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A theory is presented for vacuum tunneling between a real solid surface and a model
probe with a locally spherical tip, applicable to the recently developed “scanning tunnel-
ing microscope.” Calculations for 2x 1 and 3x 1 reconstructions of Au(110) are in ex-
cellent agreement with recent experimental results, if an effective radius of curvature of

9 X is assumed for the tip.

PACS numbers: 68.20.+t, 07.80.+x, 73.20.-r, 73.40.Gk

One of the most fundamental problems in sur-

face physics is the determination of surface struc-

ture. Recently a new and uniquely promising
technique, the “scanning tunneling microscope”
(STM), was introduced.’”* This method offers,
for the first time, the possibility of divect, real-
space determination of surface structure, includ-
ing nonperiodic structures. A small metal tip is
brought near enough to the surface that the vacu-
um tunneling resistance between surface and tip
is finite and measurable. The tip scans the sur-
face in two dimensions, while its height is ad-
justed to maintain a constant tunneling resistance.
The result is essentially a contour map of the
surface.

The one-dimensional tunneling problem (i.e.,
through two-dimensionally-uniform barriers) has
been treated extensively,® and field emission
from a tip is well understood. The usefulness of
STM stems from the fact that it is neither one-
dimensional nor field emission, but is instead
sensitive to the full three-dimensional structure
of the surface. Little is known about tunneling in
this case.? Here we present the first quantitative
theory for the scanning tunneling microscope, and
apply the theory to Au(110). Results are in ex-
cellent agreement with experiment. We infer that
under actual experimental conditions of Ref. 4,
the tip was roughly 6 A from the surface and had
an effective radius of curvature of about 9 A.

Unfortunately, little is known about the struc-
ture of the tunneling probe tip, which is at pres-
ent prepared in a relatively uncontrolled and non-
reproducible manner.'* * Similar results have
been obtained with W, Mo, and stainless steel
tips,® so that details of the tip electronic struc-
ture do not appear to be important. We model
the tip as a locally spherical potential well where
it approaches nearest to the surface, as illus-
trated in Fig. 1. R is the local radius of curva-
ture about the center located at T, and d is the
distance of nearest approach to the surface.
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The tunneling current by first-order perturba-
tion theory is :

I1=2re/M)Y 5, f EY1-fE, +eV)]
x|M,,|%6(E,~E,), (1)

where f (E) is the Fermi function, V is the applied
voltage, M, is the tunneling matrix element be-
tween states ¢, of the probe and ¢, of the surface,
and E, is the energy of state ¢, in the absence of
tunneling. Since the experiments are performed
at room temperature or below and at small volt-
age (~10 meV for metal-metal tunneling), we

take the limits of small voltage and temperature,

I=21/R)e2VY | M | 26(E ,— Ex)O(E - E¥), (2)

where Er is the Fermi level. The essential prob-
lem is to calculate M, . Bardeen® has shown that

M == (12/2m) JdS+ b, ¥, — 9,99, %), @3)

where the integral is over any surface lying en-
tirely within the vacuum (barrier) region separat-
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FIG. 1. Schematic picture of tunneling geometry.
Probe tip has arbitrary shape but is assumed locally
spherical with radius of curvature R, where it ap-
proaches nearest the surface (shaded). Distance of
nearest approach is d. Center of curvature of tip is
labeled T.
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ing the two sides. The quantity in parentheses is
simply the current operator.

To evaluate M ,, we expand the surface wave
function in the form

$,=90,7 Y25 a; expl - (B2 + | ky+ G| 2)22]

X exp[i(E" + -é) ';(], (4)

which is a completely general expression for ¥ in
the region of negligible potential. Here 2| is
sample volume, k =%~ *(2m @) *'2 is the inverse
decay length for the wave functions in vacuum, ¢
is the work function, k; is the surface Bloch
wave vector of the state, and G is a surface re-
ciprocal-lattice vector. For a nonperiodic sur-
face the sum over G becomes an integral. The
first few ag are of order unity.

The wave functions of the tip are, in general,
not known. In the region of interest, however,
they have the asymptotic spherical form

Yu=9Q, 2, kR (| T - T,) ) e Tl (5)

where €, is the probe volume, % is defined as
above, and R is the radius of curvature. (We as-
sume for simplicity that the work function ¢ for
the tip is equal to that of the surface.) The form
is chosen to be correctly normalized when the
parameter ¢, (which is determined by the tip
geometry, detailed electronic structure, and tip-
vacuum boundary condition) is of order 1, with
the assumption R >%~'. We have neglected the
possible angular dependence of ¥,, which intro-
duces some quantitative modifications discussed
below.

We expand the tip wave function (5) in the same
form as the surface (4) using the fact that

(er) e™* = Ja?qb(q) expl- (&> + 49"/? z|]
xexp(iq-X), (6)
b(q) =(2m) %" 2(1 + ¢*/k%) M2, (M
The matrix element is then almost trivial to eval-
uate. Substituting the surface and the tip wave

functions in (3) and evaluating the expansion term
by term in G, one finds

M, =(02/2m)4nk™*Q,” Y%Re ™y (T,), (8)

where T, is the position of the center of curvature
of the tip. On substitution into (2) the desired re-
sult is

I1=821%" 1eZV(p2Dt (EF)RZk- 4esz

XEIZIJV(FQ)'26(EV-EF), (9)

where D, is the density of states per unit volume
of the probe tip. Note that (8) does not imply that
the value of the surface wave function ¥, at ?0 is
physically relevant. The matrix element is deter-
mined by an integral entirely within the gap re-
gion. However, because of the analytic proper-
ties of (4) and (5), the formal evaluation of ¢, at
distance R +d correctly describes the lateral
averaging due to finite tip size.

The spherical-tip approximation entered only in
the normalization of (5). The crucial approxima-
tion was evaluating the matrix element only for an
s-wave tip wave function. The a dependence of
b(q) in (7) then cancelled that of the z derivative
in the matrix element (3), so that (9) involved
only undistorted wave functions of the surface.
For tip wave functions with angular dependence
(I #0), it is sufficient to include the m =0 term
(other m give a node towards the surface). In that
case the terms in the Fourier expansion of ¢, are
weighted by a factor ~(1 +¢2/£%)*/2 in the matrix
element, which for relevant values of ¢ can be
neglected for small . (In the example below the
relevant ¢?/k?~ 0.1.) The tip model therefore be-
comes less accurate for large R, where higher !
values become more important. A more exact
treatment would probably be far less useful, since
it would require more specific information about
the tip wave functions, and would not reduce to an
explicit equation such as (9) or (10) and (11) be-
low.

Substituting typical metallic values into (9), one
obtains for the tunneling conductance

0~ 0.1R%>*®p(T;E¥), (10)
P(To3E) =219, (%) %6 E - E), (1)

where 0 is in 7!, distances are in atomic units,
and energy in electron volts. Since IKP.(?O)IZ

o expl 2k(R +d)], we see from (10) that o xe™ 2%
as expected. Because of the exponential depen-
dence on distance, it is not essential that the co-
efficient in (10) be every accurate.

By consideration of general aspects of the be-
havior of p(T;Ef), it is possible to draw some
conclusions concerning the sensitivity of STM. In
particular, the suppression of higher Fourier
components in (4) and (9) is equivalent to an in-
strumental resolution of roughly [ 2 (R +d)]*/2,
at least for components ¢ <2k, Since 2¢6~1.6 A,
if R +d~15 A (as in the example below), the reso-
lution is about 5 f&, so that the 8 A periodicity of
Au(110) (2x1) is resolved. It is important to note
that for periodic structures the measured corru-

1999



VoLuUME 50, NUMBER 25

PHYSICAL REVIEW LETTERS

20 JUNE 1983

o

2

DISTANCE (A)

N —

N

®© - ®
/Y|

O g

M

\\—/// 19727

‘

4

FIG. 2. Calculated p(r; Ey) for Au(110)(2x1) (left) and (3x1) (right) surfaces. Figure shows (110) plane through
outermost atoms. Positions of nuclei are indicated by solid circles (in plane) and squares (out of plane). Contours

of constant p(r; E¢) are labeled in units of a.u.”% eV-~1,

Note break in distance scale. Peculiar structure around

contour 107 of (3x1) is due to limitations of the plane-wave part of the basis in describing the exponential decay in-
side the deep troughs. Center of curvature of probe tip follows dashed line.

gation amplitude decreases exponentially with
resolution. This Debye-Waller-like behavior ex-
plains the puzzle* of why in Ref. 2, with some-
what poorer resolution, nonperiodic structures
such as steps were clearly resolved on Au(110),
but the periodic reconstruction was not.

The Au(110) surface normally exhibits 2X1 re-
construction with a missing-row geometry.® A
3X 1 reconstruction has also been observed.® Re-
cently Binnig et al.? reported high-resolution
STM measurements for an Au(110) surface with
regions of both 2X1 and 3X1 structure, and con-
cluded that the 3x 1 structure consisted of (111)
microfacets analogous to the 2X1, Measured
STM corrugations were 0.45 and 1.4 A for 2x1
and 3X1, respectively. (The two phases occurred
together and were measured in the same scan
with the same tip, permitting direct comparison.)

We have calculated p(¥;E5) for both 2X1 and
3X1 surfaces using a recently developed linear-
ized augmented plane-wave method described
elsewhere.!® For the 2X1 surface we used a slab
geometry of three complete layers with a half-
layer [ alternate (110) rows missing] on either
side. The 3X1 geometry suggested by Binnig et
al.* was employed; an asymmetric slab was con-
structed of two complete layers, a third layer
with one missing row, and a fourth layer with two
missing rows (see Fig. 2). The calculation is
similar to that in Ref. 10, with p(T;Ey) approxi-
mated by the charge in states within 0.5 eV of Ef,
divided by the finite interval width of 1 eV. (The
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error from this finite-interval approximation can
be estimated quantitatively and should not affect
any conclusions here.) Despite some difficulty in
obtaining convergence with respect to the plane-
wave part of our basis set for these open struc-
tures and large unit cells, we believe the numer-
ical accuracy to be quite adequate for the 3x1
and still better for the 2X1 geometry. We are
currently investigating approximate methods for
treating more complicated structures, since the
greatest strength of STM is for systems with
large unit cells and for nonperiodic systems.

Figure 2 shows the calculated p(T;Ey) for
Au(110). Since the actual tip geometry is not
known, we consider a tip radius R =9 fx, so that
(10) predicts a (2x1) corrugation of 0.45 A at tun-
neling resistance® 10" Q in agreement with ex-
periment. Thend is found to be 6 A, measured
from the surface Au nuclei to the edge of the tip
potential well (i.e., the shell at which the tip wave
function becomes decaying in character). This
value is consistent® with experimental estimates
of d based on resonant tunneling oscillations.*
Given R, (10) yields a corrugation of 1.4 A for
the (3x1) surface in excellent agreement with ex-
periment.

In the analysis above d was determined rather
directly by (10) since the dependence of current
upon R largely cancels as noted above. However,
R was inferred by fitting the experimental corru-
gation, which depends on R +d, and subtracting d.
The corrugation is more susceptible to errors,
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both experimental and theoretical, than is the cur-

rent. Moderate errors (NZO%) in either the calcu-
lated or measured corrugation amplitude have
little effect on our conclusions. Nevertheless,
since this is the first such calculation for STM,
we believe it would be premature to rule out a tip
consisting in effect of one or two atoms. For a
sufficiently small cluster of atoms, the effective
value of R depends on the precise geometry.

We conclude that a relatively simple model for
the tip, in conjunction with detailed calculations
for the surface, gives excellent agreement with
experimental results of STM and provides in-
sight into the method’s resolution and sensitivity.
With improved characterization of the probe tip
structure in the future, more precise compari-
sons will become possible, furthering the detailed
understanding of STM.
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