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Abstract

We derive a new completely integrable dispersive shallow water equation that is
biHamiltonian and thus possesses an infinite number of conservation laws in invo-
lution. The equation is obtained by using an asymptotic expansion directly in the
Hamiltonian for Euler’s equations in the shallow water regime. The soliton solution
for this equation has a limiting form that has a discontinuity in the first derivative
at its peak.
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Completely integrable nonlinear partial differential equations arise at various levels

of approximation in shallow water theory. Such equations possess soliton solutions -

coherent (spatially localized) structures that interact nonlinearly among themselves then

re-emerge, retaining their identity and showing particle-like scattering behavior. In this

paper, we use Hamiltonian methods to derive a new completely integrable dispersive

shallow water equation,

ut + κux − uxxt + 3uux = 2uxuxx + uuxxx , (1)

where u is the fluid velocity in the x direction (or equivalently the height of the water’s

free surface above a flat bottom), κ is a constant related to the critical shallow water

wave speed, and subscripts denote partial derivatives. This equation retains higher order

terms (the right-hand side) in a small amplitude expansion of incompressible Euler’s

equations for unidirectional motion of waves at the free surface under the influence of

gravity. Dropping these terms leads to the Benjamin-Bona-Mahoney (BBM) equation,

or at the same order, the Korteweg-de Vries (KdV) equation. Our extension of the

BBM equation possesses soliton solutions whose limiting form as κ → 0 have peaks

where first derivatives are discontinuous. These “peakons” dominate the solution of the

initial value problem for this equation with κ = 0. The way a smooth initial condition

breaks up into a train of peakons is by developing a verticality at each inflection point

with negative slope, from which a derivative discontinuity emerges. Remarkably, the

multisoliton solution is obtained by simply superimposing the single peakon solutions

and solving for the evolution of their amplitudes and the positions of their peaks as a

completely integrable finite dimensional Hamiltonian system.

Our equation is biHamiltonian, i.e., it can be expressed in Hamiltonian form in two

different ways. The ratio of its two (compatible) Hamiltonian operators is a recursion
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operator that produces an infinite sequence of conservation laws. This biHamiltonian

property is used to recast our equation as a compatibility condition for a linear isospec-

tral problem, so that the initial value problem may be solved by the inverse scattering

transform (IST) method.

The unidirectional model. Consider Euler’s equations for an inviscid incompressible

fluid of uniform density with one horizontal velocity component u in the x direction, and

w in the vertical (z) direction. The fluid is acted on by the acceleration of gravity, g,

and is moving in a horizontally infinite domain with an upper free surface at z = ζ(x, t)

and flat bottom at z = −h0. Substituting the solution form motivated by shallow water

asymptotics[1], u = u(x, t), w = −(z + h0)ux, into the conserved energy (kinetic +

potential) for Euler’s equations, and explicitly performing the z-integration leads to the

energy HGN = 1
2

∫+∞
−∞ dx

[

ηu2 + 1
3
η3u2

x + g(η − h0)
2
]

, where η = ζ + h0 is the height of

the water above the bottom. Substituting the same solution form above into Euler’s

equations and integrating over the vertical coordinate leads to the Green-Naghdi (GN)

equations[2]. The GN equations conserve the energy HGN . In fact, they are expressible

in Hamiltonian form[3] as

(

mt

ηt

)

= −
(

∂m +m∂ η∂
∂η 0

)(

δHGN/δm
δHGN/δη

)

(2)

where the momentum density m is defined by m = δHGN/δu. The GN equations do not

necessarily refer to a thin-domain expansion in a small parameter ǫ that measures the

ratio of depth to wavelength. In such an expansion the kinetic energy of vertical motion

(∼ η3u2
x) in HGN would be O(ǫ2). Shallow water theory makes a further small-amplitude

assumption, in the form η = h0 +O(α), α << 1, and balances α = O(ǫ2). In contrast,

the Hamiltonian HGN retains nondominant terms (e.g., ζ3) that would be higher order in

such an expansion. Starting from the GN equations, further small-amplitude asymptotics
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and restriction to unidirectional propagation in a frame moving near the critical wave

speed c0 =
√
gh0, leads to the KdV equation [4], ut + c0ux + 3/2 uux + 1/6 c0h

2
0uxxx = 0,

or, with the same order of accuracy in the thin-domain expansion, the BBM equation[5],

ut + c0ux + 3/2 uux − 1/6 h2
0uxxt = 0. Instead of making asymptotic expansions in

the equations of motion, as in the derivations of the KdV and BBM equations, our

approach in deriving (1) is to make a unidirectional approximation by relating m to η

in the GN system and preserving the momentum part of its Hamiltonian structure (2).

For this purpose, we will set η = h0

√

m/(h0c0), and since η → h0 as |x| → ∞ the

boundary conditions on m will be assumed to be m→ h0c0 as |x| → ∞. The functional

C =
∫ +∞
−∞

√
m dx is the Casimir for the Hamiltonian operator (m∂ + ∂m) and so we will

refer to this invariant manifold as the Casimir manifold for (2). Next, we scale u→ αu in

the Hamiltonian HGN , look for m in the form m = h0c0 +αm1 +α2m2 +α3m3 + . . . and

expand HGN accordingly. With this scaling and expansion, defining m as the variational

derivative of the Hamiltonian with respect to u, and balancing at order O(α2) gives[6]

m1 = 2(h0u − h3
0uxx/3). The Hamiltonian may then be rewritten as HGN = H1D +

O(α3), where H1D = α2/4
∫+∞
−∞ m1u dx + α/2

∫+∞
−∞ m1c0 dx, and the factor 1/2 arises

from restricting to a submanifold.[7]

The O(α) equation of motion form on the Casimir manifold is thereforemt = −(m∂+

∂m)δH1D/δm = −α/2(m∂ + ∂m)u− c0/2 mx, or, in terms of u,

ut −
1

3
h2

0uxxt + c0ux +
3

2
αuux −

1

6
h2

0c0uxxx =
1

3
αh2

0uxuxx +
1

6
αh2

0uuxxx. (3)

Dropping the right-hand side of this equation gives BBM or KdV, modulo replacing

uxxt by −c0uxxx.
[4] Thus (3) can be seen as a BBM equation extended by retaining

higher order terms (selected by the Hamiltonian approach) in an asymptotic expansion

in terms of the small-amplitude parameter α. The restriction to the Casimir manifold
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is equivalent at order O(α) to the unidirectionality assumption ζ =
√

h0/g u + O(α) in

the usual derivations of the KdV and BBM models from the Boussinesq system[4][8]. In

fact, ζ =
√

h0/g [u− h2
0/6uxx] + O(α), and in a thin-domain approximation the double

derivative term in this expression would acquire a factor ǫ2.

Rescaling (3), dropping α, and going to a frame of reference moving with speed

κ = c0/2 reduces the equation to the standard form (1). Notice that (1), like BBM, is

not Galilean invariant, i.e., not invariant under u → u + κ, t → t, x → x + κt. Thus,

equation (1) is best seen as a member of a family of equations parameterized by the speed

κ of the Galilean frame.

Using the identity (1−∂2)e−|x| = 2δ(x) and setting K[v] ≡ ∫+∞
−∞ dy exp(−|x− y|)v(y),

expresses equation (1) in nonlocal form as ut + uux + κK[uy] = −K[uuy + 1/2 uyuyy].

Dropping the quadratic terms on the right-hand side of this equation gives the one studied

by Fornberg and Whitham[9]. Fornberg and Whitham show that traveling wave solutions

of this truncated equation have a peaked limiting form. Moreover, nonsymmetric initial

data with two inflection points in their case can develop a vertical slope in finite time.

In a later paper we will discuss the parameterized family (1). The present paper

focuses on the limiting case κ = 0,

ut − uxxt = −3uux + 2uxuxx + uuxxx , (4)

where u is defined on the real line with vanishing boundary conditions at infinity and such

that the Hamiltonian H1 = 1
2

∫+∞
−∞ (u2 + u2

x) dx is bounded. As with (3), H1 generates

the flow (4) through m = u− uxx, mt = −(m∂ + ∂m)δH1/δm.

Steepening at inflection points. Consider an initial condition that has an inflection

point at x = x̄, to the right of its maximum, and decays to zero in each direction suffi-

ciently rapidly for H1 to be finite. Define the the time dependent slope at the inflection
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point as s(t) = ux(x̄(t), t). Then the nonlocal form of (4) (with κ = 0) and standard

Sobolev estimates yield a differential inequality for s, ds/dt ≤ −s2/2 + H1. Hence,

the slope becomes vertical in finite time, provided it is initially sufficiently negative. If

the initial condition is antisymmetric, then the inflection point at u = 0 is fixed and

dx̄/dt = 0, due to the symmetry (u, x) → (−u,−x) enjoyed by (4). In this case, no

matter how small |s(0)|, verticality develops in finite time. This steepening property im-

plies that traveling wave solutions of (4) cannot have the usual bell shape since inflection

points may not be stationary in time. In fact the traveling wave solution is given by

u(x, t) = c exp(−|x− ct|). This solution travels with speed c and has a corner (that is, a

finite jump in its derivative) at its peak of height c.[10]

N-soliton solution. Motivated by the form of the traveling wave solution, we make the

following solution ansatz forN interacting peaked solutions, u(x, t) =
∑N

i=1 pi(t) exp(−|x− qi(t)|).

Substituting this into equation (4) yields evolution equations for qj and pj, that are

Hamilton’s canonical equations, with Hamiltonian HA given by substituting the solution

Ansatz above into the integral of motionH1, yieldingHA = 1/2
∑N

i,j=1 pipj exp(−|qi − qj|).

Hamiltonians of this form describe geodesic motion. The peak position qi(t) is governed

by geodesic motion of a particle on an N -dimensional surface with inverse metric tensor

gij(q) = exp(−|qi − qj |), q ∈ IRN . The metric tensor is singular whenever qi = qj .

Two-soliton Dynamics. Consider the scattering of two solitons that are initially well

separated, and have speeds c1 and c2, with c1 > c2 and c1 > 0, so that they collide. The

Hamiltonian system governing this collision possesses two constants of motion, H0 =

p1 + p2 = c1 + c2 and HA = (c21 + c22)/2. Notice that if the peaks were to overlap,

thereby producing q1 − q2 = 0 during a collision, there would be a contradiction 2HA =

(c1 + c2)
2 = c21 + c22, unless p were to diverge when the overlap occurred.

The solution of Hamilton’s canonical equations for Hamiltonian HA when N = 2 is
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given by

q1 − q2 = − log

∣

∣

∣

∣

∣

4(c1 − c2)
2γe(c1−c2)t

(γe(c1−c2)t + 4c21)(γe
(c1−c2)t + 4c22)

∣

∣

∣

∣

∣

,

p1 − p2 = ±(c1 − c2)
γe−(c1−c2)t − 4c1c2
γe−(c1−c2)t + 4c1c2

(5)

and the conservation law for p1 +p2. Here γ is a constant specifying the initial separation

of the peaks, and c1 and c2 are the asymptotic t → ±∞ values of their speeds, or

amplitudes. The divergence of p1 and p2 in equation (5) associated with soliton overlap

can only occur when c1 and c2 have opposite signs. That is, only “head-on” collisions can

lead to overlapping peaks (see Fig. 1, available from authors, for the “soliton-antisoliton”

case c1 = −c2 = c).

The two soliton solution (5) determines the “phase shifts,” i.e., the shifts in the

asymptotic position for t→ ∞, that the solitons experience after interaction. As t→ +∞

the solitons re-emerge unscathed, the faster (and larger) soliton ahead of the slower (and

smaller) one. Defining the phase shift for the faster soliton to be ∆qf ≡ q2(+∞)−q1(−∞),

and for the slower soliton, ∆qs ≡ q1(+∞) − q2(−∞), leads to ∆qf = log (c21/(c1 − c2)
2),

and ∆qs = log ((c1 − c2)
2/c22). These formulae show that when c1/c2 > 2 both solitons

experience a forward shift. For 1 < c1/c2 < 2 the faster soliton is shifted forward while

the slower soliton is shifted backward. When c1/c2 = 2 no shift occurs for the slower

soliton.

BiHamiltonian structure. Equation (4) follows, as well, from an action principle

expressed in terms of a velocity potential. This action principle leads to an additional

conserved quantity, H2 = 1
2

∫ +∞
−∞ (u3 + uu2

x)dx, and another Hamiltonian operator, ∂ −

∂3. Our equation (4) then can be written in Hamiltonian form in two different ways,

mt = −(∂ − ∂3)δH2/δm = −(m∂ + ∂m)δH1/δm. The two Hamiltonian operators B1 =
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∂ − ∂3, and B2 = ∂m + m∂ form a Hamiltonian pair. That is, their sum is still a

Hamiltonian operator[11]. Equation (4) is thus biHamiltonian and has an infinite number

of conservation laws recursively related to each other by B1δHn/δm = B2δHn−1/δm ≡

−m(n+1)
t , n = 0,±1,±2, . . .. Starting from H1 or H2 this relation generates an infinite

sequence of conservation laws including, e.g., H0 =
∫+∞
−∞ m dx, H−1 =

∫+∞
−∞

√
m dx =

C, H−2 = 1
2

∫+∞
−∞

[

m2
x/4m

5/2 − 2/
√
m
]

dx, etc. Correspondingly, the recursion operator

R = B2B
−1
1 generates a hierarchy of commuting flows, defined by m

(n+1)
t = Kn+1[m] =

RKn[m], n = 0,±1,±2, . . .. The first few flows in the hierarchy are m
(0)
t = −(∂ −

∂3)(2
√
m)−1, m

(1)
t = 0, m

(2)
t = −mx, and m

(3)
t = −(m∂ + ∂m)u. The last of these is our

equation (4) and the first is an extension of the integrable Dym equation[12]. It turns

out that all the flows in this hierarchy are isospectral and thus completely integrable.

The isospectral problem. In order to find the isospectral problem for our equation, we

follow Gel’fand and Dorfmann[13] in considering the skew symmetric spectral problem,

(λB1 − B2)φ = 0. A class of solutions of this problem are related by φ = ψ2 to the

solutions ψ of a second order symmetric spectral problem. By imposing isospectrality,

λt = 0, our equation (1) follows from the compatibility condition ψxxt = ψtxx of the

system for ψ(x, t),

ψxx =

[

1

4
− m(x, t) + κ

2λ

]

ψ, ψt = − (λ+ u)ψx +
1

2
uxψ. (6)

This is the isospectral problem we seek. The system (6) provides a means of solving the

initial value problem for (1) by the purely linear IST technique[12]. For instance, if the

boundary conditions on m are taken to be zero at x = ±∞ (sufficiently fast),[14] then the

spectral problem (6) when κ = 0 has a purely discrete spectrum since ψ(x) → exp(±x/2)

as |x| → ∞, i.e., eigenfunctions always decay exponentially at infinity. If, e.g., the initial

condition u(x, 0) is chosen such that u(x, 0) = A (π/2 ex − 2 sinh x arctan (ex) − 1), so
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that m(x, 0) = A sech2(x), for an arbitrary constant A, then it is easy to show[15] that

the eigenvalues λ for (6) are given by λn = 2A/[(2n+ 1)(2n+ 3)], n = 0, 1, 2, . . .. This

formula shows explicitly that λ = 0 is an accumulation point for the discrete spectrum

and the eigenvalues converge to it as 1/n2, n → ∞, a fact that holds in general for

any initial condition decaying exponentially fast at infinity. Equations (6) also imply

that the N -soliton mechanical system with Hamiltonian HA is completely integrable[16].

When κ 6= 0, i.e., for an equation in the family (1), the limiting behavior of ψ becomes

ψ(x) → exp
(

±x
√

1/4 − κ/2λ
)

as |x| → ∞, and so continuous spectrum develops out of

the origin in the interval 0 ≤ λ ≤ 2κ. Also, for κ 6= 0 the soliton solution of (1) becomes

C∞ and there is no derivative discontinuity at its peak. The peculiar feature of the

disappearance of continuous spectrum in the limit κ → 0 can be traced to the constant

1/4 in the spectral problem (6), which in turn is generated by the first derivative operator

in B1.

Numerical simulations[17] confirm the analysis discussed here and demonstrate the

robustness of the peaked soliton solutions. These simulations clearly illustrate the inflec-

tion point mechanism by which a localized (positive) initial condition breaks up into a

height-ordered train of peaked solitons moving to the right, with the tallest ones ahead.

For their helpful and sometimes challenging remarks during the course of this work,

we thank M. Ablowitz, I. Gabitov, I. M. Gel’fand, J. M. Hyman, B. Kupershmidt, P.

Lax, C. D. Levermore, S. V. Manakov, L. Margolin, P. Olver, T. Ratiu, H. Segur and T.

Y. Wu. This work is partially supported by the U.S. Department of Energy CHAMMP

program.

Figure caption.
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Fig. 1. The soliton-antisoliton solution u reconstructed from equation (5) is u(x, t) = c[exp(−|x−
1/2 q(t)|)− exp(−|x+ 1/2 q(t)|)]/tanh(ct). This solution displays the steepening behavior dis-
cussed in the text. The slope becomes vertical and the amplitude of the solution becomes
(everywhere) zero right at the moment of overlap. At later times the peaks redevelop and
depart again according to the symmetry (u, t) → (−u,−t).
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