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Hilbert space structure of a solid state quantum computer: two-electron states of a

double quantum dot artificial molecule

Xuedong Hu and S. Das Sarma
Department of Physics, University of Maryland, College Park, MD 20742-4111

(September 3, 2018)

We study theoretically a double quantum dot hydrogen molecule in the GaAs conduction band as
the basic elementary gate for a quantum computer with the electron spins in the dots serving as
qubits. Such a two-dot system provides the necessary two-qubit entanglement required for quantum
computation. We determine the excitation spectrum of two horizontally coupled quantum dots with
two confined electrons, and study its dependence on an external magnetic field. In particular, we
focus on the splitting of the lowest singlet and triplet states, the double occupation probability of
the lowest states, and the relative energy scales of these states. We point out that at zero magnetic
field it is difficult to have both a vanishing double occupation probability for a small error rate
and a sizable exchange coupling for fast gating. On the other hand, finite magnetic fields may
provide finite exchange coupling for quantum computer operations with small errors. We critically
discuss the applicability of the envelope function approach in the current scheme and also the merits
of various quantum chemical approaches in dealing with few-electron problems in quantum dots,
such as the Hartree-Fock self-consistent field method, the molecular orbital method, the Heisenberg
model, and the Hubbard model. We also discuss a number of relevant issues in quantum dot
quantum computing in the context of our calculations, such as the required design tolerance, spin
decoherence, adiabatic transitions, magnetic field control, and error correction.

PACS numbers: 03.67.Lx, 73.20.Dx, 85.30.Vw

I. BACKGROUND

In recent years there has been a great deal of (as well
as a growing) interest throughout the physics commu-
nity in quantum computation and quantum computers
(QC) [1], in which microscopic degrees of freedom such
as atomic levels and electron spins play the role of quan-
tum bits (qubits). Because of the inherent entanglement
and superposition during the unitary evolution of mul-
tiple qubits, QCs can perform certain tasks such as fac-
toring large integers [2] exponentially faster than clas-
sical computers. They also have significant advantages
over classical computers in tasks such as searching [3]
and simulating quantum mechanical systems [4,5]. More-
over, quantum error correction codes have been discov-
ered [6], which further bolster the hope for a practical
quantum computer. Various QC architectures have been
proposed in the literature. The basic ingredients for a
QC are two-level elements serving as qubits, controlled
single- and two-qubit unitary operations, exponentially
large and precisely defined (i.e., no mixing with other
states) Hilbert space, weak decoherence, and single qubit
measurements [7]. One of the earliest QC proposals uses
electronic energy levels of ions in a linear trap (“ion trap”
QC) as qubits [8,9]. Optical pulses perform single-qubit
operations, while two-qubit operations are provided by
multiple optical pulses with the lowest vibrational mode
of the ion chain as an intermediary. In another proposed
QC architecture, the cavity QED QC [10,11], photon po-
larization provides the two required states for a qubit.
The polarization state can be rotated optically, which

provides single-qubit operations. Two-qubit operations
are achieved with the intermediary of a trapped atom in
the cavity using the atom-photon interaction. Yet an-
other proposed QC architecture uses bulk NMR tech-
niques, where the individual nuclear spins in a molecule
are the qubits, with different locations on the molecule
as tags for each qubit. Radio frequency electromagnetic
pulses provide single-qubit operations while dipolar inter-
action between nuclear spins is used for two-qubit oper-
ations. Final state detection in the NMR QC is achieved
through an ensemble average over all the molecules in
the entire bulk solution. Single- and two-qubit opera-
tions have so far been demonstrated in trapped ions [9],
photons in a microcavity [11], and nuclear spins in bulk
solutions [12]. One perceived shortcoming of all these
approaches, however, is their lack of scalability. For ex-
ample, it has been pointed out that the NMR approach
(which is considered to be a promising QC architecture)
cannot go beyond 20 qubits because of exponentially di-
minishing signal to noise ratio as the number of qubits
increases [12]. For the ion trap and cavity QED QC sys-
tems it is hard to see how one would surpass only a few
qubits. Thus the atomic/molecular systems, which have
so far demonstrated single- and perhaps even two-qubit
operations, are unlikely to lead to an operational QC due
to severe scalability problems.
There have been several recent proposals for solid state

quantum computers, with superconducting Cooper pairs
[13], electron spins [14,15], electron orbital energy lev-
els in nanostructures [16], and donor nuclear spins [17]
serving as qubits. A solid state quantum computer, if it
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can ever be built, holds a decisive advantage in scalabil-
ity compared to the atomic/molecular systems mentioned
above. However, strong decoherence, intrinsic difficulty
in obtaining precise microscopic control, and inherently
complicated Hilbert space are key roadblocks on the way
to a practical solid state QC. In fact, no demonstration of
even a single-qubit operation has yet been achieved in a
solid state QC, and thus the subject of developing reason-
able QC hardwares faces the unenviable dichotomy: QC
systems with demonstrated qubits are difficult to scale
up, while proposed scalable QC systems do not have any
qubits.
In this paper we study the solid state QC architecture

which uses electron spins in two-dimensional horizontally
coupled quantum dots as qubits [14]. Here a single elec-
tron is trapped in each individual quantum dot. Spins
of these trapped electrons are qubits, while the quantum
dots in which they reside provide tags for each qubit.
Single-qubit operations, involving the modification of lo-
cal electronic spin states in each dot, are to be performed
using external local magnetic field pulses, while two-qubit
operations are realized using the exchange interaction be-
tween two electrons in neighboring quantum dots. Since
electron spin eigenstates usually have very long coherence
times compared with electron orbital states [18,19], spin
states may be better candidates for the role of qubits.
Although a microscopically local magnetic field is not
a standard feature of modern condensed matter experi-
ments, reasonable proposals for the local manipulation of
spin states have been put forward [14]. Exchange inter-
action can be tuned by various means, including external
gate potentials and external magnetic fields. An impor-
tant point is that a single electron spin can, in principle,
be detected by SQUID magnetometers, and it has been
proposed that single electron spin detection can also be
done by transferring the spin information to charge de-
grees of freedom, which can then be detected via the sen-
sitive single electron transistor technique [20]. The spin-
based quantum dot quantum computer proposal clearly
has important merits and deserves serious consideration.
Much theoretical work, however, is needed to investigate
whether the design tolerance required for QC operations
can actually be achieved in the state of the art quan-
tum dot systems. In this study we focus on the Hilbert
space structure of coupled quantum dot systems and its
implications for quantum computing. One of our specific
goals is to ascertain, through fairly extensive numerical
computations, whether the spin-based quantum dot QC
is a feasible proposal even from an idealized theoretical
perspective. We believe that such a theoretical study is
necessary before one could seriously consider the fabrica-
tion of a quantum dot QC.

II. INTRODUCTION

There are many different ways to fabricate a quantum
dot [21]. In GaAs, which is the system we nominally
consider in this paper, one common approach is to apply
external electric fields through lithographically patterned
gates to produce a depletion area in a 2-dimension elec-
tron gas (2DEG). In particular, nanoscale electrodes are
created on the surface of a heterostructure using photo-
lithography. The application of appropriate electric volt-
ages over the electrodes then produces a suitable confin-
ing potential, thus creating areas where electrons have
been pushed away at desired locations (depletion areas).
The typical size of this type of dots with the currently
available lithographic techniques is generally large (in the
order of 100 × 100 to 1000 × 1000 nm2). The impor-
tant physical parameters for such a quantum dot are the
shape and strength of the confinement potential, number
of electrons trapped, the strength of the electron-electron
interaction, the strength of the additional external fields
(magnetic, electric, etc.), impurities, surface roughness,
boundary irregularities, etc. Substantially smaller size
quantum dots can be made by direct material growth
techniques, such as quantum dot self-assembly, but it has
been difficult to add electrons to such self-assembled dots,
making QC architecture difficult.
The study of semiconductor quantum dots and other

nanostructures has been a large and fast developing field
in the past ten years [22]. There are, however, relatively
few works concentrating on the properties of two elec-
trons in a coupled double dot system, or an artificial
hydrogenic quantum dot molecule, which is the subject
of our work. Among related studies, quantum dot He-
lium (two electrons in a single quantum dot) has been
theoretically investigated [23,24]. A vertically coupled
double-quantum-dot system has also been theoretically
[25–29] and experimentally [30–33] studied. The hori-
zontally coupled double-dot “hydrogen” molecule, which
is the focus of the current paper, has been studied experi-
mentally and theoretically in the context of transport and
optical (or infrared) spectroscopic experiments [34–38],
and very recently the case when there are only two elec-
trons in the double-dot structure has been treated the-
oretically [39] in a rather simple approximation scheme
using the Heitler-London and the Hund-Mulliken molec-
ular orbital approaches. An additional complication in
the case of horizontally coupled dots is that the z direc-
tion angular momentum is not conserved because of the
absence of the cylindrical symmetry, while this symmetry
can be used to simplify calculations in the case of single
quantum dot or a vertically coupled dot. This lack of the
z-angular momentum conservation makes our calculation
substantially more complicated than earlier quantum dot
electronic structure calculations [23–28] in single dot and
vertically coupled dot structures.
In this paper we present our study of the Hilbert space

structure of a horizontally-coupled double quantum dot
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system as shown schematically in Fig. 1. Such a horizon-
tally coupled double quantum dot system, with suitable
lithographic gates to control the inter-dot coupling, is one
of the minimal requirements for a spin-based quantum
dot QC. Vertically-coupled double dots might not be as
good a candidate for the purpose of quantum computing
because the coupling between the dots cannot be tuned as
easily, while the tuning of inter-dot coupling is essential in
the two-qubit operations. QC operation requires a very
special Hilbert space structure with a very large and pre-
cisely defined state space. In the electron-spin-as-qubit
proposal we consider in this paper, one crucial condition
is the isolation of the electron spins from their environ-
ment, including the electronic orbital degrees of freedom.
For example, if a doubly occupied state (with two elec-
trons in the same orbital state of a single quantum dot)
is easily accessed, when the two electrons separate again,
one loses all the information about the identification of
the spins (the “tags”). Therefore, one stringent require-
ment is that the Hilbert space should be such as not to
allow appreciable double occupation. This is, however,
quite tricky since the double occupation probability ob-
viously depends on inter-dot tunneling which cannot be
zero if there is to be an appreciable exchange coupling
(which is required for two-qubit operations in the current
model). The goal of the current study is to obtain the
Hilbert space for a two-electron double dot system using
reasonably realistic quantum chemical techniques. Since
single-qubit and two-qubit operations are the only oper-
ations necessary for quantum computing [1], our study
would be exploring the envelope of the needed Hilbert
space (for QC) and its proximity to the unwanted excited
state space. We are to assess the constraints and toler-
ance required to fabricate a spin-based quantum dot QC
system. We will go beyond the simple Heitler-London
and Hund-Mulliken models and take into consideration
electron correlation through a bigger basis in the molec-
ular orbital calculation. We use several approximations
of varying complexity in our electronic structure calcula-
tions in order to obtain a realistic estimate of the theoret-
ical computational work which will be needed to provide
the underlying basis for fabricating a spin-based quan-
tum dot QC.

III. THEORY

A. Model Hamiltonian

In the current study we use a single conduction band
effective mass envelope function to describe the confined
electrons in two dimensional (2D) GaAs quantum dots.
Such an approach is valid if the characteristic energy
corresponding to the envelope function is much smaller
than the fundamental band gap. In addition, the exci-
tation energy along the third (growth) direction has to
be much larger than all the characteristic 2D excitation

energies. In the case of GaAs, the fundamental gap is 1.5
eV. Furthermore, for a 10 nm thick 2D GaAs quantum
well (which hosts the quantum dot), the first intersub-
band excitation energy (for excitations along the growth
direction) is typically 0.1 eV. Since the characteristic in-
plane 2D excitation energy of the confined electron(s) is
in the order of 1 to 10 meV, the applicability criterion
for the effective mass single envelope function approxima-
tion is well satisfied. The effective two-electron quantum
dot molecule Hamiltonian in the presence of an external
magnetic field (defined through the vector potential A)
is then

H =

2
∑

i=1

[

1

2m∗

(

p+
e

c
A(ri)

)2

+ V (ri)

+g∗µBB · Si] +
e2

ǫr12
, (1)

wherem∗ is the conduction electron effective mass, V (ri)
is the quantum dot potential (which is to be parametrized
in our work, but can in principle be calculated by self-
consistent techniques if the details of the electrostatic
confinement are known), g∗ is the effective electron g-
factor, µB is the Bohr magneton, g∗µBB · Si is the Zee-
man splitting, ǫ is the static background (lattice) dielec-
tric constant, and r12 is the distance between the two
electrons. Here we uncritically assume the effective mass
approximation (which we will show to be well-valid) as-
suming the interband mixing to be negligibly small in the
low energy sector of our interest and the effect of the pe-
riodic crystal potential to be described by the electron ef-
fective mass and the background dielectric constant. The
quantum well material we focus on in this work is GaAs,
thus g∗ ≈ −0.44, ǫ ≈ 13.1, and m∗ ≈ 0.067m0, where
m0 is the bare electron mass. We use as our model 2D
quantum dot confinement potential the following linear
combination of three Gaussians defined by the adjustable
parameters V0, a, Vb, lx, ly, lbx, and lby:

V (r) = V0

[

exp

(

− (x− a)2

l2x

)

+ exp

(

− (x+ a)2

l2x

)]

× exp

(

−y
2

l2y

)

+ Vb exp

(

− x2

l2bx

)

exp

(

− y2

l2by

)

; (2)

Here the first two Gaussians (with a strength of V0) are
for the individual dot potential wells and the third (with
a strength of Vb) is for controlling the central barrier
(so that we can adjust the barrier easily and indepen-
dent of the locations of the other two Gaussians). Thus
V0 is the potential well depth while Vb controls the cen-
tral potential barrier height. We choose this form for
the confinement potential mainly because of its simplic-
ity and versatility, and no other particular significance
should be attached to our choice. To find a realistic form
for V requires a self-consistent calculation using the cor-
rect boundary conditions and heterostructure parame-
ters, which is not warranted at the current level of QC
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modeling (and is well beyond the scope of this work). We
only note here that the confinement potential defined by
Eq.(2) is a reasonable potential for 2D double quantum
dot structures defined electrostatically provided the con-
finement along the growth (z) direction is much tighter
than the 2D confinement as discussed above. It is easy to
fit a realistic confinement potential, if available, to this
simple Gaussian form.
The two-electron Hamiltonian cannot be solved ex-

actly. We use two different approaches to calculate
the approximate energy spectra and electron states of
the Hamiltonian H defined by Eq. (1). The first is
a Hartree-Fock (HF) calculation, where the two elec-
trons are treated as independent particles moving in
a HF self-consistent field [40]. The second is the so-
called molecular orbital method, in which we use single-
harmonic-well single-electron wavefunctions to form two-
electron orbitals and use them as basis states to solve the
Schrödinger equation for the two electrons [40]. We note
that the presence of the external magnetic field makes our
problem somewhat different from the standard quantum
chemistry calculations.

B. Hartree-Fock Approximation

In the HF approximation, an electron is moving in
the mean field produced by all other electrons. The
multiple-electron wavefunction is a single Slater deter-
minant. Pauli principle is thus obeyed so that electrons
with the same spin do not occupy the same orbital state
simultaneously. Electron correlation is therefore taken
into account crudely in the sense that only the Pauli-
principle-imposed correlations are included. There are
a variety of Hartree-Fock calculations in the context of
quantum chemistry [40]. In our study here, a restricted
Hartree-Fock (RHF) calculation, where the two electrons
with different spins occupy the same spatial orbital, sig-
nificantly over-estimates the double occupation probabil-
ity and thus over-estimate the energy of a singlet state.
Such an RHF calculation is clearly a rather poor approx-
imation for our purpose where an accurate knowledge
of the double occupation probability and of the singlet-
triplet splitting is an important requirement. Therefore,
we adapt an unrestricted Hartree-Fock (UHF) approach
[38], where the two electrons in the ground state with op-
posite spins are not required to occupy the same spatial
orbital. This method inherently incorporates the uncor-
related nature of two remote quantum dots, which is par-
tially satisfactory for our purpose. However, the short-
coming of this approach is that the ground state (where
the spins of the two electrons are opposite) is not a pure
singlet state.
The HF equations for N electrons are:

Fψi(r1) = Eiψi(r1) , (3)

F = f +

N
∑

j=1

(Jj −Kj) ,

f =
1

2m∗

[

p+
e

c
A(r1)

]2

+ V (r1) ,

Jjψi(r1) =

∫

ψj(r2)
∗ψj(r2)

e2

ǫr12
dr2 · ψi(r1) ,

Kjψi(r1) =

∫

ψj(r2)
∗ψi(r2)

e2

ǫr12
dr2 · ψj(r1) .

Here ψi (i = 1 . . .N) are the appropriate single particle
wavefunctions; f is the single particle part of the Fock
operator F , which has the same form as the correspond-
ing terms of Eq.(1); the operator Ji is the direct Coulomb
repulsion between two electrons; while the operator Ki

is the exchange interaction between electrons. All the
integrals include sum over different spin indices. In other
words, the exchange term Kj vanishes if the spin indices
of the jth and ith electron orbitals are different.
The advantage of HF approximation lies in its clear

physical picture of an effective single particle dynam-
ics in a self-consistent field background. However, its
shortcoming is also because of this simplicity: electrons
only see an average background produced by the other
charges, not the instantaneous locations of those charges,
and therefore electron correlation is not taken into ac-
count beyond the Pauli principle (which is built into the
Slater determinant). In addition, in numerically solv-
ing the HF equations in the presence of a finite mag-
netic field, the choice of gauge turns out to be impor-
tant, a fact which we have not found to have been dis-
cussed earlier in the literature. When the two electrons
are well separated and each is confined to its own well,
they should have their own gauges; if the electron wave-
functions are extended throughout the two wells, then a
single gauge has to be used. The use of a single gauge,
however, significantly raises the Coulomb repulsion en-
ergy of the electrons, because the A2 term can be quite
large in high magnetic fields, thus behaving like an ad-
ditional confining harmonic potential, pushing the two
electrons towards each other. It is interesting to reflect
on why gauge invariance breaks down in this HF calcula-
tion. It certainly should hold for the exact two-electron
Schrödinger equation, in contrast to the HF approxima-
tion. However, as we make the Hartree-Fock approxi-
mations, we mostly neglect the electron-electron correla-
tions. The choice of gauge thus becomes relevant to our
approximate calculation. This point is further illustrated
by the fact that the exact two-electron wavefunction is
a superposition of an infinite number of Slater determi-
nants. As these determinants generally transform in dif-
ferent ways under a gauge transformation, the change in
the overall wavefunction can be quite different from that
of each individual Slater determinant. The breakdown of
the gauge invariance in the HF approximation thus arises
from its very special single Slater determinant form. The
broken gauge invariance shows a glaring weakness of the
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Hartree-Fock approach which clearly needs to be supple-
mented by other techniques in order to obtain a more
complete description of the two-electron system. Below
we discuss another quantum chemical approach that can
better describe the electron correlations.

C. Molecular Orbital Method

For a two-electron problem, the molecular orbital ap-
proach involves choosing suitable single-electron basis
functions, forming two-electron orbitals from these basis
functions, expanding the two-electron Schrödinger equa-
tion in these two-electron orbitals, and finally solving the
eigenvalue problem (presumably through a direct matrix
diagonalization). In our molecular orbital calculation,
we use the single-dot single-electron wavefunctions as the
basis states to form our molecular orbitals. These single-
electron wavefunctions are the usual Fock-Darwin states
(assuming parabolic confinement at the bottom of the
potential wells) [21]. We take care in ensuring that our
two-electron wavefunctions have the correct symmetry of
our two-particle Hamiltonian defined in Eq. (1). In the
simplest case (the so-called Hund-Mulliken approxima-
tion), we use only the two single-dot ground eigenstates
(s-orbitals) as the basis states. These wavefunctions take
the following form for a symmetric quantum dot struc-
ture with identical confinement along x and y directions
[21,39]

φ∓a,or L/R(x, y) =
1√
πl0

exp

[

(x± a)2 + y2

2l20

]

× exp

(

∓i ay
2l2B

)

, (4)

where

l0 =
lB

4

√

1/4 + ω2
0/ω

2
c

,

lB =

√

h̄c

eB
, (5)

ωc =
eB

m∗c
.

Here ±a are the potential minima locations of the
two quantum dots which are horizontally placed along
the x direction; l0 is the effective wavefunction ra-
dius; lB is the magnetic length for the applied mag-
netic field B along the z direction; ω0 is the confine-
ment parabolic well frequency; ωc is the electron cy-
clotron frequency; and m∗ is the GaAs conduction elec-
tron effective mass. The gauge that produces the above
wavefunction is A = B

2
(−y, x, 0). Note that in choos-

ing our single-particle basis to form the molecular or-
bitals we use the exact one-electron eigenstates corre-
sponding to a double parabolic well 2D potential which
is obtained by expanding the Gaussian potential well

of Eq. (2) around its minima. This particular basis
has the great advantage of being analytic (the Fock-
Darwin levels) as well as a reasonable basis for the
problem we are to solve. Using the single-dot wave
functions φL/R(r), the corresponding triplet wavefunc-

tion is Ψ1 = [φL(r1)φR(r2) − φL(r2)φR(r1)]/
√
2, while

the singlet wavefunctions are Ψ2 = [φL(r1)φR(r2) +

φL(r2)φR(r1)]/
√
2, Ψ3 = φL(r1)φL(r2), and Ψ4 =

φR(r1)φR(r2). It is clear that this basis consists of the
Heitler-London states Ψ1 and Ψ2 and the two “ionized”
or “polarized” doubly-occupied states Ψ3 and Ψ4. We
can solve the Schrödinger equation of the two-electron
Hamiltonian in this basis by expanding in these four func-
tions. Since the triplet state is antisymmetric in the or-
bital degrees of freedom while singlet states are symmet-
ric, they are not coupled by the symmetric Hamiltonian
of Eq. (1). Thus triplet and singlet states can be treated
separately. Notice that the two-electron states are gen-
erally neither orthogonal nor normalized because the
single-dot single-electron wavefunctions φL(r) and φR(r)
are not orthogonal to each other. Thus, the Schrödinger
equation of the problem can be expressed as

4
∑

j

Hijcj = Ei

4
∑

j

Sijcj , (6)

Hij =

∫

Ψ∗
i (1, 2)HΨj(1, 2)dr1dr2 ,

Sij =

∫

Ψ∗
i (1, 2)Ψj(1, 2)dr1dr2 ,

We now have a generalized eigenvalue problem. It can
be readily solved numerically. Formally, it is identical to
an ordinary eigenvalue problem if we know the inverse of
S.
To systematically improve upon the four-state molecu-

lar orbital calculation, we include the first excited states
of single quantum dots (p-orbitals) in an improved (so-
called s-p hybridized) molecular orbital calculation. The
single particle p-orbitals have the following forms

φ1,±1,−a(x, y) =
1√
πl20

[(x+ a)± iy] exp

[

(x+ a)2 + y2

2l20

]

× exp

(

−i ay
2l2B

)

, (7)

φ1,±1,a(x, y) =
1√
πl20

[(x− a)± iy] exp

[

(x− a)2 + y2

2l20

]

× exp

(

i
ay

2l2B

)

. (8)

Here the first two subindices are the quantum numbers
for the Fock-Darwin states, while the third one indicates
their locations. Now we have 6 (two s orbitals and four p
orbitals) atomic orbitals (single-electron single-dot eigen-
states), with which we can form 21 singlet states and
15 triplet states. Since parity symmetry is not broken
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by the introduction of a magnetic field, we can intro-
duce even and odd single-electron molecular orbitals, and
then build the two-electron molecular orbitals using these
symmetrized orbitals. There are then 12 even singlet
states, 9 odd singlet and triplet states, and 6 even triplet
states. The use of parity reduces the number of indepen-
dent two-particle matrix elements almost by half. The
advantage of introducing the p-orbitals in the molecu-
lar orbital calculation is that the excited states give us
the freedom to form anisotropic states (which could not
be accomplished with the isotropic s-orbital-only basis),
thus enabling us to describe the electron overlap with
higher accuracy.

IV. NUMERICAL RESULTS

A. Hartree-Fock Approximation

In our HF calculation, we solve numerically the
Hartree-Fock equations by setting up a grid of (60× 30)
mesh points on the two-dimensional (x, y) space. The
reason for not selecting a finer mesh for the grid is that
we have a coupled two-dimensional problem that is not
sparse, so that the actual non-sparse matrix dimension
reaches 1800×1800, which is essentially our computation
limit. We make a nonlinear transformation of the spatial
coordinates so that most of the grid points are within the
two-dot region, thus ensuring the accuracy and effective-
ness of our numerical eigensolutions.
Figs. 2 and 3 show some of the results we obtain using

the UHF approximation. In Fig. 2 we can see that the
energy of the lowest parallel spin (triplet) state remains
above the lowest opposite spin state and never dips be-
low it up to a fairly high magnetic field of 7 Tesla for
reasonable quantum dot parameters as given in the fig-
ure captions. Notice that in the UHF theory the opposite
spin state is actually a mixture of a singlet and a triplet
state, and therefore the ground state is never a pure
singlet state. Although an RHF approach would have
produced a pure singlet eigenstate, it significantly over-
estimates the Coulomb energy so that the singlet state
always has higher energy than the triplet state, violating
the theorem that at zero magnetic field (when the wave-
function can be written as a real function) the ground
state should be a singlet [41]. In Fig. 3 we show two sets
of data where the ground-triplet splitting decreases ex-

ponentially fast as a function of inter-dot distance. This
suggests that, at least in principle, an efficient control
of the splitting between the ground and the first excited
state can be achieved by increasing the potential barrier
separating the dots and/or by increasing the inter-dot
separation.
A simple Hartree-Fock calculation with a single Slater

determinant is generally not sufficiently accurate to deal
with subtle effects arising from small interaction terms
in the Hamiltonian. For instance, since the reason for

the singlet-triplet crossing is essentially two-electron ex-
change and correlation effects, Hartree-Fock approxima-
tion should not be trusted to produce quantitatively re-
liable singlet-triplet splitting information (although it
is expected to be qualitatively correct since exchange,
which the HF theory includes, is expected to be the dom-
inant effect). Our main reason for pursuing the HF the-
ory, in spite of its obvious quantitative shortcoming, is
the fact that the self-consistent HF calculation produces
a more accurate single particle wavefunction than the
eigenstates of a fixed harmonic well. Based on these im-
proved single particle HF states, a configuration inter-
action (CI) calculation can then be built in the future,
which will lead to a more faithful and quantitatively accu-
rate description of the actual two-electron wavefunctions
in the double quantum dot system. Our HF calculation
could be the starting point of such a future CI calcula-
tion.

B. Molecular Orbital Methods

The central task in our molecular orbital calculation
is the computation of two-particle (Coulomb) matrix el-
ements in the molecular orbital basis set described in
section III of this paper. In the Hund-Mulliken calcula-
tion (using only the s-orbitals) which involves a basis of
3 singlet states (the Heitler-London Ψ2 and the two dou-
bly occupied states Ψ3 and Ψ4) and 1 triplet state, we
need to calculate only 7 Coulomb matrix elements (tak-
ing even-odd parity symmetry into consideration, only 5
Coulomb matrix elements are needed). When p-orbitals
are included, we need to calculate 231 and 120 Coulomb
matrix elements for the singlet and triplet states respec-
tively which is a substantial computational task. When
the even-odd symmetry is taken into account, the num-
ber of Coulomb matrix elements reduces to 123 and 66,
respectively, for the singlet and triplet states, which is
still a formidable task because each matrix element cor-
responds to a 4-dimensional integral requiring high accu-
racy. The most computationally intensive and time con-
suming part of our calculations has been the evaluation
of these Coulomb matrix elements.
Our Hund-Mulliken calculation (with only the elec-

tron s-orbitals) results are shown in Fig. 4. Here we
first perform a variational calculation at zero magnetic
field. We vary the parabolicity and the location of the
fitting parabolic well to achieve the lowest energy in the
ground state. The results of the variational calculation
are shown in Table 1. For these optimal variational pa-
rameters the triplet state (the first excited state at zero
and low magnetic field) is also quite close to its low-
est energy. According to Fig. 4, the exchange coupling,
or equivalently the singlet-triplet splitting, is a sensitive
function of the central barrier height. This implies that a
suitable gate-controlled central barrier can, in principle,
be utilized to switch on or off the exchange coupling effi-
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ciently, thereby making possible two-qubit operations in
our quantum dot QC architecture. The magnitude of the
exchange coupling ranges from 0.2 meV to about 1 meV
in these structures, which correspond to gating times in
the order of one to tens of picosecond, which is difficult,
but not impossible, to achieve.
The results of the molecular orbital calculation done

on the larger basis (including both single particle s- and
p-orbitals) are shown in Figs. 5-7. Comparing this more
sophisticated s-p hybridized calculation, which includes
the first excited “atomic” orbitals, with the simple Hund-
Mulliken calculation discussed above, we find that there
is a significant effect arising from the strong mixing-in of
the higher excited states. In other words, s-p hybridiza-
tion significantly lowers the energy of the lowest singlet
state. Although the s-p hybridized ground state resem-
ble the Heitler-London wavefunctions, it also contains
components in which one electron is in one of the ex-
cited states. Such a contribution could be favorable for
the quantum dot molecule because p-orbitals increase the
“bonding” between the two quantum dots, thus lowering
the overall energy of the double dot system. In addi-
tion, our confinement potential is not exactly a sum of
two symmetric parabolic wells. Instead, the two Gaus-
sian wells and one Gaussian barrier complicate the con-
tour of confinement, so that the true ground state has
components of single particle excited states of the fixed
harmonic well potentials.
According to the calculated energy spectra shown in

Fig. 5, the ground singlet and triplet states are well
separated from the rest of the higher excited states in the
Hilbert space. For the representative sample parameters
as chosen the higher excited states are always separated
from the ground singlet/triplet states by at least 6 meV,
which is much larger than the maximum value of the
exchange coupling, J (0.3 meV) as well as being much
higher than kBT <∼ 0.1 meV at the cryogenic temperature
of QC operation. Thus, as long as the coupling between
the two quantum dots is turned on slowly, the 2-spin
two-electron system is quite isolated from the other parts
of the Hilbert space and is thus a good candidate for a
quantum gate. This demonstration of a well-defined 2-
spin singlet/triplet Hilbert space, which is well-separated
from the rest of the higher excited states of the two-
electron double dot system, is one of the most important
results of our work.
Fig. 5 also shows that there are discernible shell struc-

tures in the two-electron excitation spectra, and this
structure changes with the magnetic field. The shell
structure is especially prominent at large B field. The
origin of the shell structure is apparently the degener-
acy of the single particle Fock-Darwin states. At small
B field, the wavefunction overlap between the two quan-
tum dots is quite significant, so that the direct Coulomb
repulsion and the exchange energy play important roles
in deciding the energies of individual states. As B field
increases, state overlaps between two quantum dots de-
creases since the wavefunctions are squeezed by the ap-

plied magnetic field, and consequently the Coulomb cor-
relation between the two dots becomes less important
(even though the on-site Coulomb repulsion becomes
more important). The whole spectrum should then re-
semble that of two isolated single quantum dots. Another
effect that should be taken into consideration is that
for |B| > 0 the degeneracies of the Fock-Darwin states
are lifted, so the single particle energy levels are scram-
bled. However, at certain specific magnetic field values
shells appear as several energy levels move close to each
other and away from the rest. There are also apparent
level crossings in the spectra, as the energies of individ-
ual Fock-Darwin states with different angular momenta
change differently with theB field, and singlet and triplet
states are not coupled by the Hamiltonian we consider.
In summary, any simple magnetic field dependence of
the Fock-Darwin states is scrambled by the non-parabolic
confinement potential and the varying Coulomb interac-
tion between the two electrons. Although the origin of
the shell structure is clearly the starting degeneracy of
the Fock-Darwin levels, its detailed magnetic field de-
pendence is quite complex. The shell structure may, in
principle, be useful for the purpose of quantum comput-
ing because a full shell plus one electron might be effec-
tively considered as a spin- 1

2
single-electron system, i.e.

a filled shell could be considered “inert”. Whether such
an effective spin- 1

2
system with filled shells is sufficient as

a qubit can only be demonstrated by a multi-electron CI
calculation of its spectrum, and clearly requires further
investigation. Our molecular orbital results in the pres-
ence of the external magnetic field could be considered
suggestive of such a possibility.
Fig. 6 shows the magnetic field dependence of the ex-

change coupling (singlet-triplet splitting) with three dif-
ferent central barrier heights. Here we can see that all
the thick curves (from the larger basis calculations) are
shifted upwards from the thinner curves (from the smaller
basis calculations). The reason for this change is that the
larger basis allows us to obtain much lower (and presum-
ably more accurate) energy for the singlet states. The
triplet states do not change nearly as strongly as the
singlet states. Thus the exchange coupling J changes
(increases) by 23%, 42%, and 18% respectively for 3.38,
6.28, and 9.61 meV central barriers in the more sophisti-
cated calculations using the larger s-p hybridized molec-
ular orbital basis. Note that the improvement in the
calculated J is less for larger central barrier potentials.
This is consistent with our belief that the p-orbitals play
a more important role when the two-dot overlap is larger,
and therefore s-p hybridization effects are quantitatively
more important when the inter-dot overlap (and hence
the exchange coupling) is larger.
Fig. 7 shows the ground state double occupation prob-

ability as a function of the magnetic field, which clearly
decreases as B field increases. The reason for this de-
crease with increasing magnetic field is straightforward.
As B increases, the single-electron atomic wavefunctions
become narrower. Thus, the “on-site” Coulomb repulsion
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energy for the doubly occupied state increases rapidly,
which decreases the double occupation probability. The
ground state double occupation probability can also be
seen in Fig. 7 to decrease significantly with increasing
central barrier strength separating the two dots (as one
would expect). Here we do not show double occupation
for the triplet state, because in those states one electron
would have to be in an excited state, thus the probability
is quite small, and could be considered negligible for most
purposes in contrast to the ground singlet state situation
shown in Fig. 7. Double occupation probability is an
important parameter for a quantum dot quantum com-
puter (QDQC). In a QDQC, electron spins are qubits,
while their residence quantum dots (QD’s) (i.e. the indi-
vidual dots on which the electrons are located) are their
tags to distinguish the different qubits. If during the gat-
ing action two electrons jump onto a single QD due to
high double occupation probability, even if they separate
eventually, their original tag information is lost, which
will result in an error requiring appropriate error correc-
tion. Thus, in designing a QDQC, one needs to minimize
the double occupation probability for the states (espe-
cially the lowest singlet state) that belong to the QDQC
Hilbert space. Indeed, Fig. 7 shows that for the lower
barrier cases the double occupation probabilities are pro-
hibitively large for the purpose of quantum computing.
On the other hand one cannot have a QDQC with very
large central barrier (thereby producing very small dou-
ble occupation probability) because then the exchange
coupling (Fig. 6) will be very small, making 2-qubit op-
erations impossible. This indicates that one has to settle
for a compromise in the pursuit of a large exchange cou-
pling (for achieving smaller gating time during two-qubit
operations) and a small double occupation probability
(for reducing the error correction requirement).
To look for parameters that can lead to small dou-

ble occupation probability but still maintain a finite ex-
change coupling for a double quantum dot, we increase
the inter-dot distance from 30 nm as studied above to 40
nm and perform the molecular orbital calculations. The
results are shown in Figs. 8-11.
Again, we first vary the location and parabolicity of the

fitting parabolic wells. In Fig. 8 we plot these variational
parameters as functions of the central barrier height. One
interesting feature shown in the panel (a) of the figure is
that the fitting well parabolicity increases as the central
barrier height increases. In other words, when the barrier
is low, the electron wavefunctions tend to be more spread
out. Furthermore, panel (b) of Fig. 8 shows that the dis-
tance of the two fitting wells are closer when the central
barrier is low. These results show that the two-electron
artificial molecule is bounded tighter when the inter-dot
barrier is low, in analogy to a diatomic molecule and its
orbital contraction.
In Figs. 9 and 10 we show the magnetic field depen-

dence of the exchange coupling and the double occupa-
tion probability. The values of both these quantities at
zero magnetic field are about half of their values in Figs.

6 and 7 (with the same barrier heights). Therefore, at
zero magnetic field, the exchange coupling and double oc-
cupation probability decrease with about the same rate
as we pull the two quantum dots away from each other. In
Fig. 11 we also plot the central barrier height dependence
of both the exchange coupling and the double occupation
probability. Both quantities decrease exponentially as we
increase the central barrier, as one expects. In the range
of the barrier heights we considered, the exchange cou-
pling decreases from 0.27 meV to 0.0097 meV, a change
of about 28 times; the double occupation probability de-
creases from 0.060 to 0.0017, a change of about 35 times.
Although double occupation probability decreases a lit-
tle faster than the exchange coupling, the difference is
insignificant. Thus, we also show that these two quanti-
ties change with about the same rate as we change the
central barrier height. Therefore, at zero magnetic field,
it would be difficult to achieve a vanishingly small dou-
ble occupation probability while maintaining a sizable
exchange coupling.
However, as it is shown in Figs. 9 and 10 (and also

Figs. 6 and 7), finite magnetic field may lead to a solu-
tion to this problem of correlated exchange coupling and
double occupation probability. Physically, the exchange
coupling is determined by the competition between the
direct and exchange Coulomb interactions, while the dou-
ble occupation probability is mainly determined by the
direct Coulomb repulsion. It is thus expected that the
two quantities have different dependence on the magnetic
field. Indeed, according to Figs. 6, 7, 9, and 10, for mag-
netic field above 6 Tesla, the magnitude of the exchange
coupling decreases quasi-linearly, while the double occu-
pation probability decreases exponentially fast. For ex-
ample, in Fig. 10, at a magnetic field of 7 Tesla and
effective central barrier of 9.61 meV, the double occu-
pation probability is about 6 × 10−4, a magnitude that
is in the same order as the tolerance of the currently
available error correction codes; while the exchange cou-
pling in this case is about 0.009 meV, corresponding to
a swap gate time of about 3 ns (after taking into ac-
count adiabaticity). Thus the difference in the magnetic
field dependence of the exchange coupling and the dou-
ble occupation probability can be exploited for optimal
QC operations. This is another important result of our
calculation in the context of QDQC architecture.

V. DISCUSSIONS

A. Validity of the envelope function approach

The issue of the adequacy of the single envelope func-
tion effective mass approximation (used throughout our
calculations) for the purpose of studying electron entan-
glement in the context of QDQC requires careful consid-
eration. Let us first discuss the validity of the envelope
function approach in our study of the electronic struc-
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ture of the 2D GaAs-based double dot molecule. One
necessary condition [42] is that the k · p approximation
should be valid in our problem. For GaAs conduction
band, the k · p approximation (“Kane model”) is valid
up to ǫk − ǫ0 ∼ 0.3 eV, where ǫ0 is the conduction band
edge energy and ǫk is the energy of a conduction electron
at momentum k in the Brillouin zone. In our study of
the coupled quantum dot molecule, the energy scale of
the electrons is in the order of 10 meV, making the k · p
approximation valid.
Another condition for the validity of the envelope func-

tion approach is weak inter-valley scattering. The elec-
tronic wavefunctions in this manuscript are built from the
conduction band Γ-point Bloch functions. However, if a
GaAs quantum well (in the growth direction we have a
narrow GaAs quantum well sandwiched between AlGaAs
barriers) is too narrow (< 3 nm), the X-valley would
lie close to the Γ-point in energy, so that a more com-
plete approach (going beyond the single envelope func-
tion approach) is needed to take into account the Γ−X
inter-valley scattering. An envelope function approach
becomes inappropriate because it only describes locally a
small part of the Brillouin zone. Thus, for our approach
to be valid, the quantum well in the growth direction can-
not be too narrow [42]. Calculations going beyond the
single envelope approximation for GaAs quantum wells,
however, show [42] that even for such extremely narrow
quantum wells, the single envelope function approxima-
tion gives qualitatively (and semi-quantitatively) accu-
rate results.
Although we do not think it to be necessary at present,

one can go beyond the single envelope function approxi-
mation. A more complete analysis (than our single enve-
lope function model) would employ an 8× 8 Kane model
[42] to include all the closeby valence bands, with 2 Γ6

states corresponding to the conduction bands, 4 Γ8 states
corresponding to the heavy and light hole bands, and 2
Γ7 states corresponding to the split-off bands. We would
then have 8 envelope functions instead of just one as we
use here. The complete single electron Schrödinger equa-
tion and the general QD Hamiltonian without any mag-
netic field take the forms

Hψ = Eψ , (9)

H =
p2

2m0

+ U(r) + V (r⊥) ,

ψ =
8
∑

i=1

fiui0 .

Here m0 is the bare electron mass. U(r) is the crys-
talline periodic potential, which assumes different values
in the quantum well and in the barriers. It thus has
a step-like overall profile along the z direction. V (r⊥)
is the QD confinement potential produced by an exter-
nal static electric field arising from lithographic gates,
dopants, and all other sources not contained in U(r). r⊥
refers to the 2D x-y plane, i.e. directions perpendicular

to z direction. Since the z direction confinement is very
narrow while V is slowly varying, we neglect its variation
along the z direction. ui0’s are the Γ point Bloch func-
tions, which are the same as the atomic orbitals of the
constituent elements. fi’s are the 8 envelope functions
corresponding to the 8 relevant bands, which are slowly
varying functions on the atomic scale. The Schrödinger
equation can be simplified into a set of equations for the
envelope functions fi’s by using the following identity

∫

Ω

f(r)u(r)dr ∼= 1

Ω

∫

Ω

u(r)dr

∫

Ω

f(r)dr

=
1

Ω0

∫

Ω0

u(r)dr

∫

Ω

f(r)dr . (10)

Here Ω is the total volume of the crystal, Ω0 is the vol-
ume of one unit cell, f(r) is a slowly varying function on
the atomic scale, while u(r) is a fast varying and periodic
function on the atomic scale. This identity can be proved
by assuming that f(r) is a constant in each unit cell of
the crystal. The set of equations for the envelope func-
tions is then (assuming an AlGaAs-GaAs-AlGaAs type
heterostructure in the z direction, with A/B below de-
noting AlGaAs-GaAs)

∑

m

{[

p2

2m0

+
(

ǫAl Y1 + ǫBl Y2 + ǫAl Y3 + V (r⊥)
)

]

δlm

+(π · p)lm} fm(r⊥, z) = Efl(r⊥, z) . (11)

Here ǫAl and ǫBl are band edge energies of materials A and
B at the lth band edge at Γ point. Yi are step functions
that take value 1 for the ith layer and 0 everywhere else—
we assume sharp interfaces between materials A and B
(although deviations from sharpness can be built into the
model). π is the interband transition matrix, which is es-
sentially the expectation value of momentum operator p
in a unit cell. We can separate f into an in-plane 2D and
the z direction components and further simplify the equa-
tions. In addition, the valence band envelope functions
can be written in terms of the two conduction band func-
tions, thus leading to a nonlinear (but only 2 by 2) eigen-
value problem. The presence of a slowly varying electric
field (for the purpose of confinement) plus the band edges
for the heterostructure introduces additional (on top of
interband coupling in bulk GaAs) coupling between dif-
ferent bands [42]. At the zeroth-order approximation,
when one neglects all spin-orbit coupling terms and inter-
band couplings, the set of equations above reduces to the
single envelope function Schrödinger equation we employ
in our current study. In our approximation the only ef-
fects of the band structure are to replace the bare electron
mass m0 by an effective mass m∗ and the bare Coulomb
interaction by its screened form, which is precisely the
single envelope function effective mass approximation.
To validate our zeroth-order approximation, we need

to estimate the magnitudes of the higher order correc-
tions neglected in our approximation. In particular, we
can evaluate the following quantity p = EpĒm

∗/m0E
2
g
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[42], where p is the strength of the interband and spin-
orbit corrections relative to the zeroth-order terms within
each conduction band. Here Ep represents the interband
coupling strength, Ē is the characteristic electron enve-
lope energy, m0 is the bare electron mass, m∗ is the con-
duction band effective mass, and Eg is the fundamental
band gap at the Γ point. For GaAs, Ep = 22.71 eV;
m∗ = 0.067m0, Eg = 1.5192 eV [42], and the character-
istic electron energy Ē is about 10 meV. Using these
parameters, we obtain p ∼ 1/150, which is indeed a
small quantity, justifying our envelope function effec-
tive mass approximation in the low energy singlet/triplet
sector. The off-diagonal corrections, which couple the
spin up and down components of the envelope wave-
functions, have similar negligibly small magnitudes. For
the spin-coupling the corresponding small parameter is
p′ = Ep∆V̄ m

∗/m0E
3
g , where ∆ is the valence band split-

ting due to spin-orbit coupling and V̄ is the average con-
finement energy. For GaAs ∆ = 0.341eV , while we take
V̄ ∼ 50meV . We then obtain p′ ∼ p ∼ 1/150. There-
fore, up to an accuracy of 1%, the conduction bands of
two different spins are decoupled from each other and
from other valence bands, and the use of a single band
envelope function may be quite useful qualitatively and
semi-quantitatively. It would, however, require further
numerical investigations going beyond the single enve-
lope function approximation to establish whether this
accuracy is consistent with the stringent error correction
requirements in QC.
To go beyond the zeroth-order approximation, the

above-mentioned correction terms need to be included,
and the linear Schrödinger equation we have now be-
comes a nonlinear eigenvalue problem, with a non-
vanishing off-diagonal term that couples the up and down
spins. Thus, strictly speaking, because of spin-orbit
coupling, the spin up and down states of a conduction
electron are not the eigenstates in a semiconductor het-
erostructure. This opens another possible, albeit weak,
channel for spin decoherence in quantum dots that is not
present in the bulk.
When a magnetic field is introduced, it can be directly

incorporated in the envelope function effective Hamilto-
nian. The underlying Γ-point Bloch functions, which are
atomic wavefunctions, are only minimally affected by the
external magnetic field. Indeed, in a typical atom, theA2

term is about 10−3 as big as the linear term in a 10 Tesla
field, which can be safely neglected. The linear term
in A corresponds to the coupling between the electron
orbital angular momentum with the external magnetic
field. For the S orbital of the conduction band, this cou-
pling vanishes; for the P orbitals of the valence bands,
the magnitude of the splitting caused by this term is
about 1 meV per 18 Tesla. Compared to the main gap of
about 1.5 eV, this splitting can also be safely dropped.
Therefore, we can conclude that the underlying Bloch
functions are not affected by any moderate (up to 10
Tesla) external magnetic fields one needs for QDQC op-

eration. We also conclude that for the purpose of QDQC
operations, where one restricts to only the low energy
singlet/triplet sector of the Hilbert space, the single en-
velope function effective mass approximation employed
in this paper is qualitatively excellent, but further stud-
ies are needed to establish whether this approximation
satisfies the demanding constraints of error correction in
a realistic QDQC architecture.

B. Singlet-triplet crossing

In our calculations we find a singlet-triplet crossing
in all the situations we considered for a magnetic field
around 4 Tesla. The physical reason underlying this
magnetic field induced singlet-triplet crossing (making
the triplet state the ground state in high fields) is some-
what subtle. In a single quantum dot “helium atom”
(two electrons in one dot), where such a crossing has also
been reported in the literature, the competition between
inter-electron Coulomb repulsion and single particle exci-
tation is the reason for the singlet-triplet crossing [22,43].
In a quantum dot hydrogen molecule that we consider
(two electrons in two dots), the electrons can reside in
different dots, minimizing the Coulomb repulsion effect,
and therefore the above reasoning does not really apply
for our singlet-triplet crossing. To achieve a better un-
derstanding of this crossing, we first write down the ex-
pression for the singlet-triplet energy splitting (exchange
coupling) using the Heitler-London wavefunctions of the
ground singlet and triplet states:

|Ψs〉 =
[ |φL(1)〉|φR(2)〉+ |φL(2)〉|φR(1)〉√

2

]

×|↑↓ 〉 − |↓↑ 〉√
2

, (12)

|Ψt〉 =
[ |φL(1)〉|φR(2)〉 − |φL(2)〉|φR(1)〉√

2

]

×|↑↓ 〉+ |↓↑ 〉√
2

, (13)

where |φL〉 and |φR〉 are localized electron spatial or-
bitals. The exchange coupling—the energy splitting be-
tween the lowest triplet and singlet states—can then be
expressed as

J =
〈Ψt|H |Ψt〉
〈Ψt|Ψt〉

− 〈Ψs|H |Ψs〉
〈Ψs|Ψs〉

= Jr + Jc , (14)

where Jr is the contribution from the single particle po-
tential energy, while Jc is the contribution from Coulomb
interaction between the two electrons. Jr and Jc can be
expressed as

Jr =
2|SLR|2

1− |SLR|4
[〈φL|∆VL|φL〉+ 〈φR|∆VR|φR〉
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−〈φR|∆VL|φL〉 − 〈φL|∆VR|φR〉] , (15)

Jc =
2|SLR|2

1− |SLR|4
[

〈φL(1)φR(2)|e2/ǫr12|φL(1)φR(2)〉

−Re〈φL(1)φR(2)|e2/ǫr12|φL(1)φR(2)〉
|SLR|2

]

, (16)

where SLR = 〈φL|φR〉, ∆VL = V (x, y)− VL, and ∆VR =
V (x, y)−VR, with V (x, y) ≡ V (ri) of Eq. (1). Here VL is
a harmonic well located on the left and VR is a harmonic
well located on the right. The basis wavefunctions φL and
φR are eigenstates of these two wells respectively. Thus,
we can see that Jr is a contribution due to the difference
caused by replacing the actual confinement potential V
by a left or right harmonic well. It is a single particle con-
tribution. Whether Jr is positive or negative depends on
the particular choice of V and the parabolicity choice for
VL and VR. When the distance between the two quantum
dots becomes large, this quantity approaches zero.
The Coulomb contribution Jc consists of two parts,

one from direct Coulomb interaction, the other from ex-
change interaction. These two parts generally do not
have the same type of dependence on an external mag-
netic field B. As B increases in strength, the exchange
interaction becomes more important, which leads to the
singlet-triplet crossing in a quantum dot molecule. An
analytical calculation for a special (somewhat artificial)
confinement potential has been recently performed [39],
which explicitly demonstrated the different behavior of
the direct Coulomb and the exchange terms.
The expression for J shows that there are multiple

contributions to the energy difference between singlet
and triplet states. Without analytical expressions it is
difficult to determine exactly which factor dominates in
a particular range of parameters. Physically, the Pauli
principle constraint determines that in a triplet state the
two electrons will try to avoid each other, thus estab-
lishing a repulsive correlation between them. This cor-
relation helps to lower the Coulomb interaction energy,
favoring the triplet state to have lower energy if Coulomb
interaction is dominant. As the external magnetic field is
increased, the wavefunction overlap decreases because of
the squeezing by the magnetic field, so the long range
Coulomb interaction becomes the dominant factor in
the total two-electron interaction energy, leading to the
triplet state being the ground state at high enough mag-
netic fields. On the other hand, at lower magnetic fields,
the wavefunction overlap is significant, a singlet state is
then the ground state since it lowers the electron kinetic
energy. A singlet-triplet crossing is therefore inevitable as
a function of the magnetic field, which for the double-dot
parameters we choose, happens at rather low accessible
fields of 4 Tesla.

C. Quantum chemical approaches

As we mentioned before, the Schrödinger equation for
a two-center two-electron problem cannot be solved ex-
actly. Various quantum chemical approximations have
been proposed and implemented in this problem in the
context of electronic energy level calculations in real
molecules [40]. Below we present a summary and a cri-
tique of the various techniques which may be useful in
the calculations for obtaining realistic QDQC architec-
tural parameters. Since the exact electron wavefunctions
are important in the context of quantum computing, we
will not discuss approaches that deal only with electron
charge or spin densities. We believe that detailed elec-
tronic structure calculations, which provide accurate in-
formation about the wavefunctions spanning the relevant
Hilbert space for realistic QDQC architecture, will be ab-
solutely essential for further progress in this field.

1. Hartree-Fock approximation

One of the simplest quantum chemical approaches is
the Hartree-Fock (HF) approximation. It uses an effec-
tive single-electron equation to simulate a two-electron
problem. Pauli principle is accounted for because the
two-electron wavefunction is written as a single Slater de-
terminant. The HF equation can be solved directly or on
a finite basis (the so-called linear combination of atomic
orbitals method, abbreviated as LCAO). The main ad-
vantages of a HF calculation are its single particle fea-
ture, its accessibility, and its clear underlying physical
picture. The main shortcoming is its disregard of electron
correlations, which originates from the simplification of
a two-particle problem to a one-particle problem. This
deficiency can be systematically remedied by introduc-
ing configuration interaction (CI) corrections. Instead of
using a single Slater determinant as the system wave-
function, one can use a series of Slater determinants (in
which the single particle wavefunctions are HF wavefunc-
tions including the excited states) as basis and search for
the best combination. As the size of this basis goes to
infinity, the method becomes exact. One may, however,
be able to obtain very high accuracy with a reasonable
size CI calculation if the configurations to be mixed in
are chosen judiciously.
One potential shortcoming of the Hartree-Fock method

for the purpose of quantum computation is that it may
not be sufficient to describe quantum entanglement.
Multi-electron wavefunctions are intrinsically insepara-
ble when there are overlaps between single electron wave-
functions. As a consequence of electrons being indistin-

guishable, a Slater determinant is not a simple separable
product function, and therefore individual electron states
generally cannot be factored. For example, consider a
two particle Slater determinant:
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|Ψ〉 = 1√
2
[|φ(1)〉|↑〉1|ψ(2)〉|↓〉2 − |φ(2)〉|↑〉2|ψ(1)〉|↓〉1] .

(17)

We can easily calculate the single particle density matrix
for particle 1:

ρ1 = Tr2(ρ12) = Tr2(|Ψ〉〈Ψ|)

=
1

2
[|φ(1)〉〈φ(1)||↑〉1〈↑ |1 + |ψ(1)〉〈ψ(1)||↓〉1〈↓ |1] , (18)

which is indeed a mixed state. However, this inseparabil-
ity in the Slater determinant arises only from correlations
due to the Pauli exclusion principle. If the electrons are
spatially separated so that they become distinguishable,
the electron wavefunction of Eq. (17) becomes a product.
For example, if φ and ψ above are localized spatially with
no overlap, the above two-particle wavefunction simpli-
fies to

|Ψ〉 = |φ(1)〉| ↑〉1|ψ(2)〉| ↓〉2 . (19)

Here 1 and 2 are labels of the two distinguishable
particles—particle 1 in φ and particle 2 in ψ. The two-
electron wavefunction is now in a product form and the
state for each particle is pure. In other words, Eq. (19)
is not an entangled state.
In the RHF approach, the spin part of the wavefunc-

tion would be a singlet for two electrons when they oc-
cupy the same spatial orbital, so that the state is nec-
essarily entangled. The entanglement here is fundamen-
tally different from the inseparability that arises purely
out of the Pauli exclusion principle as considered above.
Instead, it represents a true correlation between the two
particles—they occupy the same spatial orbital. On the
other hand, in the UHF approach the wavefunction is
completely separable when the two wavefunctions are lo-
calized, so that no entanglement can be described. In
general, for indistinguishable particles, the entanglement
information is encoded in the form of superposition of
different Slater determinants so that, in principle, CI is
always needed for the wavefunction to carry entanglement
information. From another perspective, for n spin- 1

2
par-

ticles, the number of real variables needed to describe
the spin part of the entangled multi-electron wavefunc-
tion is 2n+1 − 2, while one Slater determinant only pro-
vides 2n real variables to describe the spin degrees of
freedom, which is clearly not enough to incorporate en-
tanglement in any multi-electron case, including even the
n=2 two-electron case we consider here. Therefore, the
single Slater determinant HF approximation is manifestly
inadequate for QC purposes. One should note, however,
that the HF approximation is not intended for the pur-
pose of describing quantum entanglement. It is designed
to compute accurately electronic energy spectra, charge
and spin densities, etc. Therefore, as long as one recog-
nizes the shortcomings of this method, it can still provide
valuable information about the electronic system.

2. Heitler-London method

Hartree-Fock calculation is self-consistent, in which the
mean field is produced by the calculated electron density.
One can also solve the two-electron problem using a fixed
finite molecular orbital basis. Indeed, when the num-
ber of states in the basis goes to infinity, the solution
approaches the exact two-electron state. However, the
convergence may be slower than a self-consistent calcula-
tion (with CI), and it quickly becomes computationally
intractable for multi-electron problems. On the other
hand, for a two-electron problem with a small number
of basis states, such a fixed finite basis calculation is nu-
merically tractable and provides a clear advantage over
the HF approximation for studying entanglement.
Heitler-London method is an approximation to the

simplest molecular orbital calculation. Here only the two
single particle ground states in the individual quantum
dots are taken into account. Furthermore, in forming
two-electron orbitals, the two “polar” (doubly occupied)
states are neglected. There are then only one possible
functional form(s) for singlet and triplet states respec-
tively. This approach is quite accurate when the two dots
are far from each other, so that the single particle wave-
functions have the correct dependence on the inter-dot
distance. On the other hand, if the two dots are brought
close to each other, the wavefunctions’ radii should be
varied in order to obtain the lowest energy for the two-
electron states. This is similar to the orbital contraction
in molecular physics when two binding atoms are brought
together [40], although in quantum dots it might be or-
bital expansion rather than contraction. Another way
to improve Heitler-London calculation is to introduce or-
bital “polarization” (contortion of the s-orbitals towards
each other) so that anisotropies in the problem can be
at least partly accounted for. For example, p-orbitals
can be included in the single particle wavefunctions (s-p
hybridization) [39]. Indeed, in the case we considered in
this manuscript, s-p hybridization is an extremely impor-
tant feature of the problem, as we already discussed in
sections III and IV of the paper.

3. Molecular orbital theory

Heitler-London method is appealing in its simplicity
and its clear physical picture. However, unless perfect
basis states happen to be “luckily” chosen, it is difficult
for a method with such a small basis to accurately de-
scribe a double-dot molecular system. The first improve-
ment one can make is to include the polar states. It then
becomes the simplest molecular orbital calculation—the
Hund-Mulliken approach [39]. To further enlarge the ba-
sis, one just includes more single particle orbitals. For ex-
ample, in our case, we have included all the single particle
first excited states, so that there are in total 6 single par-
ticle states forming our basis, from which we can form 36
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two-particle states. If n single particle orbitals are used,
the number of two-particle states grows as n2, while the
number of Coulomb matrix elements grows as n4. It is
thus imperative to select the best possible single particle
wavefunctions so that the number of these orbitals can
be kept a minimum, allowing a tractable computation.
To limit the size of the two-electron state basis, one

can select a portion of states from a more complete ba-
sis, using criteria such as single particle energy cut-off.
Such an approach amounts to a Heitler-London calcu-
lation supplemented by limited CI. However, there can
always be hidden hazards in this practice. For exam-
ple, as has been pointed out [44], the calculation of ex-
change energy is nontrivial in an array of atoms. One
reason is that exchange is mainly determined by tail over-
laps between neighboring electron wavefunctions, where
Heitler-London wavefunctions (often used for calculating
exchange energy) is less reliable. In addition, including
more configurations and going beyond Heitler-London
wavefunctions may not improve the accuracy because
the excited atomic wavefunctions have different exponen-
tial tails. Thus the eigenstates may have more accurate
shapes near the atomic cores, but their tails may be-
come less accurate, leading to inaccurate exchange cou-
pling energy. Indeed, it is always a dangerous practice
to obtain a small quantity numerically from the differ-
ence of two large quantities. In quantum dot molecules,
the tail behavior of wavefunctions is somewhat simpler
than in atoms because all the harmonic well eigenfunc-
tions have the same long distance exponential behavior
(but multiplied by different polynomials). Therefore, by
including a larger basis and doing limited CI calculations,
one should be able to achieve a reasonable description of
the eigenstates, eigenenergies, and in particular, the ex-
change energy in QDQC architectures. In this particular
sense, the 2D harmonic confinement in QD systems may
provide a significant calculational advantage over the cor-
responding real atom/molecule situations with Coulomb
confinement. On the other hand, the non-singular na-
ture of the harmonic potential well also means that the
electronic states are more sensitive to the actual details
of the confinement, making QDQC architecture a fragile
one for quantum computation.

4. Hubbard model

The Hubbard model is a highly simplified model de-
scribing Coulomb correlation effects in an array of atoms.
The model [45] deals with a second quantized multi-
electron Hamiltonian with a cut-off in the interaction.
Only one orbital(s) state per site is kept (in the atomic
limit), and there is a finite hopping term t, arising from
overlap, between the neighboring orbitals. The long
range Coulomb interaction is replaced by a single on-
site repulsion term U—the rationale being that screen-
ing by all the other electrons lead to an on-site effec-

tive U . The ferromagnetic direct exchange part of the
Hamiltonian is dropped because the wavefunction over-
lap between neighbors is exponentially small. Multi-
site Coulomb interaction is also neglected, assuming that
they do not affect the magnetic properties of the model.
In the limit of large on-site repulsion (large U), the ef-
fective Hamiltonian that describes the excitation of this
model is a Heisenberg exchange Hamiltonian, with the
exchange coupling J related to t and U by J = 4t2/U .
As this J is always positive, the ground state is antiferro-
magnetic when there is one electron per site. There are
various attempts to add additional terms to the Hub-
bard model (the extended Hubbard models) so that it
can describe various other phenomena. For example, in
one extended Hubbard model, nearest neighbor Coulomb
interaction is also taken into consideration. The model
can then describe spatial charge density fluctuations.
The Hubbard model and its variants have been applied

to quantum dot arrays [46], particularly in the context
of transport and magnetic properties and also to study
quantum phase transitions in quantum dot arrays. It is
an effective model that can describe complex phenom-
ena with simplicity. In the context of QDQC using spins
as qubits it is unclear that Hubbard model could have
much relevance because of its extreme simplicity. This
is certainly true for the two-electron in the double-dot
problem studied in this paper. However, if multiple-dot
algorithms are designed in the future, the Hubbard model
may become a powerful tool, although various details will
have to be added, diminishing the simplicity of the orig-
inal model.
The Hubbard model reduces to the Heisenberg model

in the large on-site repulsion limit (U → ∞). One condi-
tion for the validity of the Heisenberg exchange Hamilto-
nian is that each localized electron wavefunction should
have exponentially small overlaps with others. This con-
dition is generally not satisfied in QDQC when we bring
two quantum dots very close to each other. However,
for a two-electron problem, if the orbital degrees of free-
dom are frozen, the spin degree of freedom has only four
dimensions which can be described by the singlet and
triplet states, and a Heisenberg model description be-
comes possible. On the other hand, if the electron or-
bital degrees of freedom are ever excited, the Heisenberg
exchange Hamiltonian will not be applicable for our pur-
pose. For example, if two electrons ever get into one
quantum dot simultaneously, we will lose track of which
qubit is represented by which spin, thus error probabil-
ity would be 50%. As we have shown previously, at low
magnetic fields in the current configuration, the ground
singlet state has a finite probability (as large as 20% or
more at zero magnetic field) of double occupation in ei-
ther dots. For a short QC calculation or for qualita-
tive results, a 5% double occupation probability may be
acceptable. However, this small error becomes a very
serious problem that cannot be overcome by currently
available error correction schemes for a long quantum
computation, leading to the constraint that the double

13



occupation probability must be kept very low.

D. Various aspects of a quantum dot quantum

computer

It has been pointed out that the spin-based quantum
dot quantum computer, in principle, satisfies the neces-
sary and sufficient conditions required for quantum com-
puting [14]. Here we would like to discuss in further
details a number of salient features that arise naturally
in the context of QDQC.
In many materials, electron spins are less vulnerable

to decoherence than their orbital degrees of freedom,
which in fact is the main motivation for the proposed
spin-based QDQC. For example, carriers in GaAs have
a sub-picosecond momentum relaxation time while their
spin relaxation time is longer than one nanosecond [47].
Since long spin coherence time is absolutely essential for
QDQC operations (in particular the spin coherence time
must be much longer than the single- and two-qubit op-
eration times, which have to be controlled by switching
magnetic fields and gates and cannot be very fast) we
briefly summarize spin relaxation mechanisms and com-
ment on their relevance in the context of 2-dimensional
GaAs quantum dot structures.
There are three major spin relaxation channels for con-

duction electrons in GaAs: the Elliott-Yafet mechanism
(EY), the D’yakonov-Perel’ mechanism (DP), and the
Bir-Aronov-Pikus mechanism (BAP) [19]. The EY pro-
cess originates from the fact that real Bloch functions
are not spin eigenstates. For example, spin-orbit cou-
pling can mix spin up and down states in the electron
eigenstates. Thus, whenever an electron is scattered (by
other electrons, phonons, impurities, etc.), there is a fi-
nite probability that the dominant spin component will
flip, thus causing spin relaxation. The DP channel arises
from the lack of inversion symmetry in GaAs, which leads
to an intrinsic spin splitting in the conduction band even
for zero magnetic field. In the DP channel, the energy
band splitting due to spin-orbit coupling is treated as
an effective magnetic field. For different k states, this
effective field has different magnitudes and directions.
Thus, as an electron is scattered from one momentum
state to another, it sees different fields and precesses dif-
ferently whenever it is scattered. Soon the electron loses
the memory of its initial spin state, thus showing spin
relaxation. The BAP channel is somewhat similar to the
DP channel, as it also treats electron spins as precess-
ing in an effective magnetic field. However, in the BAP
mechanism the effective field for the conduction electrons
is produced by free or bound holes (or other paramag-
netic impurities which may be present). Hole spins relax
very fast, so that the effective fields (the the conduction
electrons) produced by hole spins fluctuate, which causes
an electron spin to lose the information of its initial state.
In GaAs heterostructures, it is generally believed that

the DP mechanism is the dominant spin relaxation chan-

nel for conduction electrons [19]. In particular, due
to the band discontinuity in a heterostructure, there is
an additional spin splitting for the conduction electrons
(“Rashba” effect) which can be treated as an extended
DP channel. For holes, however, the EY mechanism is
the dominant process. An additional complication is that
in a quantum dot produced by modulating electric fields
through lithographic gates, the confining electric field
produces a mixing between the spin up and down states
(in addition to the basic splitting arising from the lack of
inversion symmetry in GaAs). The boundaries and the
interfaces are also known to cause spin relaxation. In-
deed, these additional spin relaxation channels may ac-
tually be the dominant processes for the electrons con-
fined in the quantum dots, because the wavefunctions for
these electrons are built from the Γ point Bloch functions,
where the underlying Bloch function is S type which has
no spin-orbit coupling. Since the DP channel depends
on the effective field produced by the spin-orbit coupling
(which vanishes at the Γ point), and an external magnetic
field may also help limit the DP channel, electron spin
relaxation in a quantum dot should be quite weak (and
probably arises primarily from the interface/boundary
scattering, the confining electric field, and perhaps the
Rashba effect).
When electron spin relaxation originating from the

spin-orbit coupling (DP channel) is largely suppressed,
other relaxation channels have to be carefully considered.
In particular, interface/boundary scattering induced spin
relaxation needs to be considered. In addition, it has
been pointed out [39] that the nuclear spins may affect
electronic spin relaxation through the hyperfine interac-
tion. This spin relaxation channel can, however, be sub-
stantially suppressed by applying an external magnetic
field or through the Overhauser effect to dynamically po-
larize the nuclear spins [39]. These issues require more
careful (and quantitative) considerations before QDQC
architecture questions can be seriously considered.
If the spin-orbit coupling is strong so that electron spin

by itself is no longer a good quantum number, then one
must consider the total angular momentum J, which in-
volves both spin and orbital degrees of freedom. Such
a mixing by itself would not be a disaster for quantum
computing since J can now replace electron spin to serve
as the qubit. However, the “spin” relaxation time will
then be in the same order of magnitude as the momen-
tum relaxation time, which is generally very short (∼
ps or less) in semiconductors, which could be disastrous
from the QC perspective. It is thus imperative to choose
materials with small spin-orbit coupling for the purpose
of electron spin quantum computing—otherwise decoher-
ence problem makes QC operations impossible.
Even if spin relaxation can be neglected (because of,

for example, long spin coherence time), there are many
other factors that can affect the performance of a quan-
tum computer. For example, based on our molecular or-
bital calculation, the exchange coupling in a coupled dot
system is found to be large enough for fast picosecond
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switching. However, one has to be careful in exploiting
the possibility of fast switching. Indeed, to produce the
best structure for the purpose of quantum computing,
a compromise needs to be achieved between an optimal
gating time and an optimal error rate that should both
be as small as possible. As we learned from our calcu-
lations and from general arguments, exchange coupling
decreases exponentially fast as the two dots are pulled
apart. Consequently, to have a larger exchange coupling
(which means a shorter gating time), the dots should
preferably be close to each other, which, however, in-
creases the overlap between the electron wavefunctions,
leading to enhanced double occupation probability, which
means higher error rate. A compromise in the QDQC ar-
chitecture will therefore be needed.
As shown in our molecular orbital calculation, the sub-

space of the total Hilbert space containing the ground sin-
glet and triplet states is well separated from the rest of
the Hilbert space, and can thus be treated as an isolated
system. This is the whole idea behind using the exchange
coupling for the purpose of quantum gating. Moreover,
as long as the Heisenberg Hamiltonian can be used to de-
scribe the quantum dot two-spin system, the spin singlet
and triplet states are always the exact eigenstates. The
only important parameter for state evolution is the time
integral of the Hamiltonian

∫

H(τ)dτ , and the exchange
coupling should be turned on for as short a time as pos-
sible to produce an ultrafast gate. However, this time
cannot be too short as to make the system “leaky”. Us-
ing the uncertainty principle, we can estimate the lower
limit of this turn-on time τp. Recall that the next excited
state of our two-electron system is about 8 meV above
the ground states. Thus, the lower limit of τp is about
(δE ∼ 8 meV is the energy difference between the next
excited state and the ground singlet and triplet states)

τp ≫ h̄/δE ∼ 0.1 ps . (20)

Therefore, as long as the gating time τp is longer than 1
ps in the current configuration, the coupled dot system
is well isolated, so that the higher excited states can be
safely neglected, and the gating action can be considered
adiabatic. This is critical for QC operation. Again a
compromise is needed here to optimize a fast gating time
and adiabaticity. Calculations of the kind carried out
in our paper can provide quantitative estimates for such
required QDQC architectural optimization.
According to Fig. 6, the exchange coupling J depends

quite sensitively on the magnetic field B. If a sequen-
tial pulse algorithm is used, one does not need to worry
about the interplay between the exchange interaction and
the local magnetic field. On the other hand, if a parallel
pulse scheme is used [48], one has to take into consider-
ation the effect of the inhomogeneous magnetic field on
the exchange coupling. Intuitively, the average field ex-
change coupling may be sufficient in many cases, because
the single electron wavefunction radius decreases slowly
as the magnetic field increases: lB =

√

h̄c/eB. If the

average field is around zero, the field inhomogeneity may
lead to a bigger change in the exchange coupling, and
will have to be taken into account.
Throughout our calculation we have neglected the Zee-

man splitting of the electronic levels. This splitting can-
not be ignored in a real unitary evolution. For instance,
in Ref. [39] a pulse sequence was given for a controlled-
NOT (CNOT) gate (the sequence as given is a condi-
tional phase shift, which can be easily transformed into
a CNOT operation). If a finite B field is present during
the swap action, an additional phase due to Zeeman split-
ting of the triplet states will show up in the electron spin
states. An opposite B field with the same strength has
to be applied to the two electrons for the same amount
of time as the swap gate to correct this phase error. For
GaAs, the Zeeman splitting is about 0.03 meV/Tesla.
If a dot system has an exchange coupling of 0.1 meV
and the two spins experience a magnetic field difference
of 1 Tesla, the corresponding difference in the Zeeman
splitting would be 0.03 meV, about 30% of the exchange
coupling, which is a significant number. Since an error
rate below 10−4 is needed for the currently available er-
ror correction schemes to be effective, one has to be able
to control the magnitude of the exchange interaction up
to that accuracy. Furthermore, any residual local field
effect has to be corrected continuously. Indeed, if in an
actual structure the gating area is separated from the
storage area, which means that all the spins have to be
transported to and from the gating area, one does not
need to worry about the stray magnetic field. Here the
main problem would be the transportation of the spins.
On the other hand, if the spins are stored close to each
other and the gating and storage areas are combined, the
main problem would be the effects of the local stray mag-
netic field. It is straightforward to correct for the effect
of a magnetic field on one spin. However, it is much less
obvious how to correct for the effect of an inhomogeneous
field on all but one spin in a chain. From an engineering
perspective, the modular approach of separating storage
and gating areas is somewhat more promising. We an-
ticipate that the inhomogeneous field and the stray field
problems to be significant obstacles in producing a suc-
cessful QDQC architecture.
When electron transport is needed in an architecture,

electron labeling becomes very important. In a semicon-
ductor heterostructure, there always exist stray electrons,
such as those trapped in impurities and deep levels. If
we move our qubit electron around in a heterostructure,
there is the danger of losing this electron, and in its place,
acquire a stray electron, so that all the spin informa-
tion of the particular qubit is lost. The indistinguishable
character of electrons becomes an important issue in this
context. Initially, when all the electrons are trapped in
their respective quantum dots, they are labeled and dis-
tinguishable. As soon as stray electrons are present out-
side the dot electrons we have considered, Pauli exchange
errors will occur from the indistinguishability of fermions
and have to be corrected [49]. This will be another sig-
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nificant obstacle for the QDQC architecture.
Experimentally, it is easier to deal with multiple elec-

trons (instead of a single electron) in a quantum dot pro-
duced by modulating electric fields. Here it is hoped
that certain shell structures exist (as we show in our re-
sults) so that such a quantum dot can be considered to
be an effective spin- 1

2
system. Multiple electrons may,

however, make the indistinguishability problem a more
prominent issue. However, one needs to keep in mind
that the important question here is the spin state of the
effective spin- 1

2
system, not the spin state of any partic-

ular electron. We are currently pursuing multi-electron
calculations in order to better understand these difficult
and complex issues.
If the exchange coupling J is tuned by changing exter-

nal gate voltage in a QDQC, thermal fluctuations (or any
other types of fluctuations) in the gate voltage will lead
to fluctuations in J, thus causing phase errors in the swap
gate that is crucial for two-qubit operations. Here we es-
timate this error by assuming a simple thermal (white)
noise [?].
Assuming that J = f(V ) where J is the exchange cou-

pling and V is the gate voltage that controls the value of
J , around any particular value V0, J can be expressed as
J(V ) = J(V0) + f ′(V )|V0

(V − V0). During a swap gate
between two quantum dots, the phase of the electronic

spin wavefunction evolves as φ =
∫ t

0
J(τ)dτ/h̄. Thus the

fluctuation in the phase φ is

〈δφ2〉 = 〈φ2〉 − 〈φ〉2

=
1

h̄2

∫ t

0

∫ t

0

〈δJ(τ1) δJ(τ2)〉dτ1dτ2

∼
∫ t

0

∫ t

0

[f ′(V̄ )]2

h̄2
〈δV (τ1) δV (τ2)〉dτ1dτ2 . (21)

If |f ′(V̄ )| is bounded by a constant α we can replace it
by α in the above expression. Furthermore, according to
Nyquist theorem,

〈δV (τ1) δV (τ2)〉 = 4RkBTδ(τ1 − τ2) . (22)

Here R is the circuit resistance and T is the circuit tem-
perature. We thus obtain the approximate expression for
the phase fluctuation:

〈δφ2〉 ∼ 4RkBTα
2t/h̄2 . (23)

In our calculation for double quantum dot QC architec-
ture, Vb plays the role of external gate voltage. According
to Fig. 9, in the two higher barrier cases, J changes about
0.038 meV when Vb (the strength of the barrier Gaussian,
not the effective barrier height) changes 1.83 meV. α can
be obtained from this ratio as 0.021 eV/V. Assuming the
swap gate is performed at 1 K (since J is in the order of
0.1 meV ∼ 1 K, the experimental temperature can only
be lower than 1 K), and the transmission line connecting
the gate to the outside has an impedance of 50 ohm, the
rate for phase fluctuation 〈δφ2〉/t is about 3.2 MHz. The

phase error accrued during a swap gate is about 0.06%.
This is quite small an error which is in the same order of
magnitude as the theoretical tolerance of the currently
available quantum error correction codes. It should pose
no problem to any demonstrative experiment. For a real
quantum computer, this error rate needs to be further
lowered by lowering experimental temperature and turn-
ing up J more gently (which requires longer time but
produces smaller α) in the QDQC operation.
Indeed, the error discussed here, which originates from

the interaction between the double-dot and its external
control, is relevant for all the other external “knobs” that
are used to control the evolution of the double-dot states.
To design a practical QDQC, one has to identify all the
possible external noise sources and tunes the system pa-
rameters accordingly so as to prevent these noises from
overwhelming the operations of the QDQC.

E. Future directions

In the current manuscript we studied in detail the
Hilbert space structure for a two-electron two-dot arti-
ficial hydrogen molecule situation. It is important to
emphasize that detailed theoretical calculations of the
type carried out in this paper will be critical in deter-
mining the feasibility and the practicality of all the pro-
posed semiconductor-based solid state QC architectures
[14,16,17], not just the spin-based QDQC considered in
our work. Given this crucial importance of theory in pro-
viding the QC architectural basis it is quite surprising
that no such detailed calculations have earlier been re-
ported in the literature in spite of very extensive research
activity in the subject of QC. Indeed, there are many
other theoretical questions that need to be answered for
the quantum dot quantum computer architecture. For
example, an accurate description of the confinement po-
tential is an important ingredient of a quantum com-
puter, as quantum computation requires an exact knowl-
edge of the qubit wavefunctions. In addition, currently
there is no systematic calculation of spin relaxation in
GaAs quantum dots, which will clearly be needed for a
better understanding of spin coherence issues.
As for further improving the calculation of electron ex-

change coupling in the two-dot configuration, the main
problem is to obtain a more accurate description of elec-
tron correlations. In the approaches we used in the
current paper, the UHF method self-consistently eval-
uated single particle wavefunctions, but only a single
Slater determinant is used as the two-electron wavefunc-
tion. No two-electron correlation is included. On the
other hand, the molecular orbital method uses a small
number of rigid single-electron wavefunctions (harmonic
well single particle orbitals), but many two-electron or-
bitals are included to minimize the energy of the sys-
tem. To improve upon the results obtained here, a self-
consistent calculation with CI is needed. Namely, one
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can solve the Hartree-Fock equations self-consistently,
then use these HF wavefunctions as an improved basis
to form a number of Slater determinants (instead of just
one as in the HF calculation). The two-electron problem
can then be solved on the basis of these Slater determi-
nants. Generally, the larger the basis the more accurate is
the result. Furthermore, a linear-combination-of-atomic-
orbital (LCAO) approach can be used to partially solve
the dilemma in the choice of gauge. Such CI calculations,
which we are currently pursuing, are notoriously com-
putationally demanding, and real progress toward truly
realistic calculations is expected to be slow.
As it is very difficult to precisely trap a single elec-

tron in each quantum dot, one can consider using multi-
electron quantum dots as effective spin- 1

2
qubit. Thus an

important problem would be to study a multi-electron
two-dot system, in other words, a quantum dot Na2 (or
Cl2, or others) molecule instead of H2. The objective
of such a calculation is two-fold. Firstly, at certain fill-
ings there might exist effective spin- 1

2
states for a multi-

electron system, so that the ‘single electron’ quantum dot
requirement in the current proposal can be relaxed. Sec-
ondly, such a calculation is also relevant in the general
study of quantum dots. We are currently pursuing such
calculations as well.

VI. CONCLUSION

We have studied a quantum dot hydrogen molecule
as the basic elementary gate for a quantum computer
based on electron spins in quantum dots. By using both
Hartree-Fock approximation and a molecular orbital the-
ory we determine the excitation spectrum of two elec-
trons in two horizontally coupled quantum dots, and
study its dependence on an external magnetic field. We
particularly focus on the splitting of the lowest singlet
and triplet states—the exchange coupling, the double oc-
cupation probability of the lowest states, and the relative
energy scales of these states. We find that in our chosen
configuration and for reasonable GaAs dot-based param-
eters the exchange coupling has a maximum of about 0.2
to 1.1 meV at zero magnetic field as we vary the central
barrier height from about 9.61 meV to 3.38 meV when
the dots are separated by 30 nm. When the inter-dot
separation increases to 40 nm, the exchange coupling de-
creases to below 0.3 meV. There exists a singlet-triplet
crossing for all the cases for an applied magnetic field
of about 4 Tesla, above which the triplet state becomes
the ground state of the two-electron system. At zero
magnetic field, the double occupation probability in the
ground singlet state is found to be as large as 22% with a
3.38 meV central barrier when the two dots are separated
by 30nm, and as small as 1.7% with a 11.03 meV cen-
tral barrier when the inter-dot distance is 40 nm. Both
the exchange coupling and the double occupation proba-
bility have similar dependence on the inter-dot distance

and the central barrier height at zero magnetic field, so
that it is difficult to have a configuration with large ex-
change coupling and vanishing double occupation prob-
ability (which means a vanishingly small error rate). At
finite magnetic field, on the other hand, it is possible to
have a finite (albeit negative) exchange coupling and a
small double occupation probability simultaneously. We
discuss in detail the necessary conditions for the validity
of the effective mass envelope function approach, find-
ing this approximation to be valid for our problem. We
also discuss the applicability of various quantum chemical
approaches in the current context of quantum dot quan-
tum computation in dealing with few-electron problems,
such as the Hartree-Fock self-consistent field method, the
molecular orbital method, the Heisenberg model, and the
Hubbard model. In particular, we point out that config-
uration interaction calculation is needed for any realis-
tic description of electron wavefunctions. The difference
between the non-product form of a Slater determinant
and a truly entangled state is discussed. The presence
of singlet-triplet crossing in a coupled dot system is also
studied. In addition, we discuss various important is-
sues in quantum dot quantum computing, such as con-
trols needed, spin decoherence channels in semiconduc-
tors, adiabatic transitions, and errors in spin evolution.
Our results should form a reasonable semi-realistic ba-
sis for discussing spin-based quantum dot quantum com-
puter architectures, and should also be useful for various
studies of quantum dot artificial molecule systems.
This work is supported by the Laboratory for Physical

Sciences (LPS) at the University of Maryland, the US-
ONR, and DARPA. We would also like to thank useful
conversations with B. Kane (particularly on the discus-
sion of external noise due to gate voltage), D. Loss, G.
Burkard, D. DiVincenzo, and J. Fabian.
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FIG. 1. This is a schematics of the double dot system
we studied. We use Gaussian potential wells and a Gaussian
central barrier. Unless otherwise specified, the dot size is
30 nm in radius. When the two dots are separated by 30
nm, we study 3 cases where the central potential barrier has
strength Vb of 20, 25, and 30 meV, corresponding to effective
barrier heights of 3.38, 6.28, and 9.61 meV respectively. When
the two dots are separated by 40 nm, we show results of 3
cases where Vb takes the values of 13.86, 18.17, and 20 meV,
corresponding to actual barrier heights of 6.28, 9.61, and 11.03
meV.
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FIG. 2. Here we show the magnetic field (B) dependence
of the energy splitting (J) between parallel and opposite spin
states calculated by unrestricted Hartree-Fock approach. The
two higher energy curves are for dots with 30 nm radius, 30
nm inter-dot separation, and 20 meV Vb. The lower energy
ones are for dots with 70 nm radius and 80 nm dot separation.
Between the two higher energy sets of data, the slightly lower
one has a slightly thicker (lbx larger by 2 nm) central barrier.
The two sets of data for larger dots differ by central barrier
heights (Vb) of 20 and 40 meV.
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FIG. 3. Here we show the inter-dot distance dependence
of the energy splitting (J) between parallel and opposite spin
states calculated by unrestricted Hartree-Fock approach. The
left set of data corresponds to the small dot (30 nm radius and
20 meV Vb) case while the right set of data to the large dot
(70 nm radius and 20 meV Vb) case. Steep decrease in the
energy splitting is present in both cases.
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FIG. 4. Here we show the magnetic field dependence of
the singlet-triplet splitting in a Hund-Mulliken calculation for
two electrons in a double dot (of 30 nm radii) separated by 30
nm. Results of three different barrier heights are shown. The
exchange coupling depends sensitively on the central barrier
height.
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FIG. 5. Here we show the magnetic field dependence of the
energy spectra in a molecular orbital calculation where both s
and p single-electron orbitals are used. The inter-dot distance
is 30 nm, and the central barrier Vb is 30 meV, corresponding
to an actual barrier height of 9.61 meV.
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FIG. 6. Here we show the magnetic field dependence of
the exchange coupling in a molecular orbital calculation with
both s and p single-electron orbitals. The inter-dot distance is
30 nm. Results of three different barrier heights are shown, to-
gether with the results (in thin lines) from the Hund-Mulliken
calculation for comparison. The exchange couplings from the
full calculation are about 20% larger at zero magnetic field
than those obtained from the Hund-Mulliken calculation.
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FIG. 7. Here we show the magnetic field dependence of
the double occupation probability in a molecular orbital cal-
culation with both s and p single-electron orbitals. This prob-
ability characterizes the double occupation occurring in the
single electron ground state of the left dot. It is clear that the
two lower barrier cases, with their large double occupation
probabilities, are not appropriate for the purpose of quantum
computing at small magnetic fields.
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FIG. 8. Here we show the central barrier height depen-
dence of the variational parameters in our study when the in-
ter-dot distance is 40 nm. Panel (a) shows the change δE in
the fitting well parabolicity, while panel (b) shows the change
δa in the locations of the two fitting wells (symmetric about
the origin. The decrease in parabolicity and inter-orbital dis-
tance indicates an analogy to orbital contraction and bonding
in molecular physics.
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FIG. 9. Here we show the magnetic field dependence of
the exchange coupling in a molecular orbital calculation using
both s and p single-electron orbitals. The inter-dot distance is
40 nm. Results of three different barrier heights are shown, to-
gether with the results (in thin lines) from the Hund-Mulliken
calculation for comparison. The exchange couplings from the
full calculation are only slightly larger at zero magnetic field
than those obtained from the Hund-Mulliken calculation, but
there are some differences at finite magnetic fields.
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FIG. 10. Here we show the magnetic field dependence
of the double occupation probability in a molecular orbital
calculation with both s and p single-electron orbitals. The
inter-dot distance is 40 nm. This probability characterizes
the double occupation occurring in the single electron ground
state of the left dot. At high magnetic fields the double occu-
pation probabilities are vanishingly small for all three cases.
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FIG. 11. Here we show the central barrier height depen-
dence of the exchange coupling J and the double occupation
probability at zero magnetic field. The inter-dot distance here
is 40 nm. Both quantities decrease exponentially as functions
of the central barrier height. The rates of these decreases for
both quantities are about the same. As the central barrier
height varies in the shown range, J changes from 0.27 meV to
0.0097 meV, while the double occupation probability changes
from 6% to 0.17%.
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central potential barrier Vb (meV) 20 25 30

actual central barrier height (meV) 3.38 6.28 9.61

change in parabolicity (meV) -2.8281 -2.3915 -2.0044

actual single particle excitation 8.4134 8.8499 9.2371
energy at zero B field (meV)

change in fitting well location (nm) -0.2243 -0.3779 -0.1632

actual fitting well location 12.6343 14.2441 16.0822
at zero B field (nm)

TABLE I. Here we tabulate the variational parameters for
the three different central barrier heights at 30 nm inter-dot
distance. The fitting well refers to the isotropic parabolic
wells we use to fit the two Gaussian wells. We obtain the
base parabolicity from the second derivative at the bottom
of the confinement potential wells, and the base locations are
the actual minima of the confinement potential wells.
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