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Abstract

It is shown that because of the radiation pressure a Schrödinger cat state

can be generated in a resonator with oscillating wall. The optomechanical con-

trol of quantum macroscopic coherence and its detection is taken into account

introducing new cat states. The effects due to the environmental couplings

with this nonlinear system are considered developing an operator perturbation

procedure to solve the master equation for the field mode density operator.
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1 Introduction

One of the fundamental aspects of quantum mechanics is the existence of inter-

ference among quantum states which signs the difference between a superposition of

states and a mixture of states. The quantum theory may adequately well describe

macroscopic objects by means of a linear superposition of states with macroscopi-

cally distinguishable properties. Recently, due to the improved technology, there was

a growing interest on the possibility of observing such superposition states, commonly

known as Schrödinger cats [1]. Good candidates for these macroscopic states are the

coherent states of an e.m. field mode. The properties of superposition of two generic

coherent states has been studied in Ref. [2] and the simplest superposition of even

and odd coherent states was introduced in Ref. [3]. A review of these states is given

in Ref. [4]. Within the field of optics several proposals for the generation of linear

superpositions of coherent states in various nonlinear processes [5, 6] and in quan-

tum non-demolition measurements [7] have been made. It is worthy to note that the

field in a cat state has a lot of advantages in optical communication [8]. However,

by coupling the system to its enviroment, as in the act of measurement, one always

introduces dissipation and decoherence effects, which tend to destroy any quantum

features [9].

In the common scheme of the Kerr-like medium modeled by an anharmonic os-

cillator, it was shown [10] that the photon number distribution and interferences in

phase space are highly sensitive to even small dissipative coupling. This fact, plus the

smallness of the χ(3) nonlinearity, makes the prospect of experimentally producing

and detecting such states highly questionable in these media.

On the other hand, it is well known [11] that an empty optical cavity with a

moving mirror may mimic a Kerr-like medium when it is illuminated with coherent

light. The effect of intensity dependent optical path is due, in this case, to the
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radiation pressure force.

In this paper we shall present such a model as an alternative one for the generation

of Schrödinger cats. We will show that, with the appropriate measurement technique,

it could also be useful for revealing quantum macroscopic coherence.

2 The Model

We consider a linear Fabry-Perot empty cavity with one fixed partially reflecting

end mirror and one perfectly reflecting mirror, which can move (undergoing harmonic

oscillations) under the influence of radiation pressure. If L is the equilibrium cavity

length, the resonant frequency of the cavity will be

ωc = π
c

L
n (1)

where n is an integer number determined by the frequency of the input light and c

is the speed of light. We assume that the retardation effects, due to the oscillating

mirror, in the intracavity field are negligible. We will also neglect the correction to

the radiation pressure force due to the Doppler frequency shift of the photons [12].

Thus we are able to write the Hamiltonian of the whole system as

H = h̄ωca
†a+ h̄ωmb

†b+Hint (2)

where a, a†are the boson operators of the resonant cavity mode and b, b† are the

boson operators of the oscillating mirror with the mass m and the angular frequency

ωm. This latter will be many order of magnitude smaller than ωc to ensure that the

number of photons generated by the nonstationary Casimir effect [14] as consequence

of the Casimir forces [13] in the resonator with moving boundaries is completely

negligible. Hint accounts for the fact that the intracavity photon changes its energy,

by ωc, as the oscillating mirror moves [15]

Hint = −h̄Ga†a(b+ b†) (3)
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with the coupling constant given by

G =
ωc

L

(

h̄

2mωm

)1/2

. (4)

From the Hamiltonians (2) and (3) we can derive, using the BCH formula for the Lie

algebra [16], the time evolution operator in the following form

U(t) = eiE(t)(a†a)2eiF (t)a†ax̂(t)
[

e−iωca†at/ωme−ib†bt
]

(5)

where

x̂(t) = beit/2 + b†e−it/2 (6)

is the mirror quadrature operator, while

E(t) = κ2[t− sin t] ; F (t) = 2κ sin(t/2) ; κ = G/ωm , (7)

with t the time scaled by ωm, i.e. we have replaced ωmt by t. Furthermore, from

now on, we will consider the evolution operator omitting the free motion of the two

modes a and b, i.e. the term inside the square brackets on Eq. (5).

3 Generation of Schrödinger Cat States

From Eq. (5) one can immediately recognizes that the time evolution introduces

anharmonicity due to the presence of the nonlinear term (a†a)2 whose strenght de-

pends also on time [17]. It is also easy to see that at each time for which F (t) = 0

the two subsystems are disentagled. Furthermore due to its macroscopicity we should

consider the oscillating mirror initially in a thermal state at temperature T

ρT = (1− z)
∑

n

zn|n〉〈n|; z = exp

(

− h̄ωm

kBT

)

, (8)

with z/(1−z) = Nth that represents the mean number of excitations of the mechanical

oscillator, i.e. the number of thermal phonons. Thus starting from an initial coherent
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state |α0〉 for the radiation mode we have

ρ(t∗) = eiE(t∗)(a†a)2 |α0〉|〈α0| ⊗ ρT e
−iE(t∗)(a†a)2 (9)

with

t∗ = 2πm1; m1 ∈ N (10)

so that

F (t∗) = 0; E(t∗) = κ22πm1. (11)

Now in order to see the cat states, the following condition must be fulfilled [5]

E(t∗) =
π

2
+ 2πm2; m2 ∈ N (12)

so that combining Eqs.(11) and (12) one gets

κ2 =
1

m1
(
1

4
+m2) (13)

which can be read as a restriction on the possible values of the various external

parameters. Thus if the above conditions are satisfied, we have

ρ(t∗) =
1

2

[

e−iπ/4|α0〉+ eiπ/4| − α0〉
] [

〈−α0|e−iπ/4 + 〈α0|eiπ/4
]

⊗ ρT ; (14)

however, this is not the only way to create a quantum superposition in this system.

In fact, let us consider the times t′ for which

E(t′) =
π

2
+ 2πm; m ∈ N . (15)

In these cases, obviously, F (t′) is not necessarily zero then, the reconstruction of the

superposed coherent states is impossible due to the entanglement between the two

subsystems. One can now use a conditional measurement to create the desired states,

performing a sort of quantum state engineering [18].
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Let us suppose that the mirror’s quadrature x̂(t) is measured [19], giving the result

yt. The state of the radiation field after the measurement is found by projecting the

system’s state onto the eigenstate |yt〉

ρafter(t) = CeiE(t)(a†a)2eiF (t)a†ayt |α0〉〈yt|ρT |yt〉〈α0|e−iF (t)a†ayt | e−iE(t)(a†a)2 , (16)

where C is a normalization constant

C = (〈yt|ρT |yt〉)−1 . (17)

At the times t′ we have, from Eqs. (15) and (16)

ρafter(t
′) = 1

2

[

e−iπ/4|α0e
iF (t′)y

t′ 〉+ eiπ/4| − α0e
iF (t′)y

t′ 〉
]

⊗
[

〈−α0e
iF (t′)y

t′ |e−iπ/4 + 〈α0e
iF (t′)y

t′ |eiπ/4
]

, (18)

which is a superposition of coherent states whose phase depends on the measurement

process; and further, if the result of the measurement is

yt′ =
π

2

1

F (t′)
, (19)

it is possible to recover in Eq. (18) the generalized even and odd coherent states

like those discussed in [20, 21] which show quantum interference as well as other

particular features.

4 Quasiprobability and Marginal Distribution

The evolved density operator of the whole system can be easily constructed by

using the time evolution operator of eq. (5)

ρ(t) = U(t)|α0〉〈α0| ⊗ ρTU
†(t) , (20)

and then the evolution can be described for example, in terms of the Q-function

Q(α, β, t) = 〈α|〈β|ρ(t)|β〉|α〉 = e−|α|2−|α0|2−|β|2(1− z)
∞
∑

j=0

zj |β|j
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×
∣

∣

∣

∣

∣

∞
∑

n=0

(α∗α0)
n

n!
exp

{[

iE(t)− 1

2
F 2(t)

]

n2 + iF (t)ne−it/2β∗
} j
∑

r=0

(

iF (t)neit/2
)r

r!
√

(j − r)!

∣

∣

∣

∣

∣

2

,

(21)

where the variables α, β are referred to the radiation and to the mirror respectively.

However, since the distinguishing element of a linear superposition of coherent states

is the presence of interference fringes in the marginal distribution, we are interested

in that one, for the particular times discussed in the previous Section. Its definition,

for a generic state ρfield(t) of the radiation field, is given by

P (X) = 〈X|ρfield(t)|X〉 , (22)

where |X〉 are eigenstates of the quadrature operator X = (a + a†)/2, while ρfield

should be intended as Trm{ρ} with Trm the trace over the mirror degrees of freedom.

In the case of Eq. (14) we can integrate over the degree of freedom of the mirror to

obtain the marginal distribution of the field mode as [10]

P (X) =

∣

∣

∣

∣

∣

〈X| 1√
2

[

e−iπ/4|α0〉+ eiπ/4| − α0〉
]

∣

∣

∣

∣

∣

2

=
1

2

[

P+(X) + P−(X) + 2
√

P+(X)P−(X) sin
(

4X|α0| sin (argα0)
)

]

,

(23)

P±(X) =
(

2

π

)1/2

exp
[

−2X − |α0|2 ∓ 2X(α0 + α∗
0)−

1

2
(α2

0 + α∗2
0 )
]

;

while in the case of Eq. (18) the marginal distribution for the field mode is in effect

a conditional probability

P (X|yt′) =
∣

∣

∣

∣

∣

〈X| 1√
2

[

e−iπ/4|α0e
iF (t′)y

t′ 〉+ eiπ/4| − α0e
iF (t′)y

t′ 〉
]

∣

∣

∣

∣

∣

2

, (24)

whose explicit expression is the same as in Eq. (23), apart an extra phase factor in

the coherent sate which gives the interference pattern along a direction depending on

the result of the measurement as well.
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5 Damped Mode Equation and Solutions

Let us now consider the proposed model as an open system interacting with the

”rest of Universe” [22]. We will study only the case in which the radiation mode

relaxes much faster than the mirror (the opposite case, i.e. the mirror that relaxes

much faster than the cavity mode, does not show any quantum features due to the

thermalization effects). Moreover, since, in order to see the Schrödinger cats, we are

interested to short time behaviour (i.e. times much shorter than the typical radiation

relaxation time), we can consider the mirror practically not affected by any damping.

Hence, the master equation for the whole system will be taken in the form

ρ̇ =
i

h̄
[ρ,H ] + χ(ρ) , (25)

where [23]

χ(ρ) =
γ

2
[2aρa† − a†aρ− ρa†a] , (26)

and where we have considered the number of thermal photons to be negligible at

optical frequencies. In our model, the damping constant γ takes into account the

loss of photons through the fixed mirror, so it is related to its transmissivity Tr by

the relation γ = cTr/2L with c the speed of light. However, since we are using a

scaled time we should replace γ/ωm → γ. Now, the undamped system is an exact

solvable system with the free evolution operator U(t) given by Eq. (5) and obeying

the equation iU̇(t) = HU(t). Then, introducing a new density operator R, in a form

similar to the interaction representation, i.e. ρ = URU †, we may rewrite Eq. (25) as

Ṙ = U †χ(URU †)U = χ̃(R) , (27)

where the operator χ̃(R) is obtained by the following recepie: all the additional

operators ai in the initial operators χ(ρ) are replaced by ãi = U †aiU , while the

operator ρ is replaced by R. We could write down the solution of the Eq. (27) in the
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form R = R0 + Y , where R0 is a constant operator, i.e. Ṙ0 = 0, and the operator Y

satisfies the equation corresponding to (27)

Ẏ = χ̃(Y +R0) . (28)

The operator R0 represents to the free solution of the initial Eq. (25), i.e. without the

term χ(ρ). Till now we only rewrote the master equation in another representation

and it is still an exact equation. However, Eq. (27) is appropriate to apply the Born

iteration procedure [24] provided that the the damping term χ(ρ) is small enough

to be considered as a perturbative one (this could be the case since the parameter

γ has to be small in order to achieve the Schrödinger cats). Then we could try to

solve Eq. (28) simply by replacing in the r.h.s. the operator χ̃(Y + R0) by χ̃(R0),

i.e. performing the first Born approximation. The solution is immediate, and the

operator R assumes the form

R(t) = R0 +
∫ t

0
χ̃(R0, τ)dτ . (29)

It means that the initial density operator ρ(t) becomes

ρ(t) = ρ0(t) + ργ(t) , (30)

where the term ρ0(t) is the density operator of the free motion

ρ0(t) = U(t)ρ0(0)U
†(t) (31)

with initial density matrix ρ0(0) ≡ ρ(0). The correction term ργ(t) has the form

ργ(t) = U(t)
[
∫ t

0
χ̃(R0, τ)dτ

]

U †(t) , (32)

or more explicitely

ργ(t) = γ
∫ t

0
dτ
{

e−iF (t−τ)x̂(t−τ)−2iE(t−τ)a†aaρ0(t)a
†eiF (t−τ)x̂(t−τ)+2iE(t−τ)a†a

}

− γ

2
t
[

a†aρ0(t) + ρ0(t)a
†a
]

. (33)
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The range of validity of the above approximation is determined by the requierement

ργ(t) << ρ0(t). Below, it will become more clear that it works for γ|α0|2t << 1. It

is also easy to check that Tr{ργ} = 0, then ρ(t) is always normalized to unity. Let us

now try to find the marginal distribution at the particular times t∗ and t′ discussed

in Sec. 3. By means of Eqs. (33), (22) and (14), after lenghtly but straithforward

algebra, one obtains

P (X) = 〈X|Trm{ρ0(t∗) + ργ(t
∗)}|X〉

=
(

2

π

)

1

2

e−|α0|2−2X2
∞
∑

p,q=0

2−(p+q)/2

p!q!
Hp(

√
2X)Hq(

√
2X)eiargα0(p−q)

×|α0|p+q
{

Aq,p

2
+

γ

2

[

Ap,qIp,q(t
∗)|α0|2 − Aq,p

p+ q

2
t∗
]}

(34)

where Hp are the Hermite polynomials,

Ap,q =
[

1 + i(−)q − i(−)p + (−)p+q
]

, (35)

and finally

Ip,q(t
∗) =

∫ t∗

0
dτe−i[2E(t∗−τ)](p−q) . (36)

In Eq. (34) the first term inside the curly brackets comes from ρ0 and is related to the

undamped motion, while the other is the perturbative term due to the environmental

coupling. Due to the fact that at the times t∗ the two subsystems (i.e. radiation

cavity mode and mirror) are disentangled, the thermal effects do not destroy the cat

state as can be seen in the above equations. The decoherence depends only on the

leakage of photons through the fixed mirror.

In the case of cat states generated by conditional measurement the expression for

the conditional probability in presence of damping has almost the same structure of

Eq. (34), and can be obtained by using Eqs. (33), (22) and (18)

P (X|yt′) = 〈X|〈yt′|ρ0(t′) + ργ(t
′)|yt′〉|X〉
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= C′
(

2

π

)1/2

e−|α0|2−2X2
∞
∑

p,q=0

2−(p+q)/2

p!q!
Hp(

√
2X)Hq(

√
2X)ei[argα0+F (t′)y

t′ ](p−q)

×|α0|p+q
{

Aq,p

2
〈yt′ |ρT |yt′〉+

γ

2

[

Ap,qĨp,q(t
′)|α0|2 − Aq,p

p+ q

2
t′〈yt′|ρT |yt′〉

]}

(37)

where

Ĩp,q(t
′) =

∫ t′

0
dτ exp{−i[2E(t′ − τ) + F (t′)F (t′ − τ) sin(τ/2)](p− q)}

× 〈yt′ − F (t′ − τ) sin(τ/2)|ρT |yt′ − F (t′ − τ) sin(τ/2)〉 , (38)

and, due to Eq. (8), the following general expression holds [25]

〈Y|ρT |Y〉 =
(

2

π

)

1

2

(1− z)
∞
∑

j=0

zj

2jj!
e−2Y2

H2
j (
√
2Y) =

(

2

π

1− z

1 + z

)

1

2

exp
[

−2Y2 1− z

1 + z

]

.

(39)

C′ is a constant needed for the normalization after the projection in the measurement

process, and it can be obtained by performing the integration over the X variable of

Eq. (37) with the aid of the completness formula for the Hermite polynomials [25]

C′ =
{

〈yt′|ρT |yt′〉+ γ|α0|2
[

Ĩp,q=p(t
′)− 〈yt′|ρT |yt′〉t′

]}−1
. (40)

It is easy to note that the correction term in both solutions (34) and (37) remains

smaller than the undamped term provided γ|α0|2t << 1. Equation (37) shows a

dependence of the decoherence effects also on the thermal state of the mirror (i.e. its

temperature). In Figs. (1) and (2), we show respectively P (X) and P (X|yt′ = 0)

(solid lines) of Eqs. (34) and (37) contrasted with the same in absence of damping

(dashed lines). We may see that in the case of the cat state created at t∗ = 2π, i.e. Fig.

(1), the coherence has been almost totally washed out, due to the long time needed

for the formation; while the conditional measurement could be used to generate the

superposition at shorter time, in Fig. (2) t′ = 3π/2, preserving the coherence effects.

In this case, however, one should pay attention to the thermal effect of the mirror.
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To this end, let us consider more closely the case of yt′ = 0, which is a high probable

value for the mirror quadrature measurement. The normalization factor on the r.h.s.

of Eq. (39) is a common factor that can be eliminated in Eq. (37) by using Eq.

(40), while the exponentioal factor remains in the integral of Eq. (38) only. As z

approaches the value 1, i.e. the temperature increases, it tends to becomes unity.

This means that the thermal effects tend to destroy the coherence only up to a value

of temperature, above which the interference fringes become insensitive (dotted line

of Fig. (2)). Of course analogous discussions can be made for other values of the

mirror quadrature yt′.

We also note from both Fig. (1) and Fig. (2) that, as the dissipation becomes

relevant, two gaussian peaks centered around the mean number of photons, and

which are typical of the orthogonal quadrature, appear. This is essentially due to the

rotation in the phase space introduced by the damping term ργ . In fact, as can be

seen in Eq. (33), it involves an integration over the time which leads to a distribution

whose contributions come from various field phases, i.e. from different quadratures.

6 Detection of Quantum Coherence

In this section we will show that the above discussed model could also be used to

reveal the quantum coherence.

According to Ref. [26], the photon number statistics of the radiation field could

be opportunely used as signature of the presence of Schrödinger cat states. On the

other hand, in the presented model, a measurement of the mirror’s momentum p̂

allows us to get the photon number statistics in an indirect way [27]. In particular

the signal could be represented by the number a†a of photons of the radiation mode,

and the meter by the momentum of the movable mirror; the out of phase quadrature

coupled to the photon number (see Eq. (3)).
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Our purpose should be to detect the Schrödinger cat immediately after its genera-

tion inside the cavity, at time t∗ (or t′ if one uses conditional measurement generation);

nevertheless in both cases the two subsystems, i.e. the mirror and the radiation mode,

are disentangled (as can be seen in Eqs. (14) and (18)), so no information can be

extracted in indirect way. Then, we must address the measurement to get something

which is slightly different from the Schrödinger cat state, but still having quantum

coherence features. To this end, let us consider at first the entanglement between the

signal and the meter, which could be described by the correlation function defined as

follow [28]

Cs,m =
|〈a†ap̂〉 − 〈a†a〉〈p̂〉|2

Va†aVp̂
, (41)

where V means the variance. This quantity shows how good is the scheme as a

measurement device, and should be equal to one for a perfect scheme. By performing

the expetaction values using Eqs. (33) and (5) we obtain

Cs,m =
2|α0|2κ2

[

sin2 t + 4γ sin2
(

t
2

)

sin t
]

[

1
2
+Nth + 2|α0|2κ2 sin2 t

]

(1− γt) + |α0|2κ2 γ
2
[2t− 8 sin t+ 3 sin(2t)]

. (42)

Thus Cs,m is a function of t depending also on κ, which is a constant that contains

all the external parameters. Fig. (3) illustrates the typical behaviour of Cs,m versus

t, showing the effects of dissipation as well as the thermal ones. From this figure it

is obviously that higher values of Cs,m for times closer to 0, π, 2π could be achieved

by increasing the value of κ or |α0|, but we must take into account that the number

of photons plays a delicate role in the dissipation effect.

Let us now consider a time at which the radiation is entangled with the mirror,

then its state, in absence of loss, by Eq. (20), will be

ρfield0 (t) = Trm{ρ0(t)}

=
∫

dyt〈yt|ρT |yt〉eiE(t)(a†a)2 |α0e
iF (t)yt〉〈α0e

iF (t)yt |e−iE(t)(a†a)2 , (43)
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and furthermore if E(t) satisfies the condition (12) for that time, it becomes

ρfield0 (t) =
1

2

∫

dyt〈yt|ρT |yt〉

×
(

e−iπ
4 |α0e

iF (t)yt〉+ ei
π

4 | − α0e
iF (t)yt〉

) (

e−iπ
4 〈−α0e

iF (t)yt |+ ei
π

4 〈α0e
iF (t)yt |

)

(44)

which represents not a ”pure” cat state, but that one whose phase is still convoluted

with the mirror motion and at which we may refer as ”pseudo-cat” state. This

latter, however, has the advantage of being detected, since it does not imply any

disentanglement. It is worth to remark that the dephasing effect due to the factor

exp(iFyt), which degrades the pure cat into a pseudo-cat state, is considerable only

for those values of yt contained under the gaussian state of the mirror. Then the

temperature can emphasize this negative effect, since it introduces highest mirror

number states, i.e. gaussians with larger width. On the other hand, in order to

reduce this effect, it is also preferable to have the smallest possible values of F (t).

These are accessible only at times near to 2π (see eq. (7)). Thus, in order to realize

the measurement, the choice of the mesurement time t and the value of κ should be

made to fulfill simultaneously the following requirements: Eq. (12), the highest value

of Cs,m, and the smallest value of F . Of course the detection should be performed

at time much shorter than the typical cavity lifetime γ−1 = 2L/cTr, but also longer

than the photon cavity fly time 2L/c, to ensure the presence of photons inside the

cavity.

Let us now suppose to have found the desired t and κ, then we revise the mea-

surement strategy of Ref. [26] for the detection of quantum macroscopic coherence.

A coherent field |αr〉, the ”reference”, is added to the pseudo-cat state, immedi-

ately before the measurement, so that the resulting field in the cavity at the time of

14



measurement is

ρ̃field(t) =
1

N D(αr)ρ
fieldD−1(αr) , (45)

where D is the displacement operator and N is a normalization constant.

After the injection of the reference field, the photon number distribution in the

cavity becomes

P(n) = 〈n|ρ̃field(t)|n〉 = 1

N
1

2

∫

dyt〈yt|ρT |yt〉

×
{

∣

∣

∣e−iπ
4 〈n|α0e

iF (t)yt + αr〉+ ei
π

4 〈n| − α0e
iF (t)yt + αr〉

∣

∣

∣

2
}

+O(γ) , (46)

where O(γ) indicates the perturbative terms proportional to the first power of γ that

we have omitted for space reasons.

Let us now consider separately two cases. When α0 and αr have the same phase

the photon distribution, denoted by Pin(n), as consequence of the first term in Eq.

(46), which is the dominant one, should appear as the sum of two quasi Poissonian

distributions peaked around n = |α0+αr|2 and n = |−α0+αr|2, with the tails due to

the smearing effect of the gaussian integral. In fact, in Eq. (46), the interference part

will be negligible provide to have |αr| >> 1. An interesting situation arises when α0

and αr have the same amplitude, then

Pin(n) =
1

N
1

2

|α0|2n
n!

∫

dyt〈yt|ρT |yt〉

×
{

[

cn+e
−|α0|2c+ + cn−e

−|α0|2c− + 2c
n/2
+ c

n/2
− e−2|α0|2ℜ{−i(i)n}

]

}

+O(γ) , (47)

where

c± = 2± 2 cos (F (t)yt) . (48)

In that case, neglecting the perturbation terms, Pin(n) consists of a very sharp distri-

bution centered at n = 0, which is a δ-like peak for a pure cat state, and a distribution

peaked around n = 4|α0|2. The existence of two separate peaks in the in-phase sum

field is the proof of the existence of two classical fields within the cavity. However,
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it does not prove that these two fields are in a coherent quantum mechanical super-

position. So we need to consider also the case when α0 and αr are π/2 out of phase,

for which we have

Pout(n) =
1

N
1

2

|α0|2n
n!

∫

dyt〈yt|ρT |yt〉

×
{

[

sn+e
−|α0|2s+ + sn−e

−|α0|2s− + 2s
n/2
+ s

n/2
− e−2|α0|2ℜ{−i(−i)n}

]

}

+O(γ) (49)

where now

s± = 2± 2 sin (F (t)yt) . (50)

In this case the interference in the term in Eq. (46) becomes important, in fact

Pout(n), again neglecting the perturbation terms, exhibits a Poisson envelope with

strong oscillations, signaling the coherence effect. The above discussed dephasing

effect in the pseudo-cat tends to wash out the oscillations and to transform the

Poisson envelope in a gaussian one. Of course in both cases (in and out) also the

damping terms cause a degradation of the signal.

In Fig. (4) we show Pin(n) for a pseudo-cat state a) which resembles that one for a

pure cat state, contrasted with the same in presence of damping at zero temperature

b) and at finite temperature c). Fig. (5) illustrates the same situations for Pout(n).

Both figures are obtained using t = 0.84×2π and κ = 0.5 for which one has F = 0.48

and Cs,m = 0.85 (at zero temperature, while it is reduced to 0.55 when Nth = 2).

The Pin(n) and Pout(n) distributions can actually be measured detecting the mo-

mentum of the mirror, of course the measurement process is destructive, hence the

state has to be reprepared for each measurement, and a large number of measure-

ments should be performed to reach the desired statistics. Then, from these output

distributions, one can recognize a signature of quantum coherence as in Fig. (4)

and Fig. (5), provided to have small dissipation and very low temperature, which is

needed also to guarantee a sufficient signal meter correlation (Fig. (3)).
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Finally, to effectively visualize the presence of interference fringes in the phase

space, we would consider the marginal distribution for the pseudo-cat. This proba-

bility, obtained through the expectation value 〈X|Trm{ρ0(t) + ργ(t)}|X〉 and using

Eqs.(44) and (33), will be

P pc(X) =
(

2

π

)1/2

e−|α0|2−2X2
∞
∑

p,q=0

2−(p+q)/2

p!q!
Hp(

√
2X)Hq(

√
2X)eiargα0(p−q)

×|α0|p+q
{

Aq,p

2
+

γ

2

[

Ap,qIp,q(t)|α0|2 − Aq,p
p+ q

2
t
]}

exp

[

−F 2(t)(p− q)2(1 + z)

8(1− z)

]

,

(51)

where, with the superscript pc we refer to the pseudo-cat state. It is clear from the

last exponential factor how the thermal phonons of the mirror tend to rapidly destroy

the coherence effect.

In Fig. (6) we show the marginal distribution P pc(X) of Eq. (51) for various

situations, using the above discussed values of parameters i.e. t = 0.84×2π, κ = 0.5.

From this picture we may note that the interference pattern of the pseudo-cat state is

almost the same of the pure one and is still preserved at the time of measurement, even

in the presence of loss provided to have a very small number of thermal excitations

in the mechanical oscillator.

7 Conclusion

We have proposed the use of an optomechanical model for the generation of optical

Schrödinger cat states. We have also presented a new scheme to reveal the quantum

macroscopic coherence, based on the new states named pseudo-cats that could be

intended as a sort of cat states which could be recognized before their ”natural birth”.

Thus the model is substantially able to produce and also to detect interference effects

without introducing different couplings, but one should pay attention to the different

sources of dissipation.

17



We would also point out that the studied system could be implemented for ex-

ample idealizing the movable mirror as a piezoelectric crystal [29]. The above used

values of t, κ and γ (in the various figures), could be reached for example with the

following set of parameters ωc ≈ 1016 s−1, ωm ≈ 104 s−1, m ≈ 10−14Kg, L ≈ 1.5m,

Tr ≈ 10−6 and T ≈ 10−7K. Of course, other choices satisfying the above mentioned

criteria can be made giving the same qualitative results. We are aware that a delicate

point could be the realization of the mechanical oscillator with a very small mass, but

we would remark that the mass parameter could also be interpreted as an effective

value coming from the density of the vibrational modes of the mechanical oscillator

[30]. Furthermore, the discussed model could be improved by inserting an active

Kerr medium inside a cavity which enhances the nonlinear effects, slowing down the

decoherence.

Finally, even if we have not coupled the system under study with an external

readout apparatus able to measure the momentum of the moving mirror, we think

that the presented model represents an interesting alternative way to approach, also

in the experimental sense, the quantum macroscopic coherence phenomena.
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FIGURE CAPTIONS

Fig. 1 The marginal distribution P (X) is plotted as function of the quadrature

variable X for κ = 0.5, |α0| =
√
7, at t∗ = 2π and in two different cases: γ = 0

(dashed line) and γ = 2× 10−2 (solid line).

Fig. 2 The marginal distribution P (X|yt′) is plotted as function of the quadrature

variable X for yt′ = 0, κ = 0.52, |α0| =
√
7, at t′ = 3π/2 and in three different cases:

γ = 0, Nth = 0 (dashed line); γ = 2×10−2, Nth = 0 (solid line); γ = 2×10−2, Nth ≥ 20

(dotted line).

Fig. 3 The correlation coefficient Cs,m is plotted against the time for κ = 0.5 in the

case of γ = 0, Nth = 0 (dashed line); γ = 10−2, Nth = 0 (solid line); γ = 10−2, Nth = 2

(dotted line).

Fig. 4 The distribution Pin(n) vs. the photon number is plotted for a pseudo-

cat with κ = 0.5, |α0| =
√
7 and t = 0.84 × 2π in the case of γ = 0, Nth = 0 a);

γ = 10−2, Nth = 0 b); γ = 10−2, Nth = 2 c).

Fig. 5 The same of Fig. 4, but for Pout(n).

Fig. 6 The marginal distribution P pc(X) is plotted for κ = 0.5, |α0| =
√
7,

t = 0.84× 2π and the values of γ and Nth indicated in the figure. It is also compared

with the distribution for a pure cat.
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