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Abstract

Deformation of red blood cell (RBC) in bounded two dimensional Poiseuille flows
is studied by using an immersed boundary method (IBM). An elastic spring model is
applied to simulate the skeleton structure of RBC membrane. As a benchmarking test,
the dynamical behavior of a single RBC under a simple shear flow has been validated.
Then we focus on investigating the motion and the deformation of a single RBC in
Poiseuille flows by varying the swelling ratio (s∗), the initial angle of the long axis
of the cell at the centerline (ϕ), the maximum velocity at the centerline of fluid flow
(umax), the membrane bending stiffness of RBC (kb) and the height of the microchannel
(H). Two motions of oscillation and vacillating-breathing (swing) of RBC are observed
in both narrow and wide channels. The strength of the vacillating-breathing motion
depends on the degree of confinement and the value of umax. RBC exhibits a strong
vacillating-breathing motion as the degree of confinement is larger or the value of
umax is higher. For the same degree of confinement, the vacillating-breathing motion
appears to be relatively weaker but persists longer as the value of umax is lower. The
continuation of shape change from the slippery to the parachute by varying the value
of umax is obtained for the biconcave shape cell in a narrower channel. In particular,
parachute shape and bulletlike shape, depending on the angle ϕ, coexist for the elliptic
shape cell given initially with lower umax in a narrower channel.

Keywords deformation, red blood cell, elastic spring model, immersed boundary
method, Poiseuille flow.

1 Introduction

Red blood cell (RBC) membrane composing of a lipid bilayer underlined by a spectrin
network of cytoskeletal proteins is highly deformable so that RBC can change its shape when
an external force is acting on it and return to the biconcave resting shape after the removal
of the force [1]. The normal RBC has a biconcave disk with a major diameter about 8µm and
thickness about 2µm as its rest shape. The mean volume is about 90µm3 and the average
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surface area of RBC is about 135 µm2, a value greater than the surface area (97.12 µm2) of a
sphere with the same volume [2]. This excess area also contributes to RBC deformation. This
deformability of the RBC membrane makes it can traverse 3µm in diameter capillaries of the
microcirculation. The deformation of RBC influences not only its physicological function in
oxygen tranport [3] but also the hydrodynamical properties of normal human blood, where
the volume fraction of RBCs is about 40-45%. Some diseases such as malaria and anemias
are also related with reduced RBC deformation [4, 5].

Starting from the pioneering work of Fahraeus and Lindqvist, the behavior of soft entities,
such as capsules, vesicles and blood cells under shear flow has been studied theoretically
[6, 7, 8], experimentally [9] and numerically [10, 11, 12, 13, 14, 15] by many researchers in
mathematics, physics and mechanics, biology and medcine. Three different types of dynamics
have been observed for the vesicles and cells in shear flow: tank-treading (TT) [7, 12, 15, 16],
tumbling (TB)[11, 13, 17], and vacillating-breathing (VB) [13, 14]. Motivated by the complex
and interesting behavior of the vesicles and cells in shear flow, we focus our attention on
exploring the more complex dynamics of a single RBC in Poiseuille flows in this paper.

Several numerical methods have been developed to study the motion and the deformation
of cell in microchannels. Coupier et al. studied the noninertial migration of vesicles in
bounded Poiseuille flows experimentally and numerically and reported that the movement
toward the center of channel is induced by the combined effects of the walls and of the
curvature of the velocity profile [18]. Danker et al. investigated the effect of viscosity ratio
on migration of vesicles in a Poiseuille flow by theoretical analysis and predicted coexistence
of two types of shapes: bulletlike shape and parachutelike shape [19]. Pozrikidis studied
the motion of spherical, oblate ellipsoidal and biconcave capsules in tube flow by using
boundary element method and observed that spherical capsules slowly migrate to the tube
centerline, and oblate and biconcave capsules develop parachute and slipperylike shapes,
respectively [20]. Li et al. investigated the shape changes and motion of vesicle by using
lattice-Boitzmann method [8]. The asymmetric shape of vesicle in an unbounded Poiseuille
flow at zero Reynolds number was studied by Kaoui et al. [21]. In most of these studies,
no inertial effect (i.e. the Stokes flow) was considered. Park et al. applied the inertial lift
force to particle motions in particle separation experimentally [22]. The oscillatory motion
for drops in pressure-driven channel flow at finite Reynolds number by using the boundary
integral method has been examined by Mortazavi and Tryggvason [23]. Recently, the inertial
migration of elastic capsule in a bounded Poiseuille flow at finite Reynolds number was
investigated by Shin [24]. The initial shape of the capsule is either a circle or an ellipse.
For the circular initial shape, the equilibrium position can be either at the center of the
channel or between the center and the wall (known as the Segre-Silberberg effect) depending
on the Reynolds number and the ratio of the capsule size and the channel height. Noguchi
and Gompper have studied the shape transition of vesicles and RBCs in capillary flows by
employing a three-dimensional mesoscopic simulation method and obtained the slipperylike
shape of RBC [25].

In this present paper, the deformation of a single RBC in bounded two dimensional
Poiseuille flows is studied by numerical simulation. We use an immersed boundary method
combined with the elastic spring model [26] in which the fluid motion is computed by using an
operator splitting technique [27, 28, 29] and finite element method [30] with a fixed regular
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triangular mesh so that faster solver can be used to solve the fluid flow [15, 31, 32, 33].
The validation of the methodology is presented on the RBC deformation in linear shear
flow by comparing with the simulation results using the lattice-Boltzmann method of Kaoui,
Harting and Misbah [12]. Then we focus on investigating the deformation of a single RBC
in bounded Poiseuille flows. Several factors have been found to be important in determining
the deformation of a single RBC in Poiseuille flows: the swelling ratio (s∗), the initial angle of
the long axis of the cell at the centerline (ϕ), the maximum velocity at the centerline of fluid
flow (umax), the membrane bending stiffness of RBC (kb) and the height of the microchannel
(H). Two motions of oscillation and vacillating-breathing (also called swing, the long axis
undergoes oscillation while the cell shape displays breathing) of RBC are observed in both
narrow and wide channels. The strength of the vacillating-breathing motion depends on the
degree of confinement and the value of umax. RBC exhibits a strong vacillating-breathing
motion as the degree of confinement is larger or the value umax is higher. For the same degree
of confinement, the vacillating-breathing motion appears to be relatively weaker but persists
longer as the value of umax is lower. For the different bending constants, RBC obtains the
same equilibrium shape for the same capillary number Ca = µGrR0

3/B, where µ, Gr, R0 and
B represent the plasma viscosity, the shear rate of fluid flow based on the gradient of the
velocity at the wall, the effective radius of the cell and the bending coefficient, respectively.
The continuation of shape change from the slippery to the parachute by varying the value of
umax is obtained for the biconcave shape cell in a narrower channel. In particular, parachute
shape and bulletlike shape, depending on the angle ϕ, coexist for the elliptic shape cell with
lower umax in a narrower channel.

The scheme of this paper is as follows: We discuss the elastic spring model and numerical
methods in Section 2. In Section 3, we first provide the simulation results on tank-treading
under a shear flow as a benchmarking test. Then we present the motion and the deformation
of a single RBC in Poiseuille flows and describe the factors affecting the deformation of a
single RBC in Poiseuille flows. The conclusions are summarized in Section 4.

2 Model and method

RBC with the viscosity of the cytoplasm same as that of the blood plasma is suspended
in a fluid domain Ω filled with blood plasma which is incompressible, Newtonian. Foe some
T > 0, the governing equations for the fluid-cell system are the Navier-Stokes equations

ρ

(

∂u

∂t
+ u · ∇u

)

= −∇p + µ△u+ f, in Ω× (0, T ), (1)

∇ · u = 0, in Ω× (0, T ). (2)

Equations (1) and (2) are completed by the following boundary and initial conditions:

u = g on the top and bottom of Ω and u is periodic in the x1 direction, (3)

u(x, 0) = u0(x), in Ω (4)
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Figure 1: The elastic spring model of the RBC membrane.

where u and p are the fluid velocity and pressure, respectively, anywhere in the flow, ρ is the
fluid density, and µ is the fluid viscosity, which is assumed to be constant for the entire fluid.
In (1), f is a body force which is the sum of fp and fB where fp is the pressure gradient
pointing in the x1 direction and fB accounts for the force acting on the fluid/cell interface.
In (4), u0(x) is the initial fluid velocity. For the cases of shear flow, fp is set to be zero.
When considering Poiseuille flow, we have g = 0.

In this paper, the Navier-Stokes equations for fluid flow have been solved by using an
operator splitting technique [27, 28, 29] and finite element method [30] with a regular tri-
angular mesh so that the faster solver from FISHPAK by Adams et al. [34] can be used to
solve the fluid flow. The motion of the RBCs in the fluid flow is simulated by combining the
immersed boundary method [35, 36, 37] and the elastic spring model for RBC membrane
[26](see [15, 32, 33]).

2.1 Elastic spring model for the RBC membrane

The deformability and the elasticity of the RBC are due to the skeleton architecture of
the membrane. A two-dimensional elastic spring model used in [26] is considered in this
paper to describe the deformable behavior of the RBCs. Based on this model, the RBC
membrane can be viewed as membrane particles connecting with the neighboring membrane
particles by springs, as shown in Figure 1. Energy stores in the spring due to the change
of the length l of the spring with respect to its reference length l0 and the change in angle
θ between two neighboring springs. The total energy of the RBC membrane, E = El + Eb,
is the sum of the total energy for stretch/compression and the total energy for the bending
which, in particular, are

El =
kl
2

N
∑

i=1

(
li − l0
l0

)2 (5)

and

Eb =
kb
2

N
∑

i=1

tan2(θi/2). (6)
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In equations (5) and (6), N is the total number of the spring elements, and kl and kb are
spring constants for changes in length and bending angle, respectively.

In the process of creating the initial shape of RBCs described in [26], the RBC is assumed
to be a circle of radius R0 = 2.8 µm initially. The circle is discretized into N = 76 membrane
particles so that 76 springs are formed by connecting the neighboring particles. The shape
change is stimulated by reducing the total area of the circle through a penalty function

Γs =
ks
2
(
s− se
se

)2 (7)

where s and se are the time dependent area of the RBC and the equilibrium area of the
RBC, respectively, and the total energy is modified as E + Γs. Based on the principle of
virtual work the force acting on the ith membrane particle now is

Fi = −
∂(E + Γs)

∂ri
(8)

where ri is the position of the ith membrane particle. When the area is reduced, each RBC
membrane particle moves on the basis of the following equation of motion:

mr̈i + γṙi = Fi (9)

Here, (̇) denotes the time derivative; m and γ represent the membrane particle mass and
the membrane viscosity of the RBC. The position ri of the ith membrane particle is solved
by discretizing (9) via a second order finite difference method. The total energy stored in
the membrane decreases as the time elapses. The final shape of the RBC is obtained as the
total energy is minimized [15]. The area of the final shape has less than 0.001% difference
from the given equilibrium area se and the length of the perimeter of the final shape has less
than 0.005% difference from the circumference of the initial circle. The value of the swelling
ratio of a RBC in this paper is defined by s∗ = se/(πR

2
0).

2.2 Immersed boundary method

The immersed boundary method developed by Peskin, e.g, [35, 36, 37], is employed
in this study because of its distinguish features in dealing with the problem of fluid flow
interacting with a flexible fluid/structure interface. Based on the method, the boundary of
the deformable structure is discretized spatially into a set of boundary nodes. The force
located at the immersed boundary node X = (X1, X2) affects the nearby fluid mesh nodes
x = (x1, x2) through a 2D discrete δ-function Dh(X− x):

fB(x) =
∑

FiDh(Xi − x) for |X− x| ≤ 2h, (10)

where h is the uniform finite element mesh size and

Dh(X− x) = δh(X1 − x1)δh(X2 − x2) (11)
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with the 1D discrete δ-functions being

δh(z) =















1

8h

(

3− 2|z|/h +
√

1 + 4|z|/h− 4(|z|/h)2
)

, |z| ≤ h,

1

8h

(

5− 2|z|/h−
√

−7 + 12|z|/h− 4(|z|/h)2
)

, h ≤ |z| ≤ 2h,

0, otherwise.

(12)

The movement of the immersed boundary node X is also affected by the surrounding
fluid and therefore is enforced by summing the velocities at the nearby fluid mesh nodes x
weighted by the same discrete δ-function:

U(X) =
∑

h2u(x)Dh(X− x) for |X− x| ≤ 2h. (13)

After each time step, the position of the immersed boundary node is updated by

Xt+∆t = Xt +∆tU(Xt). (14)

Remark. At each time step, via operator splitting, we solve a sequence of subproblems,
namely a degenerated quasi-Stokes problem, the membrane motion, the advection problem
and the diffusion problem as in [33]. We keep the conservation of area given in (7) when
computing membrane force in (8) since the divergence free condition is enforced in a weak
sence through the finite element method used in the computations.

3 Simulation results and discussions

In [15], we have validated the elastic spring model and achieved the cells equilibrium
shapes for different values of the swelling ratio s∗ by minimizing the total energy. In this
paper, as a benchmarking test, the steady inclination angles of the tank-treading of two
different degrees of confinement, the ratio of the cell’s effective radius R0 to the channel
half height w, for five values s∗ in shear flow are shown and compared with the simulation
results in [12]. Then the motion and the deformation of a single RBC in Poiseuille flows
has been investigated by varying the swelling ratio (s∗), the initial angle of the long axis of
the cell at the centerline (ϕ), the maximum velocity at the centerline of fluid flow (umax),
the membrane bending constant of RBC (kb) and the height of the microchannel (H). Two
motions of oscillation and vacillating-breathing (swing) of RBC are observed in both narrow
and wide channels. The continuation of shape change from the slippery to the parachute by
varying the value of umax is obtained for the biconcave shape cell in a narrower channel. In
particular, parachute shape and bulletlike shape, depending on the angle ϕ, coexist for the
elliptic shape cell with lower umax in a narrower channel.

The values of parameters for modeling cells are same with [32, 33] as follows: The bending
constant is kb = 5 × 10−10N ·m, the spring constant is kl = 5 × 10−8N ·m, and the penalty
coefficient is ks = 10−5N ·m. The cells are suspended in blood plasma which has a density
ρ = 1.00g/cm3 and a dynamical viscosity µ = 0.012g/(cm · s). The viscosity ratio which
describes the viscosity contrast of the inner and outer fluid of the RBC membrane is fixed
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at 1.0. The computational domain is a two dimensional horizontal channel. To obtain a
Poiseuille flow, a constant pressure gradient is prescribed as a body force. To produce a
shear flow, a Couette flow driven by two walls at the top and bottom which have the same
speed but move in directions opposite to each other is applied to the suspension. Different
shear rate can be obtained by adjusting the wall speed. In addition, periodic conditions are
imposed at the left and right boundary of the domain. The Reynolds number is defined by
Re = ρUH/µ where U is the average velocity in the channel.

3.1 Tank-treading in shear flow

First, we present the results on simulation of a single RBC suspended in a linear shear flow
with shear rate γ = 500/s. The dimensions of the computational domain are 112µm× 7µm
and 112µm×14µm. The two degrees of confinement are 0.8 for the narrower domain and 0.4
for the wider domain, respectively. The grid resolution for the computational domain is 80
grid points per 10µm. The time step ∆t is 1×10−5ms. The initial velocity of the fluid flow is
zero everywhere and the initial positions of the mass center of the cell are (56, 3.5) and (56, 7)
for the narrower domain and the wider domain, respectively. Figures 2, 3 show the velocity
fields and pressures in the region next to the cells for two different degrees of confinement.
The blue solid lines in the left figures and the black solid in the right figures represent
the cell membrane. In the left figures, the regions with darker color correspond to higher
pressure and the lighter regions correspond to lower pressure. The figures of velocity fields
indicate that the cells perform tank-treading motion in confined channels. The streamlines
demonstrate that the inner fluid of the cell undergoes a rotational flow, which is induced
by the cell membrane tank-treading. The outer fluid of the cell exhibits recirculations at
the right side of the figure and at the left side of the figure of the cell. Such recirculations
are also observed for confined rotating rigid particles in simple shear flow [11, 38, 39] with
period conditions in the shear direction.

The steady inclination angles of the tank-treading of two different degrees of confinement
for five values s∗=0.6, 0.7, 0.8, 0.9 and 1.0 are presented in Figure 4, which show the very
good agreement with the lattice-Boltzmann simulation results of Kaoui, Harting and Misbah
[12]. The inclination angles increases monotonically for both two degrees of confinement with
increasing the value of the swelling ratio s∗. For the same swelling ratio, the bigger is the
degree of confinement, the smaller is the steady inclination angle. The same qualitative
tendency is given in [6, 7, 8, 12, 15, 40]. We also keep track of the area and the perimeter of
the cell during the simulations. The variation is less than ±0.1% in the area and ±0.5% in
the perimeter.

3.2 Deformation of RBC in Poiseuille flow

3.2.1 Single RBC deformation in a narrow channel

In this section, we focus on investigating the motion and the deformation of a single RBC
in Poiseuille flows. First we study how the physical quantities, associated with the lateral
migration toward the centerline of the channel for a given maximum velocity at the centerline
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Figure 2: The pressure (left) and the velocity field (right) in the region next to the cell with
the swelling ratio s∗=0.481 (top), 0.7 (middle) and 0.9 (bottom), respectively. R0/w=0.8.
The units for both two axes are µm.
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Figure 3: The pressure (left) and the velocity field (right) in the region next to the cell with
the swelling ratio s∗=0.481 (top), 0.7 (middle) and 0.9 (bottom), respectively. R0/w=0.4.
The units for both two axes are µm.
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Figure 4: (Color online). Steady inclination angle as a function of the cell swelling ratio for
two degrees of confinement R0/w=0.4 and 0.8.

of fluid flow (umax), vary with the swelling ratio (s∗). Then for two given swelling ratios of
biconcave shape s∗=0.481 and elliptic shape s∗=0.9, respectively, we analyze that the effect
of the initial position, the initial angle of the long axis of the cell at the centerline (ϕ), the
maximum velocity at the centerline of fluid flow (umax) , the membrane bending stiffness
of RBC (kb), and the height of the microchannel (H) on the deformation of RBC. Two
motions of oscillation and vacillating-breathing (swing) of RBC are observed in both narrow
and wide channels. The continuation of shape change from the slippery to the parachute by
varying the value of umax is obtained for the biconcave shape cell in a narrower channel. In
particular, parachute shape and bulletlike shape, depending on the angle ϕ, coexist for the
elliptic shape cell with lower umax in a narrower channel.

3.2.1.1 Effect of the swelling ratio

We first present the simulation results of a single RBC in a Poiseuille flow with the fluid
domain 100µm× 10µm. The pressure gradient is set to as a constant for this study so that
the Reynolds number of the Poiseuille flow without cell is about 0.4167. The initial velocity
is zero everywhere. The grid resolution for the computational domain is 64 points per 10µm.
Three different shapes (s∗=0.481, 0.7 and 0.9) have been studied and the results are shown
in Figure 5. The initial position of the mass center of the single cell is located at (5,3). The
initial angle of the long axis of the cell at the centerline is ϕ=0. In Figure 5, the cells deform
and migrate to the centerline of the microchannel and the well-known parachute shape has
been observed for the case of s∗=0.481, 0.7 and 0.9. The red asterisk denotes the same point
on the cell membrane for the entire simulation. The similar results of capsules in tube flow
using the boundary element method have been reported by Pozrikidis in [20].

Given the same initial angle of the long axis of the cell at the centerline ϕ=0, the effect
of different initial positions has been investigated. Migrations of RBC with s∗=0.481 and
0.9 for three different initial positions (5,3), (5,5) and (5,7.7) are shown in Figure 6. The
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Figure 5: (Color online). The snapshots of the cell migration in a Poiseuille flow:
(a)s∗=0.481, (b)s∗=0.7 and (c)s∗=0.9. The red asterisk denotes the same node point on
the cell membrane.
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cells with the initial positions (5,3) and (5,7.7) deform and migrate to the centerline of
the microchannel where steady axisymmetric states are reached. The cell with the initial
position (5,5) parallels to the direction of the flow after it is released, then deforms owing
to the hydrodynamic stress imposed symmetrically by the Poiseuille flow, until reaches the
parachute shape as its equilibrium shape. The final position and shape are not related with
the initial positions of the RBC.

3.2.1.2 Effect of the initial angle of the long axis of the cell at the centerline

The initial angle of the long axis of the cell at the centerline ϕ has important effect on
the equilibrium position and shape for the elliptic shape cell with s∗=0.9. Two equilibrium
shapes, parachute shape and bulletlike shape, coexist at the centerline as equilibrium shapes
for umax=1.0 cm/s with different initial inclination angles ϕ (see Figure 7). When ϕ is bigger
than 37◦, the parachute shape is obtained, otherwise the bulletlike shape is obtained. The
similar qualitative results of the cell in an unbounded Stokes flow has been reported in [19].
The averaged velocities of the fluid with cell are 0.653 cm/s for the cell type I (bulletlike
shape) and 0.642 cm/s for the cell type II (parachute shape), respectively, and the energy
stored in the membrane of the cell type I is lower than that of the cell type II. That’s because
the resistance force acted on the fluid by the cell type I is less than the force by the cell
type II. This resistance force depends on the cell cross-section perpendicular to the direction
of fluid flow in a narrow channel and the velocity of quadratic flow without cell. Then the
inverse force acted on the cell type I by the fluid is less than the inverse force acted on the
cell type I by the fluid. This interplay between the fluid and the cell is the main source of
the energy stored in the membrane.

However, for the biconcave shape cell s∗=0.481, only slippery shape has been obtained at
the centerline as its equilibrium shape for umax=1.0 cm/s with the initial inclination angle
of 0◦, 45◦,and 90◦ as shown in Figure 8. It indicates that slippery shape could be the only
equilibrium shape for the low umax.

3.2.1.3 Effect of the maximum velocity at the centerline of fluid flow

The effect of umax on the deformation of a single cell has been investigated. In the
simulations, we have kept other parameters same as in Section 3.2.1.1. We observed that
umax plays a critical role on the equilibrium shapes of a single RBC migration in a narrow
channel. Both slippery shape and parachute shape are obtained by varying the value of
umax. The slippery shape is obtained when umax is lower than a critical value uc = 3 cm/s
(resp., 2.8 cm/s) for s∗=0.481 (resp., 0.7), and the parachute shape is obtained when umax

is higher than uc. The asymmetric shape (slipperylike shape) of vesicle in an unbounded
Poiseuille flow at zero Reynolds number has been studied by Kaoui et al [21], and the similar
results of vesicle also mentioned in [41, 42, 43]. Figure 9 shows that the equilibrium shapes
for s∗=0.481 and 0.7 with nine different values of umax =0.5, 1.0, 1.5, 2.0, 2.5, 2.8, 3.0, 4.0,
7.5 cm/s, and the corresponding Reynolds numbers of the Poiseuille flow without cell are
about 0.0278, 0.0556, 0.0833, 0.1111, 0.1389, 0.1556, 0.1667, 0.2222, 0.4167, respectively.
The histories of the cell membrane energy for s∗=0.481 and 0.7 are shown in Figure 10.
When the cell reaches the equilibrium position and shape, the cell membrane energy of the
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Figure 6: (Color online). The snapshots of the cell migration with s∗=0.481(top) and 0.9(bot-
tom) in a Poiseuille flow for three different initial positions.
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Figure 8: (Color online). The equilibrium shapes for different initial angles:(a) θ = 0, (b)θ
= 45◦ and (c) θ = 90◦(left). The shapes after shifting and reflecting with respect to the
centerline of the channel (right). s∗=0.481 and umax=1cm/s.

parachute shape is higher than that of the slippery shape and the flow with higher umax

can provide enough energy to sustain the shape of parachute. The distance Yd between the
mass center of equilibrium cell and the centerline is zero for the parachute shape, but Yd

is nonzero for the slippery shape. These results are reported in Figure 11. Our present
simulation results are in good agreement with the results in [21].

For the above nine different values of umax, the equilibrium shapes of the elliptic shape
cell for s∗=0.9 with two different initial angles ϕ = π/4 and 0 are shown in Figure 12.
For the initial inclination angle ϕ = 0, the cell deforms and reaches bulletlike shape as its
equilibrium shape when umax is lower than uc = 3 cm/s, otherwise it attains parachute
shape. But for the initial inclination angle ϕ = π/4, the cell deforms and reaches bulletlike
shape as its equilibrium shape when umax is between 1.0 cm/s and 3.0 cm/s, otherwise it
attains parachute shape. Both bulletlike shape and parachute shape coexist for umax =0.5,
1.0 and 3.0 cm/s. These results indicate that when umax is high enough, the flow can provide
enough energy to sustain two different shapes, parachute shape and bulletlike shape, and the
final equilibrium shape is determined by other factors such as the initial inclination angle
and etc.

We have also applied the method of the numerical continuation to study the change of
the equilibrium shape of the cell for s∗ = 0.481 and 0.7. After obtaining an equilibrium
shape for a given value of umax, we have used it as the initial shape in the simulation for the
next larger value of umax. The equilibrium shapes for s∗ = 0.481 and 0.7 are exactly same
as those given in Figure 9.
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Figure 9: (Color online). The equilibrium shapes of a single cell in a Poiseuille flow for
s∗=0.481 (top) and 0.7 (bottom) with umax from 0.5 cm/s to 7.5 cm/s.
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Figure 10: (Color online). The histories of the cell membrane energy in a Poiseuille flow for
s∗=0.481(left) and 0.7(right) with umax from 0.5 cm/s to 7.5 cm/s.
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Figure 12: (Color online). The equilibrium shapes of a single cell of s∗ = 0.9 in a Poiseuille
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3.2.1.4 Effect of the membrane bending stiffness of RBC and the height of the

microchannel

To study the effect of the bending constant, we have kept the same values of kl, ks and
considered three different values of the bending constants, which are 0.1kb, 1kb and 10kb,
umax = 1.0 cm/s and other conditions are same as in Section 3.2.1.1. The snapshots of the
cell migration in Poiseuille flows for s∗ = 0.481 and 0.9 with these bending constants are
shown in Figure 13 and the histories of the cell membrane energy are reported in Figure
14. In Figure 13, the red asterisk denotes the same point on the cell membrane during the
entire simulation. For the lower bending constant 0.1kb, parachute shape is obtained for both
the biconcave shape cell s∗ = 0.481 and the elliptic shape cell s∗ = 0.9. For the bending
constant 1kb, both two cells exhibit damped oscillating-breathing after they are released in
the fluid flow as indicated in Figure 14. The histories of the cell membrane energy show
the vacillating-breathing motion of the elliptic shape cell s∗ = 0.9 damps out faster than
that of the biconcave shape cell of s∗ = 0.481. The positions and shapes of the vacillating-
breathing motion for the biconcave shape cell of s∗ = 0.481 are shown in Figure 15. For the
higher bending constant 10kb, both two cells exhibit damped oscillation until they attain the
equilibrium states aligning themselves at an angle with the direction of the flow, and the
damping rate of the elliptical shape cell is bigger than that of the biconcave shape cell. The
history of the angle of the long axis of cell at the centerline as a function of time is shown in
Figure 16 (left). The vacillating-breathing motion also takes place for the bending constants
0.1kb with the value of umax lower than 1.0 cm/s and 10kb with the value of umax higher
than 1.0 cm/s for the biconcave shape cell of s∗ = 0.481. Figure 17 shows the simulation
results of the capillary number Ca = 3.58 (i.e., 0.1kb with the value of umax = 0.1 cm/s,
1kb with the value of umax = 1 cm/s and 10kb with the value of umax = 10 cm/s). For
the different bending constants, the RBC reaches the same equilibrium shape for the same
capillary number in the middle part of Figure 17.

The shear rate at the center of the Poiseuille flow is zero, and any deviation of the cell
from the centerline would be penalized by higher dissipation as a result of the higher shear
rate. Thus for a parachute shape cell, no membrane tank-treading is present for its symmetric
shape and the relative velocity of fluid inside the parachute shape cell also vanishes. However,
for a slippery shape cell, its membrane undergoes tank-treading and the flow enclosed by the
slippery shape cell rotates as shown in Figure 18 (a) and (c) where the red asterisk denotes
the same point on the cell membrane. The similar results of vesicle [21] and elliptical capsule
[24] are also obtained by Kaoui et al. and Shin et al., respectively.

Finally, the effect of the height of the channel H on the deformation of a single cell is
also investigated. We set umax=7.5 cm/s and vary H . All the other physical and numerical
parameters are kept same to those in the Section 3.2.1.1. Simulations in Figure 19 and
Figure 20 are performed for H = 10µm and 50µm, respectively. The corresponding initial
positions of the mass center of the single cell are located at (5, 5) and (5, 25), respectively.
Both the initial angles of the long axis of the cell at the centerline are ϕ = π/4. For the
narrower channel H = 10µm, the cell deforms into parachute shape as its equilibrium shape
for the bending constants 0.1kb and 1kb, and displays vacillating-breathing motion for the
bending constant 10kb accompanied by membrane tank-treading for the case of s∗ = 0.481
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as in Figure 19. No tank-treading for both parachute shape and bulletlike shape since the
equilibrium shapes are symmetric (see Figure 18 (b) and (d)). Unlike in a narrower channel,
the cell in a wider channel exhibits vacillating-breathing motion after it is released in the
fluid flow for the lower bending constant 0.1kb, and as this motion becomes weak, the cell
reaches a slippery shape as its equilibrium state aligning itself at an angle with the direction
of the flow. For the bending constants 1kb and 10kb, both two cells exhibit oscillation. The
similar simulation results of vesicles by using boundary integral method are given by Kaoui
et al. in [44]. The history of the position of the cell mass center, the energy of the cell
membrane, and the equilibrium shape are presented in Figure 20. The histories of the angle
of the long axis of the biconcave cell s∗ = 0.481 at the centerline for the bending constants
1kb and 10kb are shown in Figure 16(right).

RBC exhibits slippery shape accompanied with (damped) vacillating-breathing motion
when the capillary number Ca is less than a critical value such as 10.74 for the biconcave
shape cell s∗ = 0.481 in the narrower channel. For the elliptic shape cell of s∗ = 0.9, the
vacillating-breathing motion damps out quickly. So we focus our attention on investigating
the vacillating-breathing motion of the biconcave shape cell for s∗ = 0.481. Figure 21
displays the histories of the energy of the cell membrane of the different values of umax=0.5,
1.0, 1.5, 2.0, 2.8 cm/s. The strength of the vacillating-breathing motion depends on the
degree of confinement, the maximum velocity at the centerline of fluid flow umax and the
capillary number Ca. RBC exhibits a stronger vacillating-breathing motion as the degree of
confinement is larger or the value umax is higher. For the same degree of confinement, the
vacillating-breathing motion appears to be relatively weaker but persists longer as the value
of umax is lower. For the different bending constants, RBC obtains the same equilibrium
shape for the same capillary number.

4 Conclusions

An immersed boundary method combined with the elastic spring model is tested in this
paper by reproducing the behavior of RBC under a shear flow. Then we have applied
it to study the deformation of a single RBC in bounded Poiseuille flows. Unlike droplet,
RBC tends to migrate toward the centerline of the microchannel where an equilibrium state
is reached. The steady shape of cell under flow depends on the swelling ratio (s∗), the
initial angle of the long axis of the cell at the centerline (ϕ), the maximum velocity at
the centerline of fluid flow (umax), the membrane bending stiffness of RBC (kb) and the
height of the microchannel (H). Two motions of oscillation and vacillating-breathing of
RBC are observed in narrow and wide channels. The strength of the vacillating-breathing
motion depends on the degree of confinement and the value of umax. RBC exhibits a strong
vacillating-breathing motion as the degree of confinement is larger or the value of umax is
higher. For the same degree of confinement, the vacillating-breathing motion appears to be
relatively weak but persists longer as the value of umax is lower. For the different bending
constants, RBC obtains the same equilibrium shape for the same capillary number. The
continuation of shape change from the slippery to the parachute by varying the value of
umax is obtained for the biconcave shape cell in a narrower channel. In particular, parachute
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Figure 13: (Color online). The snapshots of the cell migration in Poiseuille flows for s∗ =
0.481 and 0.9 with different bending constants: (a) s∗ = 0.481 and 0.1kb, (b) s

∗ = 0.9 and
0.1kb, (c) s

∗ = 0.481 and 1kb, (d) s
∗ = 0.9 and 1kb, (e) s

∗ = 0.481 and 10kb, and (f) s∗ = 0.9
and 10kb. The red asterisk denotes the same node point on the cell membrane.
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Figure 14: (Color online). The cell membrane energy for s∗ = 0.481 and 0.9 with different
bending constants (left) and the enlarged part (right).
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Figure 15: (Color online). The positions and shapes of a single cell for s∗ = 0.481(1kb) at
t=22.5, 25, 27.5, 32 ms (left) and t=32, 35, 37.5, 40 ms (right).
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Figure 16: (Color online). The history of the angle of the long axis of cell at the centerline
as a function of time: narrower channel (left) and wide channel (right).
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Figure 17: (Color online). The histories of the cell membrane energy for s∗ = 0.481 with the
capillary number Ca = 3.58 (top left) and the enlarged part (top right). The equilibrium
shapes for different bending constants (middle left) and the shapes after shifting with respect
to the centerline of the channel (middle right). The positions and shapes of a single cell for
s∗ = 0.481 (10kb) at t=5, 5.75, 6.1 ms (bottom left) and t =6.1, 6.75 7.1 ms (bottom right).

21



−0.4 −0.2 0 0.2
−0.4

−0.2

0

0.2

0.4

t=300ms
−0.4 −0.2 0 0.2

−0.4

−0.2

0

0.2

0.4

t=400ms

−0.4 −0.2 0 0.2
−0.4

−0.2

0

0.2

0.4

t=450ms

(a) −0.4 −0.2 0 0.2
−0.4

−0.2

0

0.2

0.4

t=500ms

−0.4 −0.2 0 0.2
−0.4

−0.2

0

0.2

0.4

t=55ms
−0.4 −0.2 0 0.2

−0.4

−0.2

0

0.2

0.4

t=60ms

−0.4 −0.2 0 0.2
−0.4

−0.2

0

0.2

0.4

t=65ms

(b) −0.4 −0.2 0 0.2
−0.4

−0.2

0

0.2

0.4

t=70ms

−0.4 −0.2 0 0.2
−0.4

−0.2

0

0.2

0.4

t=270ms
−0.4 −0.2 0 0.2

−0.4

−0.2

0

0.2

0.4

t=280ms

−0.4 −0.2 0 0.2
−0.4

−0.2

0

0.2

0.4

t=290ms

(c) −0.4 −0.2 0 0.2
−0.4

−0.2

0

0.2

0.4

t=300ms

−0.4 −0.2 0 0.2
−0.4

−0.2

0

0.2

0.4

t=55ms
−0.4 −0.2 0 0.2

−0.4

−0.2

0

0.2

0.4

t=60ms

−0.4 −0.2 0 0.2
−0.4

−0.2

0

0.2

0.4

t=65ms

(d) −0.4 −0.2 0 0.2
−0.4

−0.2

0

0.2

0.4

t=70ms

Figure 18: (Color online). Tank treading for a slippery shape cell: (a)s∗=0.481 with umax=1
cm/s. No tank treading for a parachute shape cell: (b) s∗=0.481 with umax=7.5 cm/s,
(c)s∗=0.9 with umax = 1 cm/s, and (d) s∗=0.9 with umax=7.5 cm/s. The red asterisk
denotes the same node point on the cell membrane. The units for both two axes are µm.
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Figure 19: (Color online). The snapshots of the cell motion in Poiseuille flows for s∗ = 0.481
and 0.9 with different bending constants: (a) s∗ = 0.481 and 0.1kb, (b) s

∗ = 0.9 and 0.1kb,
(c) s∗ = 0.481 and 1kb, (d) s

∗ = 0.9 and 1kb, (e) s
∗ = 0.481 and 10kb, and (f) s∗ = 0.9 and

10kb. The red asterisk denotes the same node point on the cell membrane. umax=7.5 cm/s.
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Figure 20: (Color online). The history of the position of the cell mass center (left), the
energy of the cell membrane (middle) and the equilibrium shape(right) for various bending
constants: 0.1 kb (top), 1 kb (middle), 10 kb (bottom).
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Figure 21: (Color online). The cell membrane energy for s∗ = 0.481 with different values
umax = 0.5, 1.0, 1.5, 2.0, 2.8 cm/s.

shape and bulletlike shape, depending on the angle ϕ, coexist for the elliptic shape cell with
lower umax in a narrower channel.

Our simulation method has been also applied to the cases of multi-cells [32, 33]. Studying
the deformation and other dynamics of RBCs with the viscosity of the cytoplasm bigger than
that of the blood plasma in flow is an interesting and challenging problem and will be done
in near future.
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