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Charged colloids in an aqueous mixture with a salt
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We calculate the ion and composition distributions around colloid particles in an aqueous mix-
ture, accounting for preferential adsorption, electrostatic interaction, selective solvation among ions
and polar molecules, and composition-dependent ionization. On the colloid surface, we predict a
precipitation transition induced by strong preference of hydrophilic ions to water and a prewetting
transition between weak and strong adsorption and ionization. These transition lines extend far
from the solvent coexistence curve in the plane of the interaction parameter χ (or the temperature)
and the average solvent composition. The colloid interaction is drastically altered by these phase
transitions on the surface. In particular, the interaction is much amplified upon bridging of wetting
layers formed above the precipitation line. Such wetting layers can either completely or partially
cover the colloid surface depending on the average solvent composition.

PACS numbers: 64.70.pv,82.70.Dd,68.08.Bc,82.45.Gj

I. INTRODUCTION

Extensive efforts have been made to understand the
interaction among ionized colloid particles in a solvent
[1–5], because they form model crystal and glass at high
densities. Recently, considerable attention has also been
paid to the effect of preferential adsorption of one of the
components in a mixture solvent. Several groups [6–10]
observed aggregation of colloidal particles near the co-
existence curve in one-phase states of a binary mixture
of 2,6-lutidine and water. For small ionization the ad-
sorption of lutidine was increased in water-rich states,
while for large ionization that of water was increased in
lutidine-rich states. This means that the colloid surface
can either repel or attract water, depending on the degree
of ionization. It is worth noting that polyelectrolytes are
often hydrophobic without ionization, but becomes effec-
tively hydrophilic even at low ionization [11–13].

At high colloid concentrations, a flocculated phase rich
in colloids emerges [6], which changes from gas, liquid, fcc
crystal, and glass with increasing the colloid concentra-
tion [9]. Such aggregation was claimed to be a result
of a true phase separation in ternary mixtures [8]. A
microscopic theory by Hopkins et al. [14] indicated the
aggregation mechanism. They treated neutral colloids
coated by a thick adsorption layer rich in the preferred
component in one-phase environments rich in the other
component. They found that this adsorption is intensi-
fied near the coexistence curve, strongly influencing the
colloid interaction.

In understanding these experiments, however, atten-
tion has not been paid to the selective solvation (hydra-
tion for aqueous mixtures) among charged particles (ions
and ionized parts on the colloid surface) and polar sol-
vent molecules [15]. The solvation effects have not yet
been adequately investigated in soft materials, but they
can influence the phase separation behavior profoundly
and even give rise to a new phase transition [16–19]. The
solvation chemical potential µsol(φ) of a hydrophilic ion
stems from the ion-dipole interaction and strongly de-

pends on the ambient composition of water. In electro-
chemistry, the following chemical potential difference has
been measured [20, 21]:

∆µαβ
sol = µsol(φβ)− µsol(φα), (1.1)

between two coexisting phases, where φα and φβ are the
bulk water compositions in the two phases. This quan-
tity is the so-called Gibbs transfer free energy per ion,
which determines the ion partition and a Galvani poten-
tial difference between the two phases. Its magnitude
typically much exceeds kBT (about 15kBT for Na+ and
Cl− in water-nitrobenzene at room temperatures). Fur-
thermore, the dissociation of ionizable groups on the col-
loid surface should be treated as a chemical reaction sen-
sitively depending on the local environment (the solvent
composition and the local electric potential) as in the case
of polyelectrolytes [11, 12, 22, 23]. Therefore, even very
small composition variations around the colloid surface
can induce significant changes in the ion distribution, the
electric potential, and the degree of ionization, so it can
drastically alter the colloid interaction.

Historically, the colloid interaction has been supposed
to consist of the screened Coulomb repulsive infraction
FDLVO and the van der Waals attractive interaction Fvdw

since the celebrated theory developed by Derjaguin, Lan-
dau, Verway, and Overbeek (DLVO) [1–4]. For two col-
loid particles with radius a, the former reads

FDLVO =
Q̄2e−κ(d−2a)

ε̄(1 + κa)2d
(1.2)

where d is the distance between two colloid centers, Q̄
is the average charge on a colloid particle, ǭ is the av-
erage dielectric constant (at the average composition for
a mixture solvent), and κ is the Debye wave number.
The latter arises from the pairwise van der Waals inter-
action (∝ −1/r6) among constituent molecules, where r
is the distance between two molecules. In terms of the
Hamaker constant AH, Fvdw between two identical col-
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loids with radius a is written as [3]

Fvdw = −
AH

6

[

2a2

d2 − 4a2
+

2a2

d2
+ ln

(

1−
4a2

d2

)]

. (1.3)

It grows for short separation ℓ = d− 2a≪ a as

Fvdw
∼= −AHa/12ℓ, (1.4)

while it decays as −16AHa
6/9d6 for long separation ℓ≫

a. We assume that Fvdw(d) should saturate at a short
distance on the order of the solvent molecular diameter a0
(∼ 3Å). Then Fvdw(d) decreases down to −AHa/12a0 at
contact. The size of AH strongly depends on binary mix-
tures and colloid particles under investigation and can be
made small by matching the dielectric constants of the
colloid and the solvent. In this paper, Fvdw will not be
included in our theoretical scheme for simplicity.
In binary mixtures, the adsorption-induced composi-

tion disturbances give rise to an attractive interaction
Fad between two colloid particles [6]. A linear theory
can then be developed when the adsorption and the ion-
ization are both weak. Further in the special case of
weak selective solvation, the pair interaction is the sum
of FDLVO in Eq.(1.2) and Fad given by

Fad = −Aada
4ξ2

e−ℓ/ξ

(a+ ξ)2d
, (1.5)

where ξ is the correlation length growing near the sol-
vent criticality. The coefficient Aad is proportional to
h21, where h1 is the surface field arising from preferen-
tial molecular interactions between the surface and the
two solvent species [25–27]. In deriving Eq.(1.5), h1 is
assumed to be small and Eq.(1.5) is invalid very close to
the criticality [28]; nevertheless, Fad becomes the dom-
inant interaction at long distances for ξ > κ−1. We
shall see that Fad can exceed Fvdw even at the molecular
separation a0 for small AH . Furthermore, on approach-
ing the solvent criticality without ions, the adsorption-
induced interaction among solid objects (plates, rods,
and spheres) becomes universal (independent of the ma-
terial parameters) in the limit of strong adsorption [29],
so it has been called the critical Casimir interaction [30–
33]. However, it should be affected by ions for strong
selective solvation.
In this paper, we aim to investigate the ion effects on

the colloid interaction in binary mixtures using a coarse-
grained approach. A merit of our approach is that we
can treat the preferential solvation in its strong cou-
pling limit. In our recent work [19, 24], we found that
a strongly selective solute can induce formation of do-
mains rich in the preferred component even far from the
solvent coexistence curve. We shall see that this pre-
cipitation phenomenon can occur on the colloid surface,
leading to a wetting layer coating the colloid surface. As
another prediction, there can be a first-order prewetting
surface transition between weak and strong adsorption
far from the solvent criticality, as discussed in our paper

on charged rods [23]. These two phase transitions occur
when the volume fraction of the selected component is
relatively small (φ < φc). With intensified mutual in-
teractions, colloid particles should trigger a macroscopic
phase separation to form a floccuated phase [6, 8, 9]. As
a closely related example, precipitation of DNA has been
observed with addition of ethanol in water [34–36], where
the ethanol added is excluded from condensed DNA.

In addition to usual hydrophilic ions, we are also inter-
ested in the colloid interaction in the presence of antag-
onistic ion pairs in aqueous mixtures, where the cations
are hydrophilic and the anions are hydrophobic, or vice
versa [18, 19]. A well-known example in electrochemistry
is a pair of Na− and tetraphenylborate BPh−4 , where
the latter anion consists of four phenyl rings bonded
to an ionized boron and acquires strong hydrophobicity.
Such ion pairs behave antagonistically in the presence
of composition heterogeneities, giving rise to formation
of mesophases, as recently observed by Sadakane et al.

by adding a small amount of NaBPh4 to D2O and tri-
methylpyridine [37]. They should produce an oscillatory
interaction between walls or colloid particles as in the
case of liquid crystals [38].

The organization of this paper is as follows. In Sec.II,
we will present a Ginzburg-Landau model of a binary
mixture containing ions and ionizable colloid particles,
where the bulk part includes the electrostatic and sol-
vation interactions and the surface part the dissociation
free energy. In Sec.III, we will examine the linearized ver-
sion of our theory for the electrostatic and composition
fluctuations as a generalization of the Debye-Hückel and
DLVO theories. In Sec.IV, we will discuss how a wet-
ting layer is formed on the colloid surface, which takes
place as a precipitation phase transition. In Sec.V, we
will present numerical results on the basis of our nonlin-
ear scheme, where we shall encounter precipitation and
prewetting phase transitions on the surface even far from
the solvent coexistence curve. We shall also see bridging
of wetting layers and a changeover between complete and
partial wetting.

II. GINZBURG-LANDAU MODEL FOR A

MIXTURE SOLVENT

We suppose monovalent hydrophilic cations and anions
in a binary solvent composed of a water-like polar com-
ponent (called water) and a less polar component (called
oil) in a cell with a volume V [16, 17, 24]. We also place
one or two negatively ionizable colloid particles in the
cell. Experimentally, we suppose a dilute suspension of
colloid particles in a mixture solvent. To apply our re-
sults to such systems, we should set V = 1/ncol, where
ncol is the colloid density.

For simplicity, we neglect the van der Waals interaction
Fvdw. The Boltzmann constant kB will be set equal to
unity in the following.
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A. Free energy including electrostatics, solvation,

and surface interaction

We assume that the counterions coming from the col-
loid surface are of the same species as the cations added
as a salt. The cation and anion number densities are writ-
ten as n1 and n2, respectively, while the water composi-
tion is written as φ. We treat these variables as smooth
functions in space. The total free energy Ftot = F + Fs

consists of the bulk part F and the surface part Fs. The
former is written as

F =

∫ ′

dr[ftot +
TC

2
|∇φ|2] +

∫

dr
εE2

8π
, (2.1)

where
∫ ′
dr is the space integral in the colloid exterior in

the cell and
∫

dr is that in the whole cell including the
colloid interior. The electric potential Φ is defined even in
the colloid interior. We assume that inhomogeneity of φ
gives rise to the gradient free energy, where the coefficient
C is a positive constant.
In the first term of Eq.(2.1), the free energy density

ftot is the chemical part depending on φ, n1, and n2 as

ftot = f(φ) + T
∑

i

ni

[

ln(niλ
3
i )− 1− giφ

]

. (2.2)

In this paper, the molecular volumes of the two solvent
components take a common value v0, though they are of-
ten very different in real binary mixtures. As a molecular
length, we introduce

a0 = v
1/3
0 , (2.3)

which is supposed to be of order 3Å. Then C ∼ a−1
0

[39]. The colloid radius a is much larger than a0. (In our
previous papers [16–19, 24], a has been used to denote the

molecular length v
1/3
0 .) We neglect the volume fractions

of the ions assuming their small sizes. In our numerical
analysis, we adopt the Bragg-Williams form [40],

v0
T
f = φ lnφ+ (1 − φ) ln(1 − φ) + χφ(1− φ), (2.4)

where χ = χ(T ) is the interaction parameter depending
on T . The critical value of χ is 2 without ions. In the
ionic part of Eq.(2.2), λi = ~(2π/miT )

1/2 is the thermal
de Broglie wavelength of the species i with mi being its
mass. The dimensionless parameters g1 and g2 represent
the degree of selective solvation [16, 17], in terms of which
the solvation chemical potential is µi

sol = const. − Tgiφ
and the Gibbs transfer free energy is Tgi(φα − φβ) for
the ion species i (see Eq.(1.1)). If φ is the water compo-
sition, we have gi > 0 for hydrophilic ions and gi < 0 for
hydrophobic ions. In many aqueous mixtures, the am-
plitude |gi| well exceeds 10 both for hydrophilic ions and
hydrophobic solutes [19].
The last term in Eq.(2.1) is the electrostatic part[41],

where E = −∇Φ is the electric field. The electric poten-
tial Φ is defined in the whole region including the colloid

interior. We assume continuity of U through the colloid
surface neglecting surface molecular polarization. It fol-
lows the Poisson equation,

∇ ·D = −∇ · ε∇Φ = 4πρ, (2.5)

where D = εE is the electric flux density. The dielectric
constant ε(φ) is assumed to be a linear function of φ in
the solvent. Thus it behaves as

ε(φ) = ε0 + ε1φ (colloid exterior)

= εp (colloid interior), (2.6)

which is ε0 in oil (at φ = 0), ε0 + ε1 in water (at φ = 1),
and εp in the colloid interior. Let all the charges be
monovalent. Then the charge density ρ is written as

ρ = e(n1 − n2)− eσδs. (2.7)

The first bulk term is nonvanishing in the colloid exte-
rior and the second part arises from the areal density σ of
the ionized groups on the colloid surface, where δs is the
delta function nonvanishing only on the colloid surface.
There is no charge density in the colloid interior. As a
result, there arises a discontinuity in the normal compo-
nent ν · D, where ν is the outward normal unit vector
on the colloid surface. Let D+ and D− be the values
of D immediately outside and inside the colloid surface,
respectively. Then,

ν · (D+ −D−) = −4πeσ. (2.8)

On the other hand, on the cell boundary, we assume no
surface free energy and no surface charge. In our simu-
lation, we thus set

νb · ∇φ = 0,

νb ·E = −νb · ∇Φ = 0, (2.9)

where νb is its normal vector of the cell boundary.
The density of the ionizable groups on the colloid sur-

face is written as σ0. The fraction of ionized groups or the
degree of ionization α is defined in the range 0 ≤ α ≤ 1.
The density of the ionized groups is written as [23]

σ = σ0α. (2.10)

We treat α as a fluctuating variable depending on the
local composition and potential. The surface free energy
Fs depends on φ and α as

Fs =

∫

dS(Tγφ+ fd), (2.11)

where
∫

dS is the integration on the colloid surface. Here
we neglect the second order contribution (∝ φ2) present
in the original theory [25] to the surface free energy den-
sity (though it is relevant near the critical point for neu-
tral fluids [26]). The coefficient γ represents the short-
range interaction between the mixture solvent and the
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colloid surface (per solvent molecule)[25]. We call γ the
surface interaction parameter or the surface field (though
h1 ≡ −Tγ is usually called the surface field in the liter-
ature [26, 27]). The fd in Eq.(2.11) is the dissociation
(ionization) free energy density of the form [11, 22, 23],

fd
Tσ0

= α lnα+(1−α) ln(1−α) +α(∆0 −∆1φ), (2.12)

where the first two terms arise from the entropy of select-
ing the ionized groups among the ionizable ones, while
∆0 − ∆1φ is the composition-dependent ionization free
energy divided by T . We suppose that the ionization is
much enhanced with increasing the water content, which
means that ∆1 should be considerably larger than unity.

B. Equilibrium relations

In our finite system, the cation number increases with
an increase of ionization, while the numbers of the an-
ions and the solvent particles are fixed. Let n0 be the
average density of the added salt and φ̄ be the average
water composition. They are important parameters in
our problem as well as χ. Then,

∫ ′

dr(n1(r)− n0) =

∫

dSσ, (2.13)

∫ ′

dr(n2(r)− n0) = 0, (2.14)

∫ ′

dr(φ(r)− φ̄) = 0. (2.15)

The right hand side of Eq.(2.13) is the number of the
counterions from the colloid surface. These relations are
consistent with the expression for the charge density ρ in
Eq.(2.7). In equilibrium we should minimize the grand
potential Ω defined by

Ω = F −

∫ ′

dr(hφ+
∑

i

µini) + Fs +

∫

dSµ1σ. (2.16)

Here h, µ1, and µ2 are introduced as Lagrange mul-
tipliers owing to the constraints (2.13)-(2.15). They
have the meaning of the chemical potentials expressed
as h = δF/δφ and µi = δF/δni.
To minimize Ω, we superimpose infinitesimal devia-

tions δφ, δn1, δn2, and δα on φ, n1, n2, and α, respec-
tively. First, we calculate the infinitesimal variation of
the electrostatic part Fe ≡

∫

drεE2/8π in F in Eq.(2.1).

From the relation δ(εE2) = 2E · δD −E
2δε, we obtain

δFe =

∫ ′

dr

[

Φδρ−
E

2

8π
ε1δφ

]

−

∫

dS eσ0δα

−

∫

cell

dS Φνb · (εδE + δεE), (2.17)

where the integration is in the colloid exterior in the first
term, on the colloid surface in the second term, and on

the cell boundary in the third term. From Eq.(2.9) we
have νb · E = νb · δE = 0 on the collied surface, so the
third term vanishes. From Eqs.(2.1) and (2.17) we obtain

h = f ′(φ) − TC∇2φ− T
∑

i

gini −
ε1
8π

E2, (2.18)

µi = T ln(niλ
3
i )− Tgiφ+ ZieΦ, (2.19)

where f ′ = ∂f/∂φ in Eq.(2.18) and Z1 = 1 and Z2 = −1
in Eq.(2.19). It folows the modified Poisson-Boltzmann
relations for the ion densities,

ni = n0
i exp(giφ− ZiU), (2.20)

where n0
i = λ−3

i exp(µi/T ) are constants. We introduce
the normalized electrostatic potential,

U = eΦ/T. (2.21)

Using the above h and µi, we calculate the incremental
changes of F and Fs as

δF =

∫ ′

dr[hδφ+
∑

i

µiδni]

−

∫

dS[(Cν · ∇φ)δφ + (eΦσ0)δα], (2.22)

δFs = T

∫

dS(γ − σ∆1)δφ

+Tσ0

∫

dS

[

ln
α

1− α
+∆0 −∆1φ

]

δα. (2.23)

Vanishing of the surface terms proportional to δφ in δF+
δFs yields the boundary condition of φ on the colloid
surface written as [24]

Cν · ∇φ = γ −∆1σ0α, (2.24)

where ν is the outward normal unit vector on the col-
loid surface. In the same manner, vanishing of the terms
proportional to δα yields [23]

α

1− α
= exp(−∆0 +∆1φ+ U − µ1/T ). (2.25)

We multiply Eq.(2.25) by n1 in Eq.(2.20) at the surface
to obtain the mass action law on the surface,

αn1

1− α
= K(φ), (2.26)

where the factor exp(U − µ1/T ) is cancelled. We intro-
duce the composition-dependent ionization constant by

K(φ) = λ−3
1 exp[−∆0 + (∆1 + g1)φ], (2.27)

in terms of which we have α = K(φ)/[n1 +K(φ)]. Thus
we have weak ionization α ≪ 1 for n1 ≫ K(φ) and strong
ionization α ∼= 1 for n1 ≪ K(φ) on the surface.
In addition, from Eq.(2.25), the ionization free energy

density fd in Eq.(2.12) becomes

fd/Tσ0 = α(U − µ1/T ) + ln(1 − α), (2.28)

which will be used in deriving Eq.(3.17).
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C. Changeover from hydrophobic to hydrophilic

surface with progress of ionization

We further discuss the consequence of the boundary
condition (2.24). Near the surface, oil is enriched for
φ′ = ν · ∇φ > 0, while water is enriched for φ′ < 0. For
very small α, the colloid surface is hydrophobic for γ > 0
and is hydrophilic for γ < 0. However, with increasing α,
an originally hydrophobic surface can become effectively
hydrophilic if

0 < γ < ∆1σ0, (2.29)

under which the surface derivative φ′ becomes negative
for α > γ/∆1σ0. In contrast, if γ > ∆1σ0, the surface
remains hydrophobic even for α = 1.
This weakly hydrophobic situation can well happen in

real colloid systems in mixture solvents for not small
σ0 owing to strong composition-dependent ionization.
As stated in Sec.I, colloid aggregation in near-critical
lutidine-water occurred at lutidine-rich compositions for
small ionization and at water-rich compositions for larger
ionization [6, 7]. In our theory this means that the col-
loid surface remained hydrophobic for small ionization,
while it became hydrophilic for large ionization. It is
also well-known that hydrophobic polyelectrolytes (with-
out ionization) can become hydrophilic with progress of
ionization [13].

III. LINEAR THEORY IN ONE-PHASE STATES

The Debye-Hückel and DLVO theories [1–4] are justi-
fied for small electrostatic perturbations, where the am-
plitude of the normalized potential U = eΦ/T should be
smaller than unity. Here we present a generalized linear
theory, including the composition fluctuations in a mix-
ture solvent. To justify the linear treatment, we assume
that the degree of ionization α and the surface field γ are
both very small. Treating α and γ as small parameters,
we calculate U and the composition deviation,

ψ = φ− φ̄. (3.1)

to linear order in α or γ. From Eq.(2.24) the preferred
component is only weakly adsorbed on the colloid surface.
These deviations produce a change in the grand potential
Ω in Eq.(2.16) of second order (∝ α2, αγ, or γ2).

A. Linearized relations

In the limit of large cell volume V ≫ a3 or in the dilute
limit of colloid suspension, we may assume that φ, ni,
and U tend to φ̄, n0, and 0, respectively, exponentially
far from the colloids. From Eqs.(2.18) and (2.19) we then
have h = f ′(φ̄)−T

∑

i gφ̄n0 and µi = T ln(n0λ
3
i )−Tgiφ̄.

in terms of φ̄ and n0. From Eq.(2.20) we obtain

δn1 = n1 − n0
∼= n0(g1ψ − U),

δn2 = n2 − n0
∼= n0(g2ψ + U). (3.2)

From Eq.(2.25) the expansion of α is of the form,

α ∼= ᾱ[1 + ∆1ψ + U ], (3.3)

where the surface values of ψ and U are used and ᾱ =
K(φ̄)/n0 is the degree of ionization in the homogeneous
case assumed to be very small. The deviation δα = α− ᾱ
is already of second order. We shall see that δα gives rise
to a third order contribution to Ω and may be neglected
in our linear theory. The colloid surface is under the
fixed charge condition in the linear theory. We should
calculate U in the whole space imposing ∇2U = 0 in the
colloid interior, while ψ, n1, and n2 are defined only in
the colloid exterior.
In terms of the average dielectric constant ε̄ = ε(φ̄),

we introduce the Bjerrum length ℓB and the Debye wave
number κ by

ℓB = e2/ε̄T, (3.4)

κ = (8πn0e
2/ε̄T )1/2 = (8πℓBn0)

1/2. (3.5)

Without coupling to the ion densities, the correlation
length of the composition fluctuations is given by ξ =
(C/τ)1/2 in one-phase states with

τ =
1

T
f ′′(φ̄) =

1

v0
[

1

φ̄(1 − φ̄)
− 2χ], (3.6)

where f ′′(φ) = ∂2f/∂φ2 and use is made of Eq.(2.4).
In the bulk region of the colloid exterior, Eqs.(2.5) and

(2.18) are linearized with respect to ψ and U as

∇2U = κ2(U − gaψ), (3.7)

C∇2ψ = (τ − τc)ψ + 2n0ga(U − gaψ), (3.8)

where we introduce two coefficients,

τc = n0(g1 + g2)
2/2, (3.9)

ga = (g1 − g2)/2. (3.10)

As can be seen from the structure factor of the composi-
tion in Appendix A, τc is the shift of the spinodal in the
long wavelength limit due to the selective solvation. The
size of τc can be significant even for small n0 for g1 ≫ 1
and g2 ≫ 1, which agrees with experimental large shits
of the coexistence curve induced by hydrophilic ions [42].
We assume τ > τc to ensure the thermodynamic stability.
The correlation length of ψ is changed by ions as

ξ̄ = [(τ − τc)/C]
−1/2, (3.11)

which grows as τ → τc or as χ → χs ≡ 1/2φ̄(1 − φ̄) −
v0τc/2. The ga arises from the asymmetry of the selective
solvation between the cations and the anions, giving rise
to the coupling of U and ψ.
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On the colloid surface, Eqs.(2.8) and (2.24) yield the
linearized boundary conditions,

ε̄(ν · ∇U)+ − εp(ν · ∇U)− = 4πe2σ̄/T, (3.12)

(ν · ∇ψ)+ = γ̄/C, (3.13)

where (· · · )+ and (· · · )− denote taking the values im-
mediately outside and inside the colloid surface, respec-
tively. The σ̄ and γ̄ are averages defined by

σ̄ = σ0ᾱ, (3.14)

γ̄ = γ −∆1σ̄. (3.15)

In fd in Eq.(2.28) we use the expansion ln(1−α) = −α+
α2/2+ · · · , where α behaves as in Eq.(3.3) and α2 ∼= ᾱ2.
Up to the second order we find

fd/Tσ0 = −αµ1/T − ᾱ− ᾱ∆1ψ + ᾱ2/2. (3.16)

Thus the last two terms in the grand potential Ω in
Eq.(2.16) become Fs +

∫

dSµ1σ = T
∫

dSγ̄ψ+const. in
terms of γ̄, where the first term in the right hand side
of Eq.(3.16) cancels to vanish. Hence the second-order
contributions to Ω are written as

∆Ω

T
=

∫ ′

dr

[

τ

2
ψ2 +

C

2
|∇ψ|2 +

∑

i

(

δn2
i

2n0
− giψδni

)]

+

∫

drε̄E2/8πT +

∫

dSγ̄ψ

=
1

2

∫

dS(γ̄ψ − σ̄U), (3.17)

where the bulk integrations in the first two lines are trans-
formed into the surface ones in the third line with the aid
of Eqs.(3.7) and (3.8). With the third line, we thus need
to calculate only the surface averages of ψ and U at fixed
surface charge in the linear theory.

B. Two characteristic wave numbers q1 and q2

In the colloid exterior, there arise two characteristic
wave numbers, denoted by q1 and q2. If ga = 0, U varies
on the scale of the Debye screening length κ−1, where κ
is defined in Eq.(3.5), and ψ varies on the scale of ξ̄ in
Eq.(3.11). For ga 6= 0, they are expressed as

q1 = κλ
1/2
1 , q2 = κλ

1/2
2 . (3.18)

From Eqs.(3.7) and (3.8) λ1 and λ1 are the solutions of
the quadratic equation,

λ2 − (M2 + 1− γ2p)λ+M2 = 0. (3.19)

Therefore, λ1 and λ1 satisfy

λ1 + λ2 =M2 + 1− γ2p, λ1λ2 =M2. (3.20)

We also find (λ1 − 1)(λ2 − 1) = γ2p, which will be used in
the following calculations. Here the two parameters M
and γp are defined by

M = 1/κξ̄ = [(τ − τc)/C]
1/2/κ, (3.21)

γp = |ga|/(4πCℓB)
1/2, (3.22)

where M → 0 as τ → τc and γp conveniently represents
the solvation asymmetry of the two ion species. That
is, γp should be smaller than unity for usual hydrophilic
ion pairs [18, 19, 37]. In Appendix A, we shall see that
our system is linearly unstable for γp > M + 1 against
charge-density-wave formation, so we limit ourselves to
the region γp < M + 1 in one-phase states. In Fig.1, we
display q1/κ and q2/κ in the M -γp plane.
Some typical cases are as follows. (i) As ga → 0, we

have q1 ∼= κ and q2 ∼= ξ̄−1. (ii) Near the criticality,
we have κξ̄ ≫ 1 or M ≪ 1. Furthermore, supposing
hydrophilic ions, we assume that γp is not close to unity
and the inequality 1− γ2p ≫M holds. We then find

q1 ∼= κ(1− γ2p)
1/2, q2 ∼= ξ̄−1(1− γ2p)

−1/2, (3.23)

where q1 ≫ q2 or λ1 ≫ λ2. (iii) As shown in Fig.1, q1
and q2 are complex conjugates in the region |M − 1| <
γp < M + 1. From Eq.(3.19) the real part qR =Re(q1)
and the imaginary part qI =Im(q1) are calculated as

qR = [(M + 1)2 − γp
2]1/2κ/2,

qI = [γp
2 − (M − 1)2]1/2κ/2. (3.24)

Oscillatory behavior appears for qI > qR or for γp
2 >

M2 + 1. As we approach the spinodal line or as M →
γp−1 with γp > 1, qR becomes small as (M −γp+1)1/2,

while qI tends to nonvanishing (κ/ξ̄)1/2.

C. Profiles around a single colloid particle

In the presence of a single colloid with radius a, we ob-
tain the fundamental profiles U = U0(r) and ψ = ψ0(r)
induced by nonvanishing γ̄ and σ̄ from the boundary
conditions (3.12) and (3.13). In the large system limit
V ≫ a3, they are expressed as linear combinations of two
Yukawa functions, e−q1(r−a)/r and e−q2(r−a)/r, where r
is the distance from the colloid center. As will be shown
in Appendix B, they are of the forms,

U0 =
gaB1e

−q1(r−a)

(1− λ1)(1 + q1a)r
−

gaB2e
−q2(r−a)

(1− λ2)(1 + q2a)r
,

ψ0 =
B1e

−q1(r−a)

(1 + q1a)r
−
B2e

−q2(r−a)

(1 + q2a)r
. (3.25)

The coefficients B1 and B2 are defined by

Bi = a2[γ̄(1− λi)− σ̄ga]/C(λ1 − λ2). (3.26)

In Appendix A, we will also express the correlation func-
tions of the composition and the ion densities as linear
combinations of these Yukawa functions.
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FIG. 1: (Color online) Real and imaginary parts of q1/κ and
q2/κ in the plane of γp and M = 1/κξ̄ in the linear theory.
Here q1 and q2 are positive for γp < |M − 1| (in blue) and
are complex conjugates for |M − 1| < γp < M + 1 (in red),
while the system is unstable for γp > M+1 (in white). These
three regions are depicted in the right bottom panel, where
the profiles and the interaction free energy will be shown at
four × points (A), (B), (C) and (D) in Fig.2 and those at
three • points (E), (F), and (G) in Fig.3 in the linear theory.

We examine some limiting cases. (i) As ga → 0, we
find λ1 → 1, λ2 →M2, and

U0
∼= Q̄

ℓBe
−κ(r−a)

(1 + κa)r
, ψ0

∼= −γ̄
a2e−(r−a)/ξ̄

C(1 + a/ξ̄)r
, (3.27)

where U0 is the Debye-Hückel form [1–4] with Q̄ being
the average charge of a colloid particle,

Q̄ = −4πa2σ̄e. (3.28)

(ii) We assume |qi|a≪ 1 and |qi|(r− a) ≪ 1, which hold
in the limit of small qi. Even for ga 6= 0, Eq.(3.25) yields
the Coulombic behavior,

U0
∼= Q̄ℓB

1

r
, ψ0

∼= −(γ̄a2/C)
1

r
, (3.29)

which follow from the relations B1 − B2 = −γ̄a2/C and
B1/(1 − λ1)− B2/(1− λ2) = −4πℓBσ̄a

2/ga. (iii) Let us
approach the instability line M = γp − 1 in Fig.1. In
this case, both U0 and ψ0 grow as Im[(λ1 − λ2)

−1] =
−1/2qIqR ∝ (M − γp + 1)−1/2. In this limit, the linear
theory is valid only for very small σ̄ and γ̄.

D. Interaction between two colloid particles

We suppose two colloid particles of the same species
with radius a. In Appendix B, we will derive the inter-
action free energy Fint from ∆Ω in Eq.(3.17) as a linear
combination of two Yukawa functions, e−q1(d−2a)/d and
e−q2(d−2a)/d, where d is the separation distance between
the two colloid centers longer than 2a. We express it as

Fint

T
= 4πa4

[

E1e
−q1(d−2a)

(1 + q1a)2d
−
E2e

−q2(d−2a)

(1 + q2a)2d

]

, (3.30)

where the coefficients E1 and E2 are defined by

Ei =
[γ̄(1− λi)− σ̄ga]

2

C(1 − λi)(λ1 − λ2)
. (3.31)

Notice that Fint is independent of the colloid dielectric
constant εp. In Appendix B, we can see that εp appears
in the third order contribution.
Some limiting cases are as follows. (i) In the limit of

weak solvation g1 → 0 and g2 → 0, we haveE1 → 4πℓBσ̄
2

and E2 → γ̄2/C, leading to a decoupled expression,

Fint = FDLVO + Fad

=
Q̄2e−κ(d−2a)

ε̄(1 + κa)2d
− 4π

Ta4γ̄2e−(d−2a)/ξ

C(1 + a/ξ)2d
. (3.32)

The first term is the DLVO interaction FDLVO in Eq.(1.2)
[1–4]. The second term represents the adsorption-
induced attraction Fad for small γ̄. For neutral colloids,
we have γ̄ = γ and h1 = −Tγ to find the expression (1.5)
with Aad = 4πTγ2/C. Note that the linear theory is not
applicable very close to the criticality [28], as stated be-
low Eq.(1.5). (ii) When |qi|a ≪ 1 and |qi|(d − 2a) ≪ 1,
we use E1 − E2 = 4πℓBσ̄

2 − γ̄2/C to obtain

Fint
∼= 4πTa4(4πℓBσ̄

2 − γ̄2/C)/d. (3.33)

(iii) Near the criticality and for hydrophilic ions, we may
assume M ≪ 1 and 1 − γ2p ≫ M , where q1 and q2 are
given by Eq.(3.23). Then Fint in Eq.(3.30) takes the same
form as the decoupled expression (3.32):

Fint =
Q̄2

ee
−q1(d−2a)

ε̄(1 + q1a)2d
− 4π

Ta4γ̄2ee
−q2(d−2a)

C(1 + q2a)2d
. (3.34)

where Q̄ and γ̄ in Eq.(3.32) have been replaced by Q̄e

and γ̄e defined by

Q̄e = Q̄(1− gaγ̄/4πCℓBσ̄)/
√

1− γ2p,

γ̄e = (γ̄ − σ̄ga)/
√

1− γ2p. (3.35)

(v) When q1 and q2 are complex conjugates in the region
|M − 1| < γp < M + 1 in Fig.1, Eq.(3.30) gives

Fint = 8πTa4 exp[−qR(d− 2a)]
1

d
×{J cos[qI(d− 2a)] +K sin[qI(d− 2a)]}, (3.36)
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FIG. 2: (Color online) Results of the linear theory with
a = 600a0 for hydrophilic ions with γp = 0.23, ga = 2,
σ̄ = 0.001a−2

0 , and κ = 0.1a−1
0 , where M is (A) 0.4, (B) 0.5,

(C) 1, and (D) 3 (see Fig.1 for their locations in the M -γp
plane). Top: Normalized potential U0(r) (left) and compo-
sition deviation ψ0(r) (right) in Eq.(3.25) vs r/a0 around a
colloid. Left bottom: Interaction free energy Fint(d) between
two colloids in Eq.(3.30) vs d/a0. Right bottom: Minimum of
Fint, denoted by Fmin

int , in the M -γ̄/σ̄ plane with the common
σ̄, κ, and a. It is zero (attained at infinity) in the right (for
M & 1.3) and is negative in the left (for smaller M).

where the coefficients J andK are the real and imaginary
parts of E1/(1+ q1a)

2. On approaching the spinodal line
γp =M + 1, K grows as 1/qR but J remains finite.
For neutral colloids, we compare the van der Waals in-

teraction Fvdw(d) in Eq.(1.2) and the adsorption-induced
interaction Fad(d) in Eq.(1.5) or (3.32) at the closest sep-
aration d− 2a = a0, where γ̄ = γ and ξ̄ = ξ. If C ∼ a−1

0

[39], we estimate their ratio as

Fad

Fvdw
∼ 102(a0aγ)

2T/AH (a≫ ξ)

∼ 102(a0ξγ)
2T/AH (a ≪ ξ). (3.37)

Even at the closest separation, the van der Waals attrac-
tion is negligible when AH/T is smaller than (10a0aγ)

2

for a≫ ξ and than (10a0ξγ)
2 for a≪ ξ.

E. Plotting analytic results in the linear theory

On the basis of the analytic expressions (3.25) and
(3.30), we plot U0(r) and ψ0(r) around a single colloid

FIG. 3: (Color online) Results of the linear theory with
a = 600a0 for antagonistic ions with γp = 1.727, ga = 15,
γ̄/σ̄ = −1, and κ = 0.1a−1

0 , where M is (E) 0.769, (F) 0.833,
and (G) 0.909 (see Fig.1 for their locations). Left: Normal-
ized potential U0(r)/a

2σ̄ vs r/a0 around a colloid. Right:
Normalized interaction free energy Fint(d)/a

4σ̄2 between two
colloids from Eq.(3.30) vs d/a0.

and Fint between two colloids for variousM . Assuming a
large radius a = 600a0, we set ℓB = 3a0 and κ = 0.1a−1

0 ,

where a0 = v
1/3
0 . Then n0 = 1.33× 10−4v−1

0 .
In Fig.2, with hydrophilic ions, we set γp = 0.23,

ga = 2, σ̄ = 0.001a−2
0 , and γ̄/σ̄ = −2. We can see that

ψ0 increases considerably with decreasingM , while U0 is
rather insensitive toM . Remarkably, the curves of Fint vs
d/a exhibit a negative minimum at an intermediate d for
small M . With these selected parameters, the DLVO in-
teraction FDLVO is equal to 1.061× 10−4Ta4σ̄2 = 13.75T
at d = 2a0.
In Fig.3, with antagonistic ions [18, 19, 37], we dis-

play U0(r)/a
2σ̄ and Fint(d)/Ta

4σ̄2 by setting γp = 1.727,
ga = 15, and γ̄/σ̄ = −1. As M → Mc = 0.727, U0(r)
and Fint(d) grow as stated below Eqs.(3.24) and (3.36).
Oscillatory relaxation is conspicuous close to the instabil-
ity. Here, the linear conditions, |U0| ≪ 1 and |ψ0| ≪ 1,
are ensured only by very small σ̄ and γ̄. Otherwise, the
nonlinear theory is required. In Fig.3, we thus divide U0

and Fint by a
2σ̄ and a4σ̄2, respectively.

IV. PRECIPITATION DUE TO HIGHLY

SELECTIVE SOLVATION

In a binary mixture in one-phase states, a highly se-
lective solute can induce precipitation of domains rich
in the preferred component [19, 24]. The solute can be
either a hydrophilic salt (such as NaCl) or a neutral hy-
drophobic solute. The equilibrium size of a precipitated
domain depends on the system size V (as can be known
from Eq.(4.8) below).
In the next section, we will show numerically that pre-

cipitation can occur on the colloid surface. Therefore, in
this section, we summarize and extend our previous the-
ory [24] to understand precipitation on the colloid sur-
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face. We suppose an experiment of very dilute colloid
suspension; then, the volume V assigned to each colloid
particle is the inverse droplet density n−1

D . For high col-
loid concentrations, colloids should interact collectively
due to the growth of wetting layers to form a floccuated
phase [6, 8, 9].

A. Bulk precipitation

For hydrophilic cations and anions, the phase behavior
of precipitation is little affected by charge density varia-
tions, because they are significant only at interfaces, col-
loid surfaces, or a container (see the right bottom panel of
Fig.10 as an example). Thus, neglecting the electrostatic
interaction, we may use results of a three component sys-
tem [24] by setting

n1 = n2 = n/2, (4.1)

g = (g1 + g2)/2. (4.2)

We assume the strong solvation condition g ≫ 1. In the
precipitated phase, called α, the water composition φα is
close to unity and the solute density nα is much larger
than the average n̄ = 2n0 by the factor eg(1−φ̄) [43]. The
precipitation effect is significant for not small g(1− φ̄).
Let us decrease n̄ in the presence of precipitated do-

mains. Then the volume fraction γα of phase α decreases
and eventually tends to zero as

γα = (n̄/np − 1)e−g(1−φ̄), (4.3)

where np is a minimum solute density for precipitation.
Its asymptotic expression for g ≫ 1 is given by

np = e−g(1−φ̄)G(φ̄, χ)/T. (4.4)

The function G(φ̄, χ) is a positive quantity defined by

G(φ̄, χ) = −f(φ̄)− (1 − φ̄)f ′(φ̄)

= −(T/v0)[ln φ̄+ χ(1− φ̄)2], (4.5)

where the second line follows from Eq.(2.4). Alterna-
tively, we may decrease χ at fixed φ̄ and n̄ in the presence
of precipitated domains. The volume fraction γα tends
to zero as χ approaches a lower bound χp = χp(φ̄, n̄).

From Eq.(4.4), χp satisfies n̄ = e−g(1−φ̄)G(φ̄, χp)/T. Use
of the second line of Eq.(4.5) gives

χp = −[ln φ̄+ eg(1−φ̄)v0n̄]/(1− φ̄)2. (4.6)

It also follows the relation,

χ− χp
∼= v0e

g(1−φ̄)(n̄− np)/(1− φ̄)2. (4.7)

Here n̄ appears in the combination eg(1−φ̄)n̄.
In Fig.4, we display χp vs φ̄ at n0 = 3 × 10−4v−1

0 .
The left panel gives the curves for g = 7, 8, 8.5, 9, 9.5,
and 10 in the range 0 < φ̄ < 0.47. With increasing g,

FIG. 4: (Color online) Minimum interaction parameter χp vs
φ̄ at n0 = 3 × 10−4v−1

0 in the range 0 < φ̄ < 0.47 for g =
7, 8, 8.5, 9, 9.5, and 10 from above (left) and in the range 0.4 <
φ̄ < 0.75 for g = 10 (right). Two-phase coexistence region (in
yellow) without solute is in the upper part. Spinodal curve
τ = τc is also written by dotted line (right).

the precipitation branch is suddenly detached downward
from the solvent coexistence curve. For g ≫ 1, they
are in excellent agreement with the asymptotic formula
(4.6) for χp. (The asymptotic formula (4.4) for np is
also a good approximation for g ≫ 1 [19, 24].) The
right panel gives the curve for g = 10 at the same n0

in the range 0.4 < φ̄ < 0.75. The curve is only slightly
outside the coexistence curve for φ̄ & 0.6 and touches the
spinodal curve τ = τc at (χ, φ̄) = (0.5187, 1.9728) [44].
We obtained these curves numerically from minimization
of the bulk free energy at 〈φ〉 = φ̄ and 〈n〉 = n̄, neglecting
the surface free energy. Thus these curves are those for
two-phase coexistence with a planar interface separating
the two phases.

B. Surface tension effect on a precipitated droplet

The surface tension σs between a precipitated droplet
and the surrounding solute-poor region is well-defined,
though the precipitation is a nonlinear effect of a highly
selective solute. It is of order σs ∼ T/a20 far from the
solvent criticality, being independent of the solute den-
sity. We here examine the surface tension effect on the
droplet stability.
We consider a single spherical droplet of phase α with

radius R in a large volume V . The droplet volume frac-
tion is then γα = v/V , where v = 4πR3/3. For n̄ > np

and at very small volume fraction γα ≪ e−g(1−φ̄), the
droplet free energy is expressed as [46, 47]

∆F = 4πσsR
2 − T (n̄− np)e

g(1−φ̄)v +
T n̄

2V
e2g(1−φ̄)v2

= 4πσs(R
2 − 2R3/3Rc +R6/3R4

m). (4.8)

In the first line, the first two terms constitute the stan-
dard droplet free energy in the nucleation theory and the
third term (∝ R6/V ) arises from the finite size effect [40].
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In the second line, we introduce a critical radius Rc and
a minimum radius Rm by

Rc = 2σse
−g(1−φ̄)/T (n̄− np)

= 2v0σs/[T (1− φ̄)2(χ− χp)], (4.9)

Rm = (3σsV/2πT n̄)
1/4e−g(1−φ̄)/2. (4.10)

where Eq.(4.7) is used in the second line of Eq.(4.9), Rc

grows as χ → χp, and Rm decreases with decreasing φ̄.

We estimate Rm ∼ (V a0/v0n̄)
1/4e−g(1−φ̄)/2 far from the

solvent criticality. Minimization of the second line of
Eq.(4.8) yields

(R/Rm)
4 = R/Rc − 1 > 0 (4.11)

for the equilibrium radius R. We require ∆F/4πσsR
2 =

(2−R/Rc)/3 < 0 to find R > 2Rc. Hence R > Rm from
Eq.(4.11) and Rm is the minimum radius of equilibrium
droplets in a finite system [46]. For Rm ≫ Rc, droplets
with radii much larger than Rm can appear as

R3 ∼= R4
m/Rc, (4.12)

where the right hand side is proportional to V and is
independent of σs in agreement with Eq.(4.3).
It also follows the condition Rm > 2Rc from Eq.(4.11)

[48], leading to lower bounds of n̄− np and χ− χp as

n̄− np > 4σse
−g(1−φ̄)/TRm, (4.13)

χ− χp > 4v0σs/TRm(1 − φ̄)2, (4.14)

for the formation of a droplet. Thus the bulk precipi-
tation curves n̄ = np and χ = χp are shifted upward

by amounts proportional to σs/Rm ∝ σ
3/4
s V −1/4 for

droplets with surface tension.
As an example, let us set V = 4× 109πa30/3 with C =

2a−1
0 , g = 10, n̄ = 6 × 10−4v−1

0 , and φ̄ = 0.41. The
surface tension is then σs = 0.06T/a20 as χ→ χp = 1.871
[24]. Thus we obtain np = 6 × 10−4 and Rm = 35.1a0.
The right hand side of Eq.(4.13) is 1.9× 10−5, while that
of Eq.(4.14) is 0.02.

C. Wetting layer formation on a colloid surface

A completely wetting layer can appear on a colloid sur-
face above a precipitation curve for the hydrophilic case
γ < 0 or for the hydrophobic case γ > 0 under the condi-
tion (2.29). In our numerical analysis, the precipitation
curve for a colloid is only slightly shifted upward from the
bulk curve χ = χp in the χ-φ̄ plane. We also recognize
that the precipitation curve is nearly independent of the
surface parameters γ and σ0 (see Figs.6 and 8).
We suppose that a colloid with radius a is com-

pletely wetted by a spherically symmetric layer with
thickness R − a. The volume fraction of phase α is
γα = 4π(R3 − a3)/3V in a volume V . For R − a ≫ a0,
we may treat the surface free energy between the colloid

surface and the wetting layer as a constant. As a general-
ization of Eq.(4.8), R is determined by minimization of a
free energy contribution Fwet. In terms of Rc in Eq.(4.9)
and Rm in Eq.(4.10), it is expressed as

Fwet

4πσs
= R2 − a2 −

2

3Rc
(R3 − a3) +

1

3R4
m

(R3 − a3)2

= R2
m

[

(q + s3)2/3 − s2 −
2Rm

3Rc
q +

q2

3

]

. (4.15)

The first line tends to Eq.(4.8) as a → 0. In the second
line, q and s are defined by

q = (R3 − a3)/R3
m, (4.16)

s = a/Rm. (4.17)

We treat q as an order parameter. In Eq.(4.15), the
selective solvation is accounted for in Rc and Rm, but
the electrostatic interaction is neglected. See Fig.18 in
Ref.[24] for q in the s-Rm/Rc plane (where s in Eq.(4.17)
is written as D). In the thin layer limit R3/a3−1 ≪ 1 or
for q ≪ s3, Fwet is expanded up to the third order with
respect to q as

Fwet

4πσsR2
m

= (1−
a

Rc
)
2q

3s
+ (3−

1

s4
)
q2

9
+

4q3

81s7
. (4.18)

Here the coefficients of the first two terms can vanish
at a/Rc = 1 and s = 3−1/4, where we predict tricriti-
cal behavior with varying χ or Rc. That is, q changes
continuously or discontinuously depending on whether
a > 3−1/4Rm or a < 3−1/4Rm.
For a > 3−1/4Rm, q becomes nonvanishing for 1 −

a/Rc < 0 or for R−1
c > a−1 continuously as a second-

order phase transition. From Eq.(4.9) this condition
yields a lower bound of χ− χp in the form,

χ− χp > 2v0σs/Ta(1− φ̄)2, (4.19)

which also follows if Rm is replaced by 2a in Eq.(4.14).
With further increasing a much above Rm or for s ≫ 1,
the first two terms in Eq.(4.18) gives q ∼= (a/Rc−1)/s or

R3/a3 − 1 ∼= (Rm/a)
4(a/Rc − 1), (4.20)

which holds for a/Rc − 1 ≪ (a/Rm)
4 because we have

assumed q ≪ s3 in setting up Eq.(4.18). The situation
a ≫ Rm can well happen in real systems particularly
for relatively small φ̄ (where Rm is decreased). In such
cases, the factor (Rm/a)

4 in Eq.(4.20) is small and the
wetting layer thickens slowly with increasing χ. On the
other hand, in the thick layer limit R ≫ a, R is given by
Eq.(4.12).
For a < 3−1/4Rm, q becomes nonvanishing discontinu-

ously as a first-order phase transition when 1 − a/Rc is
smaller than a small positive constant (∝ (s − 3−1/4)2

near the tricriticality). As a result, the lower bound of
χ−χp for precipitation is slightly smaller than the right
hand side of Eq.(4.19).
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In the above theory, we have examined the transition
between weakly adsorbed states and completely wetted
states. In the next section, however, we shall see that
a hydrophobic surface can be partially wetted by a non-
spherical water-rich layer at relatively small φ̄ and for
not very large γ (see Figs.16 and 17).

V. NUMERICAL RESULTS

In this section, we present numerical results on the
basis of our nonlinear theory in Sec.II with a single colloid
or two colloids placed at the center of a large cell. The
correlation length ξ̄ in Eq.(3.11) increases up to 14.1a0 at
χ = 1.965 in Fig.12, but it is only a few times longer than
a0 in the other examples far from the solvent criticality.

A. Parameter values selected

We set C = 2a−1
0 , ∆0 = 18, ∆1 = 12, ℓB =

e2/ε0kBT = 3a0, and ε1 = ε0. We use large ∆1, so the
degree of ionization α sensitively depends on the surface
composition from Eq.(2.25). Several values are assigned
to the density of ionizable groups. surface with γ > 0.
Because of the numerical convenience, the colloid radius
a is assumed to be rather small as

a = 15a0. (5.1)

We also performed simulations with a = 25a0 to obtain
essentially the same results, though the corresponding
figures are not shown.

In Subsecs.VB-D, we treat hydrophilic ions with g1 =
11 and g2 = 9 at v0n0 = 3 × 10−4 in Figs.5-17. Re-
call that we have introduced the Debye wavenumber κ in
Eq.(3.5) and the asymmetry parameter γp in Eq.(3.22)
as functions of the average composition φ̄. Here, we have
κ = 0.127a−1

0 and γp = 0.135 for φ̄ = 0.4. In Subsec.VE,
we treat antagonistic ion pairs with g1 = −g2 = 13
at v0n0 = 10−3 in Figs.18 and 19, where we have
κ = 0.233a−1

0 and γp = 1.76 for φ̄ = 0.4.

In the case of a single colloid, our cell is a large sphere
with radius 103a0 in the spherically symmetric geome-
try. In the case of two colloids, it is a cylinder with
radius 256a0 and height 512a0 in the axisymmetric ge-
ometry. Since a = 15a0, the colloid volume fraction is
3.375× 10−6 for a single colloid and is 1.341× 10−4 for
two colloids. For hydrophilic ions and at φ̄ = 0.41, Rm

in Eq.(4.10) is 35.1a0 in the single colloid case [43] and
13.0a0 in the two colloid case. In agreement with the dis-
cussion in Subsec.IVC, the layer formation due to precip-
itation is discontinuous for the single colloid case (where
a < 3−1/4Rm) but is continuous for the two colloid case
(where a > 3−1/4Rm).

FIG. 5: (Color online) ψ(r) = φ(r) − φ̄ and U(r) vs r/a0
around a colloid from the linear and nonlinear theories below
the precipitation line at v0n0 = 3×10−4. Upper plates: Those
for a hydrophobic surface with γ = 0.08a−2

0 at σ0 = 0.018a−2
0 ,

where |ψ| at the surface is smaller than 1/gi and |U | is at
most of order unity so that the linear results fairly agree with
the nonlinear results. Lower plates: Those for a hydrophilic
surface with γ = 0.2a−2

0 at small σ0 = 0.003a−2
0 . From ψ ∼

0.3 as r → a, the cations are considerably accumulated near
the surface and U becomes positive in the nonlinear theory,
while U remains negative in the linear theory.

B. Comparison of the linear and nonlinear theories

We compare the profiles of ψ(r) = φ(r) − φ̄ and
U(r) = eΦ(r)/T from the linear theory in Sec.III and
those from the nonlinear theory in Sec.II below the bulk
precipitation curve χ < χp. The linear theory is based
on the assumptions (3.2) and (3.3) and is thus valid only
for |ψ| . 1/|gi| and |U | . 1 near the surface.
In the upper plates of Fig.5, we suppose hydrophilic

ions and a hydrophobic surface with γ = 0.08a−2
0 . The

other parameters are χ = 1.908, φ̄ = 0.425, and σ0 =
0.018a−2

0 . Here α = 0.25 from the nonlinear calculation,
leading to σ̄ = 0.0045 and γ̄ = 0.026, which were then
used in the linear calculation. In this case, giφ and U are
both decreased near the surface and their amplitudes are
not large compared to unity. Thus the linear results are
in fair agreement with the nonlinear results.
In the lower plates of Fig.5, we suppose hydrophilic

ions and a hydrophilic surface with γ = −0.2a−2
0 . The

other parameters are χ = 1.869, φ̄ = 0.412, and σ0 =
0.003a−2

0 . We have α = 0.992 in the nonlinear calcula-
tion, which gives σ̄ = 0.00297a−2

0 and γ̄ = −0.236a−2
0 . In



12

this case, φ is a few times larger than 1/gi ∼ 0.1 near the
surface, leading to considerable ion accumulation, which
cannot be accounted for in the linear theory. Further-
more, the cations are more enriched than the anions near
the surface, leading to positive U in the nonlinear theory,
while U remains negative in the linear theory.
Comparison of the linear and nonlinear theories will

also be made in the presence of two colloids at φ̄ = 0.5.
See explanations of Fig.12 below.

C. Prewetting and precipitation on a colloid

With hydrophilic ions, there appear two transition
lines of prewetting and precipitation for each colloid in
the φ̄-χ plane. They are located far below the solvent
coexistence curve for strong selective solvation. The
prewetting line sensitively depends on γ and σ0 (as will be
seen in Figs.6 and 8 below). It starts from a point on the
precipitation line ending at a surface critical point, across
which there are discontinuities in the physical quanti-
ties. The transition across the precipitation line for a
colloid is first-order for the present parameters. We fur-
ther confirmed that the precipitation line exhibits no ap-
preciable dependence on γ and σ0 and approaches the
bulk one χ = χp with increasing a for a < 3−1/4Rm. If

a > 3−1/4Rm, the precipitation transition becomes con-
tinuous and it is difficult to precisely determine the loca-
tion of the precipitation line.

1. Hydrophilic surface with γ = −0.2a−2
0

In our previous work[24], we examined one example of
a hydrophilic colloid with γ = −0.2a−2

0 in the presence of
hydrophilic ions, where precipitation and prewetting are
first induced on the colloid surface before in the bulk re-
gion. Again with γ = −0.2a−2

0 , the left panel of Fig.6 dis-
plays three examples of the prewetting line corresponding
to a2σ0 = 0, 0.003, and 0.005, around which α is nearly
equal to unity and σ ∼= σ0. A first-order precipitation
line is also shown (broken line), which is independent of
σ0. The right panel of Fig.6 shows the preferential ad-
sorption Γ around a colloid as a function of χ for several
φ̄ at a2σ0 = 003. Since φ(r) tends to a constant φ(L) far
from the colloid, Γ is calculated from

Γ =

∫ ′

dr[φ(r)− φ(L)], (5.2)

where the integration is in the colloid exterior. With
precipitation, we have Γ ∼ 4π(1 − φ̄)(R3 − a3)/3 for a
single colloid.
In Fig.7, profiles of φ(r) and the total ion density

n1(r)+n2(r) are displayed at four points (A)-(D) marked
in Fig.6, where γ = −0.2a−2

0 , φ̄ = 0.412, and σ0 =
0.003a−2

0 . We can see a weakly discontinuous prewetting
transition between (A) and (B) and a strongly discontin-
uous precipitation transition between (C) and (D). The

FIG. 6: (Color online) Prewetting and precipitation transi-
tions on a hydrophilic colloid surface with a = 15a0 and
γ = −0.2a−2

0 . Left:Colloidal precipitation line (red broken
line) and prewetting lines for a20σ0 = 0, 0.003, and 0.005,
around which α ∼= 1 here. Right: Normalized adsorption
Γ/(4πa3/3) vs χ at a20σ0 = 0.003 for (a) φ̄ = 0.42, (b) 0.4176,
(c) 0.415, (d) 0.412, and (e) 0.41. No phase transition appears
on path (a), the prewetting critical point is on path (b), and
the transition is discontinuous for paths (c), (d), and (e).

FIG. 7: (Color online) φ(r) (left) and v0(n1(r)+n2(r)) (right)
at four points (A)-(D) marked in Fig.6 for a hydrophilic col-
loid surface with γ = −0.2a−2

0 and φ̄ = 0.412. There is a
weakly discontinuous prewetting transition between (A) and
(B) and a strongly discontinuous precipitation transition be-
tween (C) and (D).

value of χ at this precipitation transition is 1.8945, while
it is 1.8926 for d = 25a0 with the other parameters held
at the same values (not shown here). These values of χ
are slightly larger than χp = 1.8795 at φ̄ = 0.412.

2. Hydrophobic surface with γ = 0.08a−2
0

The prewetting behavior is more exaggerated for a
weakly hydrophobic surface under Eq.(2.29) than for a
hydrophilic surface. In Subsec.IIC, we have discussed
the changeover from a hydrophobic to hydrophilic sur-
face with progress of ionization. Here, we examine the
prewetting and precipitation transitions in the weakly
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FIG. 8: (Color online) Phase diagram of prewetting and pre-
cipitation transitions on a hydrophobic colloid with a20γ =
0.08. Three prewetting lines, corresponding to a20σ0 = 0.015,
0.018 and 0.021, are more extended than in the hydrophilic
case in Fig.6. Precipitation on the colloid surface occurs above
the broken red line. See Fig.9 for α and Γ on vertical paths
(a),. . . , and (g).

hydrophobic case with γ = 0.08a−2
0 in Figs.8-17 and also

in the strongly hydrophobic case with γ = 0.2a−2
0 in the

lower plates in Fig.12.
In Fig.8, we display three examples of the prewetting

line corresponding to a2σ0 = 0.015, 0.018, and 0.021,
which are pushed downward with increasing σ0. They
even bend downward and much extend outside the bulk
precipitation line. The precipitation line for a colloid
(broken line) is inside the bulk precipitation region and
is independent of σ0 (as in Fig.6).
In Fig.9, we show the degree of ionization α and the ex-

cess adsorption Γ defined in Eq.(5.2) as functions of χ for
various φ̄. In the upper plates, the discontinuities across
the prewetting line increase with increasing χ, where the
critical point is located at the smallest χ on the line. (In
sharp contrast, they decrease with increasing χ in the
hydrophilic case in Fig.6.) In the lower plates, α and Γ
are shown along paths, (e), (f), and (g), where (e) and (f)
pass the prewetting and precipitation lines but path (g)
passes the precipitation line only. In particular, on path
(e), α changes from about 0.2 to values slightly smaller
than unity across the prewetting line or between (A) and
(B), while Γ changes greatly across the precipitation line
or between (C) and (D). The Γ/(4πa3/3) is −0.0137 at
(A), 0.417 at (B), 1.30 at (C), and 19.1 at (D).
The jump of Γ between (C) and (D) is very large and

can be explained by minimization of Fwet in Eq.(4.15)
[45].
In Fig.10, the profiles of φ(r), U(r), n1(r), and n1(r)−

n2(r) are shown at points (A), (B), (C), and (D) on path
(e) in the right bottom panel of Fig.9. At (A), which is

FIG. 9: (Color online) Degree of ionization α (left) and nor-
malized adsorption Γ/(4πa3/3) (right) vs χ on a hydrophobic
colloid with a20γ = 0.08 and a20σ0 = 0.018 along paths (a)
φ̄ = 0.46, (b) 0.455, (c) 0.45, (d) 0.44, (e) 0.425, (f) 0.415,
and (g) 0.41 (see their locations in Fig.8). Top: Behavior
around the prewetting line at a20σ0 = 0.018 (middle line in
Fig.8) along paths (a),(b), (c), and (d). Bottom: Large jumps
across the precipitation line along the paths (e),(f), and (g)
(dotted lines). On path (e), there is a prewetting transition
between (A) and (B) and a precipitation transition between
(C) and (D). Path (f) also passes the two transitions. Path
(g) passes only the precipitation line.

below the prewetting line, the colloid surface is still hy-
drophobic with a negative surface value of φ′ = ∂φ/∂r,
U(r) is negative, and the ions are weakly accumulated
near the surface. At (B), which is slightly above the
prewetting line, the surface is hydrophilic, U has a small
maximum, and the cations and the anions are both en-
riched near the surface. At (D) there is a thick wetting
layer enriched with ions. In the right bottom panel, the
charge accumulation near the surface and the electric
double layer (in the inset) are shown, which are small
because of small difference g1 − g2 = 2 in this case. In
passing, the value of χ at the precipitation transition is
1.9329, while it is 1.9320 for d = 25a0 (not shown here).
These values are only slightly larger than χp = 1.9246.
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FIG. 10: (Color online) φ(r) (left top), U(r) (right top),
v0n1(r) on a semi-logarithmic scale (left bottom), and
v0(n1(r)− n2(r)) (right bottom) on a hydrophobic colloid at
four points (A),(B), (C), and (D) on path (e) in Fig.9, where
a20γ = 0.08, a20σ0 = 0.018, and φ̄ = 0.425. A prewetting tran-
sition occurs between (A) and (B), while a precipitation tran-
sition between (C) and (D). At (B), (C), and (D), the ions are
enriched in the layer. In the inset in the right bottom plate,
a small electric double layer is shown in the interface region
around r ∼= 40a0 at (D).

D. Two colloids and their interaction free energy

for hydrophobic surface and hydrophilic ions

Placing two hydrophobic colloids along the z axis, we
now calculate the profiles of φ and U and the interaction
free energy Fint(d) as a function of the distance d between
the two colloid centers in Figs.11-17. The profiles depend
on r = (x2 + y2)1/2 and z. The degree of ionization
α = α(θ) depends on the angle θ with respect to the z
axis. Its angle average is written as

〈α〉 =

∫ π

0

dθ sin θ α(θ). (5.3)

The precipitation transition is continuous for the present
parameters, as stated at the beginning of this section.

1. Crossover from repulsive to attractive interaction

First, for φ̄ = 0.425, we examine the behavior around
the prewetting transition with a20γ = 0.08 and a20σ0 =
0.018. In Fig.11, the left panel gives Fint vs d for

χ = 1.88 and 1.92. Remarkably, it is small and posi-
tive for χ = 1.88 but is negative and is much amplified
for χ = 1.92. The right panel displays the corresponding
φ(r, z) at d = 44a0 = 2.93a, where (Γ/(4πa3/3), 〈α〉) =
(−0.0198, 0.305) for χ = 1.88 and (1.30, 0.941) for χ =
1.92 with a big difference in Γ. The screening length κ−1

in Eq.(3.5) is 7.94a0, while the correlation length ξ̄ in
Eq.(3.11) is 2.71a0 for χ = 1.88 and 3.23a0 for χ = 1.92.
The surface remains hydrophobic (φ′ > 0) for χ = 1.88
but becomes hydrophilic (φ′ < 0) for χ = 1.92.
On the other hand, at the critical composition φ̄ = 0.5,

there is no prewetting transition, though the precipita-
tion occurs for χ > χp = 1.9675, as can be seen in Fig.4.
The instability point τ = τc occurs at χ = 1.97 since
v0τc = 0.06 (see Eqs.(3.9) and (3.11)). Thus, at φ̄ = 0.5,
the physical quantities change continuously with vary-
ing χ below χp. In Fig.12, we show Fint vs d in the
left and the corresponding φ(r, z) at d = 44a0 = 2.93a
in the right for φ̄ = 0.5. The screening length κ−1 is
8.14a0, while the correlation length ξ̄ is 1.14a0 for χ = 1.2
and 14.1a0 for χ = 1.965. (i) The upper panels are
for the weakly hydrophobic case with a20γ = 0.08 and
a20σ0 = 0.018, where (Γ/(4πa3/3), 〈α〉) = (0.063, 0.65)
for χ = 1.2 and (3.15, 0.98) for χ = 1.965. The sur-
face is weakly hydrophilic at χ = 1.2 and is strongly
hydrophilic at χ = 1.965. (ii) The lower plates are
for the strongly hydrophobic case with a20γ = 0.2 and
a20σ0 = 0.01, where (Γ/(4πa3/3), 〈α〉) = (−0.093, 0.64)
for χ = 1.2 and (−1.31, 0.32) for χ = 1.965. The adsorp-
tion of the oil component is enhanced on approaching the
criticality.
In the weakly hydrophobic case in the upper plates in

Fig.12, the linear theory fairly holds at χ = 1.2, while
it breaks down at χ = 1.965. In fact, Fint(d)/kBT at
d ∼= 2a is 3.71 (linear theory) and 2.38 (nonlinear theory)
for χ = 1.2, while it is -22.4 (linear theory) and -3.44
(nonlinear theory) for χ = 1.965. The surface value of
ψ = φ−φ̄ is about 0.02 for χ = 1.2 and 0.25 for χ = 1.965,
while U ∼ −1 both for these cases.

2. Bridged and disconnected wetting layers

Next, we examine the wetting layer behavior after the
precipitation transition in Figs.13-15 for φ̄ = 0.425. In
Fig.13, the profiles of φ(r, z) and U(r, z) are presented
above the precipitation line with the same parameter val-
ues as in Fig.11. Here we have thick wetting layers on the
two colloids and they are bridged for d = 80a0 = 5.33a
(top plates) and are disconnected for 102a0 = 6.8a (bot-
tom plates). In Fig.14, the interaction free energy Fint(d)
is shown as a function of d, where the three curves cor-
respond to χ = 1.94, 1.95, and 1.96. At relatively short
separation d = 44a0, for instance, Γ increases with in-
creasing χ as Γ/(4πa3/3) = 3.87, 7.20, and 23.3, respec-
tively. We recognize that the wetting layers are bridged
for relatively small d but are disconnected for large d,
exhibiting hysteresis. The Fint(d)/T assumes negative
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FIG. 11: (Color online) Normalized interaction free energy
Fint(d)/T vs normalized separation distance d/a0 (left) and
φ(r, z) at d = 44a0 = 2.93a (right) for φ̄ = 0.425, where a20γ =
0.08, and a20σ0 = 0.018. The system is below a prewetting line
at χ = 1.88 and above it at χ = 1.92, where Fint changes its
sign from positive to negative. The surface is hydrophobic
with φ′ = ν · ∇φ > 0 (see Eq.(2.24)) at χ = 1.88, but is
hydrophilic with φ′ < 0 due to an increase in α at χ = 1.92.
The color represents φ according to the color bar attached.

values of order −100 while bridged, but it becomes very
small once detached. For larger colloid radii, the value
of Fint(d)/T should be much more amplified (∝ a3). In
Fig.15, the hysteretic transition behavior is illustrated
between the bridged and disconnected sates. That is, in
an interval of d, we find two linearly stable profiles, where
one is metastable with a higher Fint(d).
It is worth noting that Hopkins et al. [14] also found a

bridging of adsorption layers of two approaching neutral
colloid particles in a mixture solvent close to the coexis-
tence curve.

3. Partial wetting on hydrophobic surface

In the previous examples of hydrophobic colloids, the
surface is in a completely wetted state above the precipi-
tation line in the composition range φ̄ = 0.4− 0.5. How-
ever, for smaller φ̄, a hydrophobic colloid surface can be
partially wetted if γ is not very large.
In Fig.16, at φ̄ = 0.3, we display such composition

profiles φ(r, z) around two hydrophobic colloids at d =
44a0 = 2.93a by changing χ. The other parameters are
common to those in Figs.11 and 13. For χ > χp = 1.12,
there appears a water-rich region partially wetting the
colloid surface. The surface is partially wetted for χ =
1.25, 1.55, and 1.85, but is completely covered by the
water-like component at χ = 2. Here, α in the non-
wetted regions is 0.082, 0.058, and 0.051 for χ = 1.85,
1.55, and 1.25, respectively, while α is nearly equal to
unity in the wetted surface regions. In these examples,
the number of the counterions from the wetted surface
is only about 0.4% of the number of the cations in the
wetting water-rich region, where the latter is about 5600
for χ = 1.25.
In Fig.17, we vary d at φ̄ = 0.3 and χ = 1.55 to see

FIG. 12: (Color online) Normalized interaction free energy
Fint(d)/kBT vs normalized separation distance d/a0 (left) and
φ(r, z) at d = 44a0 = 2.93a (right) at the critical composition
φ̄ = 0.5, where there is no prewetting transition. Top: Those
for (originally) weakly hydrophobic surface with a20γ = 0.08
and a20σ0 = 0.018 at χ = 1.2 and χ = 1.965. Here Fint

changes its sign on approaching the solvent criticality The
surface becomes hydrophilic (φ′ < 0) weakly for χ = 1.2 and
strongly for χ = 1.965 due to ionization. Bottom: Those
for strongly hydrophobic surface with a20γ = 0.2 and a20σ0 =
0.01 at χ = 1.2 and χ = 1.965. Here the surface remains
hydrophobic even for full ionization.

how the partial wetting of two hydrophobic colloids is
changed between bridged and disconnected states. In
the left panel, Fint(d) is displayed as a function of d,
where hysteresis is exhibited between these two states.
In the right panel, we show φ(r, z) in the connected case
at d = 60a0 and in the disconnected case at at d = 72a0.
In the latter case, a water-rich droplet is partially wetting
the left colloid. In these cases, α is 0.99 in the wetted
part and about 0.05 in the nonwetted part.

E. Antagonistic ions

With antagonistic ions added, oscillatory response can
arise against local disturbances even if the system is in
a homogeneous state in the bulk region, as has been
discussed in the linear theory in Sec.III. Here, we set
g1 = −g2 = 13, a20γ = 0.2, a20σ = 0.016, and φ̄ = 0.5.
In Fig.18, we show φ(r) and U(r) as functions of r/a0

around a single colloid, where three curves correspond
to χ = 1.961, 1.965, and 1.966. Oscillatory behavior is
amplified with increasing χ. The system tends to a ho-
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FIG. 13: (Color online) φ(r, z) (left) and U(r, z) (right)
around two hydrophobic colloids above a precipitation line,
where a20γ = 0.08, a20σ0 = 0.018, and φ̄ = 0.425. Wetting
layers of two colloids are bridged at d = 5.33a = 80a0 (top)
and are disconnected for 6.8a = 102a0 (bottom). The surface
has become hydrophilic with φ′ < 0.

FIG. 14: (Color online) Normalized interaction free energy
Fint(d)/T as a function of normalized distance d/a0 above a
precipitation line, where χ = 1.94, 1.95 and 1.96 for three
curves (from above). Wetting layers of two colloids are
bridged for small d but are disconnected for large d. There is
hysteretic behavior between these two states (see Fig.15).

mogeneous state far from the colloid for the smaller two
χ, but it is in a periodically modulated phase for the
largest χ, since the homogeneous state is linearly unsta-
ble for χ > 1.9651. In Fig.19, we examine the case of two
colloids, In its left panel, the interaction free energy Fint

is plotted as a function of d for two colloids for χ = 1.95,
1.961 and 1.965. In its right panel, the profile of φ(r, z)
is given for χ = 1.965 at d = 49a0 = 3.27a, where a
homogeneous state is linearly stable.

FIG. 15: (Color online) Left: Normalized interaction free en-
ergy Fint(d)/T , exhibiting hysteresis between bridged and dis-
connected states of wetting layers for χ = 1.95 in the box re-
gion in Fig.14. There can be a metastable state in an interval
of d (left). Composition φ(r, z) in wetting layers at the two
states marked by the arrows in the left.

FIG. 16: (Color online) Partially or completely wetting pro-
files of φ(r, z) around two hydrophobic colloids for φ̄ = 0.3
with d = 44a0 = 2.93a, where χ = 1.25, 1.55, 1.85, and 2
above the bulk precipitation value χp = 1.12, The other pa-
rameters are common to those in Figs.11 and 13-15.

VI. SUMMARY AND REMARKS

In summary, we have examined how ionizable colloids
influence the ion distributions and the composition field
in binary polar solvents. These perturbations then give
rise to the interaction free energy Fint(d) between two
colloids as a function of the distance d between their
centers. We summarize our main results.
(i) In Sec.II, we have introduced a Ginzburg-Landau
model in the presence of negatively ionizable colloids.
The fundamental fluctuating variables are the composi-
tion φ, the ion densities ni, and the degree of ionization
α, which are inseparably coupled in the presence of the
selective solvation. Important parameters in the bulk
free energy are the interaction parameter χ (determined
by the temperature T ), the average composition φ̄, the
average anion density n0, and the solvation parameters
gi. Those related to the colloid are the radius a, the
molecular interaction parameter γ representing the
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FIG. 17: (Color online) Two partially wetted, hydrophobic
colloids in a bridged or disconnected state for φ̄ = 0.3 at
χ = 1.55. The other parameters are common to those in
Fig.16. Left: Fint(d)/kBT vs d/a0 with hysteresis between
the two states. Arrows indicate d/a0 = 44, 60, 72. Right:
φ(r, z) at d/a0 = 60 (bridged) and 72 (disconnected). Profile
at d/a0 = 44 is in the top right panel in Fig.16.

FIG. 18: (Color online) φ(r) and U(r) around a hydropho-
bic colloid for antagonistic salt with g1 = −g2 = 13, where
a20γ = 0.2, a20σ0 = 0.016, and φ̄ = 0.5. Three curves cor-
respond to χ = 1.961 (green), 1.965 (blue) and 1.966 (red)
Parameter M in Eq.(3.21) in the linear theory is equal to
0.8808, 0.8344, 0.8224, respectively. Oscillatory behavior is
amplified with increasing χ. The system tends to be homo-
geneous far from the colloid for the first two curves, while a
mesophase is realized for the third curve.

surface field, the density of the ionizable groups on the
surface σ0, and the composition-dependent ionization
free energy T (∆0 −∆1φ), which appear in the boundary
condition (2.24) on φ and the mass action law (2.26) for
α.
(ii) In Sec.III, we have presented a linear theory of
the electrostatic and compositional disturbances pro-
duced by charged colloids, which is a generalization of
the Debye-Hückel and DLVO theories. In the linear
scheme, the colloid interaction free energy Fint(d)
is a linear combinations of two Yukawa functions
e−qi(d−2a)/(1 + qi/a)

2d as a function of the colloid
separation distance d in terms of two characteristic wave
numbers qi. In the weak coupling linit ga = g1 − g2 → 0,
they tend to the DLVO interaction in Eq.(1.2) and the
adsorption-induced attraction in Eq.(1.5).

FIG. 19: (Color online) Left: Normalized interaction free en-
ergy Fint/kBT as a function of d for two colloids with antag-
onistic ions, where a20γ = 0.2 > 0, a20σ0 = 0.016, and φ̄ = 0.5.
Three curves correspond to χ = 1.950, 1.961 and 1.965 from
below. Instability occurs at χ > 1.9651, so homogeneity is
attained far from the colloids. Right: φ(r, z) around two hy-
drophobic colloids at d = 49a0 = 3.27a for χ = 1.965.

(iii) In Sec.IV, we have presented a theory of precip-
itation on the colloid surface assuming a completely
wetting layer, which is induced by the selective solvation
of hydrophilic ions far from the solvent coexistence
curve. This precipitation occurs at small χ for relatively
small φ̄ (say, 0.1) (see the left panel of Fig.4). However,
the growth of the layer thickness is slow with increasing
χ for small φ̄. For φ̄ & φc precipitation occurs close to
the solvent coexistence curve.
(iv) In Sec.V, we have presented numerical results on
precipitation and prewetting on the colloid surface for
hydrophilic (γ < 0) and hydrophobic (γ > 0) surfaces
in the nonlinear theory. We are particularly interested
in the weakly hydrophobic surface satisfying Eq.(2.29).
Such a surface is hydrophobic without ionization, but
becomes hydrophilic with progress of ionization. Also
the prewetting phase transition is more dramatic for
such a hydrophobic surface than for a hydrophilic surface
as in Figs.6 and 8. Wetting layer formation occurs above
a precipitation line, which weakly depends on the radius
a and is located slightly above the bulk precipitation
line χ = χp. Such layers undergo a bridging transition
with a great change in the interaction free energy Fint

as in Figs.13-15. They either completely or partially
wet the surface depending on the average composition φ̄
as in Figs.16-18. For antagonistic ion pairs, oscillation
can be seen the composition and potential profiles as a
function of the separation distance d as in Fig.18, but it
is largely masked in Fint in Fig.19.

We make some remarks.
1) Our coarse-grained theory is inaccurate on the
angstrom scale, but the solvation parameters gi and the
ionization parameter ∆1 can be made very large, so the
precipitation and prewetting transitions on the colloid
surface have been predicted. We also note that the molec-
ular volumes of the two components are often very dif-
ferent in real mixtures. For example, those of D2O and
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tri-methylpyridine (the inverse densities of the pure com-
ponents) are 28 and 168 Å3, respectively [37]. The coef-
ficient C in Eq.(2.1) of the gradient free energy remains
an arbitrary constant [39], though we have set C = 2a−1

0

in Sec.V.
2) We believe that the previous observations of colloid
aggregation [6–10] should be induced by overlapping of
enhanced adsorption or wetting layers on the colloid sur-
face [14]. If the ions are neglected, colloid particles con-
stitue a selective solute added in a binary mixture [8].
Furthermore, if the selectivity is high, our previous the-
ory [24] indicates a solute-induced phase separation with
a phase diagram as in Fig.4. This aspect should be stud-
ied in more detail.
3) Wetting behavior remains unexplored in the presence
of a highly selective solute. It becomes even more com-
plex if the substrate itself is ionizable. We have realized
both complete and partial wetting on ionizable colloid
surfaces, but the information gained is still fragmentary
because many parameters are involved in the problem.
4) The effects of the critical fluctuations on the interac-
tions between solid surfaces are very intriguing [29–32].
Ions should further promote bridging of highly adsorbing
or wetting layers.
5) For antagonistic ion pairs, the oscillatory behavior in
the colloid interaction in Fig.19 is rather mild, though
it is evident in the composition and potential profiles.
It becomes more evident in the interaction between two
parallel plates, as in the case of liquid crystals [38].
6) For polyelectrolytes including ionized gels, there are a
number of unsolved problems arising from selective sol-
vation. Even in one-component solvents, ions interact
differently with polymer segments and solvent molecules
[23]. In mixture solvents (water-alcohol), a wetting film
should be formed around a chain, as stated in Sec.I
[23, 34–36]. The Manning-Oosawa counterion condensa-
tion mechanism should be modified for mixture solvents.
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Appendix A: Pair correlation functions

1. Composition fluctuations

We examine the structure factor of the composition
fluctuations S(q) = 〈|φq |

2〉
e
, where φq is the Fourier com-

ponent of φ(r) with wave vector q and 〈· · ·〉e denotes
taking the thermal average. The mean-field structure

factor reads [16, 17],

1

S(q)
= τ − τc + Cq2

[

1−
γ2pκ

2

q2 + κ2

]

, (A1)

in terms of τ in Eq.(3.6), τc in Eq.(3.9), and γp in
Eq.(3.22). If the right hand side of Eq.(A1) is ex-
panded with respect to q2, the coefficient in front of
q2 is C(1 − γ2p). Thus a Lifshitz point is realized at
γp = 1. (i) For γp < 1, S(q) is maximum at q = 0
and S(q)−1 ∝ ξ̄−2+(1−γ2p)q

2 for q ≪ κ, so a thermody-
namic instability occurs for τ < τc at long wavelengths.
To be precise, τc is the shift in this case. (ii) For γp > 1,
S(q) has a peak at

qm = (γp − 1)1/2κ. (A2)

The corresponding peak height is given by

S(qm) = C−1κ−2/[M2 − (γp − 1)2]. (A3)

which diverges as γp−1 →M = (κξ̄)−1. A mesophase (a
charge-density-wave phase) should emerge for γp − 1 >
M , as was observed experimentally [37].
Furthermore, from Eq.(A1), the quadratic equation

(3.19) is identical to S(q)−1 = 0 with q2 = −κ2λ. In
terms of q1 and q2 in Eq.(3.18), we obtain

CS(q) =
q2 + κ2

(q2 + q21)(q
2 + q22)

. (A4)

The inverse Fourier transformation of S(q) yields the
pair correlation g(r) = 〈δφ(r)δφ(0)〉e for the composi-
tion fluctuations. It follows a sum of the two Yukawa
functions,

g(r) =
(λ1 − 1)e−q1r − (λ2 − 1)e−q2r

4πC(λ1 − λ2)r
. (A5)

In particular, in the region |M −1| < γp < M +1, q1 and
q2 are complex conjugates and g(r) behaves as

g(r) =
e−qRr

4πCr

[

cos(qIr)+(q2a − q2I − κ2)
sin(qIr)

2qRqI

]

, (A6)

where qR and qI are are given in Eq.(3.24).

2. Ion fluctuations

We eliminate the composition fluctuations assuming
their Gaussian distribution, where the ion densities are
held fixed. The resultant ion-ion potentials read [16, 17]

Vij(r) = ZiZj
e2

εr
−
Tgigj
4πC

1

r
e−r/ξ, (A7)

where Z1 and Z2 are ±1 in the monovalent case. The sec-
ond term is the composition-induced interaction decaying
exponentially with the correlation length ξ = (C/τ)1/2.
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It is attractive among the ions of the same species (i = j).
It dominates over the Coulomb repulsion for g2i > 4πCℓB
in the range r . ξ, under which there should be a
tendency of ion aggregation. In the antagonistic case
(g1g2 < 0), the cations and anions repel one another
for |g1g2| > 4πCℓB in the range r . ξ, leading to charge-
density-wave formation near the criticality. Note that the
shifted correlation length ξ̄ in Eq.(3.11) has appeared in
the colloid-colloid interaction, where both the composi-
tion and ion densities are eliminated.
In our recent review papers [18, 19], we have further-

more calculated the structure factors among the ion den-
sities Gij(q) = 〈niqn

∗

jq〉e/n0. Further using Eq.(A4) we
find

G11(q) = 1−
1/2

u+ 1
+

γ2p[u+ w(u + 1)]2/2

(u+ 1)(u+ λ1)(u + λ2)
,

G12(q) =
1/2

u+ 1
+

γ2p[w
2(u+ 1)2 − u2]/2

(u + 1)(u+ λ1)(u + λ2)
, (A8)

where u = q2/κ2 and w = (g1 + g2)/(g1 − g2). The
G22(q) is obtained if w in G11(q) is replaced −w. The
inverse Fourier transformation of these structure fac-
tors gives rise to the pair correlation functions gij(r) =
〈δni(r)δnj(0)〉e/n0. We notice that the terms pro-
portional to e−κr/r cancel to vanish from the relation
(1− λ1)(1− λ2) = γ2p. Thus,

gij(r) = δ(r)δij − (Kij
1 e

−q1r +Kij
2 e

−q2r)
1

r
, (A9)

where the δ function appears due to the self correlation
and Kij

1 and Kij
2 are appropriately defined constants.

Appendix B: Calculations in the linear theory

for one and two colloid particles

First, we seek the fundamental profiles U0(r) and ψ0(r)
around a single colloid particle induced by by the bound-
ary conditions (3.12) and 83.13), where the surface charge
is fixed. They depend only on the distance r from the
colloid center. For r > a we may set

U0(r) = ga(α1e
−q1r − α2e

−q2r)/r, (B1)

ψ0(r) = (β1e
−q1r − β2e

−q2r)/r. (B2)

For r < a, we have U0(r) = U0(a) =const. from ∇2U0 =
0. From Eqs.(3.7), (3.8), and (3.21), we obtain

βi = (1− λi)αi, (B3)

[λi −M2 + γ2p]βi = γ2pαi, (B4)

which hold for i = 1, 2. The boundary conditions (3.12)
and (3.13) give

α′
1 − α′

2 = −4πℓBσ̄/ga, (B5)

α′
1(1− λ1)− α′

2(1− λ2) = −γ̄/C, (B6)

where α′
i = αi(1+ qia)e

−qia/a2. Using the relation (λ1−
1)(λ2 − 1) = γ2p, we solve these equations to obtain

αi =
eqiaBi(λ1 − λ2)

(1 + qia)(1 − λi)
, (B7)

where B1 and B2 are defined in Eq.(3.26). We thus con-
firm Eqs.(3.25) and (3.26). In this one-colloid case ∆Ω
in Eq.(3.17) is written as Fself . Some calculations give

Fself = 2πa3T

[

E1

1 + q1a
−

E2

1 + q2a

]

, (B8)

where E1 and E2 are defined in Eq.(3.31).
Next we consider two colloid particles at positions r1

and r2 separated by d = |r1 − r2| > 2a under the con-
dition of fixed surface charge. In the colloid exterior
(|r−r1| > a and |r−r2| > a), U and ψ are expressed as

U = U0(|r − r1|) + U0(|r − r2|) +W (r), (B9)

ψ = ψ0(|r − r1|) + ψ0(|r − r2|) + Ψ(r), (B10)

where U0 and ψ0 are the fundamental profiles for a single
colloid. In the colloid exterior, we expand the corrections
W and Ψ around the center of the first colloid at r1 as

W = ga
∑

i,ℓ

aiℓkℓ(qi|r − r1|)Pℓ(θ1), (B11)

Ψ =
∑

i,ℓ

(1− λi)aiℓkℓ(qi|r − r1|)Pℓ(θ1), (B12)

where aiℓ (i = 1, 2 and ℓ = 0, 1, · · · ) are unknown co-
efficients to be determined below. The Pℓ(θ1) are the
spherical harmonic functions with θ1 being the angle be-
tween r − r1 and r2 − r1. We introduce the modified
spherical Bessel functions iℓ(x) and kℓ(x) [49]. They sat-
isfy i′′ℓ +2i′ℓ/x− ℓ(ℓ+1)iℓ/x

2 = iℓ and k
′′
ℓ +2k′ℓ/x− ℓ(ℓ+

1)kℓ/x
2 = kℓ, where we write i′ℓ = diℓ/dx, k

′
ℓ = dkℓ/dx,

i′′ℓ = d2iℓ/dx
2, and k′′ℓ = d2kℓ/dx

2. We have iℓ ∼ xℓ as
x→ 0 and kℓ ∼ e−x as x→ ∞. In particular [50],

i0(x) = sinhx/x, k0(x) = e−x/x. (B13)

Thus, iℓPℓ and kℓPℓ satisfy the Helmholtz equations,

(∇2 − q2i )[iℓ(qi|r − r1|)Pℓ(θ1)] = 0,

(∇2 − q2i )[kℓ(qi|r − r1|)Pℓ(θ1)] = 0. (B14)

With these relations and Eq.(3.7), we derive Eq.(B12)
from Eq.(B11). In Eqs.(B9) and (B10) we also need to
expand U0(|r− r2|) and ψ0(|r− r2|) around r1 in terms
of Pℓ(θ1). To this end, we use the following mathematical
relation [5, 49],

e−q|r−r2|

|r − r2|
=

∑

ℓ

(2ℓ+1)qkℓ(qd)iℓ(q|r−r1|)Pℓ(θ1), (B15)

which holds for Re(q) > 0 and in the region |r − r1| <
d = |r1 − r2|. On the other hand, in the interior of the
first colloid |r − r1| < a, we have ∇2U = 0 so that we
may assume the expansion,

U = U0(a) + ga
∑

ℓ

bℓ|r − r1|
ℓPℓ(θ1). (B16)
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We can calculate the coefficients aiℓ and bℓ from the
boundary conditions (3.12) and (3.13) and the continuity
of U at the colloid surface. We are interested in the free
energy deviation ∆Ω in Eq.(3.17). For two symmetric
colloids, we obtain

∆Ω/T = 4πa2[σ̄〈ψ〉0 − γ̄〈U〉0], (B17)

where 〈· · ·〉0 denotes taking the surface average on the
colloid 1 (=

∫ π

0
dθ1 sin θ1(· · · )/2 at |r − r1| = a). Thus

∆Ω arises from the terms with ℓ = 0 in Eqs.(B11), (B12),
and (B15). For ℓ = 0, the boundary conditions (3.12) and
(3.13) simply yield

∑

i

qi[αi0qik0(qid)i
′
i0 + ai0k

′
i0] = 0, (B18)

∑

i

(1− λi)qi[αi0qik0(qid)i
′
i0 + ai0k

′
i0] = 0. (B19)

For simplicity, we write i0(qia), i
′
0(qia), k0(qia), and

k′0(qia) as ii0, i
′
i0, ki0, and k′i0, respectively, suppress-

ing qia. In Eq.(B18) there is no contribution from the
electric field within the colloid (∝ εp). This is because
the angle average of (r− r1) ·E vanishes from Eq.(B16).
For each i, it follows the relation,

ai0 = −αiqik0(qid)i
′
i0/k

′
i0. (B20)

Elimination of ai0 yields

〈U〉0 = U0(a) + ga
∑

i

αik0(qid)[ii0 − ki0i
′
i0/k

′
i0]. (B21)

The expression for 〈ψ〉0 also follows in the same manner.
Further, using the relation,

i0(x)− i′0(x)k0(x)/k
′
0(x) = ex/(1 + x), (B22)

we obtain simple Yukawa forms,

〈U〉0 = U0(a) + ga
∑

i

αi
e−qi(d−a)

(1 + qia)d
, (B23)

〈ψ〉0 = ψ0(a) +
∑

i

αi
(1− λi)e

−qi(d−a)

(1 + qia)d
. (B24)

We also have b0 = [〈U〉0 −U0(a)]/ga from the continuity
of U . Substitution of Eqs.(B23) and (B24) into Eq.(B17)
leads to the interaction free energy

Fint = ∆Ω− 2Fself , (B25)

given in Eq.(3.30).

Finally, we calculate the terms with ℓ ≥ 1, though
they do not contribute to ∆Ω in the linear theory. From
Eqs.(3.12) and (3.13) we express aiℓ in terms of bℓ and
αi as

aiℓ = [ℓbℓa
ℓ−1µiεp/ε̄− αiq

2
i kℓ(qid)i

′
iℓ]/qik

′
iℓ, (B26)

where µ1 = (1−λ2)/(λ1−λ2) and µ2 = (1−λ1)/(λ2−λ1)
in the first term. We write iiℓ = iℓ(qia), i

′
iℓ = i′ℓ(qia),

kiℓ = kℓ(qia), and k
′
iℓ = k′ℓ(qia). Requiring the continuity

of the potential, we determine bℓ in the form,

bℓa
ℓ−1 =

∑

i αiqikℓ(qid)ηiℓ
a− ℓ(εp/ε̄)

∑

i µiwiℓ/qi
, (B27)

where ηiℓ = iiℓ − i′iℓkiℓ/k
′
iℓ and wiℓ = kiℓ/k

′
iℓ. The term

proportional to εp/ε̄ in the denominator in the right hand
side arises from the boundary condition (3.12).
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