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Dense and Nearly Jammed Random Packings of Freely Jointed Chains of Tangent Hard Spheres
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Dense packings of freely jointed chains of tangent hard spheres are produced by a novel Monte Carlo
method. Within statistical uncertainty, chains reach a maximally random jammed (MRJ) state at the same
volume fraction as packings of single hard spheres. A structural analysis shows that as the MRIJ state is
approached (i) the radial distribution function for chains remains distinct from but approaches that of
single hard sphere packings quite closely, (ii) chains undergo progressive collapse, and (iii) a small but
increasing fraction of sites possess highly ordered first coordination shells.
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Maximally random jammed (MRJ) packings of identical
spheres has been the subject of extensive analytical and
numerical work, and a considerable body of knowledge has
been collected over the last two decades (see [1-3] and
references therein). It seems, however, that work has been
concentrated on packings of single spheres while dense
packings of chains have received comparatively little at-
tention [4—6]. In this Letter we present numerical results
about the packing of freely jointed chains of tangent hard
spheres at volume fractions very close to the MRJ state [2]
in three-dimensional Euclidean space. The systems inves-
tigated consisted of ensembles of freely jointed chains of
tangent hard spheres of unit diameter and lengths N = 12
or N = 24 with a total of 1200 interaction sites. Both N =
12 and N = 24 lie deep in the infinite-chain asymptotic
regime regarding packing and local structure, although
chain dimensions have not reached asymptotic behavior.
Persistence length, computed as (R?)/2N + 0.5 [7] at ¢ =
0.10is 1.59 for N = 12 and 1.80 for N = 24.

Several algorithms for packing single spheres exist,
some of them able to generate random packings up to the
MRJ density [8] ¢, = 0.64 (subindices ss refer to single
spheres, hsc to hard sphere chains). Although computa-
tionally demanding, recent algorithms can produce very
dense packings with such efficiency that extremely large
packings of up to a million spheres, necessary to inves-
tigate some subtle structural features, are within reach [9].
It is somewhat surprising that packings of hard-sphere
chains have received little attention, although they repre-
sent a valuable departing point for perturbation work [10],
in addition to having richer structure than single spheres.
The main hurdle is the substantial computational difficulty
associated with the generation and relaxation of packings
of hard spheres which are close to the MRJ state and
simultaneously satisfy the holonomic constraints defining
chain connectivity. Molecular dynamics (MD) methods are
notoriously inefficient at compacting ensembles of linear
chains because of increasingly sluggish dynamics and
large relaxation times as chain length increases.
Monte Carlo (MC) schemes have been shown [11] to be
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a preferable alternative. Preliminary tests of available al-
gorithms for generating dense, off-lattice chain packings
clearly showed their inadequacy close to the MRJ state. No
single algorithm working in isolation was able to generate
random chain packings with anywhere near acceptable
efficiency at ¢y, > 0.58 (though some recent generation
algorithms are very efficient at intermediate to high volume
fractions [12]). However, by using a carefully chosen
combination and modification of several state-of-the-art
MC algorithms for efficient structural relaxation of both
large and small structural features we succeeded in pro-
ducing very dense packings up to the neighborhood of the
MR state. Specifically, the proposed MC scheme consists
of the following set of moves: intermolecular end bridging
(1%), reptation (33%), intramolecular end bridging (1%),
continuum configurational bias (30%), flip (25%), and end
rotation (10%) [13]. All moves were modified to handle
dense systems of athermal chains while guaranteeing strict
microscopic reversibility and preservation of configuration
space volume for the underlying Markov chain [14].
Chain-connectivity altering moves and configuration-
biased moves achieve long-range relaxation. The remain-
ing, local moves relax structure at short range and act as a
“lubricant” which greatly enhances overall efficiency
[13]. Extreme care was exerted in minimizing the depen-
dence on protocol: chain packings at increasingly higher
densities were generated by entirely different protocols
(cell compression, akin to standard isobaric MC moves,
intercalated in long stretches of isochoric moves; relaxa-
tion of configurations of chains of length N obtained by
splitting prerelaxed configurations of chains of length 2N).
All MC simulations were performed in cubic simulation
cells with periodic boundary conditions applied in all
dimensions. Typical lengths for relaxation runs were of
0(10'") MC steps, each run taking O(107) CPU seconds on
modern processors. The results presented below are based
on ensembles of configurations obtained from fully relaxed
trajectories and in which protocol dependence could not be
detected by standard measures [13], nor by the sensitive
crystallographic norms to be defined below. The packing
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FIG. 1. Radial pair distribution function gy (r) for chains at

several densities. g(r) is calculated by taking into account all
intra- and intermolecular neighbors (including the bonded ones)
around the reference hard sphere. Inset: percentage of flipper
spheres as a function of packing density.

density at the MRIJ state (obtained by extrapolation analo-
gous to that in [2]) for freely jointed chains of tangent hard
spheres was found to be ¢ = 0.638 = 0.004 for both
N = 12 and 24, in agreement with the value for single hard
spheres. It seems to be possible to pack freely jointed
chains of hard spheres just as densely as, but not more
densely than, individual spheres, even for quite long chains
[14]. The evolution of the total radial pair distribution
function, gp.(r), as density is increased is shown in
Fig. 1 [15]. Unlike in hard sphere packings, rattlers [8]
cannot exist in chain packings. For chains, the analog of a
rattler is a sphere that can perform a differential “flip”’-like
movement (clockwise, counterclockwise or both) without
incurring overlaps. The inset in Fig. 1 shows how the
fraction of such “flipper” spheres precipitously declines
as the MRJ state is approached. At the same time, gp..(r)
increasingly resembles g (7) (Fig. 2), although the double
tangency constraint has a small but noticeable effect on
g(r), especially at r = 1. Bond (Fig. 3) and torsion angle
(Fig. 4) distributions undergo major changes as packing
density increases. Characteristic bond and torsion angles
are favored at high density. As a consequence, chain size
measures (end-to-end distance, (R?), and radius of gyration
(Ré)) undergo a continuous decrease (Fig. 5); i.e., more
compact chain conformations are preferred at high volume
fractions. Specifically, at ¢ = 0.1(R*) = 26.2;(R) =
4.00 for N = 12, and (R?) = 62.4;(R3) = 9.66 for N =
24 5 and at ¢ = @y = 0.638, (R?) = 15.9;(R2) = 2.68
for N =12, and (R?) = 34.6;(R;) = 5.78 for N = 24.
Kratky representations F(k)k> vs k of the intramolecular
form factor F(k) versus wave number k for N = 24 are
shown in the inset of Fig. 5. For the intermediate k regime
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FIG. 2. Comparison between gp..(r) and ggs(r) at ¢ = 0.63.
Inset: g (r) and g.(r) near contact.

at the lower packing density ¢ = 0.30 chains adopt an
isolated self-avoiding pattern as shown by a monotonic
increment of F(k)k* with k. In contrast, at ¢ = 0.63 the
presence of a plateau in F(k)k? is apparent as expected for
meltlike chains at large N. For an ideal chain the
intermediate-k scaling should follow F(k)k*> = 12N /{R?)
[16]; consequently for Gaussian chains ((R?) = NI?, where
[ is the bond length) a plateau value of 12 is predicted, quite
higher than the simulation value of around 6.8, suggesting
that the simulated chains depart from ideal ones due to
intramolecular excluded volume interactions. If we con-
sider an “‘effective length”, extracted from simulation data
of (R?) (see Fig. 5), then the plateau value of the ideal
chains drops to approximately 8.1, about 15% higher than
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FIG. 3. Supplement bond angle distributions at increasing
packing densities.
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FIG. 4. Torsional angle distributions at increasing packing
densities.

the Kratky value extracted from our simulations. The
above finding, suggesting deviations from the ideality hy-
pothesis, is in qualitative agreement with recent work by
Semenov and co-workers [17].

A number of measures have been introduced in the
literature [1,18] to characterize local structure. While
g(r) contains the full radial information about the distribu-
tion of pairs of sites, rotational invariant combinations of
spherical harmonics have been used to characterize the
orientational part. Such measures can be used to address
questions related to the incipient appearance of order as the
MR state is approached [19].
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FIG. 5. Radius of gyration and end-to-end distance as a func-
tion of packing density. Error bars are smaller than symbol size.
Inset: Kratky plot F(k)k* vs k of the intramolecular form factor,
F(k), versus wave number, k, for N = 24 at ¢ = 0.30 and 0.63.

We introduce a type of measures (norms) inspired by the
basic principle of the characteristic crystallographic ele-
ment (cce) [20]. These norms univocally quantify the
degree to which the environment of a given sphere is
more fcc-like or more hep-like, both radially and orienta-
tionally. Given that the characteristic crystallographic ele-
ment (fingerprint) of an hcp environment is a single 6
inversion axis, we define the hcp-cce norm si-mp for the
ith site in a given configuration as

5 12
S -2 (D)

orientation of 6 axis i=1ik=1

1
2V15
where r; is the position vector of the kth first neighbor
around the ith site (obtained by Voronoi tesselating each
configuration), j is a counter over the elements of the 6
group and r},;Cp is the position vector of the kth site out of
the 12 sites of the disheptahedral coordination polyhedron
if the environment of the given ith site were perfect hcp.
The key point in the definition (1) is that although ri” is of
course not known for a given site, when constructing (1),
the orientation of the 6, which defines rl;Cp , is to be found
by a search in the two-parameter space of azimuthal and
polar angles which define the 6 axis orientation: for each

site in each MC frame a local 6 axis is determined that

minimizes the double sum. &;" is set to this minimum. The

norm distribution &(&P°P) is then obtained from the set of
s?ep for all sites, cumulated over the ensemble and properly
normalized. Analogously, the fcc-cce norm for site i, 8§°°,
is:

1 4 1
fce — : _ plcc)2
g = min _ — E E E (ry — 1)
orientation of 3 axes 4\/ 15 m j=1 k=1

2

In this case, the unique fingerprint of a perfect fcc cubo-
octahedral coordination polyhedron consists of four 3 axes,
hence the additional summation. Again, in constructing
(2), the orientation of the four axes that most closely
correspond to a local fcc-like environment has to be found
by exhaustive search, this time in a three parameter (Euler
angles) space. The set of all £ for all sites cumulated over
the ensemble defines the norm distribution &(&f°).
Numerical constants in the definitions are the number of
characteristic crystallographic elements (1 for hcp, 4 for
fcc), and the number of elements distinct from unity in the
subgroups associated with them (5 for both 6 and 3). These
factors rescale the norms so that they can be compared
fairly. In perfect hcp or fcc crystals, the corresponding
norms &"P and & attain their minimum value of zero.
Note that P and & detect both orientational and radial
deviations from the perfect hcp or fcc coordination poly-
hedra. The distributions &(g"P) and £(&f*°), especially
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their low-¢ part, are very sensitive to the fcc or hep-like
character of the surroundings of the site, and also exceed-
ingly good indicators of MC relaxation [21]. The distribu-
tions &(gh°P) and £(£¢) show that, at densities far from the
MRI state, there exists a certain fraction of sites whose
environment resembles a perfect hcp environment fairly
well, and a smaller, completely disjoint fraction of sites
[22] whose environment resembles a perfect fcc environ-
ment comparably well. The hcp dominance at intermediate
values of the norms seems almost self evident, since it
should be easier for a random environment to possess one
single 6 axis than to possess four 3 axes simultaneously:
the hcp coordination polyhedron has point group 6m2
(order 12), while for more symmetrical fcc, point group
is m3m (order 48). However, the coordination polyhedra
are clearly not random, and as the density approaches the
MR state, fcc becomes dominant in the low-norm interval:
£(e°) > £(eM°P) for i < 0.2;1i.e., a small but increasing
number of sites with almost perfect fcc-like environment
appears, while sites with almost perfect hcp-like environ-
ment also exist but now they are fewer (than fcc-like) and
their number grows more slowly. Thus, it can be stated that
as the MRJ state is approached, a large fraction of sites
possess fairly ordered (¢"P = 0.5) hcp-like environments.
However, a small (but growing with ¢) fraction of sites
with almost perfect local order (£"P < 0.2) can also be
detected. The order of the environment around this small
fraction of sites seems to possess somewhat predominant
fcc character. For comparison purposes, we applied the
same norms to single-sphere packings at the same density.
Interestingly, it was found that: (a) the total number of sites
with almost perfect order of any type (" or & < 0.2) is
higher for single hard sphere packings by roughly 30% and
(b) most of this increase is due to the appearance of almost
perfect hcp-like sites, while the number of almost perfect
fce-like sites increased only slightly.
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