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Abstract

We derive the Schrödinger equation for a spinless charged particle constrained to a curved surface

with electric and magnetics fields applied. The particle is confined on the surface using a thin-

layer procedure, giving rise to the well-known geometric potential. The electric and magnetic fields

are included via the four-potential. We find that there is no coupling between the fields and the

surface curvature and that with a proper choice of the gauge, the surface and transverse dynamics

are exactly separable. Finally, the Hamiltonian for the cylinder, sphere and torus are analytically

derived.

PACS numbers: 02.40.-k 03.65.-w 68.65-k 73.21.-b 73.22.Dj
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Two dimensional (2D) curved systems are extensively investigated to study new physical

effects that depend both on the curvature of the systems and on the external electric and

magnetic fields applied, such as Aharonov-Bohm effect [1], formation of Landau levels [2, 3]

and quantum Hall effect [4]. Nanostructures with a great variety of novel geometries are now

experimentally produced. At the same time, sources of high magnetic fields are accessible.

Hence, a rigorous theoretical understanding of the dynamics under such condition is needed.

Dynamics on curved surfaces has become particularly important in condensed matter since

the synthesis of curved graphene systems, such as fullerenes and carbon nanotubes. The

fullerenes may show effects induced by the magnetic field on the photocurrent for an inten-

sity below 1 T [5]. The carbon nanotube radius is usually too small to allow for significant

effects induced by experimentally accessible magnetic fields. However field-induced effects

may become important in multiwalled carbon nanotubes, where the radius is of the order

of some tens of nanometers and a field of tens of Tesla is sufficient to see effects on the

energy band gap [6, 7]. New techniques have also been developed to obtain semiconduc-

tor tubes that have a radius ranging from tens of nanometers up to microns. With such

dimensions, fields weaker that 10 T can show significant effects on the magnetoresistance

[8, 9]. These successes on the experimental side push for a theoretical comprehension of the

quantum carrier mechanics on curved structures immersed in magnetic fields. Historically,

two methods have been employed to study curved systems: a method due to DeWitt [10]

that approaches the problem by studying the dynamics as fully 2D and another due to da

Costa [11] that derives the Schrödinger equation starting from the three dimensional (3D)

one and then reduces it to a 2D equation by a confining procedure. If no magnetic field

is applied the procedure of da Costa is widely used and accepted [12, 13]. This procedure

appears to be the most rigorous and physically sound for curved nanostructures, since a

DeWitt-like 2D Lagrangian approach does not allow for the inclusion of an arbitrarily ori-

ented 3D magnetic field but only perpendicular to the surface. Moreover, these structures

are 2D systems embedded in a 3D space, and the da Costa approach describes exactly this

situation. In spite of these considerations, a rigorous approach has not been completely

developed including the magnetic field. For example, studying cylindrical geometries only a

magnetic field perpendicular to the surface has been considered effective for the dynamics

[4, 9, 14]; also for toroidal surfaces the same approach has generally been adopted [15, 16];

while the simple geometry of the sphere does not allow to distinguish between the differ-
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ent approaches [2, 3, 17]. Nevertheless, the da Costa method is recognised as the one to

be employed [18], but an analytical expression for the Schrödinger equation including the

magnetic field has not been derived yet.

In this paper, we follow the procedure of da Costa including the effect of the magnetic

field via the vector potential A and the electric field via the scalar potential V . We shall

derive analytically a Schrödinger equation valid for any 2D geometry, that describes in the

most appropriate way real curved nanostructures with electric and magnetic field applied,

given the above considerations. We shall show that there is no coupling between the field and

the surface curvature and that the dynamics on the surface is decoupled from the transverse

one with a proper choice of the gauge, without approximations.

Here and in the following i, j, k stand for the spatial indices and assume the values 1, 2, 3.

Tensor covariant and contravariant components are used and Einstein summation convention

is adopted. We define the gauge covariant derivative Dj = ∇j− iQ
~ Aj, where Q is the charge

of the particle and Aj the covariant components of the vector potential A. The covariant

derivative ∇j is defined as ∇jv
i = ∂jv

i + Γijkv
k, where vi are the contravariant components

of a 3D vector field v, Γijk are the Christoffel symbols and ∂j is the derivative with respect to

the spatial variable qj. The covariant 3D Schrödinger equation, containing both the vector

potential and the electric potential, is

i~
∂

∂t
ψ = − ~2

2m
GijDiDjψ +QV ψ, (1)

where the metric tensor Gij, and its inverse Gij, has been introduced to take into account

the geometry of the space. Defining the scalar potential A0 = −V , we can define a gauge

covariant derivative for the time variable as D0 = ∂t − iQA0/~, and rewrite eq.(1) as

i~D0ψ = − ~2

2m
GijDiDjψ. (2)

The gauge invariance of the above equation can be easily demonstrated with respect of the

following gauge transformations:

Aj → A′j = Aj + ∂jγ ; A0 → A′0 = A0 + ∂tγ;

(3)

ψ → ψ′ = ψeiQγ/~,
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where γ is a scalar function. We expand eq.(2) by covariant calculus, obtaining

i~D0ψ =
1

2m

[
− ~2

√
G
∂i

(√
GGij∂jψ

)
+

iQ~√
G
∂i

(√
GGijAj

)
ψ + 2iQ~GijAj∂iψ +Q2GijAiAjψ

]
,

(4)

where G = det(Gij). The above equation is the covariant Schrödinger equation for a generic

3D curvilinear coordinate system, when electric and magnetic fields are applied. Note that

no gauge has been chosen, but the general expression A = (A1, A2, A3) valid for any gauge

and any magnetic field will be maintained through the paper until differently stated.

Before applying the thin-layer procedure described by da Costa [11] to confine the par-

ticle on the surface, the coordinate system has to be described. The system description is

analogous to the one given in Ref. [11]. The surface S is parametrised by r = r(q1, q2),where

r is the position vector of an arbitrary point on the surface. The 3D space in the immedi-

ate neighbourhood of S can be parametrised as R(q1, q2, q3) = r(q1, q2) + q3n(q1, q2), where

n(q1, q2) is the unit vector normal to S. For the sake of clarity, we introduce the indices

a, b to indicate the surface parameters, which hence assume the values 1, 2. The relation

between the 3D metric tensor Gij and the 2D induced one gab = ∂a~r · ∂b~r is:

Gab = gab +
[
αg + (αg)T

]
ab
q3 + (αgαT )abq

2
3

(5)

Ga3 = G3a = 0, G33 = 1,

where αab is the Weingarten curvature matrix for the surface [11, 19]. The structure of

the metric tensor given in eq.(5) suggests to separate the Schrödinger eq.(4) in a surface

part for a, b = 1, 2 and a normal part. Besides, a confining potential Vλ(q3) is assumed to

localise the particle on the surface S, where λ is a parameter which measures the strength of

the confinement. We follow a well-established thin-layer method [11, 18]. Since the aim of

the procedure is to obtain a surface wave-function depending only on (q1, q2), we introduce

a new wave-function χ(q1, q2, q3) = χS(q1, q2)χn(q3). The separability is an hypothesis and

shall be verified. The condition of conservation of the norm gives the relation:

ψ(q1, q2, q3) =
[
1 + Tr(α)q3 + det(α)q2

3

]−1/2
χ(q1, q2, q3). (6)

First, we substitute expression (6) into eq.(4). Then we take into account the effect of the

potential Vλ(q3): in the limit of confinement, the wave-function is localised on S by two
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step potential barriers on both sides of the surface. This means that the value of the wave-

function is different from zero only in a close neighbourhood of S. We can thus perform the

limit q3 → 0 in the Schrödinger equation. The final result is

i~D0χ =
1

2m

[
− ~2

√
g
∂a
(√

ggab∂bχ
)

+
iQ~
√
g
∂a
(√

ggabAb
)
χ+ 2iQ~gabAa∂bχ +

+Q2
(
gabAaAb + (A3)

2
)
χ− ~2 (∂3)

2 χ+ iQ~ (∂3A3)χ+ 2iQ~A3 (∂3χ) + (7)

−~2

([
1

2
Tr(α)

]2

− det(α)

)
χ

]
+ Vλ(q3)χ,

where g = det(gab) and all the components of A and its derivative are calculated at q3 = 0.

From the above equation, we can state the first fundamental evidence of this paper: There

is no coupling between the magnetic field and the curvature of the surface, independently of

the shape of the surface, of the field B and of the gauge. In fact, in the equation eq.(7)

terms mixing Aj and the curvature matrix αab do not appear. This is in contrast with what

obtained in Ref.[18], where the apparent coupling between the field and the curvature is due

to the choice of a particular gauge in the derivation of the formula.

Note that in eq.(7) the well-known geometric potential VS appears [11]:

VS(q1, q2) = − ~2

2m

([
1

2
Tr(α)

]2

− det(α)

)
, (8)

where the first term is the square of the mean curvature and the second one is the Gaussian

curvature.

We next verify that the limiting procedure preserves the gauge invariance of the resulting

equation. Defining a new metric tensor G̃ as

G̃ =


g11 g12 0

g21 g22 0

0 0 1

 , (9)

eq.(7) can be rewritten in a compact form:

i~D0χ = − ~2

2m
G̃ijD̃iD̃jχ+ VSχ+ Vλ(q3)χ, (10)

so that the invariance with respect to the gauge transformations (3) is evident in the above

expression.

Finally, we demonstrate the separability of the dynamics on the surface and perpendicular

to the surface, that is our work hypothesis. In eq.(7) only one term, (A3(q1, q2, 0)∂3χ),
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couples the dynamics along q3 with the dynamics on S. Since we have shown the gauge

invariance of eq.(10), we can now impose a gauge such to cancel the component A3 of the

vector potential, cancelling the coupling term. Applying the gauge transformations (3), the

best suitable choice for γ is

γ(q1, q2, q3) = −
∫ q3

0

A3(q1, q2, z)dz. (11)

We obtain A′3 = 0, ∂3A
′
3 = 0 and having fixed the lower limit of integration to 0, in the limit

q3 → 0, A1 and A2 remain unchanged. After the gauge transformation we can separate the

Schrödinger equation in two independent equations:

i~∂tχn = − ~2

2m
(∂3)

2χn + Vλ(q3)χn, (12)

i~∂tχS =
1

2m

[
− ~2

√
g
∂a
(√

ggab∂bχS
)

+
iQ~
√
g
∂a
(√

ggabAb
)
χS + 2iQ~gabAa∂bχS +

+Q2gabAaAbχS
]

+ VSχS +QV χS, (13)

where we have made explicit both the confining potential and the electric potential. Expres-

sion (12) is the 1D Schrödinger equation for a particle confined by the potential Vλ, while

expression (13) describes the dynamics of a particle bounded to the surface under the effect

of electric and magnetic fields. Note that the separation of the dynamics has been obtained

analytically without any approximation. At this point we can state the second fundamental

conclusion of this paper: With a proper choice of the gauge, the dynamics on the surface and

the transverse dynamics are decoupled. In Ref.[18] this separability is not evident because

of the not-optimal choice of the gauge.

In the following we give some examples of curved surfaces of typical nanostructures, with

a homogeneous magnetic field applied. The sphere is the simplest curved geometry to be

investigated. Given a sphere of radius r and a constant magnetic field B in a given direction,

the spherical coordinate system (θ, φ, ρ) is set with the polar axis along the direction of the

field, as shown in panel (a) of Fig.1. The most suitable vector potential, determined by the

gauge condition (11) for the spherical geometry is (Aθ, Aφ, Aρ) =
(
0, 1

2
Br2 sin2 θ, 0

)
and the

corresponding Schrödinger equation is

i~∂tχS =
1

2m

[
−~2

r2

(
1

sin θ
∂θ (sin θ∂θχS) +

1

sin2 θ
∂2
φχS

)
+ iQ~B∂φχS +

1

4
Q2B2r2 sin2 θχS

]
.

(14)
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FIG. 1: (a) A spherical surface of radius r and its coordinate system (θ, φ, ρ). The coordinate

system is chosen so that the magnetic field B is along the polar direction. (b) A cylindrical surface

of radius r and its coordinate system (θ, y, ρ). The magnetic field B and its component B0 parallel

to the axis and B1 perpendicular to the axis at θ = 0 are shown. (c) A toroidal surface and its

coordinate system (θ, φ, q). R is the distance from the centre of the tube to the centre of the torus,

r is the radius of the tube. The magnetic field B and its component B0 perpendicular to the torus

plane and B1 laying in the torus plane are shown.

Note that for a sphere VS = 0. In literature, a number of papers appear investigating the

effect of a magnetic field applied to a sphere [2, 3, 5, 17]. Given the simple geometry of the

sphere, the Schrödinger equation employed in those paper has the correct form.

A very popular geometry is the cylindrical one, given the extensive investigation on carbon

nanotubes and semiconductor nanotubes [1, 4, 7, 8, 9, 14]. Given a cylindrical coordinate

system (θ, y, ρ), a field B applied to a cylinder of radius r can always be decomposed in a

component B0 parallel to the axis and a component B1 perpendicular to the axis at θ = 0.

The system is shown in panel (b) of Fig.1. The proper vector potential determined by eq.(11)

is (Aθ, Ay, Aρ) =
(

1
2
r2B0, rB1 sin θ, 0

)
. We can then calculate the Schrödinger equation

i~∂tχS =
1

2m

[
−~2

(
1

r2
∂2
θχS + ∂2

yχS

)
+ iQ~B0∂θχS + 2iQ~rB1 sin θ∂yχS +

+Q2r2

(
1

4
B2

0 +B2
1 sin2 θ

)
χS

]
− ~2

8mr2
χS. (15)

Several theoretical studies on the effect of the magnetic field applied to 2D cylindrical systems

have been carried out [4, 14]. The most widely used procedure to address the problem is

to write the Schrödinger equation obtained with the 2D Laplacian generalised including the

2D vector potential: the result is not rigorous, because it does not take into account the

effect of the component B0. Also the surface potential VS is not obtained, but this reduces

7



only to a constant shift in energy, if the radius of the tube is constant and no bending is

considered [13].

A toroidal surface is more interesting both from the theoretical and experimental point

of view: for example localisations are predicted also without applied magnetic field [16], also

band-gap modulations are expected [20]. The particular topology is a test-bed for models on

curved surfaces [15, 18]. The reference system (θ, φ, q), described in panel (c) of Fig.1, can

always be chosen so that a field in an arbitrary direction can be described with a component

B1 in the torus plane and a component B0 perpendicular to the torus plane. R is the

distance from the centre of the tube to the centre of the torus, r is the radius of the tube.

Using eq.(11), we can calculate the vector potential most suitable for a toroidal surface,

that is (Aθ, Aφ, Aq) =
(

1
2
B1r sinφ(R cos θ + r), 1

2
W (θ) (B0W (θ)−B1r sin θ cosφ) , 0

)
, where

W (θ) = R + r cos θ. The Schrödinger equation is obtained from eq.(13):

i~∂tχS =
1

2m

{
−~2

r2
∂2
θχS +

~2 sin θ

rW (θ)
∂θχS −

~2

W 2(θ)
∂2
φχS −

(
~R

2rW (θ)

)2

χS +

+
iQ~B1 sinφ(R cos θ + r)

r
∂θχS +

iQ~ (B0W (θ)−B1r sin θ cosφ)

W (θ)
∂φχS + (16)

−iQ~B1 sin θ sinφ
R2 + 2rR cos θ

2rW (θ)
χS +

Q2

4

[
(B1W (θ) sinφ)2 + (B0W (θ))2 +

+ (B1r sin θ)2 − 2B0B1rW (θ) sin θ cosφ− (B1R sin θ sinφ)2
]
χS
}
.

It is important to note that the above expression contains all the terms influencing the

dynamics and it has been obtained exactly without any approximation. Differences can be

noted with respect to the corresponding expression in Ref.[18]: the discrepancies are to be

attributed to the approximations performed in that paper.

In conclusion, we have rigorously developed a general Schrödinger equation valid for any

2D curved structure when magnetic and electric fields are applied. We have shown that

there is no coupling between the surface curvature and the magnetic field. Moreover, we

have demonstrated that with a proper choice of the gauge, the dynamics on the surface is

analytically decoupled from the transverse one. To show the effectiveness of the method,

we have calculated analytically the complete Schrödinger equation for a charged particle

bounded to the surface of a sphere, of a cylinder and of a torus, with a homogeneous

magnetic field applied in an arbitrary direction.
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