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This paper describes a systematic approach to suppressing cardiac alternans in simulated Purkinje
fibers using localized current injections. We investigate the controllability and observability of
the periodically paced Noble model for different locations of the recording and control electrodes.
In particular, we show that the loss of controllability causes the failure of the control approach
introduced by Echebarria and Karma [Chaos 12, 923 (2002)] for longer fiber lengths. Furthermore,
we explain how the optimal locations for the recording and control electrodes and the timing of
the feedback current can be selected, accounting for both linear and nonlinear effects, effectively
doubling the length of fibers that can be controlled with previous methods.

I. INTRODUCTION

When excitable cardiac tissue is electrically paced at
a sufficiently high rate, the duration of excitation (or ac-
tion potential duration, APD) can alternate from beat
to beat [1, 2] despite a fixed stimulation period. This
rhythm, known as electrical alternans or 2:2, has been
identified [3–5] as an early stage in a sequence of in-
creasingly complex instabilities leading to the lethal type
of arrhythmia known as ventricular fibrillation (VF) [6].
Hence, suppression of alternans can be considered as a
way of preventing VF.

To date, the vast majority of feedback control ap-
proaches aimed to suppress alternans in cardiac tissue
by adjusting the timing of the electrical pacing stim-
uli based on the difference between the two most recent
APDs. This approach, which we refer to as the pacing
interval adjustment (PIA) method here, is a particular
implementation of the empiric time-delay autosynchro-
nization control of Pyragas [7]. The earliest experimen-
tal attempt to implement PIA in cardiac tissue is due to
Hall and Gauthier who managed to suppress alternans
in small (well below 1 cm) patches of frog heart mus-
cle tissue [8]. While PIA control has the benefit that
no model of the dynamics is required, it also has limita-
tions: alternans are suppressed only in a small (about 1
cm) neighborhood of the pacing electrode.

Since that pioneering study most of the research on
feedback control of alternans has concentrated on a spe-
cific type of cardiac tissue, Purkinje fiber, which con-
ducts the electrical excitation from the atria to the ven-
tricles. The relative simplicity of this, effectively one-
dimensional, excitable tissue makes it an ideal candidate
for both experimental and theoretical studies. The first
theoretical investigation of PIA in Purkinje fibers is due
to Echebarria and Karma [9] who used numerical simu-
lations of the Noble model to show that alternans can be
suppressed in fibers no longer than about 1 cm. This the-
oretic prediction was verified experimentally by Christini
et al. [10]. Studies of other models of cardiac dynamics
also find a limit on the fiber length that can be controlled

by a single electrode [11].
Echebarria and Karma should also be credited with

uncovering some of the dynamical mechanisms which
limit the size of tissue that can be successfully controlled.
Their theoretical analysis based on the amplitude equa-
tion formalism showed that PIA feedback affects only the
excitation mode with the lowest spatial frequency which
is destabilized first when the alternans appear. Higher-
frequency modes cannot be suppressed and, as those be-
come unstable for longer fibers and shorter pacing inter-
vals, the tissue develops alternans even in the presence
of feedback.
The main contribution of the present manuscript is

to extend this analysis by placing the control problem,
which heretofore was primarily based on an empirical ap-
proach, on a solid theoretical foundation. This founda-
tion will allow us to understand not only why the PIA
control fails, but also how the feedback control should be
designed and implemented to avoid this size limitation.
In particular, using model-based control, it will address
a number of experimentally critical issues: (i) How many
electrodes are needed to control a tissue of a given size?
(ii) Where should these electrodes be located relative to
the pacing electrode? (iii) If impulsive feedback is used,
what is the optimal timing? (iv) How should the feed-
back strength be computed (instead of being determined
empirically, which is the case for PIA)?
We will start by describing the mathematical model in

Sect. II. Sect. III is devoted to numerical investigation of
the dynamical regimes produced by the model with and
without PIA. Stability analysis of the model is performed
in Sect. IV, followed by the description of the proposed
model-based-control approach in Sect. V. Finally, our
results and conclusions are presented in Sect. VI.

II. MODEL EQUATIONS

In our study we chose to use the Noble model of ionic
dynamics [12], which describes the evolution of three gat-
ing variables a, b, c, and the transmembrane voltage V .
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Using a non-dimensionalized variable

u =
V − Voff

Vsc
(1)

where V is expressed in mV, Voff = −84 mV, and Vsc =
124 mV (chosen so that u takes values mostly in the range
[0,1]), the Noble model for a single cell can be written in
a compact vector form

ż = F (z), (2)

where z = [u, a, b, c]†. All parameter values are chosen as
in Ref. [9].
While it can be argued that the Noble model is not

the most accurate model of a Purkinje cell, since it lacks
many features of more complex cell models, currently
there are no other mathematical models of Purkinje cells
or fibers that produce alternans. For example, the more
complicated updated version of this model (the 1985 Di
Francesco-Noble), which includes more detailed calcium
dynamics, fails to produces alternans [13]. Even the two
most recently developed Purkinje models [14, 15] do not
show alternans. The Noble model not only captures the
essential dynamics, it also provides an opportunity for
direct comparison of our results with previous studies [9].
Furthermore, it should be pointed out that our approach,
the main results, and conclusion are very general and by
no means limited to a particular ionic model. Moreover,
the whole approach can be easily generalized to two- or
three-dimensional tissue (e.g., atria and ventricles).
A paced Purkinje fiber is modeled by a system of par-

tial differential equations, which generalizes the single
cell model (2),

∂tz = D∂2
xz+ F (z)− ûj, (3)

where D = Deûû
† describes electric coupling between

cells and û = [1, 0, 0, 0]†. The value of the diffusion con-
stant De was chosen as in [9]. Vanishing-electric-current
boundary conditions are imposed at both ends of the
fiber, ∂xu|x=0,L = 0.
The last term in (3) represents the current density in-

jected by one or more electrodes for pacing and/or con-
trol. For instance, the pacing current Ip(t) applied by a
single electrode can be described by

j(x, t) = Ip(t)g(x− xp), (4)

where g(x − xp) describes the polarization profile pro-
duced by an electrode placed at location x = xp. In this
study we choose g(x) as a normalized Gaussian of width
σ = 0.1 cm and xp = 0.25 cm. The pacing current con-
sists of a periodic sequence of square pulses Ip(t) = I0p (t
mod T ), where

I0p (t) =

{
I0, 0 < t < ∆Tp,
0, ∆Tp < t < T,

(5)

T is a constant pacing period, and the pulse duration
∆Tp was chosen equal to 5 ms following Ref. [9]. The
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FIG. 1: Transmembrane potential u(x, t) at x = 1 cm for a
fiber of length L = 5 cm: (a) normal rhythm at T = 270 ms,
(b) alternans at T = 250 ms.

beginning of n-th pulse is then given by tn = nT . Each
pacing stimulus produces a traveling wave of action po-
tential that propagates from the pacing electrode toward
both ends of the fiber.

The dynamics of the paced fiber can be conveniently
represented in terms of the action potential duration
(APD) at a given location x defined as the time that
lapses between the instant u surpasses a threshold value
uth during depolarization and the instant it falls below
that value during repolarization (Fig. 1). The APD at
a particular position x for a particular pacing stimulus
n will be indicated as APDn(x) here. When a fiber is
paced over a long time interval, it is observed that after
a transient period during which the dynamics depends
on the initial conditions, APDn(x) approaches an asymp-
totic regime. When T is bigger than some critical value
Tc, APDn(x) is constant from beat to beat, APDn(x) =
APD(x) (Fig. 1(a)). This is the normal (or 1:1) rhythm.
When T is less than Tc, APDn(x) alternates between long
and short from beat to beat (Fig. 1(b)). In particular,
for the Noble model, while APDn+1(x) 6= APDn(x) for
most x-values, APDn+2(x) = APDn(x) for all x. This
second regime is known as the state of alternans (or 2:2
rhythm).

The onset of the state of alternans when the pac-
ing rate is increased is a well established result demon-
strated by both experiments and simulations [2–4, 16–
19]. Alternans could be concordant, if the difference
APDn+1(x) − APDn(x) has the same sign for all x or
discordant if it does not.

The current given by Eq. (4) can be injected experi-
mentally in cardiac tissue by a microelectrode and while
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it is easier to excite tissue to prolong an action potential,
it is also possible to de-excite tissue, thereby advancing
repolarization by prematurely decreasing an action po-
tential through current application, as has been shown
in Purkinje fibers by Nakaya et al. [20].

III. NON-MODEL-BASED CONTROL

Echebarria and Karma [9] achieved success in suppress-
ing alternans in the Noble model for small size fibers by
adjusting the pacing interval

tn+1 − tn = T +∆T n, (6)

based on the difference between the two most recent APD
values recorded by the pacing electrode,

∆T n =
γ

2
[APDn(xp)−APDn−1(xp)] , (7)

where γ is an empirically chosen constant. Throughout
this paper we will refer to this control approach as pacing
interval adjustment (PIA).
The results reported in [9] set the benchmark against

which the control procedures for the open fiber that we
propose in this work are measured. As a validation for
our numerical algorithms we reproduced the results of
Echebarria and Karma. We explored the performance
of PIA for different pacing intervals using the protocol
from [9]: for a given length, starting from a period of
T = 280 ms where alternans are absent, we decreased the
pacing interval in steps of 5 ms and applied 200 stimuli
for each value of T . This procedure was repeated for
fibers of different lengths. We note that while in Ref. [9]
the pacing electrode is located at the left end of the fiber
(xp = 0), we used xp = 0.25 cm. The location xp = 0 was
avoided on the assumption that for some experimental
settings it might be difficult to achieve proper electrical
contact between the end of the fiber and the electrode.
As we show below, this difference in xp does not introduce
any significant discrepancy between our results and those
of Ref. [9].
In the uncontrolled case, which corresponds to setting

γ = 0 in (7), presented in the top panel of Fig. 2, the
onset of alternans occurs at roughly the same pacing pe-
riod (265 ms < Tc < 270 ms) regardless of the length
of the fiber. Once the normal rhythm is destabilized
for T < Tc, we find the same dynamical regimes as in
Ref. [9], but the regions in the (L, T ) parameter space
where those regimes can be found differ between the two
studies. This is especially noticeable for the conduction
block regime, that occurs at faster pacing rates, for which
the pacing current fails to produce a traveling action po-
tential; in our study it occurs at longer pacing interval
(about 220 ms) compared with Ref. [9] (180-195 ms).
This may be a consequence of insufficiently accurate time
discretization employed in the earlier study: Echebarria
and Karma used the time step ∆t = 0.05 ms in the nu-
merical integration of the evolution equation, while the

present study used a smaller time step ∆t = 0.01 ms.
However, the discrepancy could also be due to the bista-
bility present at some parameter values, with one of two
stable states selected by initial conditions.
In both studies, PIA is able to suppress alternans (solid

circles) for either short fibers or (in general) low pacing
rates. Similar to Ref. [9], we find (bottom panel of Fig.
2) that for longer fibers and higher pacing rates the al-
ternations of the APD are greatly reduced at the pacing
location but not away from it. A state develops in which
the amplitude of APD oscillations increases with the dis-
tance from the pacing site (referred to as “first harmonic
standing wave”). Further increase of the pacing rate or
fiber length produces traveling discordant alternans. At
even faster pacing rates and greater fiber lengths conduc-
tion block is observed. The two studies are in reasonable
agreement regarding the success of PIA control: normal
rhythm can be maintained for all pacing rates only in
fibers somewhat shorter than 1 cm. The remainder of
this paper is devoted to explaining why this limitation
arises and investigates how it can be circumvented.

IV. LINEAR STABILITY ANALYSIS

The analysis presented in this paper is based on an ap-
proach similar to that of Refs. [21] and [22]. As in those
studies, we linearize the evolution equation (3) about the
time-periodic solution representing normal rhythm and
perform a Galerkin projection of the resulting (linear)
equation onto the eigenfunctions of the evolution oper-
ator. In those previous studies rotational/translational
symmetry of the system afforded a significant simplifica-
tion: normal rhythm could be represented as a rotating
or translating steady state by an appropriate change of
reference frame. No such reference frame transformation
is possible for the open fiber, so one is forced to perform a
linear stability (or Floquet) analysis of a time-dependent
solution.
The model (3)-(4) possesses a time-periodic solution

z0(x, t), corresponding to normal rhythm with the pe-
riod T determined by that of the pacing current. Let
G(z;T, 0) denote the time evolution operator:

z(x, T ) = G[z(x, 0);T, 0]. (8)

Since z0(x, 0) is a periodic orbit, it is a fixed point of
G(z;T, 0),

z0 = G[z0;T, 0]. (9)

We solved (9) using a matrix-free Newton-Krylov method
[23] (see Appendix A1 for details) combined with gener-
alized minimal residual method (GMRES). The latter is
implemented by the MATLAB (Mathworks, Inc.) rou-
tine gmres.
In order to determine the stability of normal rhythm

we consider the dynamics of small perturbations δz =
z− z0, governed by the linearization of (3)

∂tδz = JN (t)δz− ûjc, (10)
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FIG. 2: Dynamical regimes of the paced fiber in the absence
of control (γ = 0, top) and with PIA control (γ = 1/2, bot-
tom): normal rhythm (solid circles), concordant alternans
(open circles), discordant stationary alternans (diamonds),
first harmonic standing wave (squares), traveling discordant
alternans (triangles), and conduction block (crosses). Levels
of gray were added to aid visualization.

where JN (t) = D∂2
x + JF (t) with JF (t) ≡ DF/Dz|

z0(x,t)

– the Jacobian of F (z) evaluated along the periodic orbit
z0(x, t). The current density j = jp + jc now includes
both the pacing current jp defined by (4) and the feed-
back current jc, to be computed later.
Considerable simplification can be achieved by intro-

ducing a stroboscopic section t′n = τ + nT , with n =
1, 2, ... and 0 ≤ τ < T , which reduces the time-dependent
problem (10) to a map:

δz(x, t′n+1) = U(τ + T, τ)δz(x, t′n)

−

∫ T

0

U(τ + T, τ + t)ûjnc (x, t)dt, (11)

where U(tf , ti) is the linear time evolution operator of
(10) in the absence of control (jc = 0) and jnc (x, t) =
jc(x, t

′
n + t), for t ∈ [0, T ]. In deriving (11) we used the

fact that due to the time-periodicity of JN (t), U(tf , ti)

is also time-periodic with period T ,

U(tf + T, ti + T ) = U(tf , ti). (12)

Note that in introducing the stroboscopic section we
allowed the freedom to change its temporal phase rela-
tive to the pacing stimulus, which corresponds to τ = 0.
This will later allow us to investigate how the dynamics
responds to current injections applied not only at differ-
ent positions along the fiber, but also with different time
delays relative to the pacing stimulus.
In the absence of control the stroboscopic map (11)

takes a very simple form

δz(x, t′n+1) = U(τ + T, τ)δz(x, t′n). (13)

The stability of z0 is determined by the eigenvalues λi of
this map:

U(τ + T, τ)ei(x, τ) = λiei(x, τ), (14)

where ei are the corresponding eigenfunctions. Here we
assume the eigenvalues to be ordered such that |λ1| ≥
|λ2| ≥ · · · . It can be shown that λi are independent of
τ and that the (right) eigenfunctions of U(τ + T, τ) for
arbitrary τ can be computed as

ei(x, τ) = U(τ, 0)ei(x, 0) (15)

using the eigenfunctions for τ = 0 (see Appendix B 1).
The spectrum of U(T, 0) was found using the implicitly

re-started Arnoldi iteration method [24], implemented by
the MATLAB routine eigs. For the sake of efficiency, this
method was also applied in its matrix-free form using a
routine that calculates the matrix-vector product, in this
case U(T, 0)δz, instead of the explicit matrix represen-
tation of U(T, 0) (see Appendix A2 for details). The
number of unstable eigenvalues (|λi| > 1) found for a
grid of pairs (L, T ) is shown in Fig. 3. We find that,
for the range of L values considered, the normal rhythm
z0 becomes unstable at T < Tc and alternans develops,
which is consistent with the results presented in Fig. 2.
For the range of parameters considered in this study

we found that all eigenvalues of λi are negative real
numbers. Hence the normal rhythm becomes unstable
when an eigenvalue λi crosses the unit circle, leading to
a period-doubling bifurcation. This is consistent with the
fact that the state of alternans is a periodic orbit with a
period that is twice that of the pacing current T .
By comparing Fig. 3 with Fig. 2 we find that PIA

control succeeds when there is only one unstable mode
and fails otherwise. This observation is consistent with
the conclusion of Ref. [9] that PIA control can only sup-
press the mode with the lowest spatial frequency, which
happens to be the most unstable one here due to the
contribution of the diffusion term ∂2

xδz in (10).
Fig. 4 shows the variation of the APD, δAn(x), which

corresponds to the three unstable eigenmodes for L = 2.5
cm and T = 220 ms. The leading mode corresponds to
concordant alternans, while the two subleading modes
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FIG. 3: Stability diagram, showing the number of unstable
modes for normal rhythm. White indicates the region in pa-
rameter space where normal rhythm is stable. Alternans can
be successfully suppressed using PIA control only in the light
gray region. Model-based control is successful everywhere in
the gray shaded regions. Feedback is computed using the
complete system state in the dark gray regions or using local
voltage recordings in the medium and light gray regions. All
control methods we investigated fail in the black region.

correspond to discordant alternans with one and two
nodes, respectively. While the number of nodes is cor-
rectly predicted by the analysis in Ref. [9], the precise
spatial structure of disturbances is substantially different
from the Fourier modes

δAn(x) ∼ 1 + αn cos
π(n− 1)x

L
, (16)

with αn = const, predicted by the amplitude equation
formalism, highlighting its limitations in describing the
dynamics far from onset of the instability.

V. MODEL-BASED CONTROL

The goal of control is to suppress the transition to al-
ternans by applying feedback, extending the linear sta-
bility of the normal rhythm to shorter T . A more con-
venient description of the dynamics in the presence of
feedback can be obtained by projecting (11) onto the ba-
sis {ei}. This requires the eigenfunctions fi of the adjoint
evolution operator

U †(τ + T, τ)fi(x, τ) = λ∗
i fi(x, τ). (17)

The adjoint (or left) eigenfunctions fi(x, 0) can be com-
puted using the matrix-free approach described previ-
ously, where the action of the operator U †(T, 0) is com-
puted by time-discretizing U(T, 0) and evaluating the ad-
joint of the resulting composition of operators (see Ap-
pendix A3 for details). The relationship

fi(x, τ) = (λ∗
i )

−1 U †(T, τ)fi(x, 0) (18)
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FIG. 4: The perturbation of the APD δAn(x) which corre-
sponds to (a) e1, (b) e2, and (c) e3. The solid and dashed
lines correspond to odd and even n, respectively.

can then be used to compute the left eigenfunctions for
0 < τ < T (see Appendix B 2).

When properly normalized, the left and right eigen-
functions satisfy the orthogonality condition

〈fi(x, τ), ei(x, τ)〉 ≡

∫ L

0

f∗i (x, τ) · ej(x, τ)dx = δij , (19)

where 〈·, ·〉 denotes the inner product. Therefore, we can
expand the perturbation as

δz(x, t′n) =

∞∑

i=1

ξni ei(x, τ), (20)

where

ξni = 〈fi(x, τ), δz(x, t
′
n)〉 . (21)

Substituting (20) into (11) and applying the operation
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〈fj , ·〉 to each side of the resulting equation we obtain

ξn+1
i = λiξ

n
i −

〈
fi(x, τ),

∫ T

0

U(τ + T, τ + t)ûjnc (x, t)dt

〉
.

(22)
The choice of the current density jnc depends on the

number and placement of electrodes used to apply feed-
back. While experimentally it is possible to pace from the
recording sites, in the present study we will assume there
is a single control electrode to enable direct comparison
with the PIA approach of Ref. [9], in which case

jnc (x, t) = Inc (t)g(x− xc), (23)

where Inc (t) is the control current applied during the nth
pacing interval and xc is the position of the control elec-
trode. For instance, if we split the interval [t′n, t

′
n+1] into

l subintervals of duration δT = T/l, following Ref. [22],
and assume the current to be constant, Inc (t) = Ink on
the kth sub-interval, (22) reduces to

ξn+1
i = λiξ

n
i −

l∑

k=1

BikI
nk, (24)

where

Bik =

〈
fi(x, τ),

∫ kδT

(k−1)δT

U(τ + T, τ + t)ûg(x− xc)dt

〉
.

(25)
Galerkin truncation involves discarding strongly stable
modes (|λi| ≪ 1), in order to obtain a low-dimensional
map describing the evolution of the unstable and weakly
stable modes

ξn+1 = Aξn − BIn, (26)

where ξn = [ξn1 , ξ
n
2 , ..., ξ

n
m]†, A is a diagonal matrix with

elements Aii = λi and In = [In1, In2, · · · , Inl]†.
A variety of standard control-theoretic methods can

be invoked to compute the feedback current In as a func-
tion of the perturbation ξn using (26). At the same time,
control can be greatly optimized by allowing the feedback
current to remain a continuous function of time, which
corresponds to choosing a sufficiently large l and impos-
ing no restrictions on Ink. However, in this study we will
limit our attention to the simplest implementation, where
only impulsive feedback is considered, Ink = In1δk1, in
which case the control current consists of a brief pulse of
duration δT ≪ T , so that (25) reduces to

Bi1 ≈ 〈 fi(x, τ), U(τ + T, τ)δT ûg(x− xc) 〉

= λiδT 〈 fi(x, τ), ûg(x− xc) 〉

≈ λiδT fu
i (xc, τ), (27)

where the superscript u denotes the first (voltage) com-
ponent of fi. In the last step we used the fact that σ ≪ L.
Defining the total charge Qn = In1δT injected by the
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FIG. 5: Controllability and observability of the two unstable
modes for L = 1 cm and T = 210 ms. The star indicates
the location of the pacing electrode. The grayscale shows the
magnitude of the indicated eigenfunctions.

electrode during this brief interval, we find that the stro-
boscopic map (24) takes the form

ξn+1
i ≈ λiξ

n
i − λi f

u
i (xc, τ)Q

n. (28)

In the limit ∆T n ≪ ∆Tp ≪ T , which corresponds to
small deviations from normal rhythm, PIA control can
be cast in a very similar form:

ξn+1
i ≈ λiξ

n
i − λi (f

u
i (xp,∆Tp)− fu

i (xp, 0))
Qp

∆Tp

∆T n,

(29)
where Qp is the charge delivered by one pacing impulse
of duration ∆Tp and ∆T n was defined in (7).

A. Controllability

Equations (28) and (29) allow an interesting and im-
portant interpretation. When fu

i (xc, τ) ≈ 0 for some
unstable mode i, the feedback has no (or very little) ef-
fect on the dynamics of that mode (the mode becomes
uncontrollable) and the instability cannot be suppressed,
regardless of how the current is chosen. On the other
hand, the larger |fu

i (xc, τ)| is, the smaller the feedback
current can be. The structure of the adjoint eigen-
functions, therefore, determines where the control elec-
trode(s) should be placed and how the timing of the con-
trol impulse should be chosen. Similar conclusion was
made for spiral waves in a two-dimensional tissue model
in Ref. [21].
Using the same electrode for both pacing and control

is not only convenient from the experimental perspective,
this choice also provides near optimal controllability re-
gardless of the fiber length. As Figs. 5 and 6 illustrate,
|fu

i (xp, τ)| reaches near-maximal values for all unstable
modes for both short (L = 1 cm) and long (L = 3 cm)
fibers, such that all unstable modes can be made con-
trollable by an appropriate choice of τ . Therefore, in the
remainder of this study we set xc = xp.
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FIG. 6: Controllability |fu
i (x, τ )| of the four leading (unsta-

ble) modes for L = 3 cm and T = 185 ms. From left to right
i = 1, 2, 3, 4, respectively.

Experimental considerations do not impose any con-
straints on the timing of feedback, while controllability
requires that the control impulse be delivered much later
than the pacing impulse. We discovered that the optimal
interval 0.3T . τ . 0.6T , where |fu

i (xp, τ)| takes nearly
maximal values for all unstable modes (hence requiring
the smallest control current), is essentially independent
of L, as illustrated by comparison of Figs. 5 and 6. Fur-
thermore, as Fig. 8 shows for a 2 cm-long fiber, the opti-
mal timing corresponds to the end of the plateau phase of
the action potential. In contrast, for single cells modeled
using canine ventricular myocite model, the optimal time
for feedback was determined to be at the early plateau
phase [25].

For PIA, feedback timing does not fall into the op-
timal range. On the contrary, for every i, |fu

i (xp, τ)|
has a deep minimum in the range 0 < τ < ∆Tp, as
Fig. 7 shows. As the right-hand-side of (29) shows,
when feedback is imposed by shifting the timing of the
pacing impulse, the magnitude of the difference ∆fu

i ≡
fu
i (xp,∆Tp)−fu

i (xp, 0) determines controllability instead
of |fu

i (xp, τ)|. As Table I shows, |∆fu
i | is of order unity

only for i = 1 (the leading mode is controllable). All
sub-leading modes are, at best, weakly controllable, in-
dicating that PIA control has virtually no effect on their
dynamics and hence is expected to fail. This is in per-
fect agreement with Ref. [9], which showed that feedback
only affects the dynamics of the leading mode.

Model-based control provides a viable alternative to
PIA in the region of the (L, T ) parameter space charac-
terized by multiple unstable modes. Once xc and τ have
been selected, we can define a vector with components

i 1 2 3 4

|∆fu
i |

(a) 0.4080 0.0780 0.0054 0.0926

|∆fu
i |

(b) 0.7909 0.0082 0.1086 0.0716

TABLE I: The values of |∆fu
i | = |fu

i (xp,∆Tp)−fu
i (xp, 0)| for

(a) L = 1 cm and (b) L = 2 cm. Bold font corresponds to
unstable modes. In both cases T = 210 ms.
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p,τ
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)
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FIG. 7: fu
i (xp, τ ) for (a) L = 1 cm and (b) L = 2 cm. In

both cases T = 210 ms. Only i-values for unstable modes are
shown: i = 1 (solid line), i = 2 (dashed line), i = 3 (dot-
dashed line). The gray shade indicates the range 0 < τ <
∆Tp.

B′
i = λi f

u
i (xc, τ), which recasts the system (28) in the

compact form

ξn+1 = Aξn −B′Qn. (30)

Now the impulsive feedback Qn stabilizing normal
rhythm can be computed using any standard control-
theoretic method. Here we use discrete-time linear-
quadratic regulator control [26] (implemented via MAT-
LAB routine dlqr) which yields the feedback law

Qn = −Kξ
n, (31)

with feedback gain K making the matrix A+ B′K, and
hence the evolution described by the map (30), stable.

B. Observability

In experiment, the mode amplitudes ξni in (31) will
not be directly accessible. Moreover, despite the advent
of new optical techniques relying on voltage- or calcium-
sensitive dies which can yield spatiotemporal information
about more than one state variable, transmembrane volt-
age recordings from one or more electrodes remain the
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FIG. 8: Controllability and observability of the unstable
modes and normal rhythm voltage for L = 2 cm, T = 220
ms, xc = xp = 0.25 cm, and xo = 1.8 cm.

only practical and reliable way to get information about
the system state. One, therefore, has to rely on localized
voltage measurements for control purposes, just as most
previous studies have done.
Fortunately, state reconstruction is also a standard

problem in control theory. The idea is to simulate a nu-
merical model of the experimental system in real time
and compare the measurements obtained from experi-
ment with predictions of the model, adjusting the model
variables for any discrepancy in the outputs. Such a
model is known in control theory as an observer or es-

timator [26]. Similar to the PIA implementation in Ref.
[9], we will use a single electrode to record the voltage,
but will use one measurement per pacing interval in con-
trast with PIA, which requires continuous measurement
of u to determine the APD. This is done to simplify the
discussion. Radically more accurate results can be ob-
tained from continuous-time measurements of the volt-
age.
The output produced by an electrode of finite spatial

extent and centered at xo can be modeled by writing the
recorded voltage as

vn =

∫
g(x− xo)u(x, t

′
n)dx. (32)

We will also assume that the voltage in the normal
rhythm

v0 =

∫
g(x− xo)u0(x, τ)dx (33)

is unknown and needs to be determined. In principle, τ
can be chosen independently for observation and control;
in this study we choose τ to be the same, again for sim-
plicity. The performance of the control scheme can be
improved by lifting this restriction.
From the definition of δz and (20) we have

vn = v0 +

∞∑

i=1

Ciξ
n
i , (34)
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FIG. 9: Observability |eui (x, τ )| of the four leading modes for
L = 3 cm and T = 185 ms. From left to right i = 1, 2, 3, 4,
respectively

where Ci = 〈ei(τ), ûg(x − xo)〉 ≈ eui (xo, τ). Truncating
(34) to m leading modes and rewriting it in matrix form
yields a relationship between the measurements (out-
puts) and the mode amplitudes retained in the Galerkin
truncation (26),

vn = v0 + Cξn, (35)

where C = [C1, · · · , Cm].
Once again, (34) allows an important interpretation.

Whenever Ci ≈ eui (xo, τ) = 0, the measured voltage be-
comes independent of the mode amplitude ξni (mode i
becomes unobservable). This means that ξni cannot be
determined regardless of the procedure used to extract it.
If the unobservable mode is unstable, we cannot expect
the feedback to suppress it either, so that observability
of unstable modes imposes additional restrictions on the
timing τ of voltage recordings and the position xo of the
recording electrode. From the observability standpoint,
the optimal choice of τ corresponds to the range where
|eui (xp, τ)| are near maximal values at least for all unsta-
ble modes (and preferably for all the modes included in
the Galerkin truncation).
Unlike the case of controllability, this optimal range

is fiber-length-dependent: we find 0.5T . τ . 0.9T for
L = 1 cm (see Fig. 5), but 0.8T . τ . 1.2T for L = 2
cm (see Fig. 8). On the other hand, the optimal spatial
location for the recording electrode, regardless of fiber
length, is found to be near the far end of the fiber, 0.9L .
xo . L. Interestingly, for longer fibers (see e.g., Fig. 9 for
L = 3 cm), the leading mode gradually loses observability
at the far end of the fiber, but remains observable at
xo = xp. This means that voltage recordings from two
electrodes are required for complete observability: the
pacing electrode and a recording electrode at the far end
of the fiber.
With a proper choice of xo and τ to satisfy the observ-

ability conditions, we can follow the standard procedure
[27] to reconstruct the mode amplitudes ξni from a series
of voltage recordings vn, vn−1, · · · . In the linear approx-
imation, the actual dynamics of the mode amplitudes is
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given by (30) or, written in a slightly different form,
(

ξn+1

v0

)
=

(
A 0
0 1

)(
ξn

v0

)
+

(
B′

0

)
Qn. (36)

Let us construct a corrected model for the estimates ζn =
[ζn1 , · · · , ζ

n
m]† and wn of ξn and v0, respectively:

(
ζn+1

wn+1

)
=

(
A 0
0 1

)(
ζn

wn

)
+

(
B′

0

)
Qn

+ H

[
vn − (C 1)

(
ζ
n

wn

)]
, (37)

where the additional terms on the right-hand-side rep-
resent corrections to the mode amplitudes due to differ-
ences in the output of the model and the experimental
system. Subtracting (36) from (37) and using (35) we
arrive at the equation for the differences δξn = ζn − ξn

and δwn = wn − v0:
(

δζn+1

δwn+1

)
=

[(
A 0
0 1

)
−H (C 1)

](
δζn

δwn

)
. (38)

It is easy to ensure that δξn → 0 and δwn → 0, so that
ζn → ξn and wn → v0, for n → ∞ by a proper choice
of the observer gain H which makes the matrix on the
right-hand-side of (38) stable. Just like the feedback gain
K, we also computed H using dlqr.
The convergence of the estimator (37) crucially de-

pends on a proper choice of the initial estimate ζ1 and
w1. We found that, for the pacing protocol used here
(see Sect. III), the leading mode is initially dominant,
|ξ11 | ≫ |ξ1i |, i = 2, 3, · · · ,m. Based on this observation,
we set ζ1i = 0, i = 2, 3, · · · ,m. To avoid exciting the
subleading modes before the initial estimates of ζ11 and
w1 have been obtained, we did not apply feedback dur-
ing the first pacing interval. Hence, from (34) and (28)
with Q1 = 0, we find that w1 and ζ11 should satisfy the
following system of equations:

v1 = w1 + C1ζ
1
1 , (39a)

v2 = w1 + λ1C1ζ
1
1 . (39b)

Replacing the controller (31) with

Qn = −Kζn, (40)

and combining (40) with the observer (37) yields a single-
input single-output (SISO) control procedure (known as
a compensator) that could easily be applied in an experi-
mental setting. Below we illustrate its performance using
the full nonlinear model of the fiber represented by the
partial differential equation (3). In particular, we inves-
tigate the effects of mode truncation and the placement
of the recording electrode.

VI. RESULTS AND CONCLUSIONS

In order to directly compare the performance of the
compensator with PIA control we used the same elec-
trode for pacing and feedback and followed the protocol

0 20 40 60 80 100
10

−3

10
−2

10
−1

10
0

(a)

n

ξn i
0 20 40 60 80 100

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

(b)

n

ξn i

FIG. 10: Mode amplitudes ξn1 (thin line) and ξn2 (thick line)
under (a) PIA and (b) model-based control for L = 1 cm and
T = 205 ms. In both cases the initial condition is the normal
rhythm for T = 210 ms and control is turned on at n = 1.

introduced in Ref. [9]. As we discussed in Sect. III, PIA
fails to maintain normal rhythm whenever a second un-
stable mode appears. The failure of PIA control is illus-
trated in Fig. 10(a) which shows the evolution of the two
unstable modes for L = 1 cm. Although initially quite
small, the amplitude of the sub-leading mode grows ex-
ponentially with the rate close to λ2, as expected due to
its weak controllability. The leading mode, on the other
hand, is controllable and hence is initially suppressed by
feedback. However, its dynamics is slaved to that of the
growing sub-leading mode through the nonlinear terms in
the ionic model. Once the amplitude of the sub-leading
mode becomes sufficiently large, the leading mode also
starts to grow as feedback is overpowered by mode cou-
pling.

In contrast, the compensator succeeds even when ad-
ditional unstable modes appear, as Fig. 3 shows. For
instance, for L = 1 cm, controllability and observability
conditions can be satisfied by placing the recording elec-
trode in the optimal location xo = 0.9 cm and choosing
τ = 0.54T . In this case truncation tom = 2 modes is suf-
ficient to suppress alternans for any T , including the val-
ues where PIA control fails, as illustrated by Fig. 10(b).
On the other hand, if the pacing electrode is also used for
observation, xo = xc = 0.25 cm, the compensator perfor-
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FIG. 11: Mode amplitudes ξn1 (thin black line), ξn2 (thick black line), ξn3 (thin gray line), ξn4 (thick gray line) and their estimates
ζn1 (filled circles), ζn2 (open circles), ζn3 (filled triangles), ζn4 (open triangles) during compensator control for L = 1 cm,
T = 205 ms. (a) xo = 0.9 cm and m = 2; (b) xo = 0.25 cm and m = 2; (c) xo = 0.25 cm and m = 4; (d) same as (b), but with
smaller initial disturbance.

mance deteriorates significantly when the same 2-mode
truncation is used. Predictably, it is the observer part
which starts to fail in the latter case. As a quick com-
parison of Figs. 11(a) and 11(b) shows, for xo = 0.25
cm the estimates of the mode amplitudes differ signifi-
cantly from the actual values, while for xo = 0.9 cm the
estimates remain fairly accurate.

The fundamental problem here is the decreased ob-
servability of both unstable modes at xo = 0.25 cm (see
Fig. 5), which requires the use of a large observer gain
H . The latter, in turn, reduces the region of validity of
the linear approximation (37). The protocol used here
produces initial perturbations that, in fact, are not small
to begin with. The initial condition zi (normal rhythm
at T = 210 ms) deviates quite significantly from the tar-
get state z0 (normal rhythm at T = 205 ms). As Fig.
5 shows, the voltage u(xp, t) changes from its minimal,
to its maximal, value in about 5 ms following the pac-
ing impulse, placing the perturbation in the nonlinear
regime.

The nonlinear origin of the observer failure can be con-
firmed by decreasing the initial deviation from the target
state. For instance, reducing zi − z0 by a factor of 10
considerably improves the accuracy of the estimates as

Fig. 11(d) illustrates. A partial solution to the problem
of weak observability is provided by increasing the trun-
cation order of the compensator to include a number of
weakly stable modes, in addition to the unstable ones.
This has an effect of expanding the region of validity of
the linear approximation (37). For instance, truncation
to m = 4 modes produces radically more accurate esti-
mates of the mode amplitudes (shown in Fig. 11(c)) for
the same initial disturbance as in Figs. 11(a-b), restoring
the efficiency of the compensator. However, for L & 1.5
cm the compensator fails for any truncation order, if the
same electrode is used for pacing, control, and recording.

Although the range of parameters for which alternans
can be suppressed is extended significantly by replacing
PIA with compensator control described here, even fur-
ther improvement is possible with some modifications.
While the maxima of |fu

i (xc, τ)| are achieved for the same
value of τ regardless of the fiber length (this optimum is
determined by the local cell dynamics), the maxima of
|eui (xo, τ)| shift linearly with the fiber length (informa-
tion propagates away from the pacing/control site with
the speed determined by the conduction velocity). For
fibers longer than about 1 cm, controllability and observ-
ability may not be both satisfied for the same value of τ .
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For instance, for L = 2 cm, |eui (xo, τ)| are maximal for
τ ≈ T when |fu

i (xp, τ)| are near their minima (see Fig.
8), so that τ has to be chosen differently for the controller
and the observer.

To illustrate an improvement possible with a more ac-
curate state reconstruction procedure, we note that if
the system state is known, ζn = ξn, (40) reduces to (31)
and model-based control can suppress alternans for up
to L ≈ 2 cm (see Fig. 3). For even longer fibers the ap-
proach based on impulsive feedback fails and continuous-
time voltage measurement and current feedback are re-
quired to suppress alternans. Both are straightforward to
implement. For instance, continuous-time feedback can
be computed using the model (26) as opposed to (30).
Substantial improvements can also be made by changing
the protocol to reduce the pacing interval more grad-
ually, instead of making large 5 ms steps, thereby sig-
nificantly mitigating the nonlinear effects. All of these
changes are straightforward to implement, but have not
been explored in this study whose main focus is on the
issues of observability and controllability.

Finally, we should point out that feedback via electric
current is not the only way to suppress alternans. It can
be argued, especially given the importance of calcium
cycling in the emergence of alternans, that control may
be more effective when feedback is applied to one of the
gating variables (i.e., a, b, or c here) [28]. This can signifi-
cantly alter both the controllability and the observability
properties of the dynamics, potentially increasing the size
of tissue which can be controlled using spatially localized
feedback. At the moment, however, it is unclear whether,
or how, such feedback can be implemented in practice, so
feedback via direct injection of electric current remains
the only practically viable choice.

In summary, we have shown that following a systematic
model-based approach it is possible to design a control
procedure that overcomes the limitations of the PIA ap-
proach, yet is still simple to implement experimentally.
The model-based analysis also allows one to determine
how the electrodes should be arranged along the fiber,
regardless of the method used to determine the feedback
current. Specifically, to achieve controllability, the con-
trol electrodes should be placed at the spatial locations
where the unstable adjoint eigenfunctions fi(xp, τ) are
close to their maxima. This requirement can be sat-
isfied, for instance, by collocating the pacing and con-
trol electrodes. Similarly, to achieve observability, the
recording electrodes should be placed where the unsta-
ble eigenfunctions ei(xo, τ) are near their maxima. For
fibers shorter than about 2 cm this can be achieved by
placing one recording electrode near the end of the fiber
opposite the pacing site. For fibers longer than 2 cm an
additional recording electrode is needed to satisfy the ob-
servability condition; it can be collocated with the pacing
electrode. Both controllability and observability also de-
pend on timing. For instance, PIA control breaks down
because, for the particular choice of the feedback timing,
subleading modes are rendered uncontrollable. Finally, it

should be mentioned that the analysis presented here is
applicable to other excitable systems and, in particular,
other types of cardiac tissue (e.g., atrial and ventricular
muscle), paving the way for clinical applications.
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Appendix A: Numerical methods

The evolution equation (3) has been solved numeri-
cally using explicit Euler method and finite difference
discretization with ∆x = 0.01 cm and ∆t = 0.01 ms.
Additional details on computing the eigenfunctions and
time-periodic solutions are provided below.

1. Calculation of the normal rhythm by a

Newton-Krylov method

We start by writing (9) as

G[z0]− z0 = 0. (A1)

The problem of finding the root z0 defined by (A1) can be
solved by Newton’s method. In order to find a correction
δzn to an estimate zn of z0, we approximate the left-
hand-side of (A1) by its Taylor series expansion up to
first order in δzn,

0 = G[zn + δzn]− zn − δzn

≈ G[zn] + JG|znδzn − rn − δzn, (A2)

where JG is the Jacobian of G evaluated at zn,

JG|znδz = lim
ǫ→0

G[zn + ǫδz]−G[zn]

ǫ
. (A3)

Rearranging terms in (A2), we obtain

(JG|zn − I) δzn = zn −G[zn], (A4)

where I is the identity operator. (A4) is a linear equa-
tion with the function δzn as the unknown. In order
to solve (A4), we discretized it by the method of finite
differences on the same (uniform) grid used for the nu-
merical integration of (3), xi = (i − 1)∆x, i = 1, ..., N
with N = L/∆x + 1. Hence, the state vector z with
four elements, each of which is a function of x, z(x) =
[u(x), a(x), b(x), c(x)], becomes a vector of 4N elements,
r = [r1, ..., r4N ],

[r1, ..., rN ] = [u(x1), ..., u(xN )],
[rN+1, ..., r2N ] = [a(x1), ..., a(xN )],
[r2N+1, ..., r3N ] = [b(x1), ..., b(xN )],
[r3N+1, ..., r4N ] = [c(x1), ..., c(xN )].

(A5)
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After discretization, (A4) becomes a 4N× 4N linear sys-
tem of algebraic equations

(
J
G̃
|rn − Ĩ

)
δrn = rn − G̃[rn], (A6)

where δrn is the discretized version of δzn, G̃ is the dis-

cretized version of G, J
G̃
|zn is the Jacobian of G̃ and Ĩ

is a unit matrix. The result of the operation G̃[r] is cal-
culated as the state arrived at by numerically advancing
the spatial discretization of (3) from t = 0 to t = T , with
z as the initial condition.
We solved (A6) by generalized minimal residual

method (GMRES) implemented by the Matlab function
gmres. In using GMRES we have two alternatives:
providing the explicit matrix representation of J

G̃
|rn or

calculating the matrix-vector product J
G̃
|rnδrn directly

(matrix-free form). For efficiency, we used the matrix-
free form based on the finite-difference approximation

J
G̃

∣∣
rn

δrn ≈
G̃[rn + ǫδrn]− G̃[rn]

ǫ
, (A7)

where ǫ was chosen so that ǫ‖δrn‖1/‖rn‖1 = 10−6, where
‖r‖1 = maxi |ri|.
Provided a sufficiently good initial guess r1 is made,

the recurrence relation rn+1 = rn + δrn, with δrn given
by Eq. (A6), converges toward r0 (the discretized version
of z0). The use of Newton’s method together with the
matrix-free form of a Krylov-space linear solver like GM-
RES, constitutes what is known as a matrix-free Newton-
Krylov method [23].

2. Calculation of the right eigenfunctions of U(T, 0)

We approximated U(T, 0) by its discretization Ũ(T, 0).
The eigenvalues λi and the (right) eigenfunctions ei(0)
(we omitted the x-dependence to simplify notation) of

Ũ(T, 0) were found using the implicitly re-started Arnoldi
iteration method [29], implemented by the MATLAB
routine eigs. For the sake of efficiency, this method was
also applied in its matrix-free form using a routine that

calculates the matrix-vector product Ũ(T, 0)δr, instead

of the explicit matrix representation of Ũ(T, 0). By in-
verting the order of the linearization of the dynamics and
the integration over one period, it follows immediately
that U(T, 0) is the same as the Jacobian JG defined by
Eq. (A3), evaluated at z0. This identity gives the proce-
dure for the calculation of the matrix-vector product

Ũ(T, 0)δr ≈
G̃[r0 + ǫδr]− G̃[r0]

ǫ
, (A8)

with ǫ chosen as in (A7).

3. Calculation of the left eigenfunctions of U(T, 0)

The left eigenfunctions fi(0) were computed as the
right eigenfunctions of U †(T, 0) also using the MATLAB

routine eigs in its matrix-free form. We computed the
matrix-vector product corresponding to U †(T, 0)δz as fol-
lows. If Eq. (10), in the absence of control, is integrated
in time using explicit Euler method, we obtain

U(T, 0) ≈

M−1∏

i=0

(1 + ∆tJN (ti)) , (A9)

where ti = i∆t and M = T/∆t. Taking the adjoint of
both sides of (A9) and multiplying by δz yields

U †(T, 0)δz ≈

0∏

i=M−1

(
1 + ∆tJ†

N (ti)
)
δz. (A10)

For a uniform mesh, the discretization of J†
N (ti) is simply

the transpose conjugate of the discretization of JN (ti).

Appendix B: Left and right eigenfunctions on the

Poincaré section

Here we derive the expressions for the left and right
eigenfunctions of the evolution operator U(τ+T, τ) which
defines the stroboscopic map (13) with 0 < τ < T .

1. Right eigenfunctions

Taking the special case τ = 0 of (14) and omitting the
x-dependence to simplify notation yields

U(T, 0) ei(0) = λi ei(0). (B1)

Multiplying both sides of (B1) by U(τ + T, T ) we obtain

U(τ + T, 0) ei(0) = λi U(τ + T, T ) ei(0), (B2)

where we have used the property

U(tf , ti) = U(tf , t
′)U(t′, ti) (B3)

of the evolution operator with t′ = T . Applying this
property to the left-hand-side of (B2) with t′ = τ and
using (12) on the right-hand-side, we obtain

U(τ + T, τ)U(τ, 0) ei(0) = λi U(τ, 0) ei(0). (B4)

Comparing (B4) with (14) yields (15).

2. Left eigenfunctions

From (B3) it follows that

U †(tf , ti) = U †(t′, ti)U
†(tf , t

′). (B5)

Using (B5), the operator on the left-hand-side of

U †(T, 0) fi(0) = λ∗
i fi(0) (B6)
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can be written as

U †(T, 0) = U †(τ, 0)U †(T, τ). (B7)

Multiplying (B6) by U †(T, τ) and using (B7) we get

U †(T, τ)U †(τ, 0)U †(T, τ) fi(0) = λ∗
i U

†(T, τ) fi(0).
(B8)

Using (B5) and (12), the first two factors on the left-
hand-side of (B8) can be written as

U †(T, τ)U †(τ, 0) = U †(τ + T, τ), (B9)

hence (B8) reduces to

U †(τ + T, τ)U †(T, τ) fi(0) = λ∗
iU

†(T, τ) fi(0). (B10)

Comparing (B10) with (17) yields

fi(τ) = αiU
†(T, τ) fi(0), (B11)

where αi is a constant. From (B11) for τ = 0 it follows
that αi = (λ∗

i )
−1, which proves (18).
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