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We discuss a point model for the collective emission of light from N two-level atoms in a photonic
bandgap material, each with an atomic resonant frequency near the edge of the gap. In the limit of a
low initial occupation of the excited atomic state, our system is shown to possess novel atomic spectra
and population statistics. For a high initial excited state population, mean field theory suggests a
fractionalized inversion and a macroscopic polarization for the atoms in the steady state, both of
which can be controlled by an external d.c. field. This atomic steady state is accompanied by a
non–zero expectation value of the electric field operators for field modes located in the vicinity of the
atoms. The nature of homogeneous broadening near the band edge is shown to differ markedly from
that in free space due to non–Markovian memory effects in the radiation dynamics. Non–Markovian
vacuum fluctuations are shown to yield a partially coherent steady state polarization with a random
phase. In contrast with the steady state of a conventional laser, near a photonic band edge this
coherence occurs as a consequence of photon localization in the absence of a conventional cavity
mode. We also introduce a classical stochastic function with the same temporal correlations as the
electromagnetic reservoir, in order to stochastically simulate the effects of vacuum fluctuations near
a photonic band edge.

PACS numbers: 42.50.Fx, 42.50.Lc, 42.70.Qs

I. INTRODUCTION

In recent years, photonic bandgap (PBG) structures
have been shown to lead to the localization of light [1]
through the carefully engineered interplay between mi-
croscopic scattering resonances and the coherent inter-
ference of light from many such scatterers [2]. Since
the initial proposal of photonic bandgaps [3,4], PBG
materials exhibiting photon localization have been fab-
ricated at microwave frequencies [5] and more recently,
large scale two–dimensional PBG systems have been pro-
duced in the near-infrared [6]. The ultimate goal for
laser applications is a full three-dimensional PBG at op-
tical frequencies [7–10]. A PBG comprises a range of
frequencies over which linear photon propagation is pro-
hibited. Therefore, atoms with transition frequencies
within the gap do not experience the usual fluctuations
in the electromagnetic vacuum that are responsible for
spontaneous decay. Instead, a photon–atom bound state
is formed [11]. Unlike the suppression of spontaneous
emission from an atom in a high–Q optical microcavity
[12], the bound photon may tunnel many optical wave-
lengths away from the atom before being re–absorbed.
Near a photonic band edge, the photon density of states
is rapidly–varying, making it dramatically different from
the ω2 dependence found in free space. This implies that
the nature of vacuum fluctuations and thus of sponta-
neous emission near a band edge is radically different
from that of the exponential decay found in free space
[13]. More fundamentally, the correlation time of the
electromagnetic vacuum fluctuations near a band edge is
not negligibly small on the time scale of the evolution of

an atomic system coupled to the electromagnetic field.
In fact, the reservoir exhibits long–range temporal corre-
lations, making the temporal distinction between atomic
system and electromagnetic reservoir unclear. This ren-
ders the usual Born–Markov approximation scheme in-
valid for band edge systems. Studies of single atom spon-
taneous emission near a photonic band edge [14,15] have
shown that this non–Markovian system–reservoir inter-
action gives rise to novel phenomena, such as oscillatory
behavior and a fractional steady state population for a
single excited atomic state, as well as vacuum Rabi split-
ting and a sub–natural linewidth for atomic emission.
We consider the Dicke model [16,17] for the collec-

tive emission of light, or superradiance, from N identi-
cal two–level atoms with a transition frequency near a
photonic band edge. The study of superradiant emission
is of interest not only in its own right, but also because
it provides a valuable paradigm for understanding the
self-organization and emission properties of a band edge
laser. Of late, there has been a resurgence of interest in
superradiance in the context of superradiant lasing ac-
tion [18], and due to the experimental realization of a
true Dicke superradiant system using laser–cooled atoms
[19]. A low threshold microlaser operating near a pho-
tonic band edge may exhibit unusual dynamical, spectral
and statistical properties. We will show that such effects
are already evident in band edge collective spontaneous
emission. A preliminary study of band edge superra-
diance for atoms resonant with the band edge [20] has
shown that for an atomic system prepared initially with
a small collective atomic polarization, a fraction of the su-
perradiant emission remains in the vicinity of the atoms,
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and a macroscopic polarization emerges in the collective
atomic steady state. In addition to this form of sponta-
neous symmetry breaking, it has been demonstrated that
superradiant emission can proceed more quickly and with
greater intensity near a photonic band edge than in free
space. In the absence of an initial atomic polarization,
the early stages of superradiance are governed by fluctua-
tions in the electromagnetic vacuum near the band edge.
These fluctuations affect the dynamics of collective decay
and will determine the quantum limit of the linewidth of
a laser operating near a photonic band edge.
The organization of the paper is as follows. In Section

II, we present the quantum Langevin equations for col-
lective atomic dynamics in band edge superradiance. In
Section III, we calculate an approximate, analytic solu-
tion for the equations that describe the N–atom system
with low initial inversion of the atomic population. We
show that the atoms can exhibit novel emission spectra
and a suppression of population fluctuations near a band
edge. Sections IV and V treat the case of high initial in-
version. In Section IV, the mean field results of Ref. [20]
are extended to the case of atoms with resonant frequen-
cies displaced from the band edge. It is shown that the
phase and amplitude of the collective atomic polarization
can be controlled by an external field that Stark shifts the
atomic transition relative to the band edge. The dissi-
pative effect of dipole dephasing is also included in the
framework of our non-Markovian system. Section V de-
scribes superradiant emission under the influence of vac-
uum fluctuations by exploiting the temporal division of
superradiance into quantum and semi-classical regimes.
We find that the system exhibits a macroscopic steady
state polarization amplitude with a phase precession trig-
gered by band edge quantum fluctuations. In Section VI,
we describe a method for generating a classical stochastic
function that simulates the effect of band edge vacuum
fluctuations. We show that, for a sufficiently large num-
ber of atoms, this classical noise ansatz agrees well with
the more exact simulations of Section V, and may thus be
useful in the analysis of band edge atom–field dynamics.
In Appendix A, We give the details of the calculation of
the electromagnetic reservoir’s temporal autocorrelation
function for different models of the photonic band edge.
This correlation function is central to determining the
nature of atomic decay.

II. EQUATIONS OF MOTION

We consider a model consisting of N two–level atoms
with a transition frequency near the band edge coupled
to the multi–mode radiation field in a PBG material. For
simplicity, we assume a point interaction, that is, the spa-
tial extent of the active region of the PBG material is less
than the wavelength of the emitted radiation. This is of-
ten referred to as the small sample limit of superradiance
[17]. We neglect the spatially random resonance dipole–

dipole interaction (RDDI) near the band edge, which may
have a more important impact on atomic dynamics when
the atomic transition lies deep within the PBG [20,21].
Nevertheless, our simplified model should provide a good
qualitative picture of band edge collective emission. For
an excited atomic state |2〉 and ground state |1〉, the in-
teraction Hamiltonian for our system can be written as

H =
∑

λ

h̄∆λa
†
λaλ + ih̄

∑

λ

gλ(a
†
λJ12 − J21aλ), (2.1)

where aλ and a†λ are the radiation field annihilation
and creation operators respectively; ∆λ = ωλ − ω21

is the detuning of the radiation mode frequency ωλ

from the atomic transition frequency ω21. gλ =
(ω21d21/h̄)(h̄/2ǫ0ωλV )1/2eλ·ud is the atom-field coupling
constant, where d21ud is the atomic dipole moment vec-
tor, V is the sample volume, and eλ = ek,σ, σ = 1, 2
are the two transverse polarization vectors. The Jij
are collective atomic operators, defined by the relation

Jij ≡ ∑N
k=1 |i〉kk 〈j| ; i, j = 1, 2, where |i〉k denotes the

ith level of the kth atom. Using the Hamiltonian (2.1),
we may write the Heisenberg equations of motion for the
operators of the field modes, aλ(t), the atomic inversion,
J3(t) ≡ J22(t)−J11(t), and the atomic system’s collective
polarization, J12(t):

d

dt
aλ(t) = −i∆λaλ(t) + gλJ12(t) (2.2)

d

dt
J3(t) = −2

∑

λ

gλJ21(t)aλ(t) + adj. (2.3)

d

dt
J12(t) =

∑

λ

gλJ3(t)aλ(t). (2.4)

We may adiabatically eliminate the field operators by
formally integrating equation (2.2) and substituting the
result into equations (2.3) and (2.4). The equations of
motion for the collective atomic operators are then

d

dt
J3(t) = − 2

∫ t

0

J21(t)J12(t
′

)G(t − t
′

)dt
′

− 2J21(t)η(t) + adj. (2.5)

d

dt
J12(t) =

∫ t

0

J3(t)J12(t
′

)G(t− t
′

)dt
′

+ J3(t)η(t). (2.6)

Here, η(t) =
∑

λ gλaλ(0)e
−i∆λt is a quantum noise opera-

tor which contains the influence of vacuum fluctuations.
G(t − t

′

) is the time delay Green function, or memory
kernel, describing the electromagnetic reservoir’s average
effect on the time evolution of the system operators. The
Green function is given by the temporal autocorrelation
of the reservoir noise operator,
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G(t− t
′

) ≡
〈

η(t)η†(t′)
〉

=
∑

λ

g2λe
−i∆λ(t−t′). (2.7)

We have made use of the fact that
〈

a†λ(0)aλ(0)
〉

≃ 0, as

we are dealing with atomic transition frequencies in the
optical domain [13]. In essence, G(t− t

′

) is a measure of
the reservoir’s memory of its previous state on the time
scale for the evolution of the atomic system. In free space,
the density of field modes as a function of frequency is
broad and slowly varying, resulting in a Green function
that exhibits Markovian behavior, G(t− t

′

) = γ
2 δ(t− t

′

),
where γ is the usual decay rate for spontaneous emis-
sion [13]. Near a photonic band edge, the density of
electromagnetic modes varies rapidly with frequency in
a manner determined by the photon dispersion relation,
ωk. We show that this results in long range temporal
correlations in the reservoir which affect the nature of
the atom–field interaction.
In order to evaluate G(t−t′) near a band edge, we first

make the continuum approximation for the field mode
sum in equation (2.7):

G(t− t
′

) =
ω2
21d

2
21

2h̄ǫ0(2π)3

∫

d3k

ωk

e−i(ωk−ω21)(t−t
′

). (2.8)

In this paper, we use an effective mass approximation to
the full dispersion relation for a photonic crystal. Within
this approximation, we consider two models for the near–
band edge dispersion. The details of the calculation of
G(t−t′ ) for each model and a discussion of its applicabil-
ity is given in Appendix A. In an anisotropic dispersion
model, appropriate to fabricated PBG materials, we as-
sociate the band edge with a specific point in k–space,
k = k0. By preserving the vector character of the dis-
persion expanded about k0, we account for the fact that,
as k moves away from k0, both the direction and mag-
nitude of the band edge wavevector are modified. This
gives a dispersion relation of the form:

ωk = ωc ±A(k− k0)
2. (2.9)

Here, A = 2c2/ωgap, where ωgap is the frequency width
of the gap. The positive (negative) sign indicates that
ωk is expanded about the upper (lower) edge of the
PBG, and ωc is the frequency of the corresponding band
edge. This form of dispersion is valid for a gap width
ωgap ≫ c |k− k0|, meaning that the effective mass re-
lation is most directly applicable to large photonic gaps
and for wavevectors near the band edge. Furthermore,
for a large gap and a collection of atoms which are
nearly resonant with the upper band edge, it is a very
good approximation to completely neglect the effects
of the lower photon bands. The band edge density of
states corresponding to equation (2.9) takes the form
ρ(ω) ∼ (ω − ωc)

1/2, ω > ωc, characteristic of a three–
dimensional phase space. The resulting Green function
for ωc(t− t

′

) ≫ 1 is

GA(t− t
′

) =
β
1/2
3 ei[π/4+δc(t−t

′

)]

(t− t′)3/2
, t > t

′

. (2.10)

In addition to the anisotropic photon dispersion model,
it is instructive to consider a simpler isotropic model.
In this model, we extrapolate the dispersion relation for
a one–dimensional gap to all three spatial dimensions.
We thus assume that the Bragg condition is satisfied for
the same wavevector magnitude for all directions in k–
space. This yields an effective mass dispersion of the
form ωk = ωc+A(|k| − |k0|)2, which associates the band
edge wavevector with a sphere in k–space, |k| = k0.
Strictly speaking, an isotropic PBG at finite wavevec-
tor |k0| does not occur in artificially created, face cen-
tred cubic photonic crystals. However, a nearly isotropic
gap near k0 = 0 occurs in certain polar crystals with
polaritonic excitations [22]. A simple example of such
a crystal is table salt (NaCl), which has a polariton
gap in the infrared frequency regime. The band edge
density of states in the isotropic model has the form
ρ(ω) ∼ (ω−ωc)

−1/2, ω > ωc, the square root singularity
being characteristic of a one–dimensional phase space.
For the Green function we obtain (see Appendix A),

GI(t− t
′

) =
β
3/2
1 e−i[π/4−δc(t−t

′

)]

(t− t′)1/2
, t > t

′

. (2.11)

In both (2.10) and (2.11), δc = ω21 − ωc is the de-
tuning of the atomic resonance frequency from the band
edge, and βα is a constant that depends on the dimen-
sion of the band edge singularity. In particular, for the

isotropic model, β
3/2
1 = ω

7/2
21 d

2
21/12h̄ǫ0π

3/2c3, while in

the anisotropic model, β
1/2
3 = ω2

21d
2
21/8h̄ǫ0ωc (Aπ)

3/2
.

III. LOW ATOMIC EXCITATION: HARMONIC

OSCILLATOR MODEL

In order to understand the effects of band edge vacuum
fluctuations, we begin by presenting a simplified model
that permits an analytic solution, and is applicable to
a system in which only a small fraction of the two-level
atoms are initially in their excited state. This discus-
sion demonstrates how light emission near a photonic
band edge can give rise to novel atomic dynamics, emis-
sion spectra, and photon number statistics. We write the
atomic operators in the Schwinger boson representation
[23]:

J12(t) → b†1(t)b2(t) (3.1)

J3(t) → b†2(t)b2(t)− b†1(t)b1(t), (3.2)

subject to the constraint on the total number of atoms,

b†1(t)b1(t)+ b
†
2(t)b2(t) = N . The operators b†i (t) and bi(t)

then describe transitions of the system between the ex-
cited state (i = 2) and the ground state (i = 1). In the
limit of low atomic excitation, the state |1〉 has a large
population at all times, meaning that we can replace the
inversion operator by the classical value J3(t) ≈ −N , and

that b1(t) can be approximated by b1(t) ≈
√
N . In this
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case, the initially excited two–level atoms behave like a
simple harmonic oscillator coupled to the non–Markovian
electromagnetic reservoir. A form of non-Markovian cou-
pling similar to that of bosons to the electromagnetic field
occurs in the context of the output coupling of a cold
atom Bose condensate from a trapping potential to the
propagating modes of an atom laser [24]. This mathe-
matical analogy may lead to deeper insight into both the
atom laser problem and photonic band edge dynamics.
In our model, the Heisenberg equations of motion (2.5)
and (2.6), reduce to

d

dt
b2(t) = −N

∫ t

0

b2(t
′

)G(t − t
′

)dt
′ −

√
Nη(t). (3.3)

Using the method of Laplace transforms, we can solve for
b2(t) and find

b2(t) = B(t)b2(0)−
√
N

∑

λ

Aλ(t)aλ(0), (3.4)

where

B(t) = L−1
{

B̃(s)
}

, (3.5)

B̃(s) =
[

s+ G̃(s)
]−1

, (3.6)

and

Aλ(t) = L−1

{

gλ
s+ i∆λ

B̃(s)

}

. (3.7)

L−1 denotes the inverse Laplace transformation, and
G̃(s) is the Laplace transform of the general memory ker-
nel, G(t− t′). In this section, we consider the case of an
isotropic band edge in the effective mass approximation
(equation (2.10)), for which G̃(s) is written as:

G̃I(s) =
Nβ

3/2
1 e−iπ/4

√
s− iδc

. (3.8)

For this isotropic Green function, we denote the inverse
Laplace transform of equation (3.5) by BI(t). BI(t) was
computed in Ref. [15] in the context of single atom spon-
taneous emission, and a detailed mathematical derivation
may be found therein. Here, it describes the mean or drift
evolution of our Heisenberg operator b2 (t). The solution
has the form

BI(t) = 2 a1x1e
β1x

2

1
t+iδct + a2(x2 + y2)e

β1x
2

2
t+iδct

−
3

∑

j=1

ajyj

[

1− Φ
(√

β1x2j t
)]

eβ1x
2

j t+iδct, (3.9)

where

x1 = (A+ +A−)e
iπ/4, (3.10)

x2 = (A+e
−iπ/6 −A−e

iπ/6)e−iπ/4, (3.11)

x3 = (A+e
iπ/6 −A−e

−iπ/6)ei3π/4, (3.12)

A± =

{

1

2
± 1

2

[

1 +
4

27

δ3c
β3
1

]1/2
}1/3

, (3.13)

yj =
√

x2j , j = 1, 2, 3. (3.14)

Φ (x) is the error function, Φ (x) = 2√
π

∫ x

0
e−t2dt.

The probability of finding the atoms in the excited

state is given by
〈

b†2(t)b2(t)
〉

= |BI(t)|2, and is plotted

in Fig. 1. We find that the excited state population ex-
hibits decay and oscillatory behavior before reaching a
non-zero steady state value due to photon localization.
These effects are due to the strong dressing of the atoms
by the radiation field near a photonic band edge, result-
ing in dressed atomic states that straddle the band edge.
Light emission from the dressed state outside the gap re-
sults in highly non-Markovian decay of the atomic pop-
ulation, while the dressed state shifted into the gap is
responsible for the fractional steady state population of
the excited state. The consequences of this strong atom–
field interaction are discussed in detail for single atom
spontaneous emission in Ref. [15], and for superradiant
emission in Sections IV and V of this paper. We note
that the degree of steady state localization is a sensitive
function of the detuning, δc, of the atomic resonance from
the band edge. The decay rate scales as N2/3β1t for the
isotropic model. However, there is no evidence for the
build-up of inter–atomic coherence, as very few of the
atoms are initially excited.
Equation (3.3) also allows us to calculate the system’s

emission spectrum into the modes ω for an atom with
resonant frequency ω21 using the relation

S (ω) =

∫ ∞

0

e−i(ω−ω21)τ
〈

b†2 (τ) b2 (0)
〉

dτ + c.c.

∼ Re
{

B̃∗ [i (ω − ω21)]
}

, (3.15)

where B̃(s) is defined in equation (3.6). The spectrum
for the isotropic model is then

SI (ω) ≃
{

0 , ω ≤ ωc

Nβ
3/2
1

√
ω−ωc

N2β3

1
+(ω−ω21)

2(ω−ωc)
, ω > ωc

(3.16)

This spectrum is shown in Fig. 2, and differs significantly
from the Lorentzian spectrum for light emission in free
space. In fact, the emission spectrum is not centered
about the atomic resonant frequency, which is what one
would expect for an atom decaying to an unrestricted
vacuum mode density. We see that for an arbitrary de-
tuning, δc, of ω21 from the band edge, the emission spec-
trum vanishes for frequencies at the band edge and within
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the gap, ω ≤ ωc. This is consistent with the localization
of light near the atoms for electromagnetic modes within
the PBG. As ω21 is detuned further into the gap, spec-
tral results confirm that a greater fraction of the light is
localized in the gap dressed state, as the total emission
intensity out of the decaying dressed state is reduced.
Conversely, as ω21 is moved out of the gap, the emission
profile becomes closer to a Lorentzian in form and the
total emitted intensity increases. The spectral linewidth
ratio between the isotropic band edge and free space is
of the order of β1/(γN

1/3), while for an anisotropic band
edge it is∼ Nβ3/γ. This corresponds to the fact that col-
lective emission is much more rapid near an anisotropic
band edge than in free space, whereas it is slower than
in free space for the isotropic model.
It is also instructive to evaluate the quantum fluctua-

tions in the atomic inversion in the context of the har-
monic oscillator model. Variances in the atomic popula-
tion can be written in terms of the Mandel Q-parameter
[25],

Q(t) =

〈

n2(t)
〉

− 〈n(t)〉2

〈n(t)〉 , (3.17)

where n(t) ≡ b†2(t)b2(t) is the number operator for the
occupation of the excited state. Since both the free space
and PBG solutions in our model can be written in the
form of equation (3.4), we can write the Q-parameter in
the general form

Q(t) = |B(t)|2Q(0) +N
∑

λ

|Aλ(t)|2 . (3.18)

Again, |B(t)|2 is the normalized probability of find-
ing the initially excited fraction of the atoms still in
the excited state at time t. For an isotropic band
edge, B(t) = BI(t) (equation (3.9)), whereas in free
space, B(t) ∼ e−Nγt/2, representing the exponential de-
cay of the excited state population. Using the identity
N

∑

λ |Aλ(t)|2 = 1− |B (t)|2, as derived in Appendix B,
we can write the population fluctuations as

Q(t) = |B(t)|2 [Q(0)− 1] + 1. (3.19)

For arbitrary initial statistics, atoms in free space de-
cay to the vacuum state with Q (t) = 1; since the atoms
decay fully, there are no meaningful atomic statistics in
the long time limit. Q (t) is plotted in Fig. 3 for the
isotropic band edge (δc = 0) for the cases Q(0) = 0, 1,
and 2. Near the band edge, photon localization prevents
the atomic system from decaying to the ground state.
We find instead that the steady state statistics are sensi-
tive to the statistics of the initial state and to the value
of δc. A system initially prepared with super–Poissonian
statistics (Q(0) > 1) experiences a suppression of popula-
tion fluctuations in the steady state. In a system that is
initially sub–Poissonian (Q(0) < 1), the fluctuations in-
crease, but are held below the Poissonian level by photon

localization. In both cases, the steady state value of the
atomic population fluctuations is controlled by δc. Our
harmonic oscillator model thus suggests that a PBG sys-
tem may exhibit novel quantum statistics in the absence
of a cavity or external fields. It is important to extend
the analysis of collective emission under the influence of
vacuum fluctuations to the high excitation (superradi-
ant) regime. In this case, the two–level nature of the
atomic operators will become important and will modify
the quantum statistics from that of the harmonic oscilla-
tor picture. This generalization is considered in the next
two sections.

IV. HIGH ATOMIC EXCITATION: MEAN FIELD

SOLUTION

When the atomic system is initially fully or nearly fully
inverted, we expect inter–atomic coherences, transmitted
via the atomic polarizations, to have a strong influence
on emission dynamics. For such high initial atomic exci-
tation, the quantum Langevin equations (2.5) and (2.6),
paired with the non–Markovian memory kernels (2.10) or
(2.11), do not possess an obvious analytic solution. More-
over, conventional perturbation theory applied to these
equations fails to recapture the influence of the photon–
atom bound state [11], which plays a crucial role in band
edge radiation dynamics. However, when the superradi-
ant system is prepared with a non-zero initial polariza-
tion (J12(0) 6= 0), the average dipole moment dominates
the incoherent effect of the vacuum fluctuations and the
subsequent evolution is well–described by a semi–classical
approximation [17]. In this case, it is possible to factorize
the atomic operator equations:

d

dt
〈J3(t)〉 = −4Re

{

〈J21(t)〉
∫ t

0

〈

J12(t
′

)
〉

G(t− t
′

)dt
′

}

(4.1)

d

dt
〈J12(t)〉 = 〈J3(t)〉

∫ t

0

〈

J12(t
′

)
〉

G(t− t
′

)dt
′

. (4.2)

The brackets 〈O〉 denote the quantum mechanical aver-
age of the Heisenberg operator O over the Heisenberg
picture atom-field state vector, |Ψ〉 = |vac〉 ⊗ |ψ〉, where
|vac〉 represents the electromagnetic vacuum state, and
|ψ〉 represents the initial state of the atomic system.
Clearly in this mean field approach, the quantum noise
contribution is neglected, as 〈η(t)〉 = 0. Recently, Bay,
Lambropoulos and Mølmer [26] found that, for a simpler
Fano profile gap model, the dynamics of superradiant
emission are affected by the choice of factorization ap-
plied to the full quantum equations. However, the com-
plete factorization used here retains the qualitative fea-
tures and evolution time scales of more elaborate factor-
ization schemes. Equations (4.1) and (4.2) were solved
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numerically in reference [20] for an atomic resonance fre-
quency coincident with the band edge (δc = 0) and a
small initial collective polarization. The initial collective
state was assumed to be of the form

|ψ〉 =
N
∏

k=1

(√
r |1〉+

√
1− r |2〉

)

k
(4.3)

with r ≪ 1, so that initially the atoms are almost fully in-
verted. In this paper, we extend the previous analysis to
atomic frequencies detuned from the band edge. Despite
its neglect of vacuum fluctuations, mean field theory il-
luminates many of the interesting features of the system.
The relationship between mean field theory and a more
complete description including quantum fluctuations is
discussed in Section V.
For clarity, we discuss separately the atomic dynamics

in our isotropic and anisotropic dispersion models. Fig-
ures 4 and 5 show the inversion per atom and the average
polarization amplitude per atom respectively for various
values of δc near an isotropic band edge . We see from
Fig. 4 that a fraction of the superradiant emission re-
mains localized in the vicinity of the atoms in the steady
state, due to the Bragg reflection of collective radiative
emission back to the atoms. This localized light exhibits
a non–zero expectation value for the field operator, which
in turn leads to the emergence of a macroscopic polar-
ization amplitude in the steady state. We further note
that the decay rate for the upper atomic state is propor-
tional to N2/3. Accordingly, the peak radiation intensity
is proportional to N5/3. This is to be compared with the
values N and N2 for the free space decay rate and peak
radiation intensity respectively.
As in single atom spontaneous emission near an

isotropic band edge [15], the dressing of the atoms by
their own radiation field causes a splitting of the band
of collective atomic states such that the collective spec-
tral density vanishes at the band edge frequency. The
strongly-dressed atomic states are repelled from the band
edge, with some levels being pulled into the gap and the
remaining levels being pushed into the electromagnetic
continuum outside the PBG. In the long time (steady
state) limit, the energy contained in the dressed states
outside the bandgap decays whereas the energy in the
states inside the gap remains in the vicinity of the emit-
ting atoms. It is the localized light associated with
the gap dressed states which sustains the fractionalized
steady state inversion and non-zero atomic polarization.
For the isotropic model, this splitting and fractional lo-
calization persist even when ω21 lies just outside the gap
(δc > 0), and the fraction of localized light in the steady
state increases as ω21 moves towards and enters the gap.
In the dressed state picture, the self–induced oscillations
in both the inversion and the polarization which occur
during radiative emission can be interpreted as being due
to interference between the dressed states. The oscilla-
tion frequency is proportional to the frequency splitting
between the upper and lower collective dressed states.

This is the analogue of the collective Rabi oscillations of
N Rydberg atoms in a resonant high-Q cavity [27]. From
Fig. 4, we see that a dressed state outside the band
gap decays more slowly for atomic resonant frequencies
deeper inside the gap, causing the collective oscillations
to persist over longer periods of time. Clearly, this decay
is non-exponential and highly non–Markovian in nature.
Fig. 5 confirms that, as required, the polarization ampli-
tude for large negative values of δc is constrained by the
condition, 〈J12(t)〉 /N ≤ 1/2.
In Fig. 6, we plot the phase angle of the collec-

tive atomic polarization in the isotropic model, θ(t) =
tan−1 {Im 〈J12(t)〉 /Re 〈J12(t)〉}. Prior to atomic emis-
sion, this phase angle rotates at a constant rate, and in
the vicinity of the decay process θ(t) exhibits the effects
of collective Rabi oscillations. When the emission is com-
plete, the rate of change of phase angle, θ̇(t), attains a

new steady state value, θ̇(ts), that depends sensitively on

the detuning frequency δc. θ̇(ts) is a measure of the en-
ergy difference between the bare atomic state and the lo-
calized dressed state, h̄ (ω21 − ωloc). Such a polarization
phase rotation implies that the collective atomic Bloch
vector of the system exhibits precessional dynamics in
the steady state. Unlike the conventional precession [28]
of atomic dipoles in an ordinary vacuum driven by an ex-
ternal laser field, Bloch vector precession in a PBG occurs
in the absence of an external driving field. Instead, the
precession is driven by the self–organized state of light
generated by superradiance, which remains localized near
the emitting atoms. We see in Fig. 6 that for values of
δc such that ω21 − ωloc < 0, θ̇(ts) is negative, while for

ω21−ωloc > 0, θ̇(ts) is positive, i.e. the phase is rotating
in the opposite direction. At a detuning corresponding
to a constant phase in the steady state (θ̇(ts) = 0), the
dressed and bare states are of the same energy; this oc-
curs for a detuning value of δc = −0.644N2/3β1. At this
value of δc, we also find that 〈J3(ts)〉 = 0, implying that
there is no net absorption of light by the atomic system.
This is, in essence, a collective transparent state [28].
Collective emission dynamics near an anisotropic band

edge are pictured in Figs. 7 and 8. For ω21 coincident
with the band edge or slightly within the gap (δc ≤ 0),
we again find a fractional atomic inversion in the steady
state (Fig. 7). Rabi oscillations in the atomic popu-
lation are much less pronounced than in the isotropic
model, even for ω21 detuned into the gap. This demon-
strates that the dressed atomic states outside a physical
photonic band edge decay much more rapidly than the
isotropic model would suggest. Furthermore, in contrast
with the isotropic model, we see that photon localization
is lost for even a small detuning of ω21 into the continuum
of field modes outside the band edge. Therefore, while we
find a macroscopic steady state polarization and preces-
sional dynamics of the Bloch vector for δc ≤ 0 (Fig. 8),
for δc > 0 the polarization dies away after collective emis-
sion has taken place. Photon localization from an atomic
level lying just outside the gap in a three dimensional
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PBG material may, however, be realized through quan-
tum interference effects if there is a third atomic level
lying slightly inside the gap [29]. These results point to
the greater sensitivity of the atomic dynamics to the more
realistic anisotropic band edge. Because the isotropic
model overestimates the momentum space for photons
satisfying the Bragg condition, photon localization ef-
fects and vacuum Rabi splitting are exaggerated in the
isotropic model relative to an artificial photonic crystal.
In the anisotropic model, the phase space available for
propagation vanishes as the optical frequency approaches
the band edge. As a result, vacuum Rabi splitting pushes
the collective atomic dressed state into a region with a
larger density of electromagnetic modes. Consequently,
the decay rate of the atomic inversion is proportional
to N2 near the anisotropic band edge, and the corre-
sponding peak radiation intensity is proportional to N3.
Clearly, superradiance near an anisotropic PBG can pro-
ceed more quickly and can be more intense than in free
space. As a result, PBG superradiance may enable the
design of mirrorless, low–threshold microlasers exhibiting
ultrafast modulation speeds. A more complete analysis
of lasing near a photonic band edge including pumping
and dissipative effects will be presented elsewhere.
From polarization phase and amplitude results, we

conclude that: (i) Unlike in free space, the atoms near
a photonic band edge attain a fractionally inverted state
with constant polarization amplitude and rate of change
of phase angle. This corresponds to a macroscopic atomic
coherence in the steady state analogous to that experi-
enced in a laser. In our case however, ”lasing” occurs in
the band edge continuum rather than into a conventional
cavity mode. (ii) By varying the value of δc, one may con-
trol the direction and rate of change of the steady state
polarization phase angle. This may be realized by apply-
ing a small external d.c. field to the sample which Stark
shifts the atomic transition frequency of the atoms. This
type of control over the collective atomic Bloch vector
may be of importance in the area of information storage
and optical memory devices [30,31].
The above analysis makes it clear that collective spon-

taneous emission dynamics in a PBG are significantly
different from those in free space. In a real PBG ma-
terial, the dephasing of atomic dipoles due to inter-
atomic collisions or phonon–atom interactions may also
have a significant effect on the evolution of our system
over a large range of temperatures. In the free space
Markov approach, dipole dephasing is described by a phe-
nomenological polarization decay constant [32]. Since the
Markov approximation does not apply near a band edge,
one cannot account for dephasing by simply adding a phe-
nomenological decay term to equation (4.2). However, we
expect that the atomic resonant frequency will experience
random Stark shifts due to atom–atom or atom–phonon
interactions. This effect can be included in the descrip-
tion of our system by adding a variation ∆ to the de-
tuning frequency δc at each time step in a computational
simulation of equations (4.1) and (4.2). ∆ is chosen to be

a Gaussian random number with zero mean. The width
of the Gaussian distribution is determined by the mag-
nitude of the random Stark effect. Such a simulation in
free space would include a random ∆ only in the equation
for the atomic polarization. This is because the slowly
varying photon density of states seen by the atoms at
the frequency ω21+∆ does not change significantly with
typical homogeneous line broadening effects. In contrast,
we have seen that near a photonic band edge, slight vari-
ations in δc may drastically change the atomic inversion.
Therefore we include ∆ in both system equations. In
Fig. 9, we plot the evolution of the collective inversion
and polarization under the simulated collision broaden-
ing described above. The random Stark shifts lead to the
loss of macroscopic polarization and the loss of atomic in-
version in the long time limit. The latter effect can be
understood by noting that the random frequency shifts
are symmetrically distributed about the mean resonant
frequency. Frequency shifts into the gap promote photon
localization, while those away from the gap cause further
decay of the atomic inversion. Over time, the net result
is that the frequency shifts away from the gap encourage
the decay of the atomic population. This is true even in
atomic systems for which the mean resonant frequency
lies within the gap. From the above considerations, it is
clear that dephasing is a significant perturbation on pho-
ton localization near a photonic band edge. In particular,
dephasing determines the threshold external pumping re-
quired to achieve atomic inversion in a band edge laser.
It also facilitates the emission of laser light from the pho-
tonic crystal.
Although a superradiant system can be prepared in

a coherent initial state of the type described by equa-
tion (4.3) [28], collective emission is typically initiated
by spontaneous emission, a random, incoherent process.
Over time, spontaneous emission leads to the build-up
of macroscopic coherence in the sample. The effect of
vacuum fluctuations is then of considerable importance
in the full description of superradiance, both from a fun-
damental point of view, and for potential device appli-
cations, such as the recently proposed superradiant laser
[18]. In the next section, we present a more detailed de-
scription of PBG superradiance that takes into account
the role of quantum fluctuations.

V. BAND EDGE SUPERRADIANCE AND

QUANTUM FLUCTUATIONS

In order to describe the evolution of the superradiant
system’s collective Bloch vector under the influence of
quantum fluctuations, we consider atomic operator cor-
relation functions of the form [33]

gpq = 〈(J12)p(J21)q〉 . (5.1)

Here the operators are evaluated at equal times. As in
free space, we expect vacuum fluctuations to drive the
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system from its unstable initial state with all atoms in-
verted to a new stable equilibrium state. Such fluctu-
ations are particularly relevant prior to the build-up of
macroscopic atomic polarization. Indeed, they provide
the trigger for superradiant emission. In the early–time,
inverted regime, we may set J3(t) = J3(0) in equations
(2.5) and (2.6), giving

d

dt
J12(t) =

∫ t

0

dt′J3(0)J12(t
′

)G(t− t
′

) + J3(0)η(t).

(5.2)

The resulting equation remains non-linear, and involves
products of atomic and reservoir operators. We may
simplify expressions containing operators in this inverted
regime by considering operator averages over only the
atomic Hilbert space. For an arbitrary Heisenberg oper-
ator O(t), we denote the atomic expectation value for an
initial fully inverted state |I〉 by 〈O〉A ≡ 〈I| O |I〉. We
denote by the set {|λ〉} a complete set of 2N normalized
basis vectors for the atomic Hilbert space including |I〉,
such that 〈λ|I〉 = δλ,I , where δα,β is the Kronecker delta
function. Clearly, 〈 I | J3(0) |λ〉 = NδI,λ. Since J3(0)
acts as a source term for J12(t) in equation (5.2), we also
have the property 〈I | J12(t) | λ〉 = 0 for λ 6= I in the
inverted regime. This can be shown by considering the
equation of motion for 〈I| J12(t) |λ〉:

d
dt 〈I|J12(t) |λ〉

=

∫ t

0

dt′
∑

µ

〈I| J3(0) |µ〉 〈µ| J12(t′) |λ〉G(t− t′)

+ 〈I| J3(0) |λ〉 η(t)

= N

∫ t

0

dt′ 〈I|J12(t′) |λ〉G(t− t′) +NδI,λη(t), (5.3)

where µ labels a complete set of atomic states. This
integro–differential equation satisfies the initial condition
〈I| J12(0) |λ〉 = 0, since J12(0) acts as a raising operator
on the fully inverted bra vector 〈I|. For λ 6= I, the
source term in (5.3) is also absent, leading to the so-
lution 〈I| J12(t) |λ〉 = 0. Using this property, we may
replace the atomic average over products of atomic op-
erators with products of atomic averages, provided that
J3(t) = J3(0). For example,

〈J12J21〉 =
∑

µ

〈vac| ⊗ 〈I | J12 |µ〉 〈µ| J21 |I〉 ⊗ |vac〉

= 〈〈J12〉A 〈J21〉A〉R . (5.4)

Here, 〈O〉R ≡ 〈vac| O |vac〉 denotes an expectation value
over the reservoir variables. For an arbitrary moment
gpq, we have

gpq = 〈〈J12〉pA 〈J21〉qA〉R . (5.5)

We note that such a factorization is valid only for an
antinormal ordering of the polarization operators, since
〈I| J21(t) |λ〉 does not vanish in general.

Taking the atomic expectation value of equation (5.2),
we obtain

d

dt
〈J12(t)〉A = N

∫ t

0

〈

J12(t
′

)
〉

A
G(t− t

′

)dt
′

+Nη(t).

(5.6)

This is a linear equation that has lost its operator charac-
ter over the atomic variables but not over the electromag-
netic reservoir, as evidenced by the presence of the quan-
tum noise operator, η(t). Equation (5.6) can be solved
by the method of Laplace transforms. The solution has
the form,

〈J12(t)〉A = D(t) 〈J12(0)〉A +N
∑

λ

Cλ(t)aλ(0), (5.7)

where,

D(t) = L−1
{

D̃(s)
}

, (5.8)

D̃(s) =
[

s−NG̃(s)
]−1

, (5.9)

and

Cλ(t) = L−1

{

gλ
s+ i∆λ

D̃(s)

}

. (5.10)

Again, L−1 denotes the inverse Laplace transform. The
Laplace transformation of the memory kernel for an
isotropic band edge, G̃I(s), is given in equation (3.8).
Despite the fact that 〈J12(0)〉A = 0, we retain the first
term in equation (5.7) for later notational convenience
The early-time quantum fluctuations in a superradiant

system prevent us from predicting a priori the evolution
of any single experimental realization of the atoms. In-
stead, we can only determine the probability of a partic-
ular trajectory of the collective atomic Bloch vector. In
order to obtain the statistics of a band edge superradi-
ant pulse, we first determine the statistics of the collec-
tive Bloch vector for a set of identically–prepared systems
after each has passed through the early time regime gov-
erned by vacuum fluctuations. The relevant time scale
will be referred to as the quantum to semi-classical evolu-
tion crossover time, t = t0. Our approach is to calculate
the phase and amplitude distributions of the polariza-
tion at the crossover time quantum mechanically. The
subsequent (t > t0) evolution of the ensemble is then ob-
tained by solving the semi-classical equations (4.1) and
(4.2) using the polarization distribution function at t0.
In other words, the distribution of values of 〈J12(t0)〉 ob-
tained from the early time quantum fluctuations provide
the initial conditions for subsequent, semi–classical evo-
lution. In order to implement this approach, we must
first identify t0 for our system [17,34]. One expects such
a transition to occur in the high atomic inversion regime,
〈J3(t)〉 ≃ N . It is natural to define t0 such that for t > t0
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the expectation value of the commutator of the system
operators J21(t) and J12(t) becomes very small compared
to the expectation value of their product [17]. This gives
the condition,

〈J21(t)J12(t)〉 ≫ 〈[J21(t), J12(t)]〉 , t > t0. (5.11)

Evaluating the above commutator, we have
〈[J21(t), J12(t)]〉 = 〈J3(t)〉, which is equal to N for full
atomic inversion. From (5.5) and (5.7), we find that

〈J21(t)J12(t)〉 = 〈J3(t) + J12(t)J21(t)〉

= N

[

1 +N
∑

λ

|Cλ(t)|2
]

= N |D(t)|2 , (5.12)

The last equality is obtained by use of the identity
N

∑

λ |Cλ(t)|2 = |D(t)|2 − 1, as derived in Appendix B.

In free space, |D(t)|2 = eNγt, giving the crossover time,

tfree0 ≃ 1/Nγ. One can solve for the crossover time near
a band edge, tPBG

0 , computationally. In the isotropic
model, for δc = 0 we find that tPBG

0 ≃ 1.24/N2/3β1. The
crossover time maintains this 1/N2/3β1 dependence for
ω21 displaced from the band edge. The corresponding
time scale for the anisotropic gap is 1/N2β3. The build-
up of a macroscopic polarization then occurs more slowly
near an isotropic and more quickly near an anisotropic
band edge than in free space.
Using a semi-classical approach, we may write the

value of the polarization at any time t ≥ t0 in terms

of an amplitude κ and a phase φ, 〈J12(t)〉Cl ≡ J(κ, φ, t).
The superscript Cl refers to the fact that the expectation

value 〈 〉Cl
is taken in the semi-classical regime t ≥ t0.

We define P (κ)dκ as the probability of finding the ampli-
tude between κ and κ+dκ, and Q(φ)dφ as the probability
of finding the phase between φ and φ+dφ. We may then
write the moments of the macroscopic polarization dis-
tribution as

〈

(J12(t))
p
(

J21(t
′

)
)q〉Cl

=

∫

dκ

∫

dφP (κ)Q(φ) [J(κ, φ, t)]p
[

J∗(κ, φ, t
′

)
]q

.

(5.13)

For t = t0, we assume that the polarization has the form
J(κ, φ, t) = κeiφ, giving for the moments

〈(J12(t0))p (J21(t0))q〉Cl

=

∫

dκ

∫

dφP (κ)Q(φ)κp+qei(p−q)φ. (5.14)

The quantum analogue, 〈 〉Q, of (5.14) can be written
in the form of equation (5.5) evaluated at t = t0. Substi-
tuting (5.7) and its adjoint into (5.5) yields:

〈(J12(t0))p (J21(t0))q〉Q

= Np+q

〈[

∑

λ

Cλ(t0)aλ(0)

]p [
∑

λ

C∗
λ(t0)a

†
λ(0)

]q〉

R

.

(5.15)

As the reservoir expectation value is taken over the the
operators aλ which satisfy a Gaussian probability distri-
bution, Wick’s theorem [13] is applied in order to reduce
the operator averages of products of field operators to
averages over products of pairs of field operators. We
then have

〈(J12(t0))p (J21(t0))q〉Q ≃ δpqN
pp! |D(t0)|2p . (5.16)

This expression has corrections of order Np−1, mean-
ing that it is asymptotically valid for large N. Equat-
ing (5.14) and (5.16), we solve for the distributions P (κ)
and Q(φ) to obtain the desired initial polarization dis-
tribution for the semi-classical superradiance equations.
The early time distributions for free space and the band
edge differ only in the form of the function D(t), as the
above analysis makes no other distinction between the
two cases. Thus in the band edge system, as in free space,
the entire effect of the early time atomic evolution can
be recaptured using the distribution of initial conditions
given at t = t0. The phase of the polarization is given by
the relation

∫ 2π

0

dφei(p−q)φQ (φ) = δp,q. (5.17)

This shows that Q(φ) is uniformly distributed between 0
and 2π. The initial polarization amplitude distribution
is found from the relation

∫ ∞

0

dκP (κ)κ2p = p!
[

N |D (t0)|2
]p

. (5.18)

The result is a Gaussian distribution of width N |D (t0)|2
centered at zero,

P (κ) =
1

√

πN |D (t0)|2
exp

[

−κ2

N |D (t0)|2

]

. (5.19)

It has been shown via density matrix methods [17] that
in free space one may choose the crossover time any-
where in the inverted regime, the simplest choice being
t0 = 0. This is due to the absence of temporal corre-
lations of the reservoir for t 6= t

′

. Figure 10 shows the
ensemble–averaged collective emission in free space and
at an isotropic band edge (δc = 0) for N=100 atoms.
Both the free space and band edge systems are shown for
two choices of initial polarization distribution. The solid
lines correspond to the choice of t0 = 0 in the amplitude
distribution (5.19) for both free space and the band edge.

The dashed lines correspond to the choice t0 = tfree0 and
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t0 = tPBG
0 for the free space and band edge systems re-

spectively. As per equation (5.17), the initial phase of
the polarization in all cases is chosen from a uniform
random distribution. In free space, the two choices of
initial conditions yield indistinguishable atomic dynam-
ics. This verifies that the choice of t0 is unimportant in
free space, so long as it is chosen in the inverted regime.
Near a photonic band edge, we see that the choice of
t0 affects the later evolution of the system. In particu-
lar, it affects the onset time for collective emission. It
is clear from these simulations that the details of the
non-Markovian evolution in the quantum regime play a
crucial role in the subsequent semi-classical evolution of
the band edge superradiance. The long–range tempo-
ral correlations of the reservoir require that we treat the
vacuum fluctuations explicitly throughout the quantum
evolution of the system. A similar picture holds in the
case of an anisotropic PBG material. In our anisotropic
model, memory of the initial state is expressed through
the Green function (2.11). In this case, superradiance is
also highly sensitive to early stage quantum fluctuations.
Since ensemble averages of atomic observables are ex-

perimentally measurable quantities, we consider these in
some detail. We use the notation 〈 〉ens to denote an
ensemble–averaged quantum expectation value. For il-
lustration, we focus on the δc = 0 and zero dephasing
case for a system of 100 atoms in the isotropic effec-
tive mass model. The extension to non–zero detuning
and finite dipole dephasing follows from the discussion
of Section IV. From Fig. 11, it is evident that the en-
semble exhibits a fractional population inversion in the
steady state. The steady state value of 〈J3(t)〉ens for a
given atomic detuning is unchanged from the mean field
result, 〈J3(ts)〉. Since the steady state is determined by
the atom–field coupling strength, and not by the dynam-
ics of the system, it is insensitive to initial conditions.
Fluctuations in the excited state atomic population may
be expressed in terms of the delay time for the onset
of superradiant emission, defined as the time at which
the system is exactly half–excited, i.e. 〈J3〉 = 0. Vac-
uum fluctuations result in a distribution of delay times
for the ensemble, asymmetrically centered about a peak
value, as pictured in Fig. 12. The delay time distribu-
tion is qualitatively similar to that obtained in free space
[34]. However, the width of the distribution scales with
the relevant time scale for the isotropic and anisotropic
gaps, showing that, near a photonic band edge, atomic
population fluctuations during light emission can be re-
duced from their free space value. Because of the varia-
tion in initial conditions, the Rabi oscillations in 〈J3(t)〉
for the isotropic gap are much less pronounced than in
mean field simulations. The differences in emission times
due to fluctuations cause the ensemble average inversion
to smear out these oscillations. Therefore, one can no
longer directly relate the amplitude and period of the os-
cillations to the energies of the collective dressed states.
More striking is the nature of the ensemble’s collective

polarization under the influence of vacuum fluctuations.

Figures 13 a – d show the evolution of the polarization
distribution from the initial distribution given by equa-
tions (5.17) and (5.19) to the steady state distribution.
Initially, the distribution is sharply peaked about zero. In
the decay region, the polarization amplitude is broadly
distributed and has a random phase. This behavior is
reminiscent of the fluctuations of the order parameter in
the vicinity of a phase transition. In the steady state, the
polarization amplitude collapses to a very well–defined
non–zero value. This amplitude is again accompanied by
a random phase that is uniformly distributed between
0 and 2π. We may interpret our steady state result in
the following manner: A fraction of the photons emit-
ted near the photonic band edge remain localized in the
vicinity of the atoms, causing both the atomic dipoles and
the electromagnetic field to self–organize into a cooper-
ative steady state. However, vacuum fluctuations cause
this cooperative quantum state to have a random phase,
resulting in a zero ensemble average polarization ampli-
tude, |〈J12(t)〉ens| = 0, as shown in Fig. 11. Measure-
ments of the degree of first and second order coherence
of the electromagnetic field in a band edge superradiance
experiment would provide a probe of the nature of this
self–organized state of photons and atoms near a band
edge. Such measurements would however have to be done
by indirect means, as the localized radiation field in a
PBG does not propagate out of the photonic crystal. We
further note that this state - well–defined in amplitude
but with random phase - is similar to the steady state of
a conventional laser [35] with a well–defined electric field
and random phase diffusion.

VI. SIMULATED QUANTUM NOISE NEAR A

BAND EDGE

We have shown that the statistical properties of a band
edge superradiant system can be determined because the
collective behavior of the constituent atoms leads to a
semi-classical system evolution, triggered by early-time
quantum fluctuations. However, a seamless quantum de-
scription of band edge quantum optical systems is ex-
tremely difficult to obtain, due to the non-Markovian
nature of the atom-field interaction. As a first step, we
introduce a method by which to simulate their evolu-
tion computationally and include the effects of quantum
fluctuations. Unlike the semi-classical simulations of sec-
tion IV which neglected the effect of the quantum noise
operator, as 〈η(t)〉 =

〈

η†(t)
〉

= 0, we propose to replace
〈η(t)〉 in our semi-classical equations by a complex classi-
cal stochastic function with the same mean and two-time
correlation function as its quantum counterpart. This
noise function then simulates the quantum noise in our
system throughout the entire system evolution. We may
test the validity of our simulated noise ansatz for band
edge superradiance by comparing the results obtained to
those calculated in Section V.
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The classical noise function required to simulate quan-
tum noise near a photonic band edge involves a real
stochastic function ξ(t) possessing the underlying tempo-
ral autocorrelation of our non–Markovian quantum noise
operator, η(t). In the effective mass approximation, this
means that (see equations (2.10) and (2.11)),

〈

ξ(t)ξ(t
′

)
〉

=
1

(t− t′)α/2
, (6.1)

where again α = 1 and 3 for isotropic and anisotropic
band edges respectively. Problems in band edge atom–
field dynamics, such as the present superradiant prob-
lem, often involve non-linear equations under the influ-
ence of colored quantum noise. It is interesting to note
that nonlinear problems involving classical colored noise
are of considerable interest in classical statistical physics.
In particular, methods for computationally generating
noise satisfying equation (6.1) have been developed in
the context of problems in surface growth and poly-
mer ordering [36]. In what follows, we use the method
first introduced by Rice [37] and elaborated on by Bil-
lah and Shinozuka [38] for the generation of such colored
noise. For noise with a power spectrum P (ω), defined
as the Fourier transform of the autocorrelation function
〈ξ(t)ξ(t′)〉, their algorithm gives,

ξ(t) ≃ 2

N
∑

n=1

[P (ωn)∆ω]
1/2 cos(ωnt+Φn),

n = 1, 2, ..., N, (6.2)

with equality obtained for N → ∞. Here, ωn = n∆ω,
∆ω = ωmax/N , and ωmax is a cutoff frequency above
which the power spectrum can be neglected. Each Φn is
a random phase uniformly distributed in the range [0, 2π]
. By use of a particular set of random phases {Φn} to
generate the noise values at each time step, we obtain a
single ”experimental” realization of the quantum noise in
our system. Since we cannot predict a priori the specific
form of the quantum fluctuations in a particular exper-
iment, we again average over many realizations of the
superradiant system, each governed by a different ξ(t),
in order to obtain distributions and ensemble averages of
relevant quantities. We note that equation (6.2) clearly
gives 〈ξ(t)〉ens = 0, as desired, since the random Φn cause
the ensemble to average to zero. To show that (6.2) also
gives the correct autocorrelation function, we write:

〈 ξ(t)ξ(t′) 〉ens
= 〈 4∆ω

∑

k

∑

l

[P (ωk)P (ωl)]
1/2 cos (ωkt+Φk)

× cos (ωlt
′ +Φl) 〉ens

= 〈2∆ω
∑

k

∑

l

[P (ωk)P (ωl)]
1/2

×{cos (ωkt− ωlt
′ +Φk − Φl)

+ cos (ωkt+ ωlt
′ +Φk +Φl)}〉ens (6.3)

=

〈

2∆ω
∑

k

P (ωk) cos [ωk (t− t′)]

〉

ens

, (6.4)

In (6.3), only the k = l components, in which the random
phases Φk and Φl cancel each other, survive the ensemble
average. All other terms in (6.3) vanish in the ensemble
average. As N → ∞, (6.4) becomes the Fourier trans-
form of P (ω), which equals 〈ξ(t)ξ(t′)〉ens . Studies have
shown that for values of N as small as 1000, the desired
autocorrelation may be obtained with as little as 5% error
[38], making this a computationally feasible technique.
Furthermore, unlike other methods for the generation of
stochastic functions (see Refs. [36]), the present method
computes the desired function, ξ(t), using only a uni-
form random distribution of phases Φk as input, rather
than requiring the computation of a Gaussian stochas-
tic function as an intermediate step. This decreases the
likelihood of spurious correlations between our random
numbers. Figure 14 shows the two–time correlation of
ξ(t) for α = 1, for an ensemble of 2000 realizations of
the noise function generated by the algorithm of equa-
tion (6.2). In this calculation and in the simulations de-
scribed below, we chose a power spectrum P (ω) =

√

π
2ω ,

in order to mimic the colored vacuum near an isotropic
band edge. We see good agreement with the correlation
function (6.1). The agreement between our simulations
and the exact correlation function can be significantly
improved by enlarging the size of the ensemble, at the ex-
pense of increased computation time for atom–field sim-
ulations.
The ensemble {ξ(t)} is used to simulate the effect of

vacuum fluctuations in equations (2.5) and (2.6). Written
in terms of the dimensionless time variable τ = N2/3β1t,
these equations for the isotropic band edge become

d

dτ
〈J3(τ)〉

= −4Re { e−iπ/4 〈J21(τ)〉√
π

∫ τ

0

〈

J21(τ
′

)
〉

√
τ − τ ′

eiδc(τ−τ
′

)dτ
′

+
〈J21(τ)〉 e−i(π/8−δcτ)

√

N
√
π

ξ(τ) } (6.5)

d

dτ
〈J12(τ)〉 = e−iπ/4 〈J3(τ)〉√

π

∫ τ

0

〈

J21(τ
′

)
〉

√
τ − τ ′

eiδc(τ−τ
′

)dτ
′

+
〈J3(τ)〉 e−i(π/8−δcτ)

√

N
√
π

ξ(τ), (6.6)

with similar equations for the anisotropic gap. For both
models, the noise term scales as 1/

√
N ; this is the same

dependence of the noise term on particle number exhib-
ited in free space [33]. In Fig. 15, we show the average
inversion for an ensemble containing 2000 realizations of
ξ(τ) for N = 1000 and N = 10000 atoms. We find
that our stochastic simulation scheme gives physical re-
sults only for systems of N > 500 atoms. The stochastic
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simulations show good agreement with the atomic inver-
sion obtained by the method of Section V. Other system
properties, such as the ensemble–averaged polarization
and the delay time distribution calculated by the present
method also agree well with the quantum calculations of
the previous section. This suggests that our stochastic
approach may be a valuable tool in the analysis of band
edge atom–field dynamics.

VII. CONCLUSIONS

In this paper, we have treated the collective sponta-
neous emission of two–level atoms near a photonic band
edge. An analytic calculation of the atomic operator dy-
namics in the case of low atomic excitation was given.
The results demonstrate novel atomic emission spectra
and show the possibility of reducing atomic population
fluctuations. This in turn suggests that fluctuations in
photon number are likewise suppressed for light localized
near the atoms. This raises the interesting question of
whether squeezed light [39], antibunched photons [40],
and other forms of non–classical light may be generated
in a simple manner from band edge atom–field systems.
For an initially inverted system prepared with a small
macroscopic polarization, a mean field factorization was
applied to the atomic quantum Langevin equations, giv-
ing a semi–classical system evolution. We found that
the atoms exhibit fractional population trapping and a
macroscopic polarization in the steady state. Collective
Rabi oscillations of the atomic population were found,
and were attributed to the interference of strongly–
dressed atom–photon states that are repelled from the
band edge, both into and out of the gap. The degree of
photon localization, the polarization amplitude, and the
phase angle of the polarization in the steady state are
all sensitive functions of the detuning of the atomic res-
onant frequency from the band edge. The steady state
atomic properties can thus be controlled by applying a
d.c. Stark shift to the atomic resonant frequency.
The effect of quantum fluctuations for high initial ex-

citation of the atoms was included by distinguishing
regimes of quantum and semi–classical collective atomic
evolution. We found that the early time quantum evolu-
tion must be treated in detail, due to the non–Markovian
electromagnetic reservoir correlations near a band edge.
This is in contrast with free space, where the atomic sys-
tem’s evolution is insensitive to the treatment of the full
temporal evolution of the early, quantum regime. Frac-
tional localization of light was shown to persist under
the influence of vacuum fluctuations. The atomic polar-
ization exhibits a non–zero amplitude with a randomly
distributed phase in the steady state. This is much like
the steady state of a conventional laser. Here, such las-
ing characteristics are due only to the Bragg scatter-
ing of photons back to the atoms; there is neither ex-
ternal pumping nor a laser cavity in our system. The

time scales for all dynamical processes, such as collective
emission and the buildup of collective atomic polariza-
tion are strongly modified from their free space values
due to the singular photon density of states near a pho-
tonic band edge. For an isotropic band edge, the time
scales as N2/3β1, while in the more realistic anisotropic
model, time scales as N2β3. As a result, collective emis-
sion phenomena can occur more rapidly near a band edge
than in free space. Throughout our calculations, we have
employed an effective mass approximation to the band
edge dispersion. For materials with a very small PBG,
it may be important to include the effects of both band
edges. These issues are raised in Appendix A.
We have demonstrated that band edge superradiance

possesses many of the self-organization and coherence
properties of a conventional laser. Furthermore, we have
shown the possibility for the generation of novel emis-
sion spectra and photon statistics. These results sug-
gest that a laser operating near a photonic band edge
may possess unusual spectral and stastical properties, as
well as a low input power lasing threshold due to the
fractional inversion of the atoms in the steady state. It
may further be possible to produce a PBG laser in a
bulk material without recourse to a defect–induced cav-
ity mode. Lending credence to this hypothesis, recent
observations [41] and theoretical studies [42] of lasing
from a multiply–scattering random medium with gain
have demonstrated that one may obtain light with the
properties of a laser field in the absence of a cavity. We
are currently investigating the properties of a band edge
laser, including the effects of pumping and dissipation,
such as the dipolar dephasing modeled in Section IV. A
full description of the statistics of a band edge laser field
will likely require a non-perturbative master equation (or
its equivalent) that exhibits the non–Markovian nature
of the electromagnetic reservoir. Techniques for treat-
ing the atom–field interaction in the absence of the Born
and Markov approximations have recently been obtained
[43,44]. However, these methods cannot account for the
van Hove singularity in the density of states encountered
at a photonic band edge, nor are they directly applicable
to externally driven atomic systems. In the absence of
a more exact approach, the band edge stochastic noise
function described in Section VI may be used to recover
many of the results of a full quantum treatment.
Finally, we note that the steady state atom-field prop-

erties described here are a result of the effect of radiation
localized in the vicinity of the active two–level atoms.
This leads to the question of how to pump energy into
these states, which lie within the forbidden photonic gap.
One possibility is to couple energy into and/or out of the
system through a third atomic level whose transition en-
ergy lies outside the gap [15]. There is also the possibility
of transmitting light into the gap through high intensity
ultrashort pulses that locally distort the nonlinear dielec-
tric constant of the material and thus allow the propa-
gation of light in the form of solitary waves within the
forbidden frequency range [45]. Such issues must be ad-
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dressed in order to fully exploit the very rich possibilities
of quantum optical processes near a photonic band edge.
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APPENDIX A: CALCULATION OF THE

MEMORY KERNEL

We first present the calculation of the memory kernel
for the isotropic model in the effective mass approxima-
tion, GI(t − t′). Starting from equation (2.8) and the
isotropic dispersion relation near the upper band edge,
ωk = ωc +A(|k| − |k0|)2, GI(t− t′) can be expressed as

GI(t− t′) =
ω2
21d

2
21

4h̄ǫ0π
eiδc(t−t

′

)

∫

dΩ

∫ Λ

k0

dk
e−iA(k−k0)

2(t−t
′

)

ωc +A(k − k0)2

(A1)

Again, δc = ω21 − ωc is the detuning of the atomic res-
onant frequency from the band edge. Λ = mc/h̄ is a
cutoff in the photon wavevector above the electron rest
mass. Photons of energy higher than the electron rest
mass probe the relativistic structure of the electron wave
packets of our resonant atoms [46]. Because the isotropic
model associates the band edge with a sphere in k-space,
there is no angular dependence in the expansion of ωk

about the band edge. We may thus separate out the an-
gular integration over solid angle Ω in (A1). We may also
make a stationary phase approximation to the integral,
as the non–exponential part of the integrand will only
contribute significantly to the integral for k ≃ k0. The
resulting integral is

GI(t− t′) ≃ ω2
21d

2
21

4h̄ǫ0π

k0
ωc
eiδc(t−t′)

∫ Λ

k0

dk e−iA(k−k0)
2(t−t′).

(A2)

As Λ is a large number, we extend the range of integration
to infinity in order to obtain a simple analytic expression
for GI(t− t′) [47]:

GI(t− t′) =
ω2
21ωc

√
ωgapd

2
21

12h̄ǫ0π3/2c3
e−i[π/4−δc(t−t′)]

√
t− t′

= β
3/2
1

e−i[π/4−δc(t−t′)]
√
t− t′

. (A3)

Because the relevant frequencies in equation (A3)
are roughly of the same order of magnitude near a

band edge, we may re–write the prefactor as β
3/2
1 ≃

ω
7/2
21 d

2
21/12h̄ǫ0π

3/2c3 , in agreement with the value given
in Section II. We emphasize that the stationary phase
method yields the correct asymptotic behavior for the
memory kernel for large |t− t′|. At short times, the in-
tegral must be evaluated more precisely using the full
photon dispersion relation, as discussed below.
For an anisotropic band gap model, we must ac-

count for the variation in the magnitude of the band
edge wavevector as k is rotated throughout the Bril-
louin zone. We associate the gap with a specific point
in k–space that satisfies the Bragg condition, k = k0.
In the effective mass approximation, the dispersion rela-
tion is expanded to second order in k about this point,
ωk = ωc±A(k−k0)

2. Making the substitution q = k−k0

and performing the angular integration, GA(t− t
′

) is ex-
pressed as

GA(t− t
′

) =
ω2
21d

2
21

4h̄ǫ0π2
eiδc(t−t

′

)

∫ Λ

0

dq
q2e−iAq2(t−t

′

)

ωc +Aq2
(A4)

Extending the wavevector integration to infinity, the
Green function is [47]

GA(t− t
′

) =
ω2
21d

2
21

8h̄ǫ0π2
eiδc(t−t

′

) {
√

π

iωc(t− t′)

− π

2

√

ωc

A
eiωc(t−t

′

)

[

1− Φ

(

√

iωc(t− t′)

)]

} .

(A5)

Φ (x) is the probability integral, Φ (x) = 2√
π

∫ x

0
e−t2dt.

For ωc(t − t
′

) ≫ 1, a condition satisfied for all but the

t
′ → t limit (as ωc ∼ 1015s−1 for optical transitions),
taking the asymptotic expansion of Φ(x) to second order
gives

GA(t− t
′

) =
ω2
21d

2
21

8h̄ǫ0(πA)3/2ωc

e
i
[

π/4+δc(t−t
′

)
]

(t− t′)3/2
,

ωc(t− t
′

) ≫ 1.

(A6)

As t− t
′ → 0+, (A5) reduces to

GA(t− t
′

) =
ω2
21d

2
21

8h̄ǫ0π2A3/2

[
√

π

iωc(t− t′)
− π

√
ωc

]

,

t− t
′ → 0+.

(A7)

GA(t − t
′

) possesses a weak (square root) singularity at

t = t
′

. This is an integrable singularity and can thus be
treated numerically [48].
The effective mass dispersion relation used in the eval-

uation of G(t − t
′

) is, strictly speaking, valid only near

13



the photonic band edge, as it fails to give the required
linear photon dispersion relation for large |k − k0| (far
away from the gap). Therefore, the integration of the ef-
fective mass dispersion for large wavevector in (A1) and

(A4) introduces a spurious contribution to G(t−t′). This
difficulty may be overcome for an isotropic gap model by
using a dispersion relation that has the correct wavevec-
tor dependence for all k. The simplest model dispersion
with the correct form is

ωk/c =
√

k20 + γ2 + sgn(k − k0)
√

(k − k0)2 + γ2. (A8)

The double-valued nature of ωk at k0 is made explicit
by the function sgn(k − k0) = 1 for k > k0, and
sgn(k − k0) = −1 for k < k0. This gives a gap of
width ωgap = 2γc, centered about the midgap frequency

ω0 = c
√

k20 + γ2. Note that equation (A8) gives the cor-
rect linear dependence in k for both large positive and
negative k, and gives the effective mass dispersion for
k ∼ k0. Like the effective mass model, (A8) gives a sin-
gular density of states at the band edges, ωc = ω0 ± cγ.
The full dispersion relation allows us to evaluate the in-
fluence of both band edges for arbitrary gap width and
atomic resonant frequency. Preliminary numerical cal-
culations show a stronger reservoir memory effect than
demonstrated in the effective mass model for the isotropic
band edge. This may have a significant effect on theoreti-
cal predictions regarding the atom–field interaction in the
vicinity of a PBG. A further simplification has been made
in the anisotropic model, in that we have not included the
dependence of ωk on the symmetry of a specific photonic
crystal. In a real three dimensional PBG material, the
Bragg condition is satisfied for different values of k as the
wavevector changes direction in k–space. This directional
dependence may lead to a much stronger dependence of
the localization of light on the detuning of w21 away from
the band edge. The impact on the atom–field interaction
in a PBG of both the full isotropic dispersion model and
more realistic dispersions for three dimensional photonic
crystals will be treated elsewhere.

APPENDIX B: EVALUATION OF
∑

λ
|Aλ(t)|

2

We outline the evaluation of
∑

λ |Aλ(t)|2, used to ob-
tain the low excitation population fluctuations in Section
III, equation (3.19). A similar procedure is used to ar-
rive at equation (5.12) in Section V. Starting from the

Laplace transform Ãλ(s) (equation (3.7)), we may use
the properties of a convolution of Laplace transforms in
order to write

Aλ(t) = gλ

∫ t

0

dt′B(t′)e−i∆λt. (B1)

Therefore, we have

∑

λ

|Aλ(t)|2 =

∫ t

0

dt′
∫ t

0

dt′′B(t′′)B∗(t′)G(t′ − t′′), (B2)

with G(t − t′) defined as in equation (2.7). We may re–
write this double integral in the form:

∑

λ

|Aλ(t)|2 =

∫ t

0

dt′
∫ t′

0

dt′′B(t′′)B∗(t′)G(t′ − t′′)

+

∫ t

0

dt′
∫ t

t′
dt′′B(t′′)B∗(t′)G(t′ − t′′)

= I1 + I2, (B3)

where I1 and I2 are the first and second double integrals
respectively. By changing the order of the integrations
in I2, we obtain

I2 =

∫ t

0

dt′′
∫ t′′

0

dt′B(t′′)B∗(t′)G(t′ − t′′) = I∗1 . (B4)

Therefore,
∑

λ |Aλ(t)|2 = 2Re {I1}, and we need only ex-

plicitly evaluate I1. The Laplace transform of B(t), B̃(s)
(equation (3.6)), is equivalent to the Laplace transform
of the equation

d

dt
B(t) = −N

∫ t

0

dt′G(t− t′)B(t′). (B5)

Substituting (B5) into I1 and its complex conjugate, we
obtain

2I1 = − 1

N

∫ t

0

dt′
d

dt′
|B(t′)|2 =

1

N

[

|B(0)|2 − |B(t)|2
]

=
∑

λ

|Aλ(t)|2 , (B6)

as I1 is real. Substituting the initial condition |B(0)|2 =
1 into (B6) gives the result quoted in Section III.
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FIG. 1. Normalized population of the excited atomic state
near an isotropic photonic band edge for low initial atomic
excitation. Various values of the detuning, δc ≡ ω21 − ωc,
of the atomic resonant frequency ω21 from a band edge at
frequency ωc are shown. Dashed line, δc = −.5; solid line,
δc = 0; dotted line, δc = .5. δc is measured in units of N2/3β1.

FIG. 2. Collective atomic emission spectrum S(ω) (arbi-
trary units) near an isotropic band edge for low initial atomic
excitation. Various values of the detuning, δc ≡ ω21 − ωc, of
the atomic resonant frequency ω21 from an isotropic photonic
band edge at frequency ωc are shown. Dotted line, δc = −1;
dashed line, δc5 = 0; solid line, δc = 1. δc is measured in
units of N2/3β1.

FIG. 3. Fluctuations in the excited state atomic popula-
tion as measured by the Mandel parameter,
Q(t) = (

〈

n2(t)
〉

− 〈n(t)〉2)/ 〈n(t)〉, for low initial excitation
for an atomic resonant frequency tuned to an isotropic pho-
tonic band edge, δc = 0. Dashed line, Q(0) = 2; solid line,
Q(0) = 0. Long-short dashed line denotes fluctuations for
Poissonian population variance, Q(0) = 1.

FIG. 4. Mean field solution for the atomic inversion,
〈J3(t)〉 /N , near an isotropic photonic band edge, starting
with an infinitesimal initial polarization, r = 10−5. Various
values of the detuning, δc ≡ ω21 − ωc, of the atomic resonant
frequency ω21 from a band edge at frequency ωc are shown.
(a) δc = 1; (b) δc = .5; (c) δc = 0; (d) δc = −.5; (e) δc = −1.
δc is measured in units of N2/3β1.
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FIG. 5. Mean field solution for the atomic polarization am-
plitude, |〈J12(t)〉| /N , near an isotropic photonic band edge,
starting with an infinitesimal initial polarization, r = 10−5.
Various values of the detuning, δc ≡ ω21 − ωc, of the atomic
resonant frequency ω21 from a band edge at frequency ωc are
shown. (a) δc = 1; (b) δc = .5; (c) δc = 0; (d) δc = −.5; (e)
δc = −1. δc is measured in units of N2/3β1.

FIG. 6. Mean field solution for the phase angle of the
atomic polarization, θ(t), near an isotropic photonic band
edge, starting with an infinitesimal initial polarization,
r = 10−5. Various values of the detuning, δc ≡ ω21 − ωc,
of the atomic resonant frequency ω21 from a band edge at fre-
quency ωc are shown. (a) δc = .5; (b) δc = 0; (c) δc = −.75;
(d) δc = −1. δc is measured in units of N2/3β1.

FIG. 7. Mean field solution for the atomic inversion,
〈J3(t)〉 /N , near an anisotropic photonic band edge, starting
with an infinitesimal initial polarization, r = 10−6. Various
values of the detuning, δc ≡ ω21 − ωc, of the atomic resonant
frequency ω21 from a band edge at frequency ωc are shown.
Dashed line, δc = .1; solid line, δc = 0; dotted line, δc = −.3.
δc is measured in units of N2β3.

FIG. 8. Mean field solution for the atomic polarization am-
plitude, |〈J12(t)〉| /N , near an anisotropic photonic band edge,
starting with an infinitesimal initial polarization, r = 10−6.
Various values of the detuning, δc ≡ ω21 − ωc, of the atomic
resonant frequency ω21 from a band edge at frequency ωc are
shown. Dashed line, δc = .1; solid line, δc = 0; dotted line,
δc = −.3. δc is measured in units of N2β3.

FIG. 9. Mean field solution for the atomic inversion (solid
line) and polarization amplitude (dashed line) under the influ-
ence of collision broadening for an atomic resonant frequency
at an isotropic photonic band edge, δc = 0. The system is
given an infinitesimal initial polarization, r = 10−5. The sim-
ulated stark shift is a Gaussian random distribution with zero
mean and standard deviation .5N2/3β1.

FIG. 10. Atomic inversion for superradiance driven by vac-
uum fluctuations in free space and for an atomic resonant fre-
quency tuned to an isotropic photonic band edge (δc = 0).
Solid lines: result for initial polarization distribution at t = 0
for each system; dashed lines: result for initial polarization
distribution at t = t0 for each system.

FIG. 11. Ensemble–averaged atomic
inversion, 〈J3(t)〉ens /N , and atomic polarization amplitude,
∣

∣〈J12(t)〉ens

∣

∣ /N (dot-dashed line), for a system of N = 100
atoms near an isotropic photonic band edge. The ensemble
average is taken over 2000 initial polarization values. Inver-
sion: long dashed curve, δc = −.5; solid line, δc = 0; short
dashed line, δc = .5. δc in units of N2/3β1.

FIG. 12. Distribution of delay times for a system of 100
atoms at an isotropic band edge (δc = 0) for 2000 realizations
of the superradiant system.

FIG. 13. Atomic polarization distribution for a system of
100 atoms at an isotropic band edge (δc = 0), subject to
quantum fluctuations at early times. 5000 realizations of the
superradiant system. (a) t = t0

PBG; (b) t = 5; (c) t = 11; (d)
steady state. t in units of 1/N2/3β1.

FIG. 14. Solid line: ensemble averaged autocorrelation
function, 〈ξ(τ )ξ(τ ′)〉ens, of the classical colored noise function
ξ(τ ) corresponding to vacuum fluctuations near an isotropic
band edge. The dashed line is a plot of the exact au-
tocorrelation function in the effective mass approximation,
(τ − τ ′)

−1/2
.

FIG. 15. Comparison of the ensemble averaged atomic in-
version, 〈J3(t)〉ens /N , at an isotropic band edge (δc = 0) as
calculated by the methods of Sections V and VI. 2000 realiza-
tions of the superradiant system. Dashed line and long–short
dashed line: inversion calculated by the method of Section V
for N = 1000 and 10000 atoms respectively. Solid line and
dotted line: inversion calculated using the stochastic function
of Section VI for N = 1000 and 10000 atoms respectively.
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