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We derive a nonlocal correlation functional that adequately describes van der Waals interactions not

only in the asymptotic long-range regime but also at short range. Unlike its precursor, developed by

Langreth, Lundqvist, and co-workers, the new functional has a simple analytic form, finite for all

interelectron separations, well behaved in the slowly varying density limit, and generalized to spin-

polarized systems.
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Kohn-Sham density functional theory (DFT) [1] is the
most prominent method for the electronic structure of
molecules and solids, but commonly used semilocal corre-
lation functionals completely miss nonlocal dispersion
interactions [2]. This is a significant flaw, since dispersion
(van der Waals) forces [3] are essential for the formation
and properties of biological macromolecules, nanostruc-
tures, molecular crystals, polymers, liquids, and other
types of sparse matter. The search for dispersion correc-
tions amending common functionals is the subject of im-
mense current interest. Considerable success has been
achieved with empirical corrections in the form of force
fields (see reviews in Refs. [2,4]). Among the pure DFT
methods, the nonlocal correlation functional of Ref. [5] is
unique, because it was derived from first principles, de-
scribes dispersion interactions in a general and seamless
fashion, and yields the correct asymptotics (at least for
nonconductors). Applications of this van der Waals density
functional (vdW-DF-04) to various weakly bound systems
are reviewed in Ref. [6]. vdW-DF-04 is known to be
incompatible [7,8] with accurate exchange functionals,
i.e., with Hartree-Fock (HF) or long-range corrected (LC)
hybrid exchange models. Recently, we proposed [9] a
modification, denoted vdW-DF-09, that was adjusted to
work well with HF and LC exchange.

In this Letter, we derive a new correlation functional
(which we call VV09) based on the vdW-DF methodology
but incorporating different exact constraints. The VV09
nonlocal correlation energy is expressed in a straightfor-
ward analytic form, whereas its predecessors (vdW-DF-04
and vdW-DF-09) used numerically tabulated kernels.
Furthermore, these predecessors were defined only for
closed-shell systems, but VV09 can treat open-shell sys-
tems as well. VV09 correlation performs well in combina-
tion with HF or LC exchange.

The central quantity in the vdW-DF formalism [5,10] is
the polarization operator Sð!Þ, dependent on frequency !
and related to the dielectric function �� via

S ¼
Z 1

0

d�

�

�
1� 1

��

�
; (1)

where � is the coupling constant, multiplying every occur-

rence of e2 inside ��. To a good approximation, �� � 1þ
�ð�� 1Þ, where � with no subscript uses � ¼ 1. Then
Eq. (1) gives

S �
Z 1

0
d�

�� 1

�ð�� 1Þ þ 1
¼ ln�: (2)

The nonlocal correlation energy is most conveniently
expressed [5] in terms of the Fourier transform of S:

Enl
c ¼ @

4�

Z 1

0
du

X
q;q0

½1� ðq̂ � q̂0Þ2�Sq;q0 ðiuÞSq0;qðiuÞ; (3)

where q̂ ¼ q=q is a unit wave vector and
P

q;q0 stands forRR
dqdq0ð2�Þ�6. Using S ¼ ln� in Eq. (3) proves in-

tractable. By the mean value theorem, the integral in
Eq. (2) can be replaced by

S ¼ �� 1

�ð�� 1Þ þ 1
; (4)

where 0 � � � 1.
It can be shown [9,10] that, in the limit of large distance

R between two molecules A and B, Enl
c of Eq. (3) gives the

correct asymptote of the dispersion interaction: �CAB
6 =R6.

The CAB
6 coefficient can be written in the standard [3] form

as

CAB
6 ¼ 3@

�

Z 1

0
du�AðiuÞ�BðiuÞ; (5)

with the polarizability given by

�AðiuÞ ¼ SA0 ðiuÞ=4�; (6)

where S0 denotes the q ¼ q0 ¼ 0 limit of Sq;q0 . A connec-

tion between � and � for q ¼ q0 ¼ 0 is provided [11] by
the Clausius-Mossotti relation 4�� ¼ 3ð�� 1Þ=ð�þ 2Þ,
which corresponds to � ¼ 1=3 in Eq. (4). Moreover, it
can be shown that � ¼ 1=3 is required to give the correct
asymptotic limit for the interaction of two jellium spheres.
A good model for � in the q ¼ q0 ¼ 0 limit is [12]

�ð!Þ ¼ 1þ !2
p

!2
g �!2

; (7)

where !p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�ne2=m

p
is the plasma frequency for the

total electron density n and @!g is a band gap. Using
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Eq. (7) in Eq. (4) with � ¼ 1=3, we obtain

S0ðiuÞ ¼
Z

dr
!2

pðrÞ
!2

pðrÞ=3þ!2
gðrÞ þ u2

: (8)

Equation (8) is written for nonuniform densities, and hence
the local variants of !p and !g are used. The local band

gap can be modeled [13] as @!g / ð@2=mÞjrn=nj2.
Therefore we write

!2
gðrÞ ¼ C

@
2

m2

��������
rnðrÞ
nðrÞ

��������
4

: (9)

We adjust the parameter C in Eq. (9) so that Eq. (5) gives
accurate C6 coefficients. For the test set of Table I, C ¼
0:0089 minimizes the average deviation from experiment.
For CAA

6 , the present method (VV09) is comparable in

accuracy to vdW-DF-09 [9], as Table I shows.
Generalizing S to the case of nonzero q and q0 is highly

nontrivial because the simple Clausius-Mossotti relation
no longer holds and � in Eq. (4) may be a function of q and
q0. Moreover, little is known about the dielectric function
in inhomogeneous systems. Even in the uniform system of
noninteracting electrons, the dielectric function depends
on q and ! in a complicated and singular way. After some
trial and error, we found that a successful model for Sq;q0 is

obtained when Eq. (8) is multiplied by two simple screen-

ing factors: expð�q2=k2sÞ and expð�q02=k2sÞ, where ks ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kF=�a0

p
is the Thomas-Fermi screening wave vector,

written in terms of the Fermi wave vector kF ¼ ð3�2nÞ1=3

and the Bohr radius a0 ¼ @
2=me2. Finally, wewrite the full

spin-dependent model for S as

Sq;q0 ðiuÞ ¼
Z

dre�ir�ðq�q0Þ !2
p

!2
0 þ u2

exp

�
�q2 þ q02

k2s�
2

�
;

(10)

where !2
0 ¼ !2

g þ!2
p=3. In Eq. (10), the r dependence of

!p, !0, ks, and � is implied but suppressed for brevity.

Equation (10) depends on the relative spin polariza-

tion � ¼ ðn" � n#Þ=n via the spin-scaling factor �ð�Þ ¼
½ð1þ �Þ2=3 þ ð1� �Þ2=3�=2. The reason for including �2

alongside k2s is explained below. Equation (10) satisfies the
time-reversal invariance requirement: Sq;q0 ¼ S�q0;�q. In

the uniform density limit, SðiuÞ reduces to

Suniq ðiuÞ ¼ !2
p

!2
p=3þ u2

exp

�
� 2q2

k2s�
2

�
: (11)

Let us consider the gradient expansion of Enl
c in the

t ! 0 limit, where t ¼ jrnj=2�ksn is the dimensionless
density gradient. The second-order gradient term [14,15]
can be written as ðne2=a0Þ�nl�3t2, and the coefficient �nl

can be found from Suniq of Eq. (11) by the formula [9,10]

�nl ¼ 4k4F@

9�6e2�

Z 1

0
du

Z 1

0
dq

��������
	Suniq

	n

��������
2¼ 9

16�3=2
: (12)

The important result is that �nl is properly a constant,
whereas in vdW-DF-04 and vdW-DF-09 the nonlocal gra-
dient coefficient was erroneously strongly density-
dependent. �2 was included in Eq. (10) to give the correct
� dependence [14] of the gradient term, i.e., / �3t2. The
value of �nl � 0:101 appears to be somewhat too large,
although the proper value for �nl is debatable [16] and its
recovery is of minor importance for real systems [17].
As stated above, the asymptotic form of Enl

c is de-
termined solely by S0 via Eqs. (5) and (6). Equation (10)
was constructed to have realistic small-q behavior, which
we expect to be important for the intermediate and long
range of van der Waals interactions. The older versions of
vdW-DF (the 04 [5] and 09 [9] species) were markedly
different in this regard: The q ! 0 limit was largely
ignored in favor of the opposite q ! 1 limit where S
was constrained to behave as / q�4. We argue that impos-
ing this large-q constraint is not important for Enl

c and even
harmful: Correlation kernels �ðr; r0Þ in vdW-DF-04 and
vdW-DF-09 diverge toþ1when jr� r0j ! 0. This diver-
gence is eliminated in VV09, as shown below. We may
further argue that the local real-space analogue of q4 is
/jrn=nj4 [18], and such a term is included in our model
via !2

g.

With Sq;q0 of Eq. (10), it is possible to perform integra-

tions over u, q, and q0 in Eq. (3) analytically, yielding a
rather simple form for Enl

c :

TABLE I. CAA
6 coefficients (in a.u.) computed using Eqs. (5)

and (6). The electron densities are obtained using LC-!PBE
with the aug-cc-pVQZ basis set and the EML-ð99; 590Þ quad-
rature grid (see explanations of the terms in Ref. [9]).

Molecule Ref.a vdW-DF-04 vdW-DF-09 VV09

He 1.5 2.9 1.6 1.4

Ne 6.4 9.4 6.5 8.4

Ar 64.3 62.7 61.4 70.1

Kr 129.6 114.3 120.0 131.2

Be 213.1 268.7 329.5 186.2

Mg 629.5 648.8 835.3 425.1

Zn 282.0 268.9 239.8 163.1

H2 12.1 16.8 12.5 10.3

N2 73.4 78.8 77.6 88.7

HF 19.0 23.1 18.0 21.1

HCl 130.4 114.3 119.9 124.6

HBr 216.6 180.1 198.2 200.2

CH4 129.6 122.0 130.1 129.6

CO 81.3 87.6 86.3 93.5

CO2 158.7 127.6 130.6 159.4

Cl2 389.2 289.3 336.8 366.7

CS2 871.1 586.3 731.7 739.4

MPE (%)b 7.2 1.3 �2:7
MAPE (%)b 22.7 12.5 13.3

aReference values collected in Ref. [9].
bMean (signed) percentage error (MPE) and mean absolute
percentage error (MAPE).
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Enl-VV
c ¼ 3@

64�2

ZZ
drdr0

!2
pðrÞ!2

pðr0ÞDðKÞjr� r0j�6

!0ðrÞ!0ðr0Þ½!0ðrÞ þ!0ðr0Þ� ;
(13)

where

K ¼ jr� r0j
2

�

ðrÞ
ðr0Þ


ðrÞ þ 
ðr0Þ
�
1=2

; (14)

with 
ðrÞ ¼ k2sðrÞ�2ðrÞ. The function DðKÞ in Eq. (13) is
conveniently expressed as

D¼4

3
K2AB�B2;

with A¼ 2Kffiffiffiffi
�

p e�K2

and B¼ erfðKÞ�A;

(15)

where erf is the standard error function. It can be easily
verified that

4�
Z 1

0
dKK2 DðKÞ

K6
¼ 0; (16)

so that Enl-VV
c vanishes in the uniform density limit, just as

Eq. (3) was designed to do. The integrand of Eq. (16),
plotted in Fig. 1, is negative (attractive) for K > 1:236
and positive (repulsive) otherwise. For large K, DðKÞ !
�1 and Eq. (13) reduces to the �C6=R

6 form. In the
jr� r0j ! 0 limit,

DðKÞ
jr� r0j6 ! 
3ðrÞ

288�
ðr0 ! rÞ; (17)

so that the integrand in Eq. (13) is finite when r0 ¼ r.
We define the full correlation functional as

EVV09
c ¼ Enl-VV

c þ ELSDA
c ; (18)

where ELSDA
c is the local spin-density approximation

(LSDA) for the correlation energy in the parametrization
of Perdew and Wang [19]. Using ELSDA

c in Eq. (18) avoids
double counting of the same correlation effects. Typical
gradient-corrected semilocal correlation functionals can-
not be paired with Enl-VV

c , because it already contains a
gradient correction to LSDA.

We have implemented VV09 in the Gaussian-orbital
software package Q-CHEM 3.1 [20]. All calculations re-
ported in this work are fully self-consistent. Our code
includes analytic gradients with respect to nuclear dis-
placements, enabling efficient geometry optimizations.
Implementational details will be reported elsewhere, but
the general formalism is largely the same as in Ref. [8].
For molecular complexes bound exclusively by

van derWaals forces, HF exchange provides adequate repr-
esentation of the repulsive wall (‘‘Pauli repulsion’’), which
most semilocal exchange functionals fail to reproduce.
Using HF exchange with VV09 correlation of Eq. (18),
we performed the full structural optimization of the
benzene-Ar complex, which has C6v symmetry with Ar
on the main symmetry axis. Table II shows that HF-VV09
precisely nails the equilibrium distance between the Ar
atom and the benzene plane (RAr) and gives a reasonable
estimate of the binding energy. For covalent bonds, HF-
VV09 inherits the poor performance of its parent func-
tional HF-LSDA. We find that Enl-VV

c has little effect on
covalent bond lengths. For the CC and CH bonds in ben-
zene, HF-LSDA and HF-VV09 give nearly the same re-
sults. These bonds are predicted too short, as shown in
Table II. HF-LSDA performs poorly for atomization ener-
gies, and HF-VV09 is even somewhat worse (see
Table III).
The so-called ‘‘long-range correction’’ scheme [23] pre-

serves the proper Hartree-Fock treatment of Pauli repulsion
in van der Waals complexes but greatly improves the
description of covalent bonds. In this method, the
Coulomb operator 1=r is separated into the long-range
(LR) part erfð�rÞ=r and the short-range (SR) counterpart
erfcð�rÞ=r. The exchange energy is then split as

ELCS
x ¼ ESR-S

x ð�Þ þ ELR-HF
x ð�Þ; (19)

where the LR component is treated by HF. For the SR part,
we use the attenuated Dirac/Slater exchange [24]. Pairing
long-range corrected Slater (LCS) exchange with VV09
correlation, we fit the range separation parameter � to the
benchmark set of six atomization energies (the AE6 set

FIG. 1. The integrand of Eq. (16): 4�DðKÞ=K4.

TABLE II. Equilibrium structures and binding energies of the
benzene-Ar complex. The aug-cc-pVTZ basis set and ð75; 302Þ
grid are used. De values are counterpoise corrected.

De (kcal=mol) Distances (Å)

Method Disp.a Total RAr RCC RCH

PBE � � � 0.24 3.97 1.397 1.091

vdW-DF-04b 2.20 1.38 3.74 1.402 1.088

vdW-DF-09b 2.20 1.40 3.68 1.389 1.086

HF-VV09 1.76 1.38 3.55 1.368 1.059

LCS-VV09 1.87 1.51 3.51 1.379 1.085

Referencec 2.05 1.15 3.55 1.391 1.080

aContribution of dispersion interactions to De.
bThe vdW-DF-04 and vdW-DF-09 results are taken from
Ref. [9].
cAccurate values from Ref. [21].
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of Ref. [22]) and six reaction barrier heights (the BH6
set of Ref. [22]). As shown in Table III, LCS-VV09 with
� ¼ 0:45a�1

0 is incomparably more accurate for the AE6

and BH6 sets than HF-VV09. For these test sets, LCS-
VV09 outperforms even such well-established functionals
as Perdew-Burke-Ernzerhof (PBE) [15] and its global hy-
brid with 25% of HF exchange (PBEh).

As can be seen in Table II, LCS-VV09 gives more
accurate covalent bond lengths in benzene, as compared
to HF-VV09, while the dissociation energy of benzene-Ar
and RAr are not significantly affected. Using LCS-VV09,
we computed binding energy curves for Ar2 and for Kr-Cl
(2�þ). As shown in Fig. 2, the positions of the potential
energy minima are predicted rather well. Finally, we opti-
mized the geometry of the methane dimer in the D3d

conformation using LCS-VV09 and computational details
as in Table II. LCS-VV09 predicts the equilibrium C-C
distance of 3.8 Å and the binding energy of 0:54 kcal=mol,
which agree well with the reference values [25] of 3.6 Å
and 0:54 kcal=mol.

The VV09 correlation functional includes the proper
physics of dispersion interactions with minimal empiri-
cism. VV09 is straightforward to implement and relatively
inexpensive: It is similar to vdW-DF-04 in terms of com-
putational cost (see Sec. IV of Ref. [8]). This work was
supported by an NSF CAREER grant (No. CHE-0547877)
and the Packard Foundation.
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FIG. 2. LCS-VV09 binding energy curves for two diatomics,
computed with the aug-cc-pVQZ basis set and ð99; 302Þ grid.
Experimental potential energy minimum for Ar2 (+ symbol) is
from Ref. [26] and for Kr-Cl (� symbol) from Ref. [27].

TABLE III. Mean errors (ME) and mean absolute errors
(MAE) in kcal=mol for the AE6 set of atomization energies
and the BH6 set of barrier heights, computed using the aug-cc-
pVTZ basis set, ð75; 302Þ grid, and molecular geometries from
Ref. [22].

AE6 BH6

Method ME MAE ME MAE

PBE 10.4 14.0 �9:5 9.5

PBEh �1:5 5.6 �4:8 4.8

HF-LSDA �40:0 45.9 8.9 8.9

HF-VV09 �57:2 60.3 10.2 10.2

LCS-LSDAa 14.5 17.1 �1:7 2.6

LCS-VV09a �2:9 5.2 �0:2 1.9

aUsing � ¼ 0:45a�1
0 optimized for LCS-VV09 (this value is

suboptimal for LCS-LSDA).
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