fit parameter
of significance, but it is not possible to establish with certainty that the central
displacement δ obtained through the fit procedure is correct, which diminishes
the strength of the measurement as a test of the Casimir force, and also precludes
a quantitative assessment of the agreement between theory and experiment.

To determine the merit of the corrections to the Casimir force, a precise
determination of the separation is essential; the corrections for conductivity
and roughness are both expansions in 1/d, increasing their effect at shorter
separations. If there is uncertainty in the separation, the error caused by using
the wrong theory is easily obscured by a shift along the separation axis, which
corrects for the deviations at small separations where the errors are greatest,
while making little difference at larger separations where the force profile is much
flatter. If, using the data in Figure 5, the roughness correction is ignored in the
calculated force profile, the total rms deviation at the smallest separation is
0.49% for the rms calculated in the range 20-100 nm, provided the experimental
data is shifted 3.1 nm along the separation axis. Without shifting the curve,
the rms error can be kept <1% if averaging is continued to 400 nm. Besides,
the data in Figure 5 can be shifted 0.5 nm in either direction, still keeping the
rms error <1% for averages between 20 and 100 nm.

The ambiguity due to the fact that the rms error is continuously decreasing as
it is calculated over larger separations, implies that the relative rms error at the
shortest separation is an unsuitable measure of the agreement between theory
and experiment, and the 1% level, in particular, is too broad to discriminate
the second order roughness correction from no correction at all, even though
the magnitude of the forces differ with as much as 20%.

In a similar fashion, the Au/Pd layers covering the Al surfaces used in [5, 6,
12] were ignored in the analysis, but could be accomodated as additional layers
with effective permittivity ε ≈ 1.2 without changing the rms error, provided all
separations are increased 3 nm [12]. Incidentally, the plasma wavelength used
in [5, 36, 12], λp = 100 nm, was taken from [19], which gives “∼ 15 eV” as the
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plasmon energy, corresponding to λp ≈ 83 nm. Already this difference causes
a >3% deviation in the conductivity correction used in [36], where at the same
time it is mentioned that “Small changes in λp will not significantly modify σ.”,
which appears to confirm that σ is not a very good measure of the accuracy.

The methodological improvement

The principal methodological improvement in this report is the preparation of
metal surfaces with reduced surface roughness, though other problems common
to this and the experiments discussed hitherto remain: the unknown absolute
surface separation, the effect of additional layers, the determination of the per-
mittivity (or finite conductivity correction) of the metals, and the presence of
other interactions (principally electrostatic contributions). The suggested pro-
cedure does not avoid these problems, but the two first points deserve some
attention.

The use of macroscopic surfaces improves accuracy, since the magnitude of
the involved forces are greater, but instead entails enhanced surface deformation
problems. Any two bodies in contact deform to an extent determined by a
balance between the reduction in surface energy and the elastic strain energy
caused by the deformation; for the gold-glue-silica system the deformation at
surface contact (with zero applied external load) was calculated to be 18-20
nm. If the two crossed cylinders used in the experiments were solid gold (all
other things being equal), the calculated deformation would have been 7 nm (see
the Appendix for details). Klimchitskaya et al. mention that smoother metal
coatings and surfaces with larger radii can be used to improve the precision of
the measurements [12], but this will inevitably lead to increased problems with
surface deformation. It is a mistake to assume that this is a problem limited
to the use of macroscopic surfaces only, but it ought to be a matter of concern
also in the analysis of past AFM experiments [5, 6, 12]. If the surfaces are
smooth and the interfacial energy of the contact is that of two hydrocarbon
surfaces (which is about as low as is practically achievable in air or vacuum),
a 200 µm polystyrene sphere (used in [5, 6]) interacting with a silica plate is
compressed ∼10 nm upon contact, under zero applied load (see the Appendix
for details). Now, roughness decreases this figure since the effective contact area
decreases, but on the other hand, the interfacial energy of a clean metal-metal
contact might be two orders of magnitude higher than that for two hydrocarbon
surfaces. These issues have to be addressed if a proper estimate of the separation
uncertainty is to be established.

The hydrocarbon layers described in this report were used both to keep
the surfaces well-defined – which is essential for deformation estimation – and
to avoid cold welding of the gold layers in contact. Thus, besides producing
surfaces with low roughness, the proposed preparation procedure has the added
advantages that the surface energy is well defined (and small) by use of the
hydrocarbon layer, and that the theoretical treatment of this layer is fairly
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straightforward.

6 Conclusion

In conclusion, a template-stripping method was used to prepare smooth gold
surfaces, with ≤0.4 nm rms roughness. The roughness is independent of the
thickness of the gold layer, and is about one order of magnitude smaller than
surfaces used in previous experiments. These surfaces (covered with a hex-
adecanethiolate overlayer) were used to measure the Casimir force in air at
separations between 20 and 100 nm, a range that has previously been inacces-
sible due to the roughness of the samples. The results were found to be in good
agreement with the Lifshitz prediction for the interaction, once the deformabil-
ity of the surfaces had been taken into account. The experimental uncertainties,
above all the deformation, makes a quantitative assessment of this agreement
difficult, however. Using the obtained data, it is also demonstrated that the
rms error is a very ambiguous quantitative measure of the agreement between
theory and experiment, and in particular that a 1% level is not cogent enough
to discriminate the effect of corrections to the Casimir force.
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Surface deformation

To calculate the deformation of elastic bodies in contact the models by Johnson
et al. [28] (JKR) and Derjaguin et al. [38] (DMT) are the most commonly
used. To discriminate the range of applicability of either model, a dimensionless
parameter, µ, is used [39]:

µ =

(

Rγ2

K2D3
e

)1/3

(11)

where R is the radius of interaction as described in the Introduction, γ is the
interfacial energy of the contact, K = [(1 − ν2

1
)/E1 + (1 − ν2

2
)/E2]

−1 contains
two materials constants, the Young’s modulus E, and the Poisson ratio ν, for
each material. De is the equilibrium separation between the surfaces in contact,
which is difficult to establish, but a few Å is a typical estimate. For µ < 0.1, that
is for small and/or hard particles, the DMT model is appropriate, while the JKR
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applies where µ > 5, and the interacting bodies are large and/or soft [40]. Most
macroscopic surfaces fall into the latter category, and so does the polystyrene
spheres used in some recent AFM experiments [5, 6]. For polystyrene spheres
with R = 200 µm, Young’s modulus 3 × 109 Pa and Poisson’s ratio 0.33, in-
teracting with a silica plate with E = 8 × 1010 Pa and ν = 0.42, and further
assuming an equilibrium surface separation of a few, say, 3 Å, and the interfacial
energy of a hydrocarbon-hydrocarbon contact, 0.05 J/m2, which is as low as is
realistically obtainable, the parameter µ ≈ 12, which is in the JKR regime.

For the present purposes, the JKR result of most interest is the central dis-
placement, δ, i.e. the deformation along the symmetry axis under the externally
applied load F (where F > 0 for compression):

δ =
a2

R
−
(

2πγa

K

)1/2

(12)

where a is the radius of the contact region, given by

a3 =
R

K

(

F + 3πγR+
[

6πγRF + (3πγR)
2
]1/2

)

(13)

from which it is clear that the surfaces deform even without externally applied
load. The pull-off force, the negative load that has to be applied to separate
the surfaces from adhesive contact is:

Fa = −3

2
πγR (14)

which can be used to determine the interfacial energy of two interacting bodies.
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Figure 1: Schematic of the calculated system. The gold layers are assumed semi-
infinite, and the thickness a of each hydrocarbon (HC) layer is 2.1 nm. The zero
separation (d = 0) refers to the point of contact of the two hydrocarbon layers.
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Figure 2: Simplified view of the force measuring device. The position of the up-
per surface is controlled with a motorized stage (not in figure) and a piezoelectric
tube, while the response of the lower is detected with the bimorph transducer,
acting as the measuring spring. The LVDT is used to monitor the non-linear
expansion of the piezotube. The radius of curvature of the cylindrical surfaces
is 10 mm.
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Figure 3: Atomic force microscope image showing the structure of the template-
stripped gold surfaces. The peak-to-trough roughness over 1× 1 µm2 areas are
3-4 nm, the corresponding rms roughnesses 0.3-0.4 nm.
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Figure 4: A Force-distance profile for a single approach, the displayed interval
comprises approximately 7000 data points.
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Figure 5: The solid curves under the arrow represent two independent experi-
ments: each of them is an average of 5 approaches. To compensate for surface
deformation, they are shifted towards shorter separations when fitted with the
calculated interaction for the gold-hydrocarbon-air system (•), where they co-
incide. The deformations are 9 and 12 nm, respectively, in fair agreement with
calculations (see text for details). The dashed line is the Casimir result, Eq.
(2).
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Figure 6: The accumulated rms error for one of the data sets in Figure 5. The
error is calculated over ranges from 20 nm to the separations indicated on the
abscissa. The rms error relative to the magnitude of the force at the shortest
separation (20 nm) is 1% for the rms error calculated between 10 and 33 nm,
decreasing to 0.36% if averaging is continued to 300 nm, even though the relative
measurement error increases steadily in this range, see Figure 7.
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Figure 7: The magnitude of the relative error for the data set used to calculate
the rms error in Figure 6.
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