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Entanglement Hamiltonian of interacting systems: Local temperature approximation and beyond
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We investigate the second quantization form of the entanglement Hamiltonian (EH) of various subregions for
the ground state of several interacting lattice fermions and spin models. The relation between the EH and the
model Hamiltonian itself is an unsolved problem for the ground state of generic local Hamiltonians. In this paper,
we demonstrate that the EH is practically local and its dominant components are related to the terms present in
the model Hamiltonian up to a smooth spatially varying temperature even for (a) discrete lattice systems, (b)
systems with no emergent conformal or Lorentz symmetry, and (c) subsystems with nonflat boundaries, up to
relatively strong interactions. We show that the mentioned local temperature at a given point decays in a manner
inversely proportional to its distance from the boundary between the subsystem and the environment. We find
the subdominant terms in the EH as well and show that they are severely suppressed away from the boundaries
of subsystem and are relatively small near them.
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Introduction. Entanglement is a unique feature of quantum
mechanics and serves as an essential tool in quantum infor-
mation, quantum gravity, identification of topological order,
quantum phase transition, etc. [1,1–18]. The entanglement
Hamiltonian (EH) associated with a subregion A embedded
in a manifold M = A ∪ B is defined as ρA = e−KA . Here,
ρA = TrBρM denotes the reduced density matrix (RDM) of A,
where ρM represents the total density matrix. One important
question that arises from this definition is the relation between
KA and HA, the Hamiltonian terms with support only in region
A. In fact, this problem dates back to the nineteenth century.
A cornerstone of the classical statistical mechanics is that a
subsystem A at thermal equilibrium with its environment (B)
is described by a thermal ensemble with KA = HA/T0 (kB =
h̄ = c = 1), where T0 is a uniform and position-independent
temperature. Furthermore, the eigenstate thermalization hy-
pothesis conjectures that the RDM of highly excited quantum
states will look thermal, again with KA = HA/T0, where the
uniform temperature T0 in this case is dictated by the en-
ergy density [19]. In this paper, we revisit this fundamental
problem, and using the density-matrix-renormalization-group
(DMRG) approach, we obtain the second quantization form
of KA for a number of interacting model Hamiltonians and
for a variety of boundary shapes and conditions. Compar-
ing the components of KA and HA, we demonstrate that the
above-mentioned statements are not quite accurate and for
the ground state of local Hamiltonians, KA is indeed well
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approximated by a local and nonuniform temperature rather
than a uniform one.

The theoretical form of KA is known only for a limited class
of continuum models with conformal symmetry (or Lorentz
symmetry at zero temperature) and only for certain geometries
of A (e.g., half-space or ball geometry). It is known that under
these conditions, (i) KA is local, (ii) the EH density is related
to the Hamiltonian density via a smooth local temperature,
namely, KA = ∫

x∈A dd x KA(x) = ∫
x∈A dd x H(x)

T (x) , and (iii) T (x)
approaches T0, the equilibrium temperature of the entire sys-
tem, far away from ∂A (the boundary of A) and grows as

v
2πr(x) at distance r near ∂A. Here, v is the group velocity of
low-energy excitations [1,20–28]. We refer to these findings
as the local temperature approximation (LTA) [26,27].

The LTA can be justified using the following intuitive argu-
ment. In thermal systems, the entropy density is proportional
to their temperatures. On the other hand, for ground states,
instead of the thermal entropy, we deal with the entanglement
entropy, which is not precisely an extensive property. Nev-
ertheless, we can still consider and gauge the contribution
of individual degrees of freedom residing inside A to the
overall entanglement entropy between A and B, SA. Indeed,
quantum mutual information can be one candidate to quantify
such local contributions. Due to the decay of quantum mu-
tual information with distance for the ground state of local
Hamiltonians, the degrees of freedom that live near ∂A are
more entangled with those residing at B than more distant
ones. Accordingly, we can assign an effective quantum local
temperature to different subregions of A proportional to their
contributions to SA, which as just discussed must diminish
away from ∂A.

Numerically, the EH of free fermions and free bosons can
be evaluated easily [29–31]. However, for interacting models,
it becomes highly nontrivial and challenging. Recently, sev-
eral studies have analyzed the EH of quasi-one-dimensional
conformal invariant or integrable models [32–48].

2643-1564/2021/3(1)/013217(11) 013217-1 Published by the American Physical Society

https://orcid.org/0000-0002-3277-0902
https://orcid.org/0000-0003-3645-1746
https://orcid.org/0000-0001-7605-2083
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.3.013217&domain=pdf&date_stamp=2021-03-08
https://doi.org/10.1103/PhysRevResearch.3.013217
https://creativecommons.org/licenses/by/4.0/


MAHDIEH POURJAFARABADI et al. PHYSICAL REVIEW RESEARCH 3, 013217 (2021)

Nonetheless, we are still lacking a systematic derivation
of the EH for larger and generic interacting systems and for
various boundary geometries. In this paper, we address this
problem and introduce a DMRG-based algorithm that enables
us to extract the EH for a broader spectrum of problems.

J1-J2 Heisenberg model. Let us first discuss the form of KA

for the J1-J2 Heisenberg model (J1 = 1) with the following
Hamiltonian on the square lattice:

H = J1

∑
〈ij〉∈M

Si · Sj + J2

∑
〈〈ij〉〉∈M

Si · Sj. (1)

The above Hamiltonian respects a SU(2) symmetry. Hence KA

must respect SU(2) symmetry as well and thus is expanded as
follows:

KA =
∑
i,j∈A

gJ,ijSi · Sj + · · · . (2)

Note that there is no restriction on i = (ix, iy) and j = ( jx, jy)
except that both must belong to A. In this paper, we have
dropped higher-order terms since the retained terms already
yield satisfactory results.

The DMRG technique is based on identifying the most
relevant basis states of the Hilbert space [49]. Then we trun-
cate the Hilbert space and discard the less relevant states.
The number of kept states, which controls the accuracy of
the DMRG, is called the bond dimension χ , and its default
value equals 210 throughout this paper. The procedure of
finding the truncation operators consecutively involves the
computation and diagonalization of the RDM at every step
of the DMRG and for different subsystem sizes. Hence ρA is
a natural by-product of the DMRG method and is available at
every step. Moreover, every operator component of KA (e.g.,
Si · Sj) has a matrix representation in the DMRG, albeit in
the truncated subspace. The remaining task is to adjust the
EH’s couplings, gJ,ij, to bring our (simplified) guess for KA,
which we will denote as K̃A, close enough to the matrix repre-
sentation of the RDM in the truncated Hilbert space achieved
via the DMRG: KA = − ln ρA. To this end, we need to define
an appropriate cost function as a measure of the distance
between K̃A and KA. In our investigations, we mainly utilized
the Hilbert-Schmidt distance between the Green’s functions,
namely, �1 := TrA(GA − G̃A)

2
, where GA,ij = TrA(Si · SjρA)

is the Green’s function matrix achieved by the DMRG for
A and G̃A denotes its counterpart evaluated using the trial
RDM, ρ̃A = exp(−K̃A) [50]. This cost function yields more
reliable and reasonably robust results (against changing χ )
in the truncated Hilbert space than other candidates, e.g., the
quantum relative entropy between ρA and ρ̃A. We find the
latter to overfit to numerical noises, e.g., the truncation and
the computer’s round-off errors (see Sec. 4 of the Appendix
for more details). In the optimization procedure, we initialized
gJ,ij based on general expectations from the LTA, e.g., the
locality of gJ,ij and its linear dependence on xij (the minimum
distance between ij = i+j

2 and ∂A). Then, we employed the
gradient descent algorithm and let the cost function decide the
optimum choice for gJ,ij (see the Appendix for more details).

We first focus on the J2 = 0 Heisenberg model, which is
unfrustrated and is known to host a Néel order on the square
lattice [51,52]. Thus its ground state is a symmetry-broken

FIG. 1. (a)–(d) Various geometries of system and subsystem that
we consider in this paper for computing the EH. The blue (red) sites
define the subsystem A (B). The dotted lines indicate the boundary
between A and B, ∂A. In (c), ∂A comprises two disjoint surfaces
since we have considered torus geometry. The green and orange lines
in (b) illustrate the rows at which the couplings in Figs. 3(a) and
3(b) and in Figs. 3(c) and 3(d) are plotted, respectively.

phase with gapless Goldstone modes and does not respect the
full conformal symmetry e.g., the translational and (around
the center of plaquettes) rotational symmetries are broken.
For this model, the system is always subject to the periodic
boundary condition (PBC) along the y axis.

(i) As the first example, we study the manifold and subsys-
tem A depicted in Fig. 1(a), where an open boundary condition
(OBC) is imposed along x. In this case, ∂A is flat, and its
locus is given by xb = 6 + 1/2, the line which splits columns
6 and 7. The optimum couplings, gJ,ij, which reproduce the
DMRG’s Green’s functions (with less than 0.1% error), are
plotted in Fig. 2.

Figure 2(a) shows the nearest-neighbor (NN) couplings
along x and y (more precisely, βJ,x(ix + 1/2) := gJ,i,i+x̂ and
βJ,y(ix ) := gJ,i,i+ŷ) which are independent of iy due to the
y-axis translation preserving the shape of A. Indeed, βJ ’s are
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FIG. 2. EH’s couplings for the Heisenberg model (J2 = 0) for the
subsystem geometry shown in Fig. 1(a). (a) The inverse temperature
profiles βJ,a(xavg) = J−1

1 gJ,a(i, j) (a = x, y) for the NN couplings vs
the midpoint argument xavg := 1

2 (ix + jx ). (b) Second- and third-
neighbor couplings vs xavg.
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FIG. 3. EH’s couplings for the Heisenberg model (J2 = 0) for
the subsystem geometry shown in Fig. 1(b). Since A breaks the
translational symmetry along y, gJ,(i,j) depends on both ix and jy.
In (a) and (b), the couplings along the green line in Fig. 1(b) are
plotted, and in (c) and (d), those corresponding to the orange line in
Fig. 1(b) are plotted. The terms beyond the LTA grow substantially
near ∂A for nonflat boundary geometries compared with flat bound-
aries (cf. Fig. 2).

the inverse local temperature profiles. As Fig. 2(a) suggests,
βJ,x and βJ,y follow the same profile, albeit if we shift the
argument of βx by half of the lattice spacing. This shift is due
to the fact that for gJ,x, the start and end points are located at
different positions along x, while for gJ,y, the two points have
identical x values. In Sec. 4 of the Appendix, we demonstrate
the robustness of βJ,x and βJ,y versus χ . In Fig. 2(b), we have
plotted gJ,xy(ix + 1/2) := gJ,i,i+x̂+ŷ, gJ,yy(ix ) := gJ,i,i+2ŷ, and
gJ,xx(ix + 1) := gJ,i,i+2x̂. Their values are negligible every-
where, and they all die off quickly away from ∂A. These imply
the locality of KA for the Heisenberg model when ∂A is flat.

(ii) We now consider the same conditions as above, but this
time with a curved ∂A as shown in Fig. 1(b). In this case,
βJ,x and βJ,y will depend on both ix and iy. In Fig. 3, we
have plotted βJ,x and βJ,y for the two different rows marked
by orange and green lines in Fig. 1(b). Interestingly, the βJ,x

and βJ,y profiles display a somewhat smooth curve satisfying
our expectations from the LTA. The position dependence of
the inverse temperature profile is more complicated in this
problem, since the distance between ij = (i + j)/2 and ∂A
depends on both its x and y components. In Figs. 3(b) and
3(d) the second- and third-neighbor couplings are plotted for
the above-mentioned rows. We see that for curved boundaries
between A and B, KA remains local everywhere, except close
to ∂A, where we observe additional terms, though they are
relatively small and subdominant.

(iii) Now, we consider the geometry illustrated in Fig. 1(c).
Since the PBC is imposed on M along both x and y directions,
we have chosen Ny = 4 to ensure χ = 210 is sufficient for the
DMRG’s convergence. As we see in Fig. 1(c), ∂A is described
by two surfaces: One of them separates columns 6 and 7,
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FIG. 4. (a) and (b) EH’s couplings for the Heisenberg model
(J2 = 0) subject to the PBC along x, for the subsystem geometry
shown in Fig. 1(c). The NN couplings follow a parabolic curve and
die off near both boundaries.

and the other one lies between the first and last columns.
As a result, the LTA predicts that βJ,x and βJ,y must follow
a parabolic form and vanish near both boundary surfaces.
Figure 4 shows our numerical results for the nearest- as well
as farther-neighbor couplings, both consistent with the LTA.

(iv) Let us now turn to the frustrated Heisenberg model
with J2 = 0.6, whose true ground state is not well understood,
though it is conjectured to be a spin liquid phase with no
classical spin order and with algebraically decaying spin-spin
correlations [53]. For this model, we consider the geometry
depicted in Fig. 1(d). The ground state is expected to be more
entangled when J2/J1 ∼ O(1). Hence we consider Ny = 4
(again Nx = 24) to ensure that the ground state is achieved
reliably via χ = 210 in the DMRG. Since the Hamiltonian
contains next-nearest-neighbor (NNN) couplings, we expect
significant values for the NNN in gJ,ij as well. In Fig. 5(a),
βJ,x, βJ,y, and also βJ,xy(ix + 1/2) := 1

J2
gJ,i,i+x̂+ŷ are plotted.

Again, we see that all these βJ ’s follow the same curve.
Furthermore, Fig. 5(b) verifies the locality of KA everywhere
except at ∂A, where gJ,yy is about 29% (28%) of gJ,y (gJ,xy) at
that location.

Hubbard model. Here, we discuss the second quantization
form of KA for the Hubbard model on the square lattice, whose
Hamiltonian is

H = −t1
∑

〈ij〉∈M,σ

c†
i,σ cj,σ − μ

∑
i∈M,σ

ni,σ

+U
∑
i∈M

(
ni,↑ − 1

2

)(
ni,↓ − 1

2

)
, (3)
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FIG. 5. (a) and (b) EH’s couplings for the J1-J2 Heisenberg
model (J2 = 0.6) for the subsystem geometry shown in Fig. 1(d).
The LTA is valid everywhere, except at the boundary where the
second-neighbor coupling along y is non-negligible.
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FIG. 6. (a)–(d) EH’s couplings for the Hubbard model at half

filling (U = 4t1) for the subsystem geometry shown in Fig. 1(d). LTA
corrections are small (compared with the leading terms) everywhere,
particularly away from ∂A. The particle-hole symmetry dictates that
the couplings in (b) vanish. However, due to the finite truncation
error of the DMRG at χ = 210, we obtain nonzero, though negligible,
values.

where ni,σ = c†
i,σ ci,σ . In this paper, we consider t1 = 1, and

U = 4. The above Hamiltonian enjoys a U(1) × SU(2) sym-
metry for generic fillings. Accordingly, KA must be expanded
as follows:

KA = −
∑

i 	=j∈A

gt,ij c†
i,σ cj,σ −

∑
i∈A,σ

gμ,i ni,σ

+
∑
i∈A

gU,i

(
ni,↑ − 1

2

)(
ni,↓ − 1

2

)

+
∑

i 	=j∈A

[gV,ij(ni − 1)(nj − 1) + gJ,ijSi · Sj] + · · · , (4)

where ni = ni,↑ + ni,↓ denotes the total electron number on
site i and Sx,y,z

i = ∑
ab

1
2 c†

i,aσ
x,y,z
a,b ci,b denotes the three com-

ponents of the spin operator at i. Again, we have discarded
higher-order terms as we attain satisfactory results with the
above structure. In the following, we consider both doped and
undoped Hubbard models. In this section, we consider the
geometry shown in Fig. 1(d).

(i) Let us start with the half-filling case. The ground state
on the square lattice is described by a Néel antiferromagnetic
spin order, and the charge or Mott gap opens up at moderate
values of U [54,55]. Figure 6 summarizes our results for the
optimum couplings of the EH. Here, motivated by the LTA, we
define the following inverse temperatures: βt,x(ix + 1/2) :=
gt,i,i+x̂, βt,y(ix ) := gt,i,i+ŷ, and βU (ix ) := 1

U gU,i. According to
Fig. 6, they all fairly follow an identical curve, albeit by con-
sidering the previously discussed 1/2 shift in the argument of
βt,x. In Figs. 6(b)–6(d), we have shown the terms beyond the
LTA, and again the locality of couplings is confirmed. Only
near ∂A are the additional terms non-negligible. Although gV,ij
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FIG. 7. (a)–(d) EH’s couplings for the Hubbard model at the
p = 1/8 doping level (U = 4t1, μ ≈ −0.92t1) for the subsystem
geometry shown in Fig. 1(d).

is insignificant everywhere, gJ,ij has decent values near ∂A; yet
they are inferior to those of gt,〈ij〉 and gU,i.

(ii) We now study the Hubbard model at p = 1/8 doping,
which is expected to have a stripe order and some tendency to-
wards superconductivity [56–59]. The system is not expected
to exhibit the Lorentz invariance or conformal symmetry for
these symmetry-breaking phases. At finite doping, we need
to define βμ(ix ) := 1

μ
gμ,i as well (for the current example,

μ ≈ −0.92t1). As Fig. 7 implies, various β’s follow the ex-
pected trend, and the locality of couplings is again verified,
albeit with growing corrections close to ∂A.

Summary. Our DMRG-based algorithm allowed us to ac-
cess the second quantization form of the EH for several
models and subsystem shapes. We showed that the EH is
local and its dominant components are related to those of the
Hamiltonian itself (more specifically, the stress-energy tensor)
up to a single smooth local (inverse) temperature profile and
confirmed the LTA. We studied the terms beyond the LTA and
demonstrated that they are infinitesimal far away from ∂A and
relatively small near it. In the Appendix, we have provided
more evidence which further corroborates our main findings.
To our knowledge, the validity of the LTA for the ground state
of local Hamiltonians for generic models that do not satisfy
conformal algebra or even those with conformal symmetry but
nonflat ∂A is an unsolved problem despite active research. Our
results suggest that the LTA is perhaps a legitimate assumption
and applicable to a broader class of problems.

Our findings pave the way for several applications of the
LTA. For instance, it can be shown that the LTA can practically
solve the long-standing sign problem in quantum Monte Carlo
methods and enable us to extract the ground-state properties
of some unsolved interacting models. Furthermore, the LTA
can be employed to enhance the performance and increase
the accuracy of the DMRG technique. It can also be used to
recover the entire spectrum and eigenstates of an unknown
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Hamiltonian by having access to its reduced density matrix (or
correlation functions) associated with a rather small subregion
of that system [28].
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APPENDIX

In this Appendix, we will delve into the details of our
algorithm and discuss the advantages and disadvantages of a
number of cost function candidates along with their pairwise
comparison, and we will present more results on the entangle-
ment Hamiltonian (EH).

1. Entanglement Hamiltonian in the truncated Hilbert space

In general, the EH associated with subsystem A which is
defined as KA := − ln ρA, can be expanded in terms of a com-
plete basis of operators (not necessarily local) as follows (the
tensor product of Pauli matrices, σa, a = x, y, z with σ0 = 1,
can generate a basis for all possible operators):

KA =
∑

α

gαÔα. (A1)

If we are given the reduced density matrix ρA, we can com-
pute its logarithm (which requires a lot of consideration and
special care when performed numerically) and achieve KA (up
to the computer’s round-off error). Having KA available, we
can easily find the expansion coefficients gα via the following
relation:

�g = M−1 �J, (A2)

where

Jβ = TrA(KAÔ†
β ), Mαβ = TrA(ÔαÔ†

β ). (A3)

In the exact diagonalization (ED) method, Mα,β ∝ δα,β .
Therefore gα ∝ TrA(KAÔ†

α ). Consequently, we do not need to
consider other operators if we are interested in reading the
coefficient for a specific α.

On the other hand, in the density-matrix-renormalization-
group (DMRG) algorithm, instead of ρA and Ôα , we have

to deal with ρA and ÔA, which are their counterparts in the
truncated Hilbert space and are defined as

ρA = T †
A ρATA, (A4)

and similarly for other operators, where TA denotes the trunca-
tion (also known as projection) operator. As before, we define
KA = − ln ρA. Because of the numerous truncations involved
in the DMRG, the situation is now more complicated for a few
reasons: (i) The matrix M is not diagonal, nor is it sparse. Due
to consecutive truncations inherent to the DMRG method,

most of operators have nonvanishing overlaps. Therefore we
must consider all possible operators, including highly non-
local ones such as string or brane operators. (ii) M can be
singular and have zero eigenvalues. As a result, it might not
be invertible. (iii) The above method applied to the DMRG is
very sensitive to various sources of numerical noise and error,
such as the truncation, as well as the round-off error.

Besides the possibility of singular M, another main diffi-
culty of applying the above algorithm to the DMRG is the
annoying part which requires taking all possible operators
into consideration. Below, we easily demonstrate that if KA

contains a few relevant and dominant terms, then KA contains
exactly the same couplings and structure. To this end, recall
that TA is achieved upon concatenating the dominant eigen-
vectors of ρA. Therefore

ρA = T †
A ρATA = T †

A e−KA TA = e−T †
A KATA . (A5)

Therefore

KA := − ln ρA = T †
A KATA. (A6)

Accordingly,

KA =
∑

α

gαT †
A ÔαTA =

∑
α

gαÔα; (A7)

hence, assuming KA = ∑
α gαÔα ,

gα = gα. (A8)

2. Algorithm and cost function

In the above-mentioned method, for ED, we can ignore
insignificant couplings since M is diagonal. Nevertheless,
when we apply this method to the DMRG, we have to re-
tain all terms, no matter how infinitesimal they are, due to
the complex form of M. Therefore we must come up with
a better algorithm to find gα without having to consider all
irrelevant terms. For that purpose, we must consider a valid
cost function. From our physical intuitions and expectations,
we can think of the following three choices (as of now, we
drop the overline sign and keep in mind that all operators are
defined in the truncated Hilbert space):

(i) Hilbert-Schmidt distance between the Green’s
functions (GFs): �1 = Tr(GA − G̃A)

2
, where GA(α, β ) =

TrA(O†
αOβρA) and G̃A(α, β ) = TrA(O†

αOβρ̃A). Here, ρA

denotes the reduced density matrix (RDM) achieved via the
DMRG for the desired subsystem, and ρ̃A denotes the one
achieved by combining the basis operators (Oα) with gα

coefficients that are yet to be determined. The basis of this
method is that the RDM contains all the information about the
equal time correlation functions within the subsystem. Thus,
if we find a RDM which recovers all the correlation functions
correctly, it must be identical to the actual one.

We would like to emphasize that in the DMRG, due to
finite truncation error, the RDM yields more reliable results
for the expectation value of simple operators (e.g., two-point
correlation functions for short and intermediate distances) and
becomes less reliable for more complex operators or at long
distances. Therefore, to avoid overfitting to numerical errors,
instead of considering all basis operators in the evaluation of
�1, we only consider the most physically relevant operators,
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i.e., simple operators motivated by symmetry considerations,
etc. For example, for the Hubbard model, we consider the
following components first:

GA,t (i, j) =
∑

σ

〈c†
i,σ c j,σ 〉, GA,μ(i) = 〈ni〉,

GA,U(i) = 〈ni,↑ni,↓〉, GA,J(i, j) = 〈Si.S j〉,
GA,V(i, j) = 〈nin j〉,

and similarly for G̃. We then evaluate ηa = Tr(GA,a − G̃A,a)
2
,

and by combining them,

�1 = wtηt + wμημ + wU ηU + wJηJ + wV ηV . (A9)

The exact values of wt ,wμ, . . . are not crucial as long as
they all have the same order of magnitude. Nonetheless,
in most computations, we choose wt = wU = wμ = wJ =
wV = 1 for the weights.

(ii) Quantum relative entropy (QRE) of the two reduced den-
sity matrices: �2 = Tr(ρA ln ρA − ρA ln ρ̃A). In this method
(which is closely related to the next cost function), we try to
tune the couplings such that ρ̃A’s matrix form becomes very
close to ρA’s. This cost function converges significantly fast,
in both the ED and DMRG methods. In ED, where we do
not have to deal with truncation errors, QRE is the superior
cost function and achieves correct results. However, for the
DMRG (like �3 below), it also suffers from overfitting to
numerical errors, i.e., those parts of ρA which will change
upon increasing the bond dimension of the DMRG, χ (i.e., the
number of retained basis states of the Hilbert space). It is these
matrix elements which are responsible for the issues related
to the expectation value or n-point correlation functions of
complex operators explained above. When χ is large enough
(e.g., when the truncation error becomes less than 10−10), it
yields results consistent with �1’s.

(iii) Hilbert-Schmidt distance between the two reduced
density matrices: �3 = Tr(ρA − ρ̃A)2. Similar to �2, in this
method we try to tune the couplings such that ρ̃A’s matrix
form becomes very close to ρA’s. This cost function is slowly
converging even for the ED where no truncation is involved.
Moreover, for the DMRG, similar to �2, it suffers from over-
fitting to numerical errors, and its results are sensitive to the
bond dimension, especially for small values of χ .

In Sec. 4 of this Appendix we compare the results achieved
via all three cost functions for the two-leg ladder Heisenberg
and Hubbard models for several bond dimensions. Our results
suggest that for large bond dimensions, all three methods
yield consistent outcomes. However, for relatively small bond
dimensions, it is �1 which performs better and results in
couplings which are more consistent with the results of larger
bond dimensions.

3. Local temperature ansatz and the initial guess for couplings

Now, let us assume that we study the following Hamilto-
nian:

H =
∑

α

JαÔα, (A10)

where, due to the locality of the Hamiltonian, only certain
Jα’s are nonzero. We are interested in finding the second

FIG. 8. We study the Hubbard model on this ladder for U = 4,
t⊥ = 0.5, and t‖ = 1 at half filling (μ = 0). Subsystem A, whose EH
is desired, is denoted by blue sites.

quantization form of the EH expanded as follows:

KA =
∑
α∈A

gαÔα. (A11)

Here, due to the renormalization procedure involved in tracing
the degrees of freedom outside A, gα’s can be viewed as our
running coupling constants which Jα has flown to. Thus, in
principle, any gα consistent with symmetry considerations
emerge. In practice, only a small set of them will be relevant
and non-negligible.

In our algorithm, we are trying to find gα numerically,
assuming that (a subset of relevant) correlation functions are
known. In our optimization algorithm, we initialized the cou-
pling constants of the EH, gα , using the LTA’s ideal form. In
the LTA, the EH is local, and its coupling constants, gα’s, are
nonzero only when the corresponding couplings of the Hamil-
tonian (UV theory), Jα’s, are nonzero. Another task in the LTA
is to assign a position to each operator. For simple two-point
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FIG. 9. KA’s couplings, for the geometry illustrated in Fig. 8,
obtained via applying different cost functions and for various bond
dimensions. Couplings are translational invariant due to the subsys-
tem geometry. (a)–(c) gt,dx , gJ,dx , and gV,dx achieved via GF distance
(�1), QRE distance (�2), and RDM distance (�3) for χ = 211. Also,
the corresponding renormalized on-site couplings gU,0 are 16.4, 14.4,
and 14.3 for �1, �2, and �3, respectively. See the text for their
definitions. (d) The variation of Ueff := gt,1

gU,0
vs log2 χ . As this plot

clearly indicates, �1 is the most reliable cost function for the DMRG
and exhibits the least variation.
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FIG. 10. We study the Hubbard model on this ladder for U = 4,
t⊥ = 2, and t‖ = 1 at half filling (μ = 0). Subsystem A, whose EH is
desired, is denoted by blue sites.

operators (such as Si · Sj in the Heisenberg model or c†
i,σ cj,σ

in the Hubbard model), the position is defined as the average
position of its components, namely, ij = i+j

2 . Next, we must
compute the minimum distance (geodesics) between ij and the
boundary separating A and its environment, B. Let us call this
minimum distance xij. Finally, at zero temperature (for ground
states) and for the open boundary condition (OBC), the LTA
attributes the following form to gα (xij) [23]:

gα (xij) = Jα

4�

v
sin

(
π

2�
xij

)
, (A12)

where � is the maximum value of xij (i.e., the linear dimension
of A normal to ∂A) and v is the group velocity of low-energy
excitations (quasiparticles) and is model dependent. In our
algorithm, besides v, we also treated � as a variational pa-
rameter. We first optimized and tuned v and �. Then, we took
the optimized form of local gα (associated with v∗ and �∗),
and using the gradient descent algorithm, we optimized our
cost function. We allowed all relevant couplings, including
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FIG. 11. KA’s couplings, for the geometry illustrated in Fig. 10,
obtained via applying GF distance (�1 cost function) and for χ = 211

and χ = 29. (a) Various β profiles for �1 cost function for χ = 211

(see the main text for their definitions). (b) Most significant correc-
tions to LTA corrections, gJ for �1 cost function for χ = 211. The
second and third neighbors’ corrections to gt are negligible due to
the particle-hole symmetry. Moreover, we found gV to be irrelevant
as well, and that is why they are absent in this and the following two
figures. (c) and (d) Same as (a) and (b) but for χ = 29.
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FIG. 12. Same as Fig. 11 but for the �2 cost function (QRE).
Likewise, (a) and (b) are achieved by considering χ = 211, while
(c) and (d) are achieved by considering χ = 29.

distant neighbors and nonlocal terms (which were absent in
the system’s Hamiltonian) as well as the initialized local
terms, to vary and deviate from their initial point. Therefore
we have not imposed locality in our procedure, although it
finally emerged naturally as the optimum solution (except at
the boundary of A with B, where farther neighbors became
more pronounced).
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FIG. 13. Same as Fig. 11 but for the �3 cost function (RDM
distance). Likewise, (a) and (b) are achieved by considering χ = 211,
while (c) and (d) are achieved by considering χ = 29.
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FIG. 14. We study the Heisenberg model on this ladder for J⊥ =
0.5 and J‖ = 1. Subsystem A, whose EH is desired, is denoted by
blue sites.

Similarly, for the periodic boundary condition (PBC) at
T = 0, the LTA assigns the following value to gα (xij) [23]:

gα (xij) = Jα

2L

v

sin
(

π
L xij

)
sin

[
π
L (� − xij)

]
sin

(
π
L �

) , (A13)

where L is size of the entire system M in the direction normal
to ∂A.

4. A detailed comparison between the performance of �1, �2,
and �3 cost functions

Here, we compare the EH’s coefficients obtained by utiliz-
ing all three cost functions for the ladder geometry and for the
Hubbard and Heisenberg models.

We first consider the undoped Hubbard model on the lad-
der geometry (in which U = 4, t⊥ = 0.5, t‖ = 1) depicted in
Fig. 8. This geometry results in a highly entangled subsys-
tem: indeed, a volume law entanglement entropy. We apply
all three cost functions to this system for the following five
different bond dimensions: χ = 25, 27, 29, 211. The EH for
this case is translationally invariant, namely, gτ,ix, jx = gτ,dxi j

(τ = t,U, J,V ), where dxi j := jx − ix. In this section, the
translational symmetry is imposed on the couplings explicitly.
We first compare the EH’s couplings achieved via applying
the GF distance (�1), QRE (�2), and the RDM distance (�3)
for χ = 211 (see Fig. 9). With this bond dimension, we can
nearly probe the ground-state properties. The coefficients of
local terms in the EH are almost consistent in these three
methods. On the other hand, we know that ideally the ground
state must exhibit particle-hole symmetry. Although χ = 211

is still insufficient for true convergence in the DMRG for such
a highly entangled state (χ = 212 seems to be enough), �1’s
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FIG. 15. KA’s couplings, for the geometry illustrated in Fig. 14,
obtained via applying �1 and �2 cost functions and for χ =
25, 27, 29, 211. The couplings are translationally invariant due to the
geometry of A. (a) gJ,dx obtained by minimizing the �1 cost function.
(b) gJ,dx obtained by minimizing the �2 cost function. As we see,
both cost functions result in the same couplings for χ = 211. Also,
the �1 results exhibit much less fluctuation than �2’s and thus are
more reliable for smaller bond dimensions (χ ’s).

FIG. 16. We study the Heisenberg model on this ladder for J⊥ =
2 and J‖ = 1. Subsystem A, whose EH is desired, is denoted by blue
sites.

results reflect the particle-hole symmetry [e.g., the (renormal-
ized) second-neighbor hoppings are infinitesimal], while for
those of �2 and �3 the particle-hole symmetry is visibly
violated due to the overfitting issues mentioned previously.
Furthermore, a previous quantum-Monte-Carlo-based study
of a similar situation [32] indicated the irrelevance of gV cou-
plings, which is consistent with �1 estimations. Additionally,
perturbative studies of the EH indicate oscillating spin-spin
couplings [39–41] (though subdominant to the renormalized
on-site interaction), which agrees well with our results via
minimizing GF distance (�1), while those of �2 and �3

exhibit deviations in addition to their overestimation for the
spin-spin couplings. In Fig. 9(d), we plot the normalized

on-site interaction strength U (χ )
eff := g(χ )

U

g(χ )
t (1)

for all four bond

dimensions considered in our investigations. Again, as we see
in Fig. 9(d), the results of the GF distance (�1) are more
robust and less sensitive to χ , despite several orders of magni-
tude change in χ , while those of the QRE and RDM distance
display stronger fluctuations.

Now, we turn to the geometry shown in Fig. 10 (where
U = 4, t⊥ = 2, t‖ = 1) and present our results for all three
cost functions in Figs. 11, 12, and 13. Here, we have defined
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FIG. 17. KA’s couplings, for the geometry illustrated in
Fig. 14, obtained via applying the �1 cost function and for
χ = 27, 211. (a) and (c) show the inverse local temperatures
[βy(ix ) := 1

J⊥
gJ,ix ,ix , βx (ix + 1/2) := 1

J‖
gJ,ix ,ix+1] for χ = 211 and 27,

respectively. (b) and (d) present the second- and third-neighbor cou-
plings of the EH.
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FIG. 18. Same as Fig. 17 but for the �2 cost function. (a) and
(b) are obtained by keeping χ = 211 basis states of the Hilbert space
in the DMRG, while (c) and (d) are obtained by keeping χ = 27 basis
states.

the following inverse local temperatures: βt,x(ix + 1/2) :=
gt,i,i+x̂, βt,y(ix ) := gt,i,i+ŷ and βU (ix ) := 1

U gU,i. For this prob-
lem, due to the PBC imposed along the x direction, we found
that even with χ = 211, there is still some room for the DMRG

to converge to the true ground state. As a result, we still
see some minor discrepancies among the results of the three
methods for χ = 211 for subdominant and correction terms
beyond the LTA (though they yield highly correlated results).
Nonetheless, the local terms (i.e., dominant couplings) are
reasonably consistent. We have also plotted the results of
χ = 29 for all three methods, and again, �1’s results proved
to be more robust and �2 and �3’s less stable. Thus, in the
presence of truncation errors, we can trust the results of the
GF distance more than those of the other two candidates for
the cost function.

For the sake of completeness, we have also explored the
robustness and the accuracy of the above three cost function
candidates for the Heisenberg model, again on a ladder ge-
ometry. To this end, we first studied the geometry shown in
Fig. 14 (where J⊥ = 0.5 and J‖ = 1) and presented its results
in Fig. 15. Similar to the Hubbard model case, this geometry
leads to a highly entangled ground state. Likewise, we expect
translationally invariant couplings, namely, gJ,ix, jx = gJ,dxi j .
We have presented gJ,dx for χ = 25, 27, 29, 211 for the GF
and QRE cost functions (the RDM cost function yields results
similar to those of the QRE). In this case as well, the GF
distance turns out to be the most stable one.

Finally, we studied the Heisenberg model on the geometry
illustrated in Fig. 16 (in which J⊥ = 0.5 and J‖ = 1). The
results are presented in Figs. 17 and 18 for the GF distance
and QRE, respectively. For this problem, we indeed achieved
the true ground state using χ = 211. Therefore all cost func-
tions must achieve the same couplings. On the other hand,
for smaller bond dimensions, e.g., χ = 27, �1 achieves more
accurate results (relative to χ = 211) than the remaining cost
functions.
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