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Quantum computation with quantum dots
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We propose an implementation of a universal set of one- and two-quantum-bit gates for quantum compu-
tation using the spin states of coupled single-electron quantum dots. Desired operations are effected by the
gating of the tunneling barrier between neighboring dots. Several measures of the gate quality are computed
within a recently derived spin master equation incorporating decoherence caused by a prototypical magnetic
environment. Dot-array experiments that would provide an initial demonstration of the desired nonequilibrium
spin dynamics are proposed.@S1050-2947~98!04501-6#

PACS number~s!: 03.67.Lx, 89.70.1c, 75.10.Jm, 89.80.1h
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I. INTRODUCTION

The work of the past several years has greatly clarifi
both the theoretical potential and the experimental challen
of quantum computation@1#. In a quantum computer th
state of each bit is permitted to be any quantum-mechan
state of aqubit ~quantum bit, or two-level quantum system!.
Computation proceeds by a succession of ‘‘two-qubit qu
tum gates’’@2#, coherent interactions involving specific pai
of qubits, by analogy to the realization of ordinary digit
computation as a succession of Boolean logic gates. It is
understood that the time evolution of an arbitrary quant
state is intrinsically more powerful computationally than t
evolution of a digital logic state~the quantum computation
can be viewed as a coherent superposition of digital com
tations proceeding in parallel!.

Shor has shown@3# how this parallelism may be exploite
to develop polynomial-time quantum algorithms for comp
tational problems, such as prime factoring, which have p
viously been viewed as intractable. This has sparked inv
tigations into the feasibility of the actual physic
implementation of quantum computation. Achieving the co
ditions for quantum computation is extremely demandi
requiring precision control of Hamiltonian operations
well-defined two-level quantum systems and a very high
gree of quantum coherence@4#. In ion-trap systems@5# and
cavity quantum electrodynamic experiments@6#, quantum
computation at the level of an individual two-qubit gate h
been demonstrated; however, it is unclear whether s
atomic-physics implementations could ever be scaled u
do truly large-scale quantum computation, and some h
speculated that solid-state physics, the scientific mainsta
digital computation, would ultimately provide a suitab
arena for quantum computation as well. The initial realiz
tion of the model that we introduce here would correspond
only a modest step towards the realization of quantum c
puting, but it would at the same time be a very ambitio
advance in the study of controlled nonequilibrium spin d
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namics of magnetic nanosystems and could point the w
towards more extensive studies to explore the large-s
quantum dynamics envisioned for a quantum computer.

II. QUANTUM-DOT IMPLEMENTATION
OF TWO-QUBIT GATES

In this paper we develop a detailed scenario for h
quantum computation may be achieved in a coup
quantum-dot system@7#. In our model the qubit is realized a
the spin of the excess electron on a single-electron quan
dot; see Fig. 1. We introduce here a mechanism for tw
qubit quantum-gate operation that operates by a purely e

FIG. 1. ~a! Schematic top view of two coupled quantum do
labeled 1 and 2, each containing one excess electron (e) with spin
1/2. The tunnel barrier between the dots can be raised or lowere
setting a gate voltage ‘‘high’’~solid equipotential contour! or
‘‘low’’ ~dashed equipotential contour!. In the low state virtual tun-
neling ~dotted line! produces a time-dependent Heisenberg
changeJ(t). Hopping to an auxiliary ferromagnetic dot~FM! pro-
vides one method of performing single-qubit operations. Tunne
(T) to the paramagnetic dot~PM! can be used as a POV read o
with 75% reliability; spin-dependent tunneling~through ‘‘spin
valve’’ SV! into dot 3 can lead to spin measurement via an el
trometerE. ~b! Proposed experimental setup for initial test of swa
gate operation in an array of many noninteracting quantum-
pairs. The left column of dots is initially unpolarized, while th
right one is polarized; this state can be reversed by a swap oper
@see Eq.~31!#.
120 © 1998 The American Physical Society
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57 121QUANTUM COMPUTATION WITH QUANTUM DOTS
trical gating of the tunneling barrier between neighbori
quantum dots rather than by spectroscopic manipulation a
other models. Controlled gating of the tunneling barrier b
tween neighboring single-electron quantum dots in patter
two-dimensional electron-gas structures has already b
achieved experimentally using a split-gate technique@8#. If
the barrier potential is ‘‘high,’’ tunneling is forbidden be
tween dots and the qubit states are held stably without e
lution in time (t). If the barrier is pulsed to a ‘‘low’’ voltage,
the usual physics of the Hubbard model@9# says that the
spins will be subject to a transient Heisenberg coupling,

Hs~ t !5J~ t !SW 1•SW 2 , ~1!

whereJ(t)54t0
2(t)/u is the time-dependent exchange co

stant@10# that is produced by the turning on and off of th
tunneling matrix elementt0(t). Here u is the charging en-
ergy of a single dot andSW i is the spin-1/2 operator for doti .

Equation ~1! will provide a good description of the
quantum-dot system if several conditions are met.~i! Higher-
lying single-particle states of the dots can be ignored;
requiresDE@kT, whereDE is the level spacing andT is the
temperature.~ii ! The time scalets for pulsing the gate po-
tential low should be longer than\/DE in order to prevent
transitions to higher orbital levels.~iii ! u.t0(t) for all t; this
is required for the Heisenberg exchange approximation to
accurate.~iv! The decoherence timeG21 should be much
longer than the switching timets . Much of the remainder of
the paper will be devoted to a detailed analysis of the ef
of a decohering environment. We expect that the spin-
degrees of freedom in quantum dots should generically h
longer decoherence times than charge degrees of free
since they are insensitive to any environmental fluctuati
of the electric potential. However, while charge transport
such coupled quantum dots has received much recent a
tion @11,8#, we are not aware of investigations on their no
equilibrium spin dynamics as envisaged here. Thus we
carefully consider the effect of magnetic coupling to the e
vironment.

If G21 is long, then the ideal of quantum computing m
be achieved, wherein the effect of the pulsed Hamiltonia
to apply a particular unitary time evolution operatorUs(t)
5Texp$2i*0

t Hs(t8)dt8% to the initial state of the two spins
uC(t)&5UsuC(0)&. The pulsed Heisenberg coupling lea
to a special form forUs : For a specific durationts of the
spin-spin coupling such that*dtJ(t)5J0ts5p(mod2p)
@12#, Us(J0ts5p)5Usw is the ‘‘swap’’ operator: Ifu i j & la-
bels the basis states of two spins in theSz basis with i , j
50,1, thenUswu i j &5u j i &. Because it conserves the total a
gular momentum of the system,Usw is not by itself sufficient
to perform useful quantum computations, but if the inter
tion is pulsed on for just half the duration, the resulti
square root of the swap operator is very useful as a fun
mental quantum gate: For instance, a quantum XOR ga
obtained by a simple sequence of operations

UXOR5ei ~p/2!S1
z
e2 i ~p/2!S2

z
Usw

1/2eipS1
z
Usw

1/2, ~2!

whereeipS1
z
, etc., are single-qubit operations only, which c

be realized, e.g., by applying local magnetic fields~see Sec.
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III B ! @13#. It has been established that XOR along w
single-qubit operations may be assembled to do any quan
computation@2#. Note that the XOR of Eq.~2! is given in the
basis where it has the form of a conditional phase-shift
eration; the standard XOR is obtained by a simple ba
change for qubit 2@2#.

III. MASTER EQUATION

We will now consider in detail thenonidealaction of the
swap operation when the two spins are coupled to a magn
environment. A master equation model is obtained that
plicitly accounts for the action of the environment durin
switching, to our knowledge, the first treatment of this effe
We use a Caldeira-Leggett–type model in which a set
harmonic oscillators are coupled linearly to the system sp
by Hint5l( i 51,2SW i•bW i . Here bi

j5(aga
i j (aa,i j 1aa,i j

† ) is a
fluctuating quantum field whose free motion is governed
the harmonic-oscillator HamiltonianHB5(va

i j aa,i j
† aa,i j ,

whereaa,i j
† (aa,i j ) are bosonic creation~annihilation! opera-

tors ~with j 5x,y,z) andva
i j are the corresponding frequen

cies with spectral distribution function
Ji j (v)5p(a(ga

i j )2d(v2va) @14#. The system and environ
ment are initially uncorrelated with the latter in thermal eq
librium described by the canonical density matrixrB with
temperatureT. We assume for simplicity that the environ
ment acts isotropically and is equal and independent on b
dots. We do not consider this to be a microscopically ac
rate model for these as-yet-unconstructed quantum-dot
tems, but rather as a generic phenomenological descrip
of the environment of a spin, which will permit us to explo
the complete time dependence of the gate action on
single coupling constantl and the controlled parameters o
Hs(t) @15#.

A. Swap gate

The quantity of interest is the system density mat
r(t)5TrB r̄ (t), which we obtain by tracing out the environ
ment degrees of freedom. The full density matrixr̄ itself
obeys the von Neumann equation

ṙ̄ ~ t !52 i @H, r̄ #[2 iL r̄ , ~3!

where

L5Ls~ t !1Lint1LB ~4!

denotes the Liouvillian@16# corresponding to the full Hamil-
tonian

H5Hs~ t !1Hint1HB . ~5!

Our goal is to find the linear map~superoperator! V(t) that
connects the input state of the gater05r(t50) with the
output stater(t) after timet.ts has elapsed,r(t)5V(t)r0 .
V(t) must satisfy three physical conditions:~i! trace preser-
vation Trs Vr51, where Trs denotes the system trace;~ii !
Hermiticity preservation (Vr)†5Vr; and~iii ! complete posi-
tivity, (V^ 1B) r̄ >0. Using the Zwanzig master equation a
proach@16#, we sketch the derivation forV in the Born and
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122 57DANIEL LOSS AND DAVID P. DIVENCENZO
Markov approximations, which respects these three co
tions. The situation we analyze here is unusual in thatHs is
explicitly time dependent and changes abruptly in time. I
this fact that requires a separate treatment for timest<ts and
t.ts . To implement this time scale separation and to p
serve positivity it is best to start from the exact master eq
tion in pure integral form

r~ t !5Us~ t,0!r02E
0

t

dsE
0

s

dt Us~ t,s!M~s,t!r~t!,

~6!

where

Ui~ t,t8!5TexpH 2 i E
t8

t

dtLi~t!J , ~7!

where i 5s, B, int, or q. Here q indicates the projected
Liouvillian

Lq5~12P!L5~12rBTrB!L. ~8!

Also, the ‘‘memory kernel’’ is

M~s,t!5TrBLintUq~s,t!LintrB . ~9!

We solve Eq.~6! in the Born approximation and fort@ts .
To this end the time integrals are split up into three parts~i!
0<t<s<ts,t, ~ii ! 0<t<ts<s,t, and ~iii ! 0<ts<t
<s,t. Keeping only leading terms ints , we retain the
contribution from interval~ii ! as it is proportional tots ,
whereas we can drop interval~i!, which leads to higher-orde
terms. However, note that terms containingJ0ts must be
kept to all orders@12#. Interval ~iii ! is independent ofts .

Rewriting the expressions and performing a Born a
proximation ~i.e., keeping only lowest-order terms inl2)
with subsequent Markov approximation we find, fort>ts ,

V~ t !5e2~ t2ts!K3Us~ts! ~12K2!, ~10!

whereUi(ts)5Ui(ts,0),K2 describes the effect of the env
ronment during the switching,

K25Us
†~ts!E

0

ts
dtE

0

`

dt TrBLintUs~t!UB~ t !

3LintrBUs~ts2t!, ~11!

while

K35E
0

`

dt TrBLintUB~ t !LintrB ~12!

is independent ofHs . We also note thatUs(12K2) has a
simple interpretation as being the ‘‘transient contributio
that changes the initial valuer0 at t50 to Us(ts)(1
2K2)r0 at t5ts . We show in the Appendix that, to leadin
order, our superoperatorV indeed satisfies all three cond
tions stated above, in particular complete positivity. Suc
proof for spins with an explicit time-dependent and dire
interaction~1! is not simply related to the case of a mas
equation for noninteracting spins~and without explicit time
dependence! considered in the literature~see, for example
i-

s

-
-

-

a
t
r

@17,16#!. We also note that the above Born and Markov a
proximations could also be introduced in the master equa
in the more usual differential-integral representation. Ho
ever, it is well known from studies in noninteracting sp
problems@18# that in this case the resulting propagator is
generalno longercompletely positive.

Next, we evaluate the above superoperators more exp
itly, obtaining

K2r5~G1 iD!(
i
E

0

ts
dt@SW i~ts!,SW i~t!r#1H.c., ~13!

K3r5GS 3r22(
i

SW ir•SW i D , ~14!

where in the commutator in Eq.~13! a dot product is under-
stood between the vector parts of the two factors, and wh
G,D are real and given by

G5
l2

p E
0

`

dtE
0

`

dv J~v!cos~vt !cothS v

2kBTD , ~15!

D5
l2

p E
0

`

dtE
0

`

dv J~v!sin~vt !. ~16!

In our model, the transverse and longitudinal relaxation
decoherence rates of the system spins are the same and
by G. For instance, for Ohmic damping withJ(v)5hv, we
get G5l2hkBT and D5l2hvc /p, with vc some high-
frequency cutoff. Requiring for consistency thatGts ,Dts
!1, we find thatK2 is in fact a small correction. However
we emphasize again that, to our knowledge, this is the
time that any analysis of thisK2 term, describing the action
of the environment during the finite time that the syste
Hamiltonian is switched on, has been given.

For further evaluation ofV we adopt a matrix representa
tion, defined by

Vabucd5~eab ,Vecd![Trseab
† Vecd , ~17!

where $eabua,b51, . . . ,4% is an orthonormal basis, i.e
(eab ,ecd)5dacdbd . In this notation we then have

r~ t !ab5(
c,d
Vabucd~r0!cd , ~18!

with V being a 16316 matrix.
Note thatK2,3 and Us are not simultaneously diagona

However, sinceK3(1,SW i)52G(0,SW i) we see that exp$2(t
2ts)K3% is diagonal in the ‘‘polarization basis’’$eab

p

5ea
1eb

2 ;e1, . . . ,4
i 5(1/A2,A2Si

x ,A2Si
y ,A2Si

z),i 51,2%, while
Ls and thusUs are diagonal in the ‘‘multiplet basis’’$eab

m

5ua&^bu,a,b51, . . . ,4;u1&5(u01&2u10&)/A2,u2&5(u01&
1u10&)/A2,u3&5u00&,u4&5u11&%, with

Us~ t !abua8b85daa8dbb8e
2 i t ~Ea

m
2Eb

m
!, ~19!
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57 123QUANTUM COMPUTATION WITH QUANTUM DOTS
whereE1
m523J0/4 andE2,3,4

m 5J0/4 are the singlet and trip
let eigenvalues. Finally,K2 is most easily evaluated also i
the multiplet basis; after some calculation we find thatK2

5K2
d2K2

nd , with

~K2
d!abugd5(

i ,a8
@dag^duSW i ua8&•^a8uSW i ub&ka8a8udb

*

1dbd^auSW i ua8&•^a8uSW i ug&ka8a8uga#, ~20!

~K2
nd!abugd5(

i
^auSW i ug&•^duSW i ub&@kabugd1~kbaudg!* #.

~21!

Here

kabugd5~G1 iD!ei ~Ed
m

2Eb
m

!tsE
0

ts
dt ei ~Ea

m
2Eg

m
!t

5
1

2vag
@Gcdb2Dsdb1 i ~Gsdb1Dcdb!#

3@sag1 i ~12cag!#,

ci j 5cos~tsv i j !, si j 5sin~tsv i j !, v i j 5Ei
m2Ej

m .

Using the above matrix notation, we can write explicitly

Vabugd5 (
a,b,a8,b8

~Cabuab!* ~e2~ t2ts!K3!abuab

3Cabua8b8e
2 i ts~E

a8
m

2E
b8
m

!~12K2!a8b8ugd ,

~22!

where Cabuab5(eab
p ,eab

m ) is the unitary basis change be
tween the polarization and the multiplet basis.

B. One-bit gates

We now repeat the preceding analysis for single-qubit

tations such asei (p/2)Si
z

as required in Eq.~2!. Such rotations
can be achieved if a magnetic fieldHW i could be pulsed ex-
clusively onto spini , perhaps by a scanning-probe tip. A
alternative way, which would become attractive if furth
advances are made in the synthesis of nanostructures in
netic semiconductors@19#, is to use, as indicated in Fig. 1~a!,
an auxiliary dot~FM! made of an insulating, ferromagnet
cally ordered material that can be connected to dot 1~or dot
2! by the same kind of electrical gating as discussed ab
@8#. If the the barrier between dot 1 and dot FM were lo
ered so that the electron’s wave function overlaps with
magnetized region for a fixed timets , the Hamiltonian for
the qubit on dot 1 will contain a Zeeman term during th
time. For all earlier and later times the magnetic field seen
the qubit should be zero; any stray magnetic field from
dot FM at neighboring dots 1, 2, etc., could be made sm
by making FM part of a closure domain or closed magne
circuit.

In either case, the spin is rotated and the correspond
Hamiltonian is given by
-

ag-

e
-
e

t
y
e
ll
c

g

E
0

ts
dtHs

H5(
i 51

2

v itsSi
z , ~23!

with v i5gmBHi
z , where we assume that theH field acting

on spini is along thez axis. The calculation proceeds alon
the same line as the one described above: Just as in Eq.~10!,
the expression obtained for the superoperator is

VH~ t !5e2~ t2ts!K3U s
H~ts!~12K2

H!. ~24!

K3 is exactly the same as before, Eq.~14!. Us
H(ts) is again

given by Eq.~7! with the modification that the Liouvillian
@see Eq.~4!# corresponding to the magnetic-field Ham
tonian of Eq.~23! is used rather than that for the exchan
HamiltonianHs @Eqs. ~5! and ~1!#. The explicit matrix rep-
resentation is

„U s
H~ts!…rsur 8s85d rr 8dss8expS 2 i(

i 51

2

~Er
i 2Es

i !tsD .

~25!

Here we are employing another basis, theSz basis for the
two spins $ers

z 5ur &^su, r ,s51,2,3,4;us&5u00&,u01&,u10&,
u11&%. The energies are

$Er
1%5$E1,2,3,4

1 %5
v1

2
$1,1,21,21%,

$Er
2%5$E1,2,3,4

2 %5
v2

2
$1,21,1,21%. ~26!

The K2
H calculation also proceeds as before@see Eq.~13!#

using the new Hamiltonian; the result isK2
H5K2

H,d

2K2
H,nd , with

~K2
H,d!rsutu5(

i ,r 8
@d rt^uuSW i ur 8&•^r 8uSW i us&~kr 8r 8uus

i
!*

1dsû r uSW i ur 8&•^r 8uSW i ut&kr 8r 8utr
i

#, ~27!

~K2
H,nd!rsutu5(

i
^r uSW i ut&•^uuSW i us&@krsutu

i 1~ksruut
i !* #.

~28!

Here

krsutu
i 5~G1 iD!ei ~Eu

i
2Es

i
!tsE

0

ts
dtei ~Er

i
2Et

i
!t

5
1

2v rt
i

@Gcus
i 2Dsus

i 1 i ~Gsus
i 1Dcus

i !#

3@srt
i 1 i ~12crt

i !#, ~29!

ci j
k 5cos~tsv i j

k !, si j
k 5sin~tsv i j

k !, v i j
k 5Ei

k2Ej
k .

TheEk’s are from Eq.~26!. Finally, the explicit matrix form
for VH may be written
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124 57DANIEL LOSS AND DAVID P. DIVENCENZO
Vabua8b8
H

5 (
r ,s,r 8,s8

~e2~ t2ts!K3!abuab~Drsuab!*

3expS 2 i(
i 51

2

ts~Er
i 2Es

i !D ~12K2
H!rsur 8s8

3Dr 8s8ua8b8, ~30!

whereDrsuab5(ers
z ,eab

p ) is now the unitary basis change b
tween theSz basis and the polarization basis.

C. Numerical study for swap gate and XOR gate

Having diagonalized the problem, we can now calcul
any system observable; the required matrix calculations
involved and complete evaluation is done wi
MATHEMATICA . We will consider three parameters (s, F, and
P in Fig. 2! relevant for characterizing the gate operatio
We first perform this analysis for the swap operation int
duced above.

The swap operation would provide a useful experimen
test for the gate functionality: Let us assume that att50 spin
2 is ~nearly! polarized, say, along thez axis, while spin 1 is
~nearly! unpolarized, i.e.,r05(112S2

z)/4. This can be
achieved, e.g., by selective optical excitation or by an
plied magnetic field with a strong spatial gradient. Next
apply a swap operation by pulsing the exchange coup
such thatJ0ts5p and observe the resulting polarization
spin 1 described by

^S1
z~ t !&5

1

2
V~ t !41u14, ~31!

whereV is evaluated in the polarization basis. After timets
spin 1 is almost fully polarized~whereas spin 2 is now un
polarized! and, due to the environment, decays exponenti
with rate of orderG. To make the signal~31! easily measur-
able by conventional magnetometry, we can envisage a s

FIG. 2. ~a! Swap polarizations[2^S1
z(t)& @see Eq.~31!#, gate

fidelity F, and gate purityP vs Gt for ‘‘swap’’ using parameters
J0ts5p, Gts50.017, andDts520.0145.~b! Same for XOR ob-
tained using the four operations in Eq.~2! ~the final two single-spin
operations done simultaneously!. The same parameters and sca
as in~a! are used; the pulse-to-pulse time is taken to be 3ts . Gt is
measured from the end of the fourth pulse.
e
re

.
-

l

-

g

y

up

consisting of a large array of identical, noninteracting pa
of dots as indicated in Fig. 1~b!.

To further characterize the gate performance we foll
Ref. @20# and calculate the gate fidelit

F5^c0uU†(ts)r(t)uc0& and the gate purityP5Trs@r(t)#2,
where the overbar means an average over all initial sys
statesuc0&. ExpressingV in the multiplet basis and using
trace and Hermiticity preservation we find

F~ t !5
1

6
1

1

24
ReF(

a
Vaauaa1(

a,b
Vabuabei ts~Ea

m
2Eb

m
!G ,
~32!

P~ t !5
1

24 (
i ,k,k8

F uVkk8u i i u21(
j

~Vkk8u i iVkk8u j j
* 1uVkk8u i j u2!G

~33!

@in fact, the expression forP(t) holds in any basis#. Evalu-
ations of these functions for specific parameter values
shown in Fig. 2. For the parameters shown, the effect of
environment during the switching, i.e.,K2 in Eq. ~10!, is on
the order of a few percent.

The dimensionless parameters used here would, for
ample, correspond to the following actual physical para
eters: If an exchange constantJ0580 meV'1 K were
achievable, then pulse durations ofts'25 ps and decoher
ence times ofG21'1.4 ns would be needed; such param
eters, and perhaps much better, are apparently achievab
solid-state spin systems@19#.

As a final application, we calculate the full XOR by ap
plying the corresponding superoperators in the sequence
sociated with the one on the right-hand side of Eq.~2!. We
use the same dimensionless parameters as above, and
fore we then calculate the gate fidelity and the gate pur
Some representative results of this calculation are plotte
the inset of Fig. 2~b!. To attain thep/2 single-bit rotations of
Eq. ~2! in a ts of 25 ps would require a magnetic fieldH
'0.6 T, which would be readily available in the solid sta

IV. DISCUSSION

As a final remark about the decoherence problem, we n
that the parameters that we have chosen in the present
of our numerical work, which we consider to be realistic f
known nanoscale semiconductor materials, of course fall
far lower than the 0.999 99 levels that are presently con
ered desirable by quantum-computation theorists@1#; still,
the achievement of even much lesser quality quantum g
operation would be a tremendous advance in the control
nonequilibrium time evolution of solid-state spin system
and could point the way to the devices that could ultimat
be used in a quantum computer. Considering the situa
more broadly, we are quite aware that our proposal
quantum-dot quantum computation relies on simultane
further advances in the experimental techniques of semic
ductor nanofabrication, magnetic semiconductor synthe
single electronics, and perhaps in scanning-probe techniq
Still, we also feel strongly that such proposals should
developed seriously, and taken seriously, at present sinc
believe that many aspects of the present proposal are tes
in the not-too-distant future. This is particularly so for th
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demonstration of the swap action on an array of dot pa
Such a demonstration would be of clear interest not only
quantum computation, but would also represent a techn
for exploring the nonequilibrium dynamics of spins in qua
tum dots.

To make the quantum-dot idea a complete proposal
quantum computation, we need to touch on several o
important features of quantum-computer operation. As
guideline we follow the five requirements laid out by one
us @4#: ~i! identification of well-defined qubits,~ii ! reliable
state preparation,~iii ! low decoherence,~iv! accurate quan-
tum gate operations, and~v! strong quantum measuremen
Items~i!, ~iii !, and~iv! have been very thoroughly considere
above. We would now like to propose several possi
means by which requirements~ii ! and ~v!, for state prepara-
tion ~read in! and quantum measurement~read out!, may be
satisfied.

One scheme for qubit measurement that we sugges
volves a switchable tunneling@T in Fig. 1~a!# into a super-
cooled paramagnetic dot~PM!. When the measurement is t
be performed, the electron tunnels~this will be real tunnel-
ing, not the virtual tunneling used for the swap gate abo!
into PM, nucleating from the metastable phase a ferrom
netic domain whose magnetization direction could be m
sured by conventional means. The orientation (u,f) of this
magnetization vector is a ‘‘pointer’’ that measures the s
direction; it is a generalized measurement in which the m
surement outcomes form a continuous set rather than ha
two discrete values. Such a case is covered by the gen
formalism of positive-operator-valued~POV! measurements
@21#. If there is no magnetic anisotropy in dot PM, the
symmetry dictates that the positive measurement opera
would be projectors into the overcomplete set of spin-
coherent states

uu,f&5cos
u

2
u0&1eifsin

u

2
u1&. ~34!

A 75%-reliable measurement of spin up and spin down
obtained if the magnetization direction (u,f) in the upper
hemisphere is interpreted as up and in the lower hemisp
as down; this is so simply because

1

2pEU
dVu^0zu,f& z25

3

4
. ~35!

Here U denotes integration over the upper hemisphere
2p is the normalization constant for the coherent states.

Another approach which would potentially give a 100
reliable measurement requires a spin-dependent, switch
‘‘spin valve’’ tunnel barrier~SV! of the type mentioned, e.g
in Ref. @22#. When the measurement is to be performed,
is switched so that only an up-spin electron passes into s
conductor dot 3. Then the presence of an electron on 3, m
sured by electrometerE, would provide a measurement th
the spin had been up. It is well known now how to crea
nanoscale single-electron electrometers with exquisite se
tivity ~down to 1028 of one electron! @23#.

We need only discuss the state-preparation prob
briefly. For many applications in quantum computing, only
simple initial state, such as all spins up, needs to be crea
s.
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Obviously, such a state is achieved if the system is coo
sufficiently in a uniform applied magnetic field; acceptab
spin polarizations of electron spins are readily achievable
cryogenic temperatures. If a specific arrangement of up
down spins were needed as the starting state, these cou
created by a suitable application of the reverse of the s
valve measurement apparatus.
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APPENDIX: COMPLETE POSITIVITY
OF TIME-EVOLUTION SUPEROPERATOR V

Here we sketch the proof that the superoperatorV in Eq.
~10! is completely positive. We analyze theK3 term first. We
write

e2tK35 lim
N→`

S 12
t

N
K3D N

. ~A1!

It is sufficient to prove that the infinitesimal operator is com
pletely positive. It is straightforward to show, using Eq.~14!,
that

S 12
t

N
K3D r5Z3

†
•rZ31O„~t/N!2

…. ~A2!

HereZ3 is the seven-component vector operator

Z35S 12
t

2N(
k51

6

Bk
†Bk ,At

N
BD , ~A3!

where

B5~B1 , . . . ,B6!5A2G~SW 1 ,SW 2!. ~A4!

Note that for this caseBk
†5Bk and(k51

6 Bk
†Bk53G.

We recall that it is easy to prove that any superoperatoS
of the form

Sr5Z†rZ ~A5!

as in the first term of Eq.~A2! is completely positive. Indeed
considering its action on any state vector of the system p
environmentf and taking a positiver we get

~f,Srf!5~f,Z†rZf!5~Zf,rZf!>0 ;f. ~A6!

Next we consider the 12K2 term of Eq. ~10!. Starting
from Eq. ~13!, we put this term in a form corresponding t
the completely positive form~A5!. We find

~12K2!r5Z2
†
•rZ21O„l4,ts

2 ,~l2ts!
2
…, ~A7!

with Z2 being the vector operator

Z25~11Y†
•X†,X2Y†!, ~A8!
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with

X52~G1 iD!„SW 1~ts!,SW 2~ts!…, ~A9!

Y5E
0

ts
dt„SW 1~t!,SW 2~t!…. ~A10!

So, from the same arguments as above, Eq.~A7! establishes
th
,

y

ua
ro

ai
o

ls
be
that 12K2 is completely positive up to the order of accura
discussed in the text.

Finally, we note that the other two general conditions
a physical superoperator also follow immediately: Tra
preservation ofV follows from the fact that a LiouvillianL
appears to the left in the basic equations forK2, Eq.~11!, and
K3, Eq. ~12!. Trace preservation is also reflected in the fa
that Z2•Z2

†51 and Z3•Z3
†51 to leading order. The form

~A5! also obviously preserves Hermiticity of the density o
erator; this is also clear from the forms of Eqs.~13! and~14!.
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