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Abstract

Canonical quantization of electromagnetic field inside the time–spatially dis-

persive inhomogeneous dielectrics is presented. Interacting electromagnetic

and matter excitation fields create the closed system, Hamiltonian of which

may be diagonalized by generalized polariton transformation. Resulting dis-

persion relations coincide with the classical ones obtained by the solution of

wave equation, the corresponding mode decomposition is, however, orthogo-

nal and complete in the enlarged Hilbert space.
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I. INTRODUCTION

The investigation of electromagnetic field in dielectrics has attracted growing attention

recently [1–5]. Particularly, quantum aspects of this problem are of current interest due to

the potential applications in technology of nanostructures. This research includes investi-

gation of quantum wells embedded in microcavities [6] and generation and propagation of

nonclassical states of light. In this connection, the quantization of electromagnetic field in

inhomogenous time-spatially dispersive linear medium represents a nontrivial problem [7].

Our considerations are motivated by standard electromagnetic theory [8]. Suppose for

concreteness the geometry of closed cavity (R=1) with dispersive inhomogeneity (refractive

index n(Ω)) along the z–axis as sketched in the Fig. 1. For the sake of simplicity the

s–polarization of electric field only will be assumed in the folloving. Using the Maxwell

equations, the eigenmodes of the cavity with the time dependance eiΩt may be specified as

solution of Helmholtz (time independent) wave equation
[

∆+
Ω2

c2
(1 + θ(z)χ(Ω))

]

E = 0, (1)

susceptibility being χ(Ω) = χ′ − iχ′′ = n2(Ω) − 1. The inhomogeneity is included in the

characteristic function

θ(z) =







1 for |z| ≤ l/2,

0 for |z| > l/2.

This equation may be simply solved in the regions where the coefficients are continuous

function of z. The electric field E must be continuous together with its first derivation ∂E
∂z

for each |z| ≤ L/2. The boundary conditions at ±L/2 are given as E(±L/2) = 0 and they

yield the dispersion relation

Q′
z tan

[

Qz
L− l

2

]

= Qz cot
[

Q′
z

l

2

]

,

(2)

Q′
z tan

[

Qz
L− l

2

]

= −Qz tan
[

Q′
z

l

2

]

,

where

Q2

z =
Ω2

c2
− q2 and Q′2

z = n2(Ω)
Ω2

c2
− q2.
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Here q represents the 2D component of wave vector paralel to the boundaries. This tran-

scendent equation may be solved yielding the discrete set of eigenvalues. Nevertheless, a

simple analysis shows that the corresponding eigenfunctions Eq,m(z) are not orthogonal since

the “potential” χ(Ω) depends on the frequency. This is the source of theoretical troubles,

since the decomposition of electric field is becoming questionable. The quasinormal modes

in leaky macrocavity were used in Refs. [9–11].

The purpose of this contribution is to clarify the quantum meaning of this classical elec-

tromagnetic problem. Adopting the canonical quantization scheme formulated by Huttner

and Barnett [5], we will formulate and solve the problem of quantization of electromag-

netic field in closed cavity with dispersive inhomogeneity. Normal modes are associated

with (generalized) polariton transformation. Two extreme cases of this formulation may

be distinguished as problem of exciton confined in quantum well embedded in microcav-

ity [6] and the above mentioned classical problem of leaky macrocavity. Polariton solution

exactly yields the orthogonal decomposition. Additional degrees of freedom are associated

with matter excitations. For the sake of simplicity all the quantum considerations will be

performed for special form of singular refractive index. In Appendix A this result will be

extended to the general form of an arbitrary refractive index fulfilling the Kramers–Kronig

relations.

II. CANONICAL QUANTIZATION

Let us formulate canonical description of interaction of transversal electromagnetic field

with matter. Neglecting other losses the Lagrangian reads

L =
∫

d3r L(r), (3)

where Lagrangian density is L = Lem + Lmat + Lint,

Lem =
ǫ0
2
[Ȧ2 − c2(∇×A)2], (4)

Lmat =
ρ

2
[Ẋ2 − ω2

0
X2], (5)
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Lint = −αA · Ẋ, (6)

boldface characters denote vectors and dot means time derivation ∂
∂t
. Electromagnetic part

is represented by vector field A defined in the whole cavity. Polarisation part is modeled

by harmonic oscillator field with amplitude vector X, which is non–zero only in the interval

of inhomogeneity |z| ≤ l/2, ω0 being the frequency and ρ density. Interaction of both fields

is characterized by interaction constant α. For the simplicity, linearly polarized fields with

polarization paralel to discontinuity planes z = ±l/2 will be assumed (s–polarization) in the

following. The vector field A may be interpreted as electric intensity and both fields may

be represented as (real) scalar fields. The Lagrange-Euler equations then read

ǫ0

[

∂2

∂t2
− c2∆

]

A + α
∂

∂t
X = 0, (7)

ρ
[

∂2

∂t2
+ ω2

0

]

X − α
∂

∂t
A = 0 (8)

yielding exactly the wave equation (1) for susceptibility

χ =
α2

ǫ0ρ(ω
2
0 − Ω2)

. (9)

A. Free field decompositions

The interacting fields may be quantized using expansion in orthogonal basis relevant to

respective free fields. Standard approach [5] may be used in the plane xy perpendicular to

the direction of inhomogeneity, since q is conserved due to the translation symmetry. In the

z–direction, the eigenfunction for light and matter excitation parts should be distinguished.

Assuming eiqτ/(2π) dependence, τ being the projection of 3D r vector into the xy–plane,

{ϕm(z)} are the solutions of time–independent wave equation

[

d2

dz2
+Q2

m

]

ϕm(z) = 0; Q2

m =
Ω2

m

c2
− q2, (10)

fulfilling the given boundary conditions on the interval |z| ≤ L/2. Assuming for concreteness

perfect reflection on the end mirrors, we have Qm = πm/L; m = 1, 2, 3, .... Consequently
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frequencies are quantized as Ωm(q) = c
√

(πm/L)2 + q2, q = |q|. Corresponding eigenfunc-

tions are given as ϕm(z) =
√
2 sin[mπ(z/L+1/2)]. The inhomogeneity of matter excitations

is included in the definition of eigenfunctions χq,ξ(r), since they are non–zero only on the

interval |z| ≤ l/2. Two sets of functions ϕq,m(r) and χq,ξ(r) defined in the 3D space are

orthogonal and complete in the volumes of quantization

∫

d3r ϕq,m(r)ϕ
∗
q′,n(r) = δ(q− q′)δm,n,

∑

m

∫

d2q ϕq,m(r)ϕ
∗
q,m(r

′) = δ(r− r′),

∫

d3r χq,ξ(r)χ
∗
q,η(r) = δ(q− q′)δξ,η,

∑

ξ

∫

d2q χq,ξ(r)χ
∗
q,ξ(r

′) = δ(r− r′)θ(z).

The cross–products are given by matrix elements

∫

ϕq,m(r)χ
∗
q′,ξ(r)d

3r = δ(q− q′) Km,ξ,

(11)

Km,ξ =
∫ l/2

−l/2
ϕm(z)χξ(z)dz, Km,ξ = K∗

m,ξ.

Here the full set of functions {χξ(z)} create an orthogonal and complete system of functions

on the interval |z| ≤ l/2. The explicit form of correct exciton wave functions χq,ξ(z) rep-

resents very complex problem, solution of which is beyond the scope of this contribution.

The basis used in decomposition of matter excitations will be considered as given and index

ξ will be intuitively interpreted as energy levels of free matter excitations. In the following

the wave functions of electromagnetic field will be consistently enumerated by Latin indices,

whereas Greek ones will be used for the matter excitations.

Even if we started with the Lagrangian of harmonic oscillator field (5), we will incorporate

into our scheme also a little more general models corresponding to the finite number of

energy levels ξ in the decomposition of harmonic oscillator. This technique corresponds

to quantization with confinements tending to spatial dispersion. Particularly, the matter

excitations in the ground state only correspond to the case of single exciton confined in

quantum well [6]. For this purpose, the range of sumation in respective decompositions of

matter excitations will not be specified explicitly and will be mentioned in the discussion of

the final results only. The respective expansions used in the following then read
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A(r, t) =
1

2π

∑

m

∫

d2q Aq,m(t) ϕq,m(r), (12)

X(r, t) =
1

2π

∑

ξ

∫

d2q Xq,ξ(t) χq,ξ(r). (13)

B. Hamiltonian formalism

The total Lagrangian L = Lem + Lmat + Lint may be quantized as

Lem = ǫ0
∑

m

∫ ′

d2q
[

|Ȧq,m|2 − Ω2

m(q)|Aq,m|2
]

, (14)

Lmat = ρ
∑

ξ

∫ ′

d2q
[

|Ẋq,ξ|2 − ω2

0
|Xq,ξ|2

]

, (15)

Lint = −α
∑

m,ξ

∫ ′

d2q Km,ξ

[

Aq,m · Ẋ∗
q,ξ + c.c.

]

. (16)

Here the prime means the integration over the half of the reciprocal space. Canonically

conjugated variables are given as

A∗
q,m → Pq,m =

∂L

∂Ȧ∗
q,m

= ǫ0Ȧq,m, (17)

X∗
q,ξ → Yq,ξ =

∂L

∂Ẋ∗
q,ξ

= ρẊq,ξ − α
∑

n

Kn,ξAq,n, (18)

and as the complex conjugated relations. Hamiltonian reads

H = ǫ0
∑

m

∫ ′

d2q
[

|Ȧq,m|2 + Ω2

m(q)|Aq,m|2
]

+ ρ
∑

ξ

∫ ′

d2q
[

|Ẋq,ξ|2 + ω2

0
|Xq,ξ|2

]

. (19)

Standard quantization is prescribed by commutation relations between operators

[

Aq,m, P
∗
q′,n

]

= ih̄δm,n δ(q− q′), (20)

[

Xq,ξ, Y
∗
q′,η

]

= ih̄δξ,η δ(q− q′). (21)

Annihilation operators of electromagnetic field
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aq,m =

√

ǫ0
2h̄Ωm(q)

[

Ωm(q)Aq,m +
i

ǫ0
Pq,m

]

(22)

and matter excitations

bq,ξ =

√

ρ

2h̄ω0

[

ω0Xq,ξ +
i

ρ
Yq,ξ

]

(23)

are fulfilling the ordinary boson commutation relations

[

aq,m, a
†
q′,n

]

= δm,nδ(q− q′), (24)

[

bq,ξ, b
†
q′,η

]

= δξ,ηδ(q− q′). (25)

The definition may be extended to full space of q vectors as

a−q,m =

√

ǫ0
2h̄Ωm(q)

[

Ωm(q)A
∗
q,m +

i

ǫ0
P ∗
q,m

]

, (26)

and

b−q,ξ =

√

ρ

2h̄ω0

[

ω0X
∗
q,ξ +

i

ρ
Y ∗
q,ξ

]

. (27)

Hamiltonian then reads

H =
∑

m

∫

d2q h̄Ωm(q) a
†
q,maq,m +

∑

ξ

∫

d2q h̄ω0 b†
q,ξbq,ξ +

+
ih̄

2
G
√
ω0

∑

n,ξ

∫

d2q
Kn,ξ

√

Ωn(q)
(aq,n + a†−q,n) · (b†q,ξ − b−q,ξ) (28)

+
h̄

4
G2

∑

n,m

∫

d2q
Dn,m

√

Ωm(q)Ωn(q)
(aq,n + a†−q,n) · (aq,m + a†−q,m),

where

Dn,m =
∑

ξ

Kn,ξKm,ξ (29)

and the effective interaction constant is abbreviated as

G = α/
√
ǫ0ρ. (30)

The Hamiltonian of this type has already been investigated recently in connection with

polariton effects [6] and exactly corresponds to the many–exciton lines interacting with

eletromagnetic field discussed in Ref. [12].
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III. DISPERSION RELATIONS

General form of polariton transformation diagonalizing the Hamiltonian is given as

Bq,Ω =
∑

m

Wq,maq,m +
∑

ξ

Xq,ξbq,ξ +
∑

m

Yq,ma
†
−q,m +

∑

ξ

Zq,ξb
†
−q,ξ. (31)

Index m exhausts all the cavity modes and ξ similarly does all the modes of decomposition

of matter excitations. Standard diagonalization condition

[

Bq,Ω, H
]

= h̄ΩBq,Ω (32)

yields the dispersion relation for eigenfrequency Ω and relations for coefficients in (31). The

anticipated operator solution is normalized with respect to the boson commutation relation

[Bq,Ω, B
†
q′,Ω′] = δ(q− q′)δΩ,Ω′. (33)

Straightforward but lengthy calculations lead to the following equations (dependence on q

will be omitted for brevity)

(Ωm − Ω)Wm +
1

2
G2

∑

k

Dm,k√
ΩmΩk

(Wk − Yk) +
i

2
G

√
ω0√
Ωm

∑

ξ

Km,ξ(Xξ + Zξ) = 0, (34)

(Ωm + Ω)Ym − 1

2
G2

∑

k

Dm,k√
ΩmΩk

(Wk − Yk)−
i

2
G

√
ω0√
Ωm

∑

ξ

Km,ξ(Xξ + Zξ) = 0, (35)

(Ω− ω0)Xξ +
i

2
G
√
ω0

∑

m

Km,ξ√
Ωm

(Wm − Ym) = 0, (36)

(Ω + ω0)Zξ −
i

2
G
√
ω0

∑

m

Km,ξ√
Ωm

(Wm − Ym) = 0. (37)

Finally, the dispersion relation follows as the condition for existence of non–trivial solution

of linear equations for Tm

Tm =
G2Ω2

(ω2
0 − Ω2)(Ω2

m − Ω2)

∑

n

Dm,nTn, (38)

where Tm = (Wm − Ym)/
√
Ωm.
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The algebraic treatment may be equivalently replaced by an analytical method. The

recurent system of linear equations (38) may be rewritten to the form of integro–differential

equation. Hence the quantum problem is related to the classical solution of wave equation

with dispersive inhomogeneous medium. Let us define formally the function

A(r) =
∑

m

∫

d2q Tm ϕq,m(r),

which is continuous and has continuous derivation dA/dz on the interval |z| ≤ L/2. After

simple manipulations using relations (10), (11) and (29) we find that it fulfills the equation

[

d2

dz2
+Q2

z

]

A(z) = −θ(z)
G2Ω2

c2(ω2
0 − Ω2)

∫ l/2

−l/2

∑

ξ

χξ(z)χξ(z
′)A(z′) dz′ , (39)

where Q2

z = (Ω/c)2− q2. This alternative representation of (38) may be interpreted as scalar

wave equation with the time–spatially dispersive inhomogeneity along the z–axis. Conse-

quently, we are able to associate the quantum problem–diagonalization of the Hamiltonian

(28), with the classical solution in electromagnetic theory. This analogy represents a power-

ful tool for specification of dispersion relations [13]. The wave equation (39) may be solved

separately in the regions where all the functions are continuous. Dispersion relation is then

given as necessary condition for continuity of the solution and its first derivation on the

boundary |z| = l/2. The general solution of eq. (39) on the interval |z| ≤ l/2 is given as

superposition of particular and fundamental solutions

A(z) =
∑

ξ

cξ

∫

dz′G(z, z′)χξ(z
′) + A2 e

iQzz +B2 e
−iQzz, (40)

A2 and B2 being general multiplicators in fundamental solution, G(z, z′) being the Green

function of the operator d2/dz2 +Q2

z. We may take the explicit form

G(z, z′) = − 1

2Qz
sin(Qz|z − z′|).

Coefficients cξ of particular solution are given in accordance with the relations

cξ ≡ − G2Ω2

c2(ω2
0 − Ω2)

∫

dzχξ(z)A(z) = − G2Ω2

c2(ω2
0 − Ω2)

{

∑

η

cη

∫

dz dz′χξ(z)G(z, z′)χη(z
′)

(41)

+A2

∫

dz′ χξ(z
′)eiQzz′ +B2

∫

dz′ χξ(z
′)e−iQzz′

}

.
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Parametrizing the solutions on the intervals L/2 ≤ |z| ≤ l/2 as Aje
iQz +Bje

−iQz; j = 1, 3

the dispersion relation may be found in closed form for limited number of terms ξ for any

mode decomposition χξ(z).

Algebraic method will be used in the following sections IIIA and IIIB, whereas the

analytical method will be applied on the analogy of classical problem in the section IIIC.

A. One–exciton dispersion relation

Closed form of dispersion relation may be find easily in some special cases. Particularly,

exciton confined in quantum well (QW) is characterized by the only energy level in the

expansion of matter excitations ξ = 0 (ground state of excitations). The integro–differential

equation (39) indicates the spatial dispersion. Nevertheless, the dispersion relation may

be found without solving it, since the coefficients Dm,k are factorized as product Dn,m =

Kn,0 ·Km,0. Equations (38) then directly yield the necessary condition

G2Ω2

ω2
0 − Ω2

∑

n

K2
m,0

Ω2
m − Ω2

= 1, (42)

representing the dispersion relation of QW polaritons embedded in microcavity [6].

B. Many–exciton dispersion relations

Dispersion relation for many excitons interacting with electromagnetic field will be

demonstrated on the explicit example of two excitons (ξ = 0, 1). Taking into account

the form of the kernel Dm,n = Km,0Kn,0+Km,1Kn,1, the system of linear equations (38) may

be rewritten as

x0 = x0

G2Ω2

ω2
0 − Ω2

∑

m

K2

m,0

Ω2
m − Ω2

+ x1

G2Ω2

ω2
0 − Ω2

∑

m

Km,0Km,1

Ω2
m − Ω2

(43)

x1 = x0

G2Ω2

ω2
0 − Ω2

∑

m

Km,0Km,1

Ω2
m − Ω2

+ x1

G2Ω2

ω2
0 − Ω2

∑

m

K2
m,1

Ω2
m − Ω2

,

where xξ =
∑

m TmKm,ξ; ξ = 0, 1. Dispersion relation for two exciton then reads
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[

1− G2Ω2

ω2
0 − Ω2

∑

m

K2

m,0

Ω2
m − Ω2

][

1− G2Ω2

ω2
0 − Ω2

∑

m

K2

m,1

Ω2
m − Ω2

]

=
[

G2Ω2

ω2
0 − Ω2

∑

m

Km,0Km,1

Ω2
m − Ω2

]2

. (44)

The sums involved in the dispersion relation may further be expressed in the analytical form

as done in Ref. [6], but this is beyond the scope of this paper. Let us only note that the

application of analytical method yields directly the closed form of dispersion relations.

C. Classical dispersion relations

As the last special example, the dispersion relations resulting from the classical electro-

dynamics in dispersive inhomogeneity (1) will be considered from the quantum viewpoint.

This case is characterized by the decomposition of matter excitations, which is complete on

the interval of inhomogenity (i.e. all the energy lines of excitations are included). Relation

(29) then reads

Dn,m =
∑

ξ

∫ l/2

−l/2
ϕn(z)χξ(z)dz ·

∫ l/2

−l/2
ϕm(z

′)χξ(z
′)dz′ =

∫ l/2

−l/2
ϕn(z)ϕm(z)dz. (45)

Spatial dispersion in (39) disappears yielding scalar wave equation identical with Lagrange–

Euler equation (1) for the susceptibility (9) and for the dispersion relation (2). Consequently,

the classical solution yielding non–orthogonal eigenmode functions was completed by the

fully quantum treatment characterized by the same dispersion relations but orthogonal de-

composition.

IV. CONCLUSION

The problem of canonical quantization of electromagnetic field in linear dispersive in-

homogeneous media was formulated in terms of overlaping of wave functions related to

quantization of free electromagnetic and matter excitation fields. Diagonalization is given

by generalized polariton (Hopfield) transformation. Within the classical electrodynamics,

it may be also interpreted as the wave in spatially dispersive medium. The description of
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macroscopic inhomogeneity and quantum well polaritons may be unified in this way into the

same framework.

Even if quantum and classical problems yield the same dispersion relations, there is a dif-

ference between both the treatments. Since the electromagnetic field itself is not conserved,

the respective eigenfunctions are not orthogonal representing the system of quasinormal

modes [9–11]. They may be used for description of electromagnetic field inside the cavity,

however since completeness and orthogonality relations should be redefined, the description

is more complicated than in the ordinary case of orthogonal modes. On the other hand the

quantum solution is characterized by an ordinary orthogonal diagonalization in the form

of generalized polariton transformation acting on the space of coupled electromagnetic and

matter excitation fields. Standard description of the time evolution may be used, since the

normal modes are orthogonal and complete.

ACKNOWLEDGMENT

I am grateful for valuable comments to P. Schwendimann, A. Quattropani, V. Savona and
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APPENDIX A: INHOMOGENEITY WITH AN ARBITRARY REFRACTIVE

INDEX

The theory developed above describes the lossless dispersive inhomogeneity characterized

by the real part of the susceptibility (9)

χ′(Ω) =
G2

ω2
0 − Ω2

. (A1)

Principle of superposition may be used now to get an arbitrary susceptibility as done in

Ref. [14]. The electromagnetic field will interact with an ansamble of independent oscilla-

tors with Lagrangian densities as in (5,6), distinguished by frequencies ω0, ω1, .... etc. and

12



by different parameters α0, α1, etc. and ρ0, ρ1, etc.. In the limit of continuous frequency

distribution ω, the parameters are considered as frequency dependent α(ω), ρ(ω) yielding

the total contribution to the Lagrangian density

Lmat =
∫ ∞

0

dω
ρ(ω)

2
[Ẋ2

ω − ω2X2

ω], (A2)

Lint = −
∫ ∞

0

dωα(ω)A · Ẋω. (A3)

Further development of the theory runs similarly as in the single–frequency case: Matter

operators are denoted by modal index ξ and by an additional continuous index ω. The

effective interaction parameter (30) is freqency dependent G(ω). The final system of linear

equations (38) reads

Tm =
Ω2

Ω2
m − Ω2

∫ ∞

0

G2(ω)

ω2 − Ω2
dω

∑

n

Dm,nTn, (A4)

what corresponds to the real part of the susceptibility

χ′(Ω) =
∫ ∞

0

dω
G2(ω)

ω2 − Ω2
. (A5)

Due to the Kramers–Kronig relations [14], the real and imaginary part of susceptibility

are mutually related by Hilbert transformation as

χ′(Ω) =
2

π

∫ ∞

0

ωχ′′(ω)

ω2 − Ω2
dω, (A6)

χ′′(Ω) = −2Ω

π

∫ ∞

0

χ′(ω)

ω2 − Ω2
dω. (A7)

The imaginary part of lossless and general cases therefore read

χ′′(Ω) = −πG2δ(Ω2 − ω2

0) (A8)

and

χ′′(Ω) = −π
∫ ∞

0

dωG2(ω)δ(ω2 − Ω2), (A9)

respectively. The relations (A5) and (A9) represent the desired extension of the theory

with single–frequency of matter excitations and singular susceptibility into an arbitrary

case characterized by general refractive index (susceptibility).
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FIG. 1. Geometry of closed cavity with inhomogeneity in the z–direction.
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