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Calculation of the Green’s function in the scattering region for first-principles
electron-transport simulations
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We propose a first-principles method of efficiently evaluating electron-transport properties of very long
systems. Implementing the recursive Green’s function method and the shifted conjugate gradient method in
the transport simulator based on real-space finite-difference formalism, we can suppress the increase in the
computational cost, which is generally proportional to the cube of the system length to a linear order. This
enables us to perform the transport calculations of double-walled carbon nanotubes (DWCNTs) with 196 608
atoms. We find that the conductance spectra exhibit different properties depending on the periodicity of doped
impurities in DWCNTs and they differ from the properties for systems with less than 1000 atoms.
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I. INTRODUCTION

One-dimensional materials such as nanowires and nan-
otubes, which have unique electronic properties due to
the quantum confinement effect, are expected to be ap-
plied to electronic and spintronic devices, optoelectronic
circuits, and biosensors [1–7]. In recent years, large-scale
electron-transport calculations have been indispensable for
designing the functionality of electronic devices. Although
first-principles calculations based on the density functional
theory (DFT) [8] allow us to accurately evaluate electron-
transport properties of atomic systems, their target is typically
limited to small systems because of the heavy computational
cost arising from calculating the Green’s functions, which is
intrinsic cubic scaling with system size. Limited-scale system
is sufficient to simulate simple systems, such as locally per-
turbed bulk regions or interfaces. However, it is not suitable
for simulating complex systems, such as bulk with a realistic
defect density, amorphous structure, and interfaces with lattice
mismatches between different crystalline materials. Thus far,
to circumvent this restriction, transport calculations for large
systems containing several thousands of atoms have been per-
formed within atomic-basis formalism and tight-binding (TB)
formalism based on DFT [9–12].

On the other hand, real-space finite-difference (RSFD)
formalism is also recognized as suitable for large-scale cal-
culations requiring high computational accuracy [13–20]. In
this formalism, a Hamiltonian matrix is expressed as a block
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tridiagonal matrix with sparse matrix elements, which is a
great advantage in solving equations by iterative methods, and
the sparsity of the matrix can be controlled by the order of the
finite-difference approximation, Nf. The computational accu-
racy can be systematically improved by narrowing the grid
spacing. Moreover, the RSFD formalism has a high affinity
to massively parallel architectures. In order to improve the
efficiency of parallel computing, it is important not only to
optimize the arithmetic algorithm, but also to equalize the
computational load and data communication in each process.
In the RSFD formalism, in the spatial domain decomposition,
the whole space is divided into subspaces of equal size, so
that the computational load depending on the number of grid
points can be equalized. In addition, although wave functions
in adjacent subspaces assigned to other processes are required
for stencil calculations, only wave functions at grid points near
the boundary between subspaces need to be communicated,
which is sufficiently small in data volume. so the amount
of data communication between processes can be uniform
and small. Therefore it is possible to perform efficient par-
allel computing with uniform computational load and data
communication.

Fujimoto and Hirose developed the overbridging boundary
matching (OBM) method based on the RSFD formalism [13]
by exploiting the advantages for electron-transport calcula-
tions, where a whole system is divided along the z direction
(see Fig. 1) into three regions: the left electrode, the transition
region and the right electrode. The electron-transport calcu-
lation refers only to subsets of the Green’s function matrix
of the transition region. In the OBM method, the subsets
are calculated efficiently using a shifted conjugate-gradient
(SCG) solver [16] since the Hamiltonian matrix in the RSFD
formalism is sparse. In the SCG solver, the computational cost
for calculating the subsets is O(NE N3

xyNz ) when the algorithm
proposed by Takayama et al. [21] is adopted, where Nxy and
Nz are the numbers of grid points in the xy plane and the z
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FIG. 1. Schematic representation of a junction system. The sys-
tem is partitioned into one transition region and left and right
semi-infinite electrodes, whose Hamiltonians are denoted by HT, HL,
and HR, respectively. BL(R) denotes the interaction between adjoining
small parts. The transition region consists of P parts. The Hamiltoni-
ans are denoted by Hi for i = 1, . . . , P, and the interactions between
the adjoining parts by Bi for i = 1, . . . , P − 1.

direction, respectively, and NE denotes the number of energy
values E to be treated at once by the SCG method. For systems
with a large Nz, the computational cost for matrix-vector oper-
ations, which is O(N3

xyN2
z ), becomes dominant [22]. Although

the maximum order of the computational cost is reduced from
O(N3

xyN3
z ) to O(N3

xyN2
z ) by the OBM method, the transport

calculation has room for further reducing the computational
cost to handle more realistic and longer one-dimensional
systems.

In this paper, we propose an efficient computational
procedure based on RSFD formalism to evaluate the electron-
transport properties of long systems containing more than
100 000 atoms under the zero temperature and zero bias
limits in the steady state without accuracy deterioration. We
verify the computational accuracy and performance of the
proposed method. Additionally, to exemplify the efficiency of
the proposed procedure we demonstrate large-scale electron-
transport calculations for double-walled carbon nanotubes
(DWCNTs) composed of 196 608 atoms, which make, to the
best of our knowledge, the largest system in the first-principles
electron-transport calculation.

The rest of this paper is composed as follows. Sec-
tion II presents the theoretical procedure used to construct
the Green’s function matrix of a scattering region with a long
dimension based on the recursive Green’s function (RGF)
method [23] within the framework of the RSFD formalism.
Section III examines a computational accuracy and efficiency
of our method and reveals the transport properties of impurity-
doped DWCNTs is influenced by the length of systems and
the arrangement of impurities. Section IV provides the con-
clusions. Appendix A demonstrates the computational cost of
matrix-vector operations for calculating the Green’s function
matrices by SCG method. Appendices B–D describe some of
the mathematical techniques used in this paper.

II. COMPUTATIONAL SCHEME

Thouless and Kirkpatrick proposed an efficient calculation
of subsets of a Green’s function matrix for a transition region
within TB formalism as the RGF method. The RGF method
constructs a transition region by arranging multiple parts
along the z direction as illustrated in Fig. 1, and calculates
only necessary subsets by recursively combining the Green’s

function matrices of the adjoining small parts one by one.
Since the calculation of the Green’s function matrices for the
small parts is less costly than that for the extended transition
region, the RGF method is capable of handling large systems
and is widely used for calculating the transport properties of
atomic-basis models and TB models [24–30].

Now, we discuss the advantage of the RGF method in
transport calculations within RSFD formalism. The transport
properties are evaluated using the Green’s function of the
transition region suspended between semi-infinite electrodes,
GT, which is constructed by the Green’s function associated
with the truncated transition region, GT, and the self-energy
terms of the electrodes [15]. The Green’s function matrix
GT = (EIT − HT)−1, in which HT is the truncated Hamilto-
nian matrix of the extended transition region consisting of
P parts (see Fig. 1), is expressed within the framework of
RSFD formalism using the norm-conserving pseudopotentials
(NCPPs) as

GT = EIT −

−1

,

H1
B1

0

B†
1 H2

B2

B†
2

. . .
. . .

. . .

0
HP

(1)

where Hi is the truncated Hamiltonian matrix for the transi-
tion region of the ith part. For simplicity, we assume that all
Hi (i = 1, . . . , P) have the same dimension, the interactions
between the second- and further-neighboring parts are zero,
and the nonzero matrix, Bi, represents the interaction between
the adjoining parts. We define the dimensions of Bi and Hi as
Mi × Ni and NxyN (part)

z , respectively, with N (part)
z = Nz/P; IT

denotes an NxyNz-dimensional identity matrix.
Since the Hamiltonian matrix of RSFD formalism is highly

sparse, it is more advantageous to calculate the subsets of
Green’s function matrix of the transition region by iterative
solvers than it is to compute the entire Green’s function by
direct inversions of the Hamiltonian matrix. According to
Ref. [15], the electron-transport properties can be estimated
using submatrices located at the four corners of the Green’s
function matrix, GT. Here, we propose an algorithm for repro-
ducing the submatrices of the entire Green’s function required
for electron-transport calculations by combining the subsets
of the Green’s function of adjoining parts.

We defined the Green’s function matrix associated with
the truncated Hamiltonian composed of the parts numbered
from i to j as Gi: j . Now we will combine the two adjoining
parts to derive the Green’s function matrix associated with the
truncated Hamiltonian composed of the ith and (i + 1)th parts
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(see Fig. 1), Gi:i+1, which is written as

Gi:i+1 =

⎛
⎜⎜⎜⎜⎝

EIi:i+1 −

⎡
⎢⎢⎢⎢⎣

0
Hi

Bi

B†
i

0
Hi+1

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

−1

, (2)

where Gi:i+1 is the 2NxyN (part)
z -dimensional matrix and the sub-

matrices, Hi and Hi+1, represent the truncated Hamiltonian
matrices of the ith and (i + 1)th parts, respectively. Ii:i+1 de-
notes an identity matrix with a dimension of Gi:i+1. We assume
that the Green’s function matrix associated with Hi(i+1) is
already calculated as Gi:i(i+1:i+1) = (E − Hi(i+1))−1 [31]. We
need only the submatrices located at the upper-left, upper-
right, lower-left, and lower-right corners of Gi:i+1, which are
denoted by GUL

i:i+1, GUR
i:i+1, GLL

i:i+1, and GLR
i:i+1, respectively. Here,

a definition is necessary before we discuss this further. To
indicate a specific block in a 2 × 2 partitioned matrix, follow-
ing the quadrant notion in the coordinate geometry [32], we
hereafter refer the blocks anticlockwise from the upper-right
block as quadrants I, II, III, and IV as

[
II I
III IV

]
. (3)

For example, the upper-left block is referred to as quadrant II.
Let us first calculate GUL

i:i+1. According to Appendix B, the
quadrant II of Gi:i+1 is expressed as

GII
i:i+1 =

(
EIi − Hi +

[
0 0
0 −BiGUL

i+1:i+1B†
i

])−1

, (4)

where GUL
i+1:i+1 represents an Ni-dimensional square submatrix

located at the upper-left corner of Gi+1:i+1, and Ii denotes an
identity matrix with the dimension of Hi. It should be noted
that an Ni−1-dimensional square submatrix located at the
upper-left corner of GII

i:i+1 corresponds with GUL
i:i+1. Therefore,

according to Appendix C, GUL
i:i+1 can be analytically derived as

GUL
i:i+1 = GUL

i:i + GUR
i:i BiGUL

i+1:i+1B†
i

× [
IMi − GLR

i:i BiGUL
i+1:i+1B†

i

]−1GLL
i:i , (5)

where IMi denotes an Mi-dimensional identity matrix.
In the same way, GLR

i:i+1 can be derived from the quadrant
IV of Gi:i+1, which is expressed as

GIV
i:i+1 =

(
EIi+1 − Hi+1 +

[−B†
i GLR

i+1:i+1Bi 0
0 0

])−1

, (6)

where GLR
i+1:i+1 represents an Mi-dimensional square submatrix

located at the lower-right corner of Gi+1:i+1, and Ii+1 denotes
an identity matrix with a dimension of Hi+1. GLR

i:i+1 is found
at the lower-right corner of GIV

i:i+1. According to Appendix D,

GLR
i:i+1 can be analytically derived as

GLR
i:i+1 = GLR

i+1:i+1 + GLL
i+1:i+1B†

i GLR
i:i Bi

× [
INi − GUL

i+1:i+1B†
i GLR

i:i Bi
]−1GUR

i+1:i+1, (7)

where INi denotes an Ni-dimensional identity matrix.
Next, we calculated GUR

i:i+1. Based on Appendix B and
Eq. (2), the quadrant I of Gi:i+1 is derived as

GI
i:i+1 = −GII

i:i+1

[
0 . . . 0

BiGUL
i+1:i+1 . . . BiGUR

i+1:i+1

]
. (8)

Note that the last row block in the second matrix on the right-
hand side is the product of Bi and the submatrix composed of
the first Ni rows of Gi+1:i+1. Since GUR

i:i+1 is an (Ni−1 × Mi+1)-
dimensional submatrix located at the upper-right corner of
GI

i:i+1, GUR
i:i+1 is given as

GUR
i:i+1 = −GII,UR

i:i+1 BiGUR
i+1:i+1, (9)

where GII,UR
i:i+1 denotes an (Ni−1 × Mi)-dimensional submatrix

located at the upper-right corner of GII
i:i+1. As seen in Ap-

pendix C, GII,UR
i:i+1 is analytically derived; hence, one can obtain

GUR
i:i+1 as

GUR
i:i+1 = −GUR

i:i

[
IMi − BiGUL

i+1:i+1B†
i GLR

i:i

]−1
BiGUR

i+1:i+1. (10)

In the same way, the quadrant III of Gi:i+1 is expressed as

GIII
i:i+1 = −GIV

i:i+1

[
B†

i GLL
i:i . . . B†

i GLR
i:i

0 . . . 0

]
. (11)

Note that the first row block in the second matrix on the
right-hand side is the product of B†

i and the matrix composed
of the last Mi rows of Gi:i. Since GLL

i:i+1 is an (Mi+1 × Ni−1)-
dimensional submatrix located at the lower-left corner of
GIII

i:i+1, GLL
i:i+1 is given as

GLL
i:i+1 = −GIV,LL

i:i+1 B†
i GLL

i:i , (12)

where GIV,LL
i:i+1 denotes an (Mi+1 × Ni)-dimensional submatrix

located at the lower-left corner of GIV
i:i+1. As seen in Appendix

D, GIV,LL
i:i+1 is analytically derived; hence, one can obtain GLL

i:i+1
as

GLL
i:i+1 = −GLL

i+1:i+1

[
INi − B†

i GLR
i:i BiGUL

i+1:i+1

]−1
B†

i GLL
i:i . (13)

Consequently, the submatrices located at the upper-left,
upper-right, lower-left, and lower-right corners of Gi:i+1 are
given as Eqs. (5), (10), (13), and (7), respectively. As shown
in these equations, we only need the four corners of Gi:i,
which are efficiently obtained by using the SCG method. In
most cases, Mi = Ni = NfNxy, with Nf being the order of the
finite-difference approximation [33]. Repeating this proce-
dure to connect the parts numbered from i though to j, we
can construct the four submatrices of a ( j − i + 1)NxyN (part)

z -
dimensional matrix Gi: j .

Now, we estimate the computational cost of the pro-
posed method. We assume that BL(R) (see Fig. 1) and Bi

for i = 1, . . . , P − 1 are M-dimensional square matrices with
M = NfNxy. In the case of the RGF method based on the
atomic-basis formalism, HT is dense; that is, M is not suffi-
ciently smaller than NxyN (part)

z . Therefore the iterative solvers
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are not more efficient than direct inversion, and there is not
much benefit in using Eqs. (5), (10), (13), and (7) to reduce the
computational cost. Furthermore, the overlap matrix is gener-
ally not any scalar matrix; hence, the SCG method cannot be
used to solve the linear systems. However, the RGF algorithm
must be compatible with RSFD formalism since Hi is a block-
diagonal matrix and a sparse matrix [14,33]. The proposed
method can be implemented without negatively affecting the
benefit of the SCG method, in which the matrix-vector op-
erations for shifted energy points are omitted, and only the
matrix elements of subsets are updated for shifted energy
points during SCG iteration. The computational cost of the
matrix-vector products with a sparse matrix increases linearly
with Nz, and the number of SCG iterations is proportional to
Nz (see Appendix A). Therefore the computational cost for
the extended transition region is reduced from O(N3

xyN2
z ) =

O(N3
xy(N (part)

z P)2) to O(N3
xy(N (part)

z )2P) using the RGF and the

SCG methods since the cost is O(N3
xy(N (part)

z )2) for each of
the P parts; that is, the increase in computational cost can be
suppressed linearly for P. Although the computational cost
for calculating Eqs. (5), (10), (13), and (7) is O(PM3), where
M = NfNxy, with Nf being sufficiently smaller than N (part)

z .
Consequently, further computational cost reduction for Nz is
achieved by making use of the advantages of the RGF method
and SCG method within the RSFD formalism in comparison
with the conventional procedure [15].

III. ACCURACY TEST AND APPLICATIONS

We evaluated the computational error between the conduc-
tance spectra using the Green’s function matrices obtained
by the proposed method and the conventional method [15]
for the BN-doped (4,4)@(8,8) DWCNT to verify that the
proposed method does not deteriorate the computational ac-
curacy. The unit cell contains 192 atoms, and boron and
nitrogen atoms are substitutionally co-doped into the outer
tube along the circumferential direction. The dimensions are
Lx(y) = 19.5 Å and L(part)

z = 9.84 Å. For this verification, a
supercell has twice the dimension in the z direction that of the
unit cell, that is, L(ext)

z = 2L(part)
z . Using the electronic structure

calculation code RSPACE [14,34] based on RSFD formalism
within the DFT framework, the effective potential of the unit
cell is calculated with 1 × 1 × 10 k-points, Nxy = 80 × 80,
N (part)

z = 40, Nf = 4, the NCPPs [35,36], and the local-density
approximation (LDA) [37]. The Green’s function calcula-
tion is collectively performed using the SCG method with
NE = 41. The 8192 CPU cores on Intel®Xeon®Gold 6154
are assigned to perform parallel computing for the Green’s
function matrices. Figure 2 shows the conductance spectra
of the supercell evaluated using the proposed method with
P = 2 and the conventional method. There are no notable
errors more than 2.5 × 10−7 G0.

Finally, we compared the computational times in calcu-
lating the Green’s function submatrices for several systems
using the proposed method with those using the conventional
method. Here the computational times are measured for sys-
tems in which (001) Si bulk is doped with B atoms. We
consider a primitive unit cell of (001) Si bulk, which contains
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FIG. 2. Conductance spectra of DWCNT (solid lines) and com-
putational error of the proposed method (dashed line).

four Si atoms and has the dimensions of L(part)
x(y) = 3.84 Å and

L(part)
z = 5.43 Å. We measured the CPU time for calculating

the submatrices of the Green’s function matrix in a supercell
with L(ext)

z = PL(part)
z , in which the P unit cells are arranged

along the z direction, (P = 1, 2, 4, and 8), and any of the
four Si atoms in each unit cell is randomly replaced with a B
atom. The effective potential of the unit cell is calculated using
the RSPACE code with 8 × 8 × 12 k-points, Nxy = 12 × 12,
N (part)

z = 16, Nf = 4, the NCPPs, and the LDA. We prepared
small parts with Lx(y) = nx(y) × L(part)

x(y) by duplicating the unit
cell nx(y) times in the x(y) direction with nx = ny = 1, 2,
and 4 to verify the influence of the cross-sectional size on
the CPU time. As summarized in Table I, the CPU time for
calculating the four submatrices of G1:P with NE = 16 using
the proposed method increases in proportion to P. We con-
firmed that the proposed method enabled us to notably reduce
the computational cost and avoid computational difficulties in
handling long systems. Furthermore, one can see that the time
ratio is not attenuated even in large cross-sectional systems.
Since the proposed method has high weak-scaling efficiency
for increasing P, the benefit of this method becomes more
remarkable as the system size increases.

TABLE I. CPU time to obtain four submatrices of the Green’s
function matrix for B-doped (001) Si bulk models. The time ratio is
evaluated as [calculating time + combining time]/[calculating time
for P = 1]. The calculations were performed with 1152 CPU cores
on Intel®Xeon®CPU E5-2680.

Calculating Combining Time
(nx, ny ) P time (sec.) time (sec.) ratio

(1,1) 1 175 – 1.00
2 352 19 2.12
4 669 56 4.15
8 1347 130 8.45

(2,2) 1 13 381 – 1.00
2 26 773 1457 2.11
4 49 171 4372 4.00
8 98 240 10 206 8.10

(4,4) 1 592 191 – 1.00
2 1 183 461 65 451 2.11
4 2 159 101 196 408 3.98
8 4 317 207 458 096 8.06

013038-4



CALCULATION OF THE GREEN’S FUNCTION IN THE … PHYSICAL REVIEW RESEARCH 3, 013038 (2021)

FIG. 3. Schematic view of the DWCNT unit-cell models. The
grey and green spheres represent C atoms of the outer and inner
carbon nanotubes, respectively, and the red and orange spheres rep-
resent N and B atoms, respectively. Dashed lines represent the unit
cell boundaries.

With the above verifications, it is confirmed that electron-
transport properties can be estimated efficiently without the
deterioration of computational accuracy using the proposed
method. As a practical demonstration of the method, we
investigated the electron-transport properties of DWCNTs de-
pending on the tube length. As illustrated in Fig. 3, eight
DWCNT unit-cell models with different relative positions of
the two BN dimers are prepared. Here, the transport proper-
ties are evaluated for a model in which the same unit cells
(model 4) are periodically combined (periodic model) and in
which different unit cells (Model 1–8) are randomly arranged
(random model). For the periodic model, the transport calcu-
lations are performed for the DWCNTs with P = 1–1024 to
investigate the changes in the conductance spectrum accord-
ing to the number of unit cells P in the transition region.
The numerical conditions and procedures to obtain the ef-
fective potential and the Green’ function matrices of each
unit cell are the same as those mentioned in the accuracy
verification. Here, we ignore the electron-phonon couplings
and evaluate the transport properties described in the ballistic
regime [38].

As shown in Fig. 4, for systems with small P, the con-
ductance quantization is observed at the low incident energy,
where there are four conduction channels with a transmission
probability of almost unity. In the low energy region, the
incident electrons flow through the intra-states of the inner
and outer tubes, as depicted in Fig. 5(a). Therefore there are
high-transmission channels due to the innertube states that
are insensitive to the scattering potential created by the BN
dimers in the outer tube. However, the channel transmissions
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FIG. 4. Conductance spectra for BN-doped DWCNTs. The
filled-circle and open-circle plots represent the spectra of the periodic
and random models, respectively. The zero point of conductance is
shifted by 1 G0 between the adjacent spectra, where the vertical scale
represents the value for the 196 608-atom models (P = 1024). The
incident energy is measured from the Fermi level.

are notably reduced at the high incident energy because of the
inter-states between the inner and outer tubes, as illustrated
in Fig. 5(b). As P increases, dips appear in the conductance
spectra even at the low incident energy, and they gradually
become prominent. This reflects the energy gap in the energy
band structure that appears in an infinite DWCNT with a peri-
odic scattering potential, as in the Kronig-Penney model. On
the contrary, for the random model with P = 1024 (196 608
atoms, ∼1.0 μm), overall conductance is suppressed as plot-
ted in Fig. 4. Although the transmission in most conduction
channels is notably reduced due to the random scattering
potential component widely distributed in DWCNT, there are
still channels with high transmission to which the intra-states
of the inner tube contribute. Here, the random model with
P = 1024 is prepared by randomly combining four differ-
ent random models with P = 64 and 96. We also performed
calculations using random models with different configura-
tions, but the results are essentially the same. Performing the
large-scale electron-transport calculation, we can discover this
difference in the conductance spectra between the randomly
and periodically doped models.

IV. CONCLUSION

In summary, we developed an efficient first-principles algo-
rithm for evaluating the electron-transport properties of long
systems consisting of a vast number of atoms. The Green’s
function of the whole transition region extended towards the
transport direction was obtained by recursively combining
the Green’s functions of the adjoining parts one by one.
The computational cost for calculating the submatrices of the
Green’s functions required to estimate the transport properties
is proportional to the number of the combined parts. As a
practical application, we demonstrated the electron-transport
calculations of BN-doped DWCNTs containing up to 196 608
atoms. The proposed method develops our understanding
of experimental studies on the research and development
of devices using low-dimensional materials, as reported by
Refs. [39–43]. Moreover, even in a submicron scale 2D and
3D structure containing millions of atoms, it is possible to
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FIG. 5. Distributions of the scattering wave functions in the conduction channels of the 6144-atom model (P = 32). (a) and (b) illustrate the
charge density of scattering wave functions with the highest transmission at the Fermi energy and 0.7 eV above the Fermi energy, respectively.
Insets surrounded by dashed lines depict cross-sectional and enlarged views. The key to the symbols is the same as that in Fig. 3. The value of
the yellow isosurface is 6.7 × 10−4 electron/Å3.

efficiently evaluate the electron-transport properties without
any deterioration of computational accuracy by combining our
previous algorithm [20] with the present method.
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APPENDIX A: COMPUTATIONAL COST OF
MATRIX-VECTOR OPERATION IN THE GREEN’S

FUNCTION MATRIX CALCULATION

As a demonstration, the number of the shifted conjugate-
gradient (SCG) iterations NSCG for calculating the subsets
of the Green’s function matrices is evaluated numerically
using a double-walled carbon nanotube (DWCNT) system
(see Fig. 3). For simplicity, we decide NE = 1 and the other
conditions of the calculation were the same as those employed
in Sec. III. Figure 6 plots the NSCG required to obtain the
submatrices of the Green’s function converged by the SCG
method for the DWCNT system consisting of several unit
cells. Here, the dimension of the x and y directions, Nxy,
is fixed and the length of the DWCNT corresponding to Nz

is enlarged. It is confirmed that NSCG increases linearly in
proportion to Nz.

APPENDIX B: INVERSE OF A 2 × 2 PARTITIONED
MATRIX

It is already known that the inverse of a 2 × 2 partitioned
matrix is expressed as [44][

A11 A12

A21 A22

]−1

=
[

C−1
1 −C−1

1 A12A−1
22

−C−1
2 A21A−1

11 C−1
2

]
,

(B1)

where

C1 = A11 − A12A−1
22 A21,

C2 = A22 − A21A−1
11 A12 (B2)

are the so-called Schur’s complement blocks. Note that both
A11 and A22 must be invertible.

APPENDIX C: DERIVATION OF GII,UL
i:i+1 AND GII,UR

i:i+1

We first rewrite Eq. (4) into the following expression:

EIi − Hi −
⎡
⎣0 0 0

0 . .
. 0

0 0 �1

⎤
⎦ = [

GII
i:i+1

]−1
, (C1)

where �1 = BiGUL
i+1:i+1B†

i and is an Mi-dimensional square
matrix. Here, we assume that the first block row and col-
umn have Ni−1 rows and columns, respectively. It is obvious
that the last block row and column consist of Mi rows and
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FIG. 6. The number of iterations, NSCG, required to obtain the
subset of the Green’s function matrices for DWCNTs converged by
using the SCG method.
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columns, respectively. Operating GII
i:i+1 from the right and

Gi:i = (EIi − Hi )−1 from the left, one obtains

GII
i:i+1 − Gi:i

⎡
⎣0 0 0

0 . .
. 0

0 0 �1

⎤
⎦GII

i:i+1 = Gi:i. (C2)

As discussed in the main text, we need only the submatrices
located at the four corners of GII

i:i+1. The submatrices satisfy
the following (Ni−1 + Mi)-dimensional linear equations:

C

[
GII,UL

i:i+1 GII,UR
i:i+1

GII,LL
i:i+1 GII,LR

i:i+1

]
=

[GUL
i:i GUR

i:i

GLL
i:i GLR

i:i

]
, (C3)

where

C =
[

INi−1 −GUR
i:i �1

0 IMi − GLR
i:i �1

]
. (C4)

C−1 is analytically obtained using Appendix B as

C−1 =
[

INi−1 GUR
i:i �1[IMi − GLR

i:i �1]−1

0 [IMi − GLR
i:i �1]−1

]
. (C5)

Therefore the Ni−1-dimensional square submatrix located at
the upper-left corner of GII

i:i+1 is given as

GII,UL
i:i+1 = GUL

i:i + GUR
i:i BiGUL

i+1:i+1B†
i

× [
IMi − GLR

i:i BiGUL
i+1:i+1B†

i

]−1GLL
i:i . (C6)

This is the analytical form of GII,UL
i:i+1 .

The (Ni−1 × Mi)-dimensional submatrix located at the
upper-right corner of GII

i:i+1 is written as

GII,UR
i:i+1 = GUR

i:i

(
IMi + �1

[
IMi − GLR

i:i �1
]−1GLR

i:i

)
. (C7)

Using one of the Searle’s identities [45],

I − A[I + BA]−1B = [I + AB]−1, (C8)

one can transform Eq. (C7) into

GII,UR
i:i+1 = GUR

i:i

[
IMi − BiGUL

i+1:i+1B†
i GLR

i:i

]−1
. (C9)

This is the analytic form of GII,UR
i:i+1 .

APPENDIX D: DERIVATION OF GII,LR
i:i+1 and GII,LL

i:i+1

We first rewrite Eq. (6) into the following expression:

EIi+1 − Hi+1 −
⎡
⎣�2 0 0

0 . .
. 0

0 0 0

⎤
⎦ = [

GIV
i:i+1

]−1
, (D1)

where �2 = B†
i GLR

i:i Bi and is an Ni-dimensional square matrix.
Here, we assume that the last block row and column have
Mi+1 rows and columns, respectively. It is obvious that the
first block row and column consist of Ni rows and columns,
respectively. Operating GIV

i:i+1 from the right and Gi+1:i+1 =
(EIi+1 − Hi+1)−1 from the left, one obtains

GIV
i:i+1 − Gi+1:i+1

⎡
⎣�2 0 0

0 . .
. 0

0 0 0

⎤
⎦GIV

i:i+1 = Gi+1:i+1. (D2)

As discussed in the main text, we need only the subma-
trices located at the four corners of GIV

i:i+1. The submatri-
ces satisfies the following (Ni + Mi+1)-dimensional linear
equations:

C

[
GIV,UL

i:i+1 GIV,UR
i:i+1

GIV,LL
i:i+1 GIV,LR

i:i+1

]
=

[GUL
i+1:i+1 GUR

i+1:i+1

GLL
i+1:i+1 GLR

i+1:i+1

]
, (D3)

where

C =
[

INi − GUL
i+1:i+1�2 0

−GLL
i+1:i+1�2 IMi+1

]
. (D4)

C−1 is analytically obtained using Appendix B as

C−1 =
[ [

INi − GUL
i+1:i+1�2

]−1
0

GLL
i+1:i+1�2

[
INi − GUL

i+1:i+1�2
]−1

IMi+1

]
. (D5)

Therefore the Mi+1-dimensional square submatrix located at
the lower-right corner of GIV

i:i+1 is given as

GIV,LR
i:i+1 = GLR

i+1:i+1 + GLL
i+1:i+1B†

i GLR
i:i Bi

× [
INi − GUL

i+1:i+1B†
i GLR

i:i Bi
]−1GUR

i+1:i+1, (D6)

This is the analytical form of GIV,LR
i:i+1 .

The (Mi+1 × Ni)-dimensional submatrix located at the
lower-left corner of GIV

i:i+1 is given as

GIV,LL
i:i+1 = GLL

i+1:i+1

(
INi + �2

[
INi − GUL

i+1:i+1�2
]−1GUL

i+1:i+1

)
.

(D7)

Using the Searle’s identity (C8), one can transform Eq. (D7)
into

GIV,LL
i:i+1 = GLL

i+1:i+1

[
INi − B†

i GLR
i:i BiGUL

i+1:i+1

]−1
. (D8)

This is the analytic form of GIV,LL
i:i+1 .
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