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Entanglement and quantum computation with ions in thermal motion
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With bichromatic fields it is possible to deterministically
produce entangled states of trapped ions. In this paper we
present a unified analysis of this process for both weak and
strong fields, for slow and fast gates. Simple expressions for
the fidelity of creating maximally entangled states of two or
an arbitrary number of ions under non-ideal conditions are
derived and discussed.
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I. INTRODUCTION

Quantum computing relies on the ability to perform
a collection of unitary evolutions of a quantum system,
composed of a number of two-level systems (the qubits),
and it is a key result that a small set of so-called univer-
sal gates exists, which may form the basis for the entire
computation [1]. The development of proposals for phys-
ical implementation of quantum computing have followed
different routes, according to the various views one may
have on the quantum dynamical processes. (i): one may
view a gate operation on a single or on several qubits
as a controlled transition from the initial to the final
states, and one may implement it by a Hamiltonian, or
a sequence of Hamiltonians, that couple these states di-
rectly. (ii): one may consider Hamiltonians that couple
quite many states, but where unwanted operations are
dynamically suppressed by resonance conditions or by
’bang-bang’ Hamiltonians [2]. (iii): one may depart from
a more systematic analysis of the Lie algebra generated
(by commutation) from a given set of basic Hamiltonians;
If one has access to Hamiltonians H1 and H2 with vari-
able strength parameters κ1 and κ2, subsequent applica-
tion over short time intervals dt of κ1H1, κ2H2, −κ1H1

and −κ2H2, leads to the evolution operator (h̄ = 1)

eiκ2H2dteiκ1H1dte−iκ2H2dte−iκ1H1dt

= eκ1κ2[H1,H2]dt
2

+O(dt3), (1)

so that effectively the Hamiltonian i[H1, H2] is obtained.
As expressed by Lloyd [3]: ‘By going forward and backing
up a sufficiently small distance a large enough number
of times, it is possible to parallel park in a space only ε
longer than the length of the car’. IfH1 andH2 commute
with the commutator [H1, H2], the higher order terms
in dt vanish exactly and one may apply H1 and H2 for
arbitrarily large dt and ’make a round trip in the parking
lot and park in one single operation’.

The different proposals for quantum computing with
trapped ions can be roughly categorized according to
the lines above: In their original proposal [4], Cirac and
Zoller noted that lasers resonant with sideband excitation
of the trapped ions couple the ground and first vibra-
tional state conditioned on the internal state of the irra-
diated ion, and subsequent irradiation of a second ion can
couple its internal states conditioned on the vibrational
state. We have formulated a proposal for two-bit [5] and
multi-bit [6] gates in the ion trap, which makes use of
resonance conditions to couple certain states of the two-
particle system. In our proposal we apply bichromatic
light which selects certain virtually excited intermediate
states, and by choosing appropriate parameters we show
that the desired internal state dynamics of the ions may
be perfectly achieved, even if the vibrational degrees of
freedom, used to couple the ions, are not in their ground
state. Recently, Milburn [7] has proposed a realization
of a multi-bit quantum gate in the ion trap, which also
operates when the ions are vibrationally excited: Ad-
justing the phases of laser fields resonant with side band
transitions, one may couple internal state operators to
different quadrature components, e.g., position and mo-
mentum, X and P , of the oscillatory motion. In Ref. [7]
it is proposed to use the two Hamiltonians H1 = λ1JzP
and H2 = λ2JzX , expressed in terms of the collective
spin operators Jξ =

∑

k jξk (ξ = x, y, z), where the sum
is over the ions irradiated by the lasers, and where jξk is
the spin operator for the atom k, which may be defined
by the Pauli spin matrices jξk = σξk/2 (h̄ = 1). By al-
ternating application of the Hamiltonians H1 and H2 we
may obtain the exact propagator

eiH2τeiH1τe−iH2τe−iH1τ = e−iλ1λ2J
2
zτ

2

(2)

because the commutator of the oscillator position and
momentum is a number. The interaction contained in
J2
z between the ions has been established via the vibra-

tional degrees of freedom, but after the gate this motion
is returned to the initial state and is not in any way en-
tangled with the internal state dynamics. Milburn also
considers the possibility of coupling different individual
internal state operators successively to X and P, so that
the commutator term provides the product of such oper-
ators.
In this paper, we shall demonstrate that our bichro-

matic excitation scheme is in fact already a realization of
the proposal by Milburn, and that gate operation more
rapid than concluded in [5] is possible. We show that
our bichromatic scheme implements a propagator of the
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form e−iA(τ)J2
y which is analogous to the one obtained

by Milburn (2). In Ref. [6] it was shown that this propa-
gator can be used to prepare maximally entangled states
1√
2
(|gg...g〉+eiφ|ee...e〉) of any number of ions (N), where

the k’th letter denotes the internal state e or g of the
k’th ion. These maximally entangled states, which have
an interest in the their own right [8], are produced by

applying the unitary operator eiπ/2J
2
y to a string of ions

initially in the state |gg...g〉, and they may be produced
even without experimental access to individual ions in
the trap.
In this paper we focus on the preparation of maximally

entangled states. This is both of convenience for the the-
oretical presentation and to emphasize results which are
most easily verified experimentally. However, the proce-
dures described here also apply to quantum computation.
With two ions illuminated by laser light the bichromatic
scheme produces 1√

2
(|gg〉 − i|ee〉) and together with sin-

gle qubit rotation this evolution forms a universal set
of gates which may be used to constuct a quantum com-
puter. The control-not operation [1] for example may
be obtained by applying single ion operations on each ion
before and after the bichromatic pulse which creates the
state 1√

2
(|gg〉 − i|ee〉) from |gg〉.

In section II, we recall our proposal for a two-qubit
gate operation and we show that it is equivalent to the
proposal of Milburn, with a harmonic rather than a stro-
boscopic application of Hamiltonian coupling terms. In
experiments it may be difficult to fulfill the requirements
for the analysis of sec. II to be precise, and in section
III we address the fidelity with which certain entangled
states may be engineered when we take into account the
off-resonant couplings and the finite value of the Lamb-
Dicke parameter. In sec. IV we study the influence of the
environment on the system. We analyse the role of spec-
tator vibrational modes and energy exchange between the
ionic motion and thermal surroundings. A summary of
our results and a conclusion are presented in section V.

II. GATE OPERATION UNDER IDEAL

CONDITIONS

Ions in a linear trap interacting with a laser field of
frequency ω may be described by the Hamiltonian

H = H0 +Hint

H0 = ν(a†a+ 1/2) + ωeg

∑

i

σzi/2

Hint =
∑

i

Ωi

2
(σ+i e

i(ηi(a+a†)−ωt) + h.c.), (3)

where ν is the frequency of the vibration, a† and a are
the ladder operators of the quantized oscillator, weg is
the energy difference between the internal states e and
g, and Ωi is the resonant Rabi frequency of the i’th ion

in the laser field. The exponentials account for the po-
sition dependence of the laserfield, and the recoil of the
ions upon absorption of a photon. The positions of the
ions xi are replaced by ladder operators kxi = ηi(a+a†),
where the Lamb-Dicke parameter ηi represents the ra-
tio between the ionic excursions within the vibrational
ground state wavefunction and the wavelength of the ex-
citing radiation. In Eq. (3) we have assumed that the
laser is close to a sideband ω ≈ ωeg±ν for a single vibra-
tional mode and that we may neglect the contribution
from all other vibrational modes. We tune the lasers
close to the center-of-mass vibrational mode where all
ions participate equally in the vibration, so that the cou-
pling of the recoil to the vibration is identical for all ions,
i.e., ηi = η for all i. For simplicity we also assume the
same Rabi frequency for all ions participating in the gate
Ωi = Ω. In this section we will consider an ion trap op-
erating in the Lamb-Dicke limit, i.e. the ions are cooled
to a regime with vibrational numbers n ensuring that
(n + 1)η2 << 1, so that we may perform the expansion

eiη(a+a†) ≈ 1 + iη(a+ a†).

A. Weak field coupling

In our previous article [5] we assumed that two ions
in the string were both illuminated with two lasers of
opposite detunings ω − ωeg = ±δ. With this choice of
laser detunings the only energy conserving transitions are
from |ggn〉 to |een〉 and from |gen〉 to |egn〉, where n is
the quantum number for the relevant vibrational mode
of the trap, cf. Fig. 1. We considered the weak field
regime ηΩ << ν − δ, where only a negligible population
is transfered to the intermediate levels with vibrational
quantum numbers n±1. In this regime the effective Rabi
frequency Ω̃ for the transition from |ggn〉 to |een〉 may
be determined in second order perturbation theory

Ω̃ = 2
∑

m

〈een|Hint|m〉〈m|Hint|ggn〉
Em − (Eggn + ωm)

= − (Ωη)2

ν − δ
, (4)

where we have used the intermediate states |m〉=|egn±1〉
and |gen±1〉, and where ωm is the frequency of the laser

eg eg
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gen+1>

gen-1>
gen>
|

|
|
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|
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ω   

|

ν|een>

|

|

|
|

|
|
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egn> |gen>
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FIG. 1. Energy level diagram for two ions with quantized
vibrational motion illuminated with bichromatic light. The
only resonant transitions are from |ggn〉 to |een〉 (left) and
from |egn〉 to |gen〉 (right). Various transition paths involving
intermediate states with vibrational number n differing by
unity are identified.
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exciting the intermediate state |m〉. For the transition
|egn〉 to |gen〉 we get the same effective Rabi frequency.
The remarkable feature in Eq. (4) is that it contains no

dependence on the vibrational quantum number n. This
is due to interference between the paths shown in Fig. 1.
If we take a path where an intermediate state with vibra-
tional quantum number n+1 is excited, we have a factor
of n+1 appearing in the numerator (

√
n+ 1 from raising

and
√
n+ 1 from lowering the vibrational quantum num-

ber). In paths involving the vibrational state n − 1 we
obtain a factor of n. Due to the opposite detunings, the
denominators have opposite signs and the n dependence
disappears when the two terms are subtracted. The co-
herent evolution of the internal atomic state is thus in-
sensitive to the vibrational quantum numbers, and it may
be observed with ions in any superposition or mixture of
vibrational states. The coherent evolution may even be
seen if the vibrational quantum number n changes during
the gate due to heating [5].

B. General field coupling

We now consider the interaction without restricting the
parameters to a regime where no population is transfered
to states with different n. For this purpose it is conve-
nient to change to the interaction picture with respect to
H0. In the Lamb-Dicke limit with lasers detuned by ±δ
the Hamiltonian becomes

Hint = 2ΩJxcos δt−
√
2ηΩJy

×[x(cos(ν − δ)t+ cos(ν + δ)t)

+p(sin(ν − δ)t+ sin(ν + δ)t)], (5)

where we have introduced the dimensionless position and
momentum operators, x = 1√

2
(a+a†) and p = i√

2
(a†−a),

and the collective spin operators discussed above Eq. (2).
Choosing not too strong laser intensities Ω << δ and

tuning close to the sidebands ν− δ << δ we may neglect
the Jx term and the terms oscillating at frequency ν + δ
in Eq. (5), and our interaction is a special case of the
Hamiltonian

Hint = f(t)Jyx+ g(t)Jyp. (6)

The exact propagator for the Hamiltonian (6) may be
represented by the ansatz

U(t) = e−iA(t)J2
y e−iF (t)Jyxe−iG(t)Jyp, (7)

and the Schrödinger equation i d
dtU(t) = HintU(t) then

leads to the expressions

F (t) =

∫ t

0

f(t′)dt′

G(t) =

∫ t

0

g(t′)dt′

A(t) = −
∫ t

0

F (t′)g(t′)dt′. (8)

With f(t) = −
√
2ηΩcos(ν − δ)t and g(t) =

−
√
2ηΩ sin(ν − δ)t following from (5) we get

F (t) = −
√
2ηΩ

ν − δ
sin ((ν − δ)t)

G(t) = −
√
2ηΩ

ν − δ
[1− cos((ν − δ)t)]

A(t) = − η2Ω2

ν − δ

[

t− 1

2(ν − δ)
sin(2(ν − δ)t)

]

. (9)

In the xp phase space the operator U performs transla-
tions (x, p) → (x + JyG(t), p − JyF (t)) entangled with
the internal state of the ions.
Apart from a change of basis from Jz to Jy the in-

teraction considered by Milburn [7] may also be put in
this form, with f(t) and g(t) alternating between zero
and non-vanishing constants. Within the present for-
mulation, the trick in Ref. [7] is to use functions f(t)
and g(t) such that F (t) and G(t) both vanish after a
period τ . At this instant the vibrational motion is re-
turned to its original state and the propagator reduces

to U(τ) = e−iA(τ)J2
y , i.e., we are left with an internal

state evolution which is independent of the external vi-
brational state. This decoupling is possible because the
effective internal state transition is completed in the same
amount of time for all vibrational components and be-
cause the AC Stark shift of the atomic levels due to the
laser fields are independent of the value of n. In the weak
field case these properties are ensured by the interfering
coupling amplitude in Fig. 1, see detailed discussion in
Ref. [5]. In the general case it follow from the formal
structure of Eq. (7). According to (8) the acquired fac-
tor A(τ) is equal to the area swept by the line segment
between (G(t), 0) and (G(t),−F (t)), as shown in Fig. 2.
If (G(t),−F (t)) forms a closed path, A(t) is plus (minus)
the enclosed area if the path is traversed in the (counter)
clockwise direction. In the proposal by Milburn succes-
sive constant Hamiltonians proportional to x and p are
applied and the area enclosed by (G(t),−F (t)) is rect-
angular. In our proposal the area is a circle of radius
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FIG. 2. The paths traversed in phase space and the func-
tion A(t) in Milburns proposal (rectangular) and in our pro-
posal (circle).
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√
2JyηΩ/(ν − δ), as illustrated in Fig. 2.
With the propagator in Eq. (7) we may calculate the

time evolution of the system. Suppose that the ions are
initially in the internal ground state and an incoherent
mixture of vibrational state as described by the density
matrix ρtot =

∑

n Pn|g..gn〉〈g..gn|. The time evolution of
the internal state density operator ρ = Trn(ρ

tot) with any
number of ions N may be found from ρa1...aN ,b1..bN (t) =
∑

n Pn〈g..gn|U †(t)|b1..bN 〉〈a1..aN |U(t)|g..gn〉 (aj , bj = e
or g), where we have used

∑

n |n〉〈n| = 1 to remove one of
the summations over vibrational states. Here we list the
density matrix elements for the case of two ions N = 2:

ρgg,gg =
∑

n

Pn[3
8
+

1

2
e−

F (t)2+G(t)2

4

×Ln

(

F (t)2 +G(t)2

2

)

cos

(

A(t) +
1

2
F (t)G(t)

)

+
1

8
e−(F (t)2+G(t)2)Ln

(

2(F (t)2 +G(t)2)
)]

ρee,ee =
∑

n

Pn[3
8
− 1

2
e−

F (t)2+G(t)2

4

×Ln

(

F (t)2 +G(t)2

2

)

cos

(

A(t) +
1

2
F (t)G(t)

)

+
1

8
e−(F (t)2+G(t)2)Ln(2(F (t)2 +G(t)2))]

ρgg,ee =
∑

n

Pn[1
8
(1− e−(F (t)2+G(t)2)

×Ln(2(F (t)2 +G(t)2)))

− i

2
e−

F (t)2+G(t)2

4 Ln

(

F (t)2 +G(t)2

2

)

× sin

(

A(t) +
1

2
F (t)G(t)

)

], (10)

where Ln is the n’th order Laguerre polynomium.
These expressions can be evaluated in different

regimes. In the weak field regime, ηΩ << ν − δ, the
xp phase space trajectory is a very small circle, which is
traversed several times. F (t) and G(t) are negligible for
all times, and e−iF (t)Jyxe−iG(t)Jyp is approximately unity,
such that we have an internal state preparation which is
disentangled from the vibrational motion throughout the
gate. Since A(t) ≈ −η2Ω2t/(ν − δ) if (ν − δ)t >> 1 the
time evolution corresponds to the one obtained from an
effective Hamiltonian H = Ω̃J2

y , and Eq. (10) describes
simple Rabi oscillations between the states |gg〉 and |ee〉.
This is demonstrated in Fig. 3 (a) which shows the time
evolution described by Eq. (10). The curves show sinu-
soidal Rabi oscillation from |gg〉 to |ee〉 superimposed by
small oscillations due to the weak entanglement with the
vibrational motion.

Outside the weak field regime the internal state is
strongly entangled with the vibrational motion in the

0
0.2
0.4
0.6
0.8

1

0 1000 2000 3000 4000

νt

(a)

0
0.2
0.4
0.6
0.8

1

0 200 400 600

νt

(b)

FIG. 3. Time evolution of density matrix elements for two
ions calculated from Eq (10). (a) Weak field regime (b) Fast
gate. The first curve (counting from above at νt ≈ 1000
in (a) and νt ≈ 130 in (b)) represents ρgg,gg, the second is
the imaginary part of ρgg,ee, the third is ρee,ee, and the last
curve is the real part of ρgg,ee. The ions are initially in the
internal state |gg〉 and a thermal vibrational state with an
average of 2 vibrational quanta. In (a) the physical parame-
ters are δ = 0.9ν, η = 0.1, and Ω = 0.1ν. In (b) the physical
parameters are δ = 0.95ν, η = 0.1, and Ω = 0.177ν. The pa-
rameters in (b) are chosen such that a maximally entangled
state 1

√

2
(|gg〉 − i|ee〉) is formed at the time νt ≈ 250, where

the circular path in Fig. 2 has been traversed twice.

course of the gate. For successful gate operation we have
to ensure that we return to the initial vibrational state
at the end of the gate by choosing parameters such that
G(τ) = F (τ) = 0, corresponding to (ν − δ)τ = K2π,
where K is an integer. A maximally entangled state is
created if we adjust our parameters so that A(τ) = −π/2.
This is achieved if the parameters are chosen in accor-
dance with

ηΩ

ν − δ
=

1

2
√
K

, K = 1, 2, 3, ... . (11)

By choosing a low value of K such that an entangled
state is created after a few rounds in phase space we may
perform a faster gate than considered in the weak field
case. See Fig. 3 (b), where we have used K = 2, and
where a maximally entangled state 1√

2
(|gg〉 − i|ee〉) is

created at the time νt ≈ 250.
By combining the requirement (11) with the condition

(ν − δ)τ = K2π we may express the time for the state
preparation as

τ =
π

ηΩ

√
K. (12)

In order to avoid off-resonant excitations of the ions we
must require Ω2

ν2 << 1 and η2 must be much less than
unity to fulfill the Lamb-Dicke approximation (see sub-
sec. III A and III B). For a given trap and/or laser in-
tensity Eq. (12) sets a bound on the speed of the gate.
In tabel I we give some numerical examples for the time
of the gate for some typical experimental parameters.
The control-not operation which plays a central role
in quantum computation [1] may be created by a com-
bination of single particle rotations and a bichromatic
pulse with the duration described by Eq. (12). The single

4



TABLE I. The time required to create the maximally en-
tangled state 1

√

2
(|gg...g〉 − i|ee..e〉) with a Lamb-Dicke pa-

rameter η = 0.1 for various trapping frequencies (ν) and laser
intensities (Ω). The table shows the gate time if the entangled
state is prepared after a single round in phase space. If the
gate operation is accomplished after K rounds in phase space
the time should be multiplied by

√
K.

Ω
ν

ν
2π =500 KHz 1 MHz 10 MHz

0.05 200 µs 100µs 10 µs

0.10 100 µs 50 µs 5 µs

0.20 50 µs 25 µs 2.5 µs

particle operations may be performed much faster than
the two qubit gates, so the time required to perform a
control-not operation is also given by (12).

III. NON IDEAL CONDITIONS

In the previous section we used the Lamb-Dicke and
the rotating wave approximations to arrive at an exactly
solvable model. In this section we perform a more de-
tailed analysis of the validity of the approximations and
we estimate the effect of deviations from the ideal situa-
tion in an actual experiment. The general procedure in
the section, is to change to the interaction picture with
respect to the simple Hamiltonian (6) using the exact
propagator in Eq. (7), and to treat the small deviations
from the ideal situation by perturbation theory. The fig-
ure of merit for the performance of the gate is taken to be
the fidelity F of creation of the maximally entangled N -
particle state |Ψmax〉 = 1/

√
2(|gg..g〉− i|ee..e〉), which in

the ideal case is created at the time when A(τ) = −π/2,
if the ions are initially in the |gg..g〉 state [6], i. e.,

F = 〈Ψmax|ρint(τ)|Ψmax〉. (13)

A. Direct coupling

Going from Eq. (5) to Eq. (6) we neglected a term
Hd = 2ΩJx cos(δt). This term describes direct off res-
onant coupling of g and e without changes in the vi-
brational motion. For high laser power this term has a
detrimental effect on the fidelity, which we calculate be-
low.
Changing to the interaction picture, we may find the

propagator UI(t) from the Dyson series

UI(t) = 1− i

∫ t

0

dt′Hd,I(t
′)

−
∫ t

0

∫ t′

0

dt′dt′′Hd,I(t
′)Hd,I(t

′′) + . . . , (14)

where the interaction Hamiltonian is given by Hd,I(t) =
U †(t)Hd(t)U(t). Since Hd(t) is oscillating at a much
higher frequency than the propagator U(t), we may treat
U(t) as a constant during the integration and we obtain

UI(t) = 1− i
2Ω

δ
sin(δt)U †(t)JxU(t)

−Ω2

δ2
(1− cos(2δt))U †(t)J2

xU(t) + . . . . (15)

Near the endpoint, U(t) ≈ ei(π/2)J
2
y and we obtain the

fidelity

F ≈ 1− NΩ2

2δ2
(1− cos(2δτ)), (16)

where N is the number of ions participating in the gate.
We plot in Fig. 4 the product of the fidelity due to
the carrier (16) and the population of the EPR-state
1√
2
(|gg〉 − i|ee〉) expected from the time evolution in

Eq. (10). The result agrees well with the result of a
numerical integration of the Schrödinger equation with
the Hamiltonian (5).

0.8
0.82
0.84
0.86
0.88

0.9
0.92
0.94
0.96
0.98

1

230 235 240 245 250 255 260 265 270

νt

F

FIG. 4. Population of the EPR-state 1
√

2
(|gg〉 − i|ee〉) near

the optimum. The full line is obtained by a numerical in-
tegration of the Hamiltonian (5) and the dashed line is the
product of the expression in (16) and the expression for the
fidelity obtained from Eq. (10). The parameters are the same
as in Fig. 3 (b).

If the duration of the laser pulses can be controlled
very accurately in the experiment, so that one fulfills
both (11) and 2δτ = 2K ′π the effect of the direct cou-
pling vanishes. If one cannot perform such an accurate
control, the net effect of the direct coupling is to reduce

the average fidelity by NΩ2

2δ2 (=0.03 for the parameters of
Fig. 4).
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B. Lamb-Dicke approximation

In section II we used the Lamb-Dicke approximation

eiη(a+a†) ≈ 1 + iη(a + a†) to simplify our calculations.
Now we investigate the validity of this approximation.
In the weak field case, we can use the exact matrix

elements 〈n|eiη(a+a†)|n+ 1〉 = iη e−η2/2
√
n+1

L1
n(η

2), to obtain

the effective Rabi frequency between |ggn〉 and |een〉

Ω̃n = Ω̃e−η2

[

(

L1
n(η

2)
)2

n+ 1
−

(

L1
n−1(η

2)
)2

n

]

≈ Ω̃

[

1− η2(2n+ 1) + η4
(

5

4
n2 +

5

4
n+

1

2

)]

, (17)

where Ω̃ is given by Eq. (4), and where L1
n are the gen-

eralized Laguerre polynomials

Lα
n(x) =

n
∑

m=0

(−1)m







n+ α

n−m







xm

m!
. (18)

The effective Rabi frequency is no longer independent of
the vibrational quantum number n, and the internal state
becomes entangled with the vibrational motion, resulting
in a non-ideal performance of the gate [9].
To illustrate the effect of deviations from the Lamb-

Dicke approximation, we consider again the production
of an EPR-state 1√

2
(|gg〉 − i|ee〉). With an n-dependent

coupling strength the fidelity is

F =
1

2
+

1

2

∞
∑

n=0

Pn sin(Ω̃nt), (19)

where Pn is the initial population of the vibrational state
n. We show in Fig. 5 the evolution of the fidelity pre-
dicted by Eq. (19) and obtained by a direct integration
of the full Hamiltonian in Eq. (3). Due to the deviation
from the Lamb-Dicke approximation the effective Rabi
frequency is reduced, cf., Eq. (17), and the optimal gate
performance is achieved with a duration that is longer
than π/(2Ω̃). The spreading of the values of Ω̃n, causes
entanglement with the vibrational motion which reduces
the fidelity. With the parameters in Fig. 5 the maxi-
mally obtainable fidelity is 0.92 obtained after a pulse of
duration τ ≈ 1.9/Ω̃.
With more than two ions, the time evolution of the

system may be obtained by expanding the initial state
|gg...g〉 on eigenstates of the Jy operator:

|gg...g〉 = (−i)N

2N/2

N
∑

k=0

(−1)k

√

√

√

√

√

√







N

k






|My = N/2− k〉. (20)

In the Jy basis the propagator (7) is diagonal and in the
weak field regime (F (t), G(t) ≈ 0) with n dependent
coupling strengths we get the fidelity

0.5
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0.9
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F

~

FIG. 5. Evolution of the population of the EPR-state
1

√

2
(|gg〉 − i|ee〉) for a vibrational thermal state with an aver-

age of 5 vibrational quanta and η = 0.20. The dotted line is
the prediction from Eq. (19) and the solid line is the result of a
numerical integration of the Hamiltonian (3) with parameters
Ω = 0.02ν and δ = 0.9ν. The discrepancy between the two
curves at Ω̃t >∼ 2 is due to additional off-resonant couplings
which may be taken into account by multiplying the coupling
strength by 2ν

ν+δ
(dashed curve) [5,6].

F =
∞
∑

n=0

Pn

∣

∣

∣

∣

∣

∣

∣

1

2N

N
∑

k=0







N

k






ei(N/2−k)2(π/2−Ω̃nt)

∣

∣

∣

∣

∣

∣

∣

2

. (21)

In the limit of many ions (N >> 1) and near the opti-

mum (Ω̃nt ≈ π/2) we may approximate this expression
by assuming that k is a continuous variable and by replac-
ing the binominal coefficient by a Gaussian distribution
with the same width. In this limit the fidelity becomes

F =

∞
∑

n=0

Pn
1

√

1 + N(N−1)(π/2−Ω̃nt)2

4

. (22)

Expanding this expression to lowest order in η and ad-
justing the pulse duration to take into account the reduc-
tion in the coupling strength we find to lowest order in
η

F = 1− π2N(N − 1)

8
η4Var(n) (23)

at the optimum time

τopt =
π

2Ω̃
(1 + η2(2n̄+ 1)), (24)

where n̄ and Var(n) are the mean and variance of the
vibrational quantum number.
In Eq. (22) and (23) we have replaced a quantity N2

following from the Gaussian approximation to (21) by
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N(N − 1). With this substitution (22) and (23) describe
the fidelity well for all values of N . With the parameters
of Fig. 5, Eq. (23) yields F = 0.88 which is in good
agreement with the numerical result in the figure.
The equations (17-23) were derived for weak fields, but

they also provide an accurate description of the system
outside this regime. To show this we note, that with
bichromatic light, Hint in Eq. (3) may be written as

Hint = 2Ω cos(δt)
[

Jx cos
(

η
√
2(x cos(νt) + p sin(νt))

)

−Jy sin
(

η
√
2(x cos(νt) + p sin(νt))

)]

(25)

in the interaction picture with respect to H0. An expan-
sion of the trigonometric functions in this Hamiltonian
leads to Eq. (5) which formed the basis of the discussion
in section II. The term proportional to Jx is suppressed
because it is far off resonance. The lowest order contribu-
tion of this term was treated in the previous section, and
we shall now consider corrections to the Jy term which
may have significant effects. In the interaction picture
with respect to the lowest order Hamiltonian (6), x and
p are changed into x + JyG(t) and p − JyF (t) and to
lowest non-vanishing order in η the interaction picture
Hamiltonian is

H3 = η3Jy

√
2Ω

12

[

cos((ν − δ)t)h1(x, p)

+ sin((ν − δ)t)h2(x, p)
]

, (26)

where

h1(x, p) = 3x3 + xp2 + pxp+ p2x

h2(x, p) = 3p3 + px2 + xpx+ x2p, (27)

and where we have used that F (t) and G(t) are propor-
tional to η. To calculate the effect of the Hamiltonian in
(26) we note that the propagator

U3,int(t) = e

[

−i
sin((ν−δ)t)

ν−δ h1(x,p)
]

e

[

−i
1−cos((ν−δ)t)

ν−δ h2(x,p)
]

(28)

is consistent with the Hamiltonian (26) until order η5, i.e.

i
dU3,int(t)

dt = (H3+O(η6))U3,int. (But the full Hamiltonian

contains terms of order η4 and η5 which are not taken into
account in U3,int. These terms are included below). We
are interested in the propagator at times τ = K2π/(ν−δ)
where the vibrational motion is returned to the initial
state. At these instants the exponents in Eq. (28) vanish
and the propagator reduces to U3(τ) = 1 such that it has
no influence on the internal state preparation.
Expanding the Hamiltonian to order η6 we obtain the

propagator to the same order in η in the interaction pic-
ture with respect to H0 in (3)

U6(τ) = e−iΩ̃τJ2
y[1−η2(2n+1)+η4( 5

4n
2+ 5

4n+
1
2 )]

×e
iη5J3

y

√
8Ω3

(ν−δ)2
xτ
e
−iη6J4

y
5Ω4

2(ν−δ)3
τ

(29)

valid at times τ = K2π/(ν−δ). The first exponential pro-
vides the time evolution with the modified effective Rabi
frequency in Eq. (17). If we evaluate the propagator (29)
in the weak field regime, the last two exponentials both
vanish in the limit of large K when the requirement (11)
is inserted, and the time evolution in (29) is consistent
with Eq. (17-23). The last two exponentials are also of
minor importance for a different reason: In Eq. (17) η2

appears in the combination η2n, whereas it appears as
η2 in the last two exponentials of (29) when the condi-
tion (11) is inserted. In situations where deviations from
the Lamb-Dicke approximation are important η2n ∼ 1,
the deviation is typically caused by a high value of n
rather than a large value of η (η2 << 1). In this case
one may neglect the last two exponentials and the effect
of the non-Lamb-Dicke terms are the same as in the case
of weak fields as described by Eqs. (17-23). To achieve
the optimum operation of the gate with the parameters
of Fig. 5 we have to ensure Ω̃τ ≈ 1.9 and there is a small
correction to the condition in Eq. (11).

IV. EXTERNAL DISTURBANCES

So far we have considered a system described by the
Hamiltonian (3), where only the center of mass motion
is present in the ion trap and where the coupling of this
mode to the surroundings is neglible. In this section we
shall remove these two assumptions and consider the de-
crease in fidelity due to the presence of other modes in the
trap and due to heating of the center of mass vibrational
motion.

A. Spectator vibrational modes

With N ions in the trap, the motional state is de-
scribed by 3N non degenerate vibrational modes. With
a proper laser geometry or if the transverse potential is
much steeper than the longitudinal potential, the cou-
pling of the laser to transverse modes will be neglible and
the only contribution is from the N longitudinal modes.
With N vibrational modes the ion trap may be described
by the Hamiltonian

H = H0 +Hint

H0 =
N
∑

l=1

νl(a
†
lal + 1/2) + ωeg

∑

i

σzi/2

Hint =

N
∑

i=1

Ωi

2
(σ+i e

i(
∑

N

l=1
ηi,l(al+a†

l
)−ωt) + h.c.), (30)

where νl and a†l and al are the frequency and ladder op-
erators of the l’th mode. The excursion of the i’th ion in
the l′th mode is described by the Lamb-Dicke parameter

ηi,l which may be represented as ηi,l = η
√
Nbli√
νl/ν

, where η
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and ν refer to the center of mass mode as in the previous
sections, and where bli obeys the orthogonality conditions
∑N

i=1 b
l
ib

l′

i = δl,l′ and
∑N

l=1 b
l
ib

l
i′ = δi,i′ [10].

The center of mass mode (l = 1), which is used to

create the entangled states of the ions, has b1i = 1/
√
N

for all ions and is well isolated from the remaning N − 1
vibrational modes νl>1 ≥

√
3ν, so that we could neglect

the contribution from the other modes in the previous
sections. In this section we shall extimate the effect of
the presence of the spectator modes. They have both
a direct effect, due to the off resonant coupling to the
other modes, and an indirect ’Debye-Waller’ effect [11]
because the coupling strength of the center of mass mode
is reduced due to the oscilations in the spectator modes.
Below we shall calculate the direct and indirect effects
separately.
The lowest order contribution of the direct coupling

to the spectator modes may be found by expanding the
exponentials as in Eq. (5).

Hint = 2ΩJxcos δt+

N
∑

l=1

Θl[xlfl(t) + plgl(t)], (31)

where fl(t) = −
√
2ηΩ

√

ν/νl[cos(νl − δ)t + cos(νl + δ)t]

and gl(t) = −
√
2ηΩ

√

ν/νl[sin(νl − δ)t + sin(νl + δ)t],
and where the internal and external state operators are

defined by Θl =
∑N

i=0 b
l
ijy,i and xl = 1√

2
(al + a†l ) and

pl =
i√
2
(a†l − al). Since the ladder operators for different

modes commute, we may find the propagator for this
Hamiltonian using the steps that lead to Eq. (7)

U(t) =

N
∏

l=1

Ul(t), (32)

where

Ul(t) = e−iAl(t)Θ
2
l e−iFl(t)Θlxle−iGl(t)Θlpl (33)

with the functions Fl, Gl and Al defined analogously to
Eq. (8). Note, that this is an exact solution of the Hamil-
tonian (31) without the Jx term, so that to lowest order
in the Lamb-Dicke parameter it includes all effects of the
coupling to the other modes.
From the definition of Θl it is seen that Θ1 = Jy and

the propagator U1 reduces to Eq. (7) in the rotating wave
approximation. The other N − 1 propagators in (32)
cause a reduction of the fidelity due to the excursion into
the xlpl phasespace of these modes. Expanding the expo-
nentials, using 〈gg...g|ΘlΘl′ |gg...g〉 = δl,l′N/4 and δ ≈ ν,
and averaging over time we find

F = 1− η2N
Ω2

ν2

N
∑

l=2

ν

νl
(2n̄l + 1)

ν2l /ν
2 + 1

(ν2l /ν
2 − 1)2

, (34)

where n̄l is the mean vibrational excitation of the l′th
mode.

In addition to the direct coupling to the spectator vi-
brational mode, the fidelity is also reduced because the
coupling strength is dependent on the vibration of the
other modes. Unlike the direct coupling discussed above,
this effect is not suppressed by the other modes being far
off-resonant, and it may have an effect comparable to the
direct coupling.
Due to the vibration of the ions the cou-

pling of the i’th ion to the sideband is reduced

from iη
√
n+ 1 to 〈n1n2...nN |ei

∑

N

l=1
ηi,l(al+a†

l
)|n1 +

1n2...nN 〉 ≈ iη
√
n+ 1(1 −

∑N
l=1 η

2
i,l(nl + 1/2)). With

this reduced coupling strength the effective propagator
at times τ = K2π/(ν − δ) may be described by

U(τ) = e−iA(τ)Λ2

, (35)

where Λ =
∑N

i=1 jy,i(1 − ∑N
l=1 η

2
i,l(nl + 1/2)). In the

Cirac-Zoller scheme [4], the n-dependent AC Stark shifts
caused by coupling to other vibrational modes lead to de-
coherence, unless these modes are cooled to the ground
state. In our bichromatic scheme, these internal state
level shifts depend much less on the vibrational excita-
tion. By expanding (35) around the optimum A(t) ≈ π/2
we calculate the lowest order reduction in the fidelity

F = 1− π2N(N − 1)

8
η4

N
∑

l=1

Var(nl)

(νl/ν)2

−π2(N − 2)

16
η4

N
∑

i,l,l′=1

(bli)
2(bl

′

i )
2 − 1/N2

νlνl′/ν2
nlnl′ . (36)

The expressions in Eqs. (34) and (36) may be simpli-
fied if the vibrational motion is in a thermal equilibrium
at a given temperature. In a thermal state Var(nl) =
n̄2
l + n̄l, nlnl′ = n̄ln̄l′ for l 6= l′, and n̄l ≤ n̄1ν/νl, and

using these expressions we find the lower estimate for the
fidelity

F ≥ 1− η2N
Ω2

ν2
(n̄1σ1(N) + σ2(N)) (37)

for the direct coupling (34) and

F ≥ 1− π2N(N − 1)

8
η4(n̄2

1σ3(N) + n̄1σ4(N))

−π2(N − 2)

16
η4(n̄2

1σ5(N) + n̄1σ6(N)) (38)

for the Debye-waller coupling (36), where the sums
σ1...σ6 may be derived from Eqs. (34) and (36). For

example σ3(N) =
∑N

l=1
ν4

ν4
l

. With the mode functions

and frequencies of Ref. [10] these sums are readily eval-
uated, and the results are shown in Fig. 6. From the
figure it is seen that σ5, σ6 << σ3, σ4, so that the last
term in Eq. (38) may be neglected. All the sums have a
very rapid convergence and we may estimate the fidelity
by replacing the sums with their large N values, i.e.
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F ≥ 1− η2N
Ω2

ν2
0.8(n̄1 + 1) (39)

for the direct coupling (34) and

F ≥ 1− π2N(N − 1)

8
η4(1.2n̄2

1 + 1.4n̄1) (40)

for the Debye-Waller coupling (36).
We note that Eq. (40) is derived from terms beyond the

Lamb-Dicke expansion and it incorporates the reduction
of fidelity due to deviations from the Lamb-Dicke ap-
proximation in the center of mass mode, cf. the formal
similarity of Eq. (40) and Eq. (23).
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N

FIG. 6. Evaluation of the sums σ1...σ6 for different number
of ions N . Starting from above at N ≈ 5 the curves represent
σ4, σ3, σ1, σ2, σ6, and σ5.

B. Heating of the vibrational motion

An ion trap cannot be perfectly isolated and the vi-
bration of the ions will be subject to heating due to the
interaction with the environment. Relaxation due to the
interaction between the vibration and a thermal reservoir
may be described by the master equation

d

dt
ρ = −i[H, ρ] + L(ρ), (41)

where L(ρ) is of the Lindblad form

L(ρ) = −1

2

∑

m

(

C†
mCmρ+ ρC†

mCm

)

+
∑

m

CmρC†
m (42)

with relaxation operators C1 =
√

Γ(1 + nth)a and C2 =
√

Γ(nth)a
†, where Γ characaterizes the strength of the

interaction, and nth is the mean vibrational number in
thermal equilibrium.

We calculate the effect of heating assuming that the
ions remain in the Lamb-Dicke limit. Changing to the
interaction picture with respect to the Hamiltonian (6),
the time evolution of ρ is entirely due to the heating,
i.e., the Lindblad terms which are transformed using the
propagator (7)

C̃1 = U †C1U =
√

Γ(1 + nth)

(

a+ Jy
G(t)− iF (t)√

2

)

C̃2 = U †C2U =
√

Γnth

(

a† + Jy
G(t) + iF (t)√

2

)

. (43)

The density matrix is most conveniently expressed in
the basis of Jy eigenstates, and by tracing over the vibra-
tional states we find the time derivative of the internal
state density matrix in the interaction picture

d

dt
ρMy,M ′

y
= −(My −M ′

y)
2Γ(1 + 2nth)

×G(t)2 + F (t)2

4
ρMy,M ′

y
. (44)

This equation is readily integrated, and at times τ =
K2π/(ν − δ) we get

ρMy,M ′
y
(τ) = ρMy,M ′

y
(0)e−(My−M ′

y)
2 Γ(1+2nth)

4K τ . (45)

The initial state is expanded on the Jy eigenstates as in
Eq. (20) and the population of the initial state (which is
ideally constant in the interaction picture) equals

F =
1

22N

N
∑

j=0

N
∑

k=0







N

j













N

k






e−(j−k)2

Γ(1+2nth)

4K τ . (46)

For two ions this expressions can be readily evaluated

F =
3

8
+

1

2
e−

Γ(1+2nth)

4K τ +
1

8
e−4

Γ(1+2nth)

4K τ . (47)

In the limit of many ions (N >> 1) and short times

(Γ(1+2nth)
4K τ << 1) we may again approximate the ex-

pression in Eq. (46) by assuming that j and k are contin-
uous variables and by replacing the binomial coefficients
by Gaussian distributions with the same width. In this
limit the fidelity becomes

F =
1

√

1 +N Γ(1+2nth)
4K τ

. (48)

For 2 ions the deviation between (47) and (48) is less
than 0.02 for all values of F larger than 0.5.
In the above expressions we have assumed the Lamb-

Dicke approximation. This corresponds to a situation
where the heating is counteracted for example by laser-
cooling on some ions reserved for this purpose. If the ions
are not cooled the heating will proceed towards high vi-
brational numbers with a heating rate Γnth and the heat-
ing will eventually take the ions out of the Lamb-Dicke
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limit. With strong fields (K ∼ 1) the reduction in the fi-
delity described by Eq. (48) will ruin the entangled state
before the heating has made a significant change to the
vibrational state (Γnthτ >∼ 1). For weak fields (K >> 1)
however, the situation is different. With weak fields one
may produce an entangled state even though the time
required to entangle the ions is much longer than the de-
coherence time of the vibrational motion which is used to
communicate between the ions, i.e. if K > NΓnthτ the
effect of heating is small even though the change in the
average vibrational number Γnthτ is larger than unity
[5,6]. Since the effective Rabi-frequency has a small de-
pendence on the vibrational quantum number n as de-
scribed in Eq. (17) the heating will have an indirect effect
on the internal state preparation. This can be modelled
by changing the probabilities in Eqs. (19-22) into time
dependent functions Pn(t) reflecting the change in the
vibrational motion occurring during the internal state
preparation.

V. CONCLUSION

We have in this paper evaluated the possibility for
preparation of entangled states of ions by illumination
with bichromatic light. We have identified two regimes:
(i) a weak field regime where single photon absorption is
suppressed and where two-photon processes interfere in
a way that makes the internal state dynamics insensitive
to the vibrational state, and (ii) a strong field regime
where the individual ions are coherently excited and the
motional state is highly entangled with the internal state
until all undesirable excitations are deterministically re-
moved towards the end of the interaction.
We have presented analytical estimates for the fidelity

of the internal state preparation. These expressions are
summarized in table II. The expressions for the fi-
delity may be readily applied to experimental param-
eters and they show that several ion trap experiments
today are in a position to apply our proposal directly.
In fact, using our proposal the NIST group at Boul-
der has been able to produce the maximally entangled
state 1√

2
(|gggg〉 − i|eeee〉) with four ions [12]. In this

experiment the heating of the center-of-mass mode was
so strong that this mode could not be used to communi-
cate between the ions. Instead the experiment used an
asymmetric mode where all ions have the same amplitude
but a different sign, i.e. |ηi| are the same for all ions i.
Apart from the center-of-mode such modes only exist in
ion traps containing two or four ions, and the experiment
could not go beyound four ions. In other existing traps
the heating is much less significant [13], and these traps
may be employed to produce entangled states with more
particles.
The use of ancillary degrees of fredom (center-of-mass

position and momentum) to communicate between two

or more quantum systems is a key ingredient of quantum
information processing. The algebraic property (2) which
allows coupling and temporary entanglement with such
an ancilla may find wide applications in many different
systems for quantum computation with different ancillae
(photons, phonons, Cooper-pairs, etc.). However, oper-
ators with a constant non-vanishing commutator (which
allows the formal step from Eq. (1) to Eq. (2)) only exist
in infinite-dimensional Hilbert spaces [14]. In addition to
the implementation in cavity QED realizations of quan-
tum computing [15–17] where quantized cavity fields play
the role of the vibrational modes, it thus seems very rel-
evant to investigate to which extent the ideas underlying
Eq. (2) can be generalized to ancillae with a finite num-
ber of states and, e.g., for communication across a linear
qubit register by only nearest neighbour interaction.
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TABLE II. Creation of entangled states of N ions 1
√

2
(|gg...g〉 − i|ee...e〉) by interaction with a bichromatic field (5)

Hint = 2ΩJx cos δt−
√
2ηΩJy [x(cos(ν − δ)t+cos(ν + δ)t)+ p(sin(ν − δ)t+ sin(ν + δ)t)] obeying ηΩ

ν−δ
= 1

2
√

K
, K = 1, 2, 3, ... and

for a duration τ = 2πK/(ν − δ). The fidelity of the preparation is reduced by various causes, listed in the table.

Cause of
deviation

Direct
off-resonant
coupling
Jx term in (5)

Deviations from
Lamb-Dicke
〈n|eiη(a+a†)|n+ 1〉

6= iη
√
n+ 1

Spectator vibrational modes

Heating of the
vibration towards
vibrational number
nth with rate Γnth

(i) Direct coupling
to other modes

(ii) Debye-Waller

1− F NΩ2

2δ2 η4 π2N(N−1)
8 Var(n1) N η2Ω2

ν2 0.8(n̄1 + 1)
η4 π2N(N−1)

8

×(0.2n̄2
1 + 0.4n̄1)

N Γ(1+2nth)τ
8K
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