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van der Waals (vdW) energy corrected density-functional theory [Phys. Rev. Lett. 102, 073005 (2009)]

is applied to study the cohesive properties of ionic and semiconductor solids (C, Si, Ge, GaAs, NaCl, and

MgO). The required polarizability and dispersion coefficients are calculated using the dielectric function

obtained from time-dependent density-functional theory. Coefficients for ‘‘atoms in the solid’’ are then

calculated from the Hirshfeld partitioning of the electron density. It is shown that the Clausius-Mossotti

equation that relates the polarizability and the dielectric function is accurate even for covalently-bonded

semiconductors. We find an overall improvement in the cohesive properties of Si, Ge, GaAs, NaCl, and

MgO, when vdW interactions are included on top of the Perdew-Burke-Ernzerhof or Heyd-Scuseria-

Ernzerhof functionals. The relevance of our findings for other solids is discussed.
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Cohesion in ionic and semiconductor solids arises
mainly from electrostatic interactions and covalent bond-
ing [1], and it is typically assumed that van der Waals
(vdW) interactions play a minor role. Nevertheless, the
qualitative and quantitative role of vdW interactions in
solids has been a matter of discussion for quite some
time [2–8]. Density-functional theory (DFT) is the method
of choice for studying the bonding properties of solids.
However, the widely used local-density approximation
(LDA), generalized gradient approximation (GGA), as
well as (screened) hybrid functionals are lacking the
long-range vdW energy tail. Direct ab initio estimates of
the vdW energy in solids have so far proven challenging.
Recent many-body calculations using the random-phase
approximation (RPA) [8–10], which includes the vdW
energy seamlessly and accurately, yield significantly im-
proved cohesive properties for a wide variety of solid-state
systems over state-of-the-art (semi)-local DFT approxima-
tions. However, the vdW energy can only be rigorously
defined in the large-distance limit. The aim of this Letter is
to calculate accurate atomic polarizabilities, vdW coeffi-
cients, and vdW radii in ionic and semiconductor solids
and to estimate the contribution of the long-range vdW
energy to the cohesive properties. We find an overall
improvement in the description of cohesion for model ionic
and semiconductor solids when vdW interactions are in-
cluded on top of the Perdew-Burke-Ernzerhof (PBE) [11]
and the Heyd-Scuseria-Ernzerhof (HSE) [12,13]
functionals.

The first step to calculate the vdW energy in a solid is
to determine the frequency-dependent polarizability per

crystal unit cell. Two complementary schemes are fol-
lowed in this work: (i) compute the polarizability per
volume from the dielectric function of the solid,
(ii) compute the polarizability per atom from cluster ex-
trapolation. We find good agreement between these two
different approaches, which justifies the concept of ‘‘atom
in the solid.’’ The atomic polarizability in binary (or more
complex) crystals is obtained from the Hirshfeld partition-
ing of the electron density in a solid.
The frequency-dependent polarizability is related to the

dielectric function as [14]

�ð!Þ ¼ V
"ð!Þ � 1

L"ð!Þ � Lþ 4�
; (1)

where �ð!Þ is the polarizability per volume V at frequency
!, "ð!Þ is the dielectric function of the solid, and L is the
so-called Lorentz factor, which depends on the ionicity and
hybridization [14]. The constant L is known for two limits:
(i) electron gas, where L ¼ 0, (ii) ideal rare-gas solids and
ideal ionic crystals, where L ¼ 4�=3. In the latter case,
Eq. (1) is known as the Clausius-Mossotti (CM) equation.
In rare-gas and purely ionic crystals, the CM equation is an
accurate approximation. However, the hybridization be-
tween nearest neighbors in a covalently-bonded semicon-
ductor is thought to lead to a significantly reduced value of
the Lorentz factor [15].
An alternative and direct way to compute the polariz-

ability in solids is through a cluster extrapolation (CE). For
ionic crystals, the CE and CM procedures yield essentially
the same result [16]. Thus, we concentrate here on showing
that CE and CM also lead to very similar polarizabilities
for semiconductor crystals. We illustrate our case for Si,
however, the same conclusions can be made for C and Ge
[17]. In the case of hydrogen-saturated semiconductor
clusters, denoted as XiHj (X ¼ C, Si, or Ge; see Fig. 1),

there are four types of fourfold coordinated X atoms, the
‘‘bulklike’’ X atom, and surface X atoms bonded to one,
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two, or 3 H atoms, respectively. For the XiHj cluster, the

total static polarizability is partitioned as

�cluster ’ ni ��X þ nj ��H; (2)

where ni and nj are the numbers of X and H atoms of the

cluster, and ��X and ��H denote average static polarizabil-
ities. To obtain a converged bulk silicon atom polarizability
�Si and a dispersion coefficient C

SiSi
6 from the CE, we use a

set of 30 SiiHj clusters, from SiH4 to Si172H120, with the

geometries taken from Ref. [18]. We calculated the
frequency-dependent polarizability for every cluster at
the time-dependent density-functional level of theory
(TDLDA) using the same computational setup as in
Ref. [18]. To test the accuracy of the additivity approxi-
mation in Eq. (2), we perform a least-squares fit of ��Si and
��H to a set of N ( � 2) clusters, as shown in Fig. 1. For
relatively small clusters, there are simply not enough bulk
Si atoms, thus the obtained polarizabilities do not represent
the crystal environment. However, for N � 10 the fit con-
verges to �Si ¼ 26:8� 0:5 bohr3. Essentially the same
converged value (�Si ¼ 26:6� 0:3 bohr3) is obtained
when starting from the largest cluster. These results indi-
cate that the applied fitting procedure is robust. To obtain
the bulk CSiSi

6 vdW coefficient, exactly the same procedure

was applied. In Fig. 1 we also show the results of fitting
CSiSi
6 on different clusters. The behavior of the fit is similar

to the case of static polarizability. We note that a similar
procedure was recently used by Grimme et al. to determine
atomic C6 coefficients from molecular TDDFT calcula-
tions [19].

In order to compare the CM and CE approaches, we
carried out periodic and cluster TDDFT calculations for
diamond, Si, and Ge as a function of the unit cell volume.

The computational details are reported in the supplemental
material [17]. The bulk dielectric function was computed
using both TDLDA and TDHSE with the so-called
Nanoquanta (NQ) nonlocal exchange-correlation kernel
[20], using the same approach as in Ref. [21]. When
combined with TDHSE, the NQ kernel can correctly cap-
ture excitonic effects, which are known to play an impor-
tant role for the optical spectrum of semiconductors [22].
TDHSEþ NQ method yields excellent agreement for the
static dielectric constant "1 with the experimental refer-
ence for ionic and semiconductor solids (see Table I and
Ref. [21]).
The comparison of CSiSi

6 of CM and CE is shown in

Fig. 2 as a function of the lattice constant. The static
polarizability follows the same trend as C6. The corre-
sponding values at the equilibrium volume of C, Si, and
Ge are given in the supplemental material [17]. For the
range of investigated unit cell volumes, �Si and CSiSi

6

exhibit close to linear dependence on the lattice parameter.
The maximum deviation between CM and CE is less than
0:5 bohr3 for �Si (2%), and 9:0 hartree bohr6 for CSiSi

6

(6%). Considering that both CM and CE rely on a number
of approximations, the agreement between them is striking.
It is noteworthy that the polarizability and C6 coefficients
in semiconductor crystals are significantly reduced com-
pared to the free-atom values (CSiSi

6;free ¼ 305 hartree bohr6):

at the equilibrium volume, the C6 coefficient is reduced by
roughly a factor of 2. In fact, this finding holds for all solids
studied in this work, as can be seen in Table I by comparing
the C6 coefficients per unit cell with the respective free-
atom sum.
Seeking to understand the success of the CM equation

for a wide variety of solids, beyond ‘‘simple’’ rare-gas and
ideal ionic crystals, we use theDFTþ vdWmethod [24] to
calculate the C6 coefficients for atoms in semiconductors.
The DFTþ vdW method accurately takes into account the
short-range screening and hybridization contributions to
the polarizability. However, the long-range screening is

TABLE I. Calculated static dielectric constant "1 and C6

dispersion coefficients (in hartree bohr6 per unit cell) at the
experimental lattice constants using the TDHSEþ NQ method
(fourth column—computed from the experimental dielectric
function). The experimental dielectric constants are taken from
Ref. [23]. The sixth column shows the sum of free-atom C6

coefficients per unit cell. The last two columns show partitioned
atomic C6 coefficients used for the vdW energy correction.

"Expt:1 "HSE1 CExpt:
6cell CHSE

6cell Cfree
6cell Cð1Þ�ð1Þ

6atom Cð2Þ�ð2Þ
6atom

Cð1Þ 5.7 5.6 66.8 186 16.7 � � �
Sið1Þ 11.9 11.3 689 664 1220 166 � � �
Geð1Þ 16.0 15.9 898 1416 224 � � �
Mgð1ÞOð2Þ 3.0 2.8 56.3 59.3 797 38.6 2.2

Gað1ÞAsð2Þ 10.9 10.9 782 1398 213 179

Nað1ÞClð2Þ 2.3 2.3 174 2154 69.3 23.7

FIG. 1 (color online). Least-squares fitting results for the po-
larizability (top, in bohr3) and C6 (bottom, in hartree bohr6) per
atom to a set ofN hydrogen-saturated Si clusters. The solid black
curve shows the fitting results starting from the smallest cluster
(SiH4). The dashed red curve starts from the Si17H36 cluster. The
crossed blue curve starts from the largest Si172H120 cluster.
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neglected. For the Si crystal, the DFTþ vdW scheme
yields �Si ¼ 35:0 bohr3 and CSiSi

6 ¼ 280 hartree bohr6—
less than 10% decrease from the corresponding free-atom
values. Thus, we conclude that the main factor for the
polarizability reduction in solids is the long-range electro-
static screening. In fact, Eq. (1) relates the dielectric func-
tion to the atomic polarizability by including the collective
electrostatic screening from all the dipoles in the crystal.
For crystals with cubic symmetry (which holds for all
solids studied in this work), this results in L ¼ 4�=3,
yielding the CM equation. The constant L is only modified
due to short-range screening effects. Since we found the
short-range screening to play a minor role for C, Si, Ge,
and GaAs, this explains the success of the CM equation for
semiconductors. The inclusion of screening effects beyond
hybridization in the DFTþ vdW method is the subject of
our current work [25].

The good agreement between the CM and CE ap-
proaches allows us to use either C6ðVÞ values for calculat-
ing the vdWenergy in solids. However, the best agreement
with the experimental reference is achieved with
TDHSEþ NQ calculations. In fact, when using the experi-
mental dielectric function of Si, the CSiSi

6 coefficient agrees

with the TDHSEþ NQ method to 3%. In the case of Ge,
the TDHSEþ NQ dielectric constant "1 is in excellent
agreement with measurements of Cardona et al. [26], thus
we use the polarizabilities and C6 coefficients from the
TDHSEþ NQ scheme for further discussion.

The missing long-range vdWenergy is added to the DFT
total energy on top of PBE [11] and HSE06 [13] func-
tionals by using the DFTþ vdW approach [24]

EvdW ¼ � 1

2

X

A;B

fdðRAB; R
0
A; R

0
BÞCAB

6 R�6
AB; (3)

where RAB is the distance between atoms A and B, CAB
6 is

the corresponding vdW coefficient, and R0
A and R0

B are the

vdW radii. The latter are defined as Rsolid
vdW ¼

ð�solid=�freeÞ1=3Rfree
vdW, where Rfree

vdW is calculated as de-

scribed in Ref. [24]. The damping function fd cuts off
the interaction at short covalent distances. We use a
Fermi-type damping function [27],

fdðRAB; R
0
ABÞ ¼

�
1þ exp

�
�d

�
RAB

sRR
0
AB

� 1

����1
; (4)

where R0
AB ¼ R0

A þ R0
B, and d and sR are free parameters.

The sR parameter scales the vdW radius and is adjusted for
every DFT functional [28]. The d parameter controls the
steepness of the damping function. For PBE we have
determined sR ¼ 0:94 and d ¼ 20 on a database of accu-
rate quantum-chemical calculations. For the HSE06 func-
tional, sR ¼ 0:96 and d ¼ 20. The cohesive properties of
solids show little sensitivity to a reasonable variation of up
to 5% for sR and 15% for d.
To extend the DFTþ vdW scheme to solids with

several atomic elements per unit cell, we define
�AB ¼ VHirsh

A =VHirsh
B , where VHirsh is the Hirshfeld

volume of an atom A or B in the solid [24]. Using
the additivity ansatz for the polarizability, we
obtain �Bði!Þ ¼ �solidði!Þ=ð�AB þ 1Þ and �Aði!Þ ¼
�solidði!Þ�AB=ð�AB þ 1Þ, where �solidði!Þ comes from
Eq. (1). With this definition the C6 coefficients (CAA

6 ,

CBB
6 , CAB

6 ) can be obtained from the Casimir-Polder inte-

gral using �Aði!Þ and �Bði!Þ. This scheme can be easily
extended to ternary and more complex compounds by
defining �AC and so on. We have used the TDHSEþ NQ
dielectric function at the experimental lattice constant to
compute �solidði!Þ for GaAs, NaCl, and MgO.
Figure 3 summarizes the errors in the cohesive proper-

ties obtained by using the Birch-Murnaghan equation of
state [29] with standard and vdW-corrected PBE and
HSE06 functionals for all solids studied in this work.
The obtained values for every solid are shown in
Tables IV and V of the supplemental material [17]. The
zero-point energy (ZPE) within the harmonic approxima-
tion is added to the ground-state energies at each volume
for every functional. All DFT calculations, except HSE06,
were done with the FHI-aims all-electron code [30], with
LDA, PBE, and PBEsol cohesive properties in excellent
agreement with WIEN2K [31]. The HSE06 calculations
were done with the VASP code [32], with ZPE correction
added using the PBE phonon spectra.
For the traditional functionals, the considered cohesive

properties follow the well-known trend: the lattice con-
stants with LDA are too small, the bulk moduli and cohe-
sive energies are too large; PBE shows the opposite
tendency, and PBEsol lies in between of LDA and PBE.
The HSE06 method partially cures the self-interaction
problem in LDA and GGA functionals, leading to signifi-
cantly better electronic structure (e.g., band gaps and di-
electric constants) of solids compared to LDA and GGA
functionals [33]. For the same reason, the HSE06 method

FIG. 2 (color online). The Si-Si C6 coefficient (in
hartree bohr6) as a function of the crystal lattice constant. For
TDLDA, the results from both the Clausius-Mossotti (CM)
equation and the cluster extrapolation (CE) are shown. The
experimental equilibrium lattice constant is marked with a
dashed vertical line.
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also yields improved results for the lattice constants and
bulk moduli of semiconductors and ionic solids. However,
lattice constants are still somewhat overestimated, while
the bulk moduli are underestimated in HSE06 calculations.
Furthermore, the HSE06 scheme leads to underestimated
cohesive energies (see supplemental material [17]), typi-
cally very similar to the PBE functional. When the vdW
energy is coupled with the PBE functional, the errors in all
cohesive properties are reduced by a factor of 2 when
compared to experimental data. The same improvement
is found for theHSE06þ vdWmethod, except for the bulk
moduli, where the errors remain roughly the same (under-
estimation for HSE06 calculations, overestimation for
HSE06þ vdW calculations). It is well known that the
optimal value of the range separation parameter � in the
HSE06 method depends on the electrostatic screening
properties of the solid [13,33]. Hence, the improvement
of bulk moduli in the HSE06þ vdW method requires
further careful investigation.

For diamond, both the PBEþ vdW and the HSE06þ
vdW approaches yield slight overbinding. It is known,
however, that anharmonic zero-point energy is important
for diamond due to its relatively small mass, and will
reduce the overbinding [34]. For Si and Ge, the vdW
energy contributes �8% to the cohesive energy for both
the PBEþ vdW and HSE06þ vdW schemes, thus it can-
not be considered negligible. The vdWenergy also makes a
visible contribution to the cohesive properties of GaAs,
NaCl, and MgO. Both PBEþ vdW and HSE06þ vdW
results are in consistently better agreement with experi-
ment than the standard functionals. The vdW energy con-
tributes around 0:2 eV=atom to the cohesive energy for
GaAs, NaCl, and MgO, and 9–16 GPa to the bulk modulus.

The vdW concept is only cleanly defined at distances
where the atomic electron densities do not overlap between

two atoms. For all values of sR and d in the damping
function [Eq. (4)] used in this work, the interaction be-
tween the nearest neighbors in C, Si, and Ge crystals
vanishes. The second-neighbor interaction is also damped
depending on the sR parameter. For sR ¼ 1:0, the cohesive
energies and the bulk moduli change by less than a few
percent, while the lattice constants are virtually unmodi-
fied. Thus, we conclude that the obtained improvements
with the PBEþ vdW and HSE06þ vdW methods are due
to the long-range vdWenergy, and are not an artifact of the
chosen damping function.
In summary, we obtained accurate vdW coefficients for

atoms in ionic and semiconductor crystals using TDDFT
calculations and the Clausius-Mossotti relation between
the polarizability and the dielectric function. The DFTþ
vdW method leads to overall improvement of the cohesive
properties of ionic (NaCl, MgO) and semiconductor (Si,
Ge, GaAs) solids. Despite the good agreement of the
HSE06þ vdW method with experiment, there still re-
mains room for improvement. For example, nonadditive
many-body vdW energy is not accounted for in the
HSE06þ vdW method. Also, anharmonic zero-point and
temperature contributions to the cohesive properties should
be included for the final comparison between experiment
and theory. Note that it is well known that most GGA and
hybrid functionals consistently underestimate cohesive en-
ergies and bulk moduli, and overestimate lattice constants
for a wide variety of semiconductors, ionic solids, and
metals [35]. We thus conclude that our findings about the
importance of the long-range vdW energy are likely to be
valid beyond the benchmark semiconductors and ionic
solids studied in this work.
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