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Abstract 
A simplified model of a hydrogen-bonding network is proposed in order to clarify the 

microscopic structure of cooperative rearranging region (CRR) in Adam-Gibbs theory [G. 
Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965)]. Our model can be solved 
analytically, and it successfully explains the reported systematic features of the glass 
transition of polyhydric alcohols. In this model, hydrogen bonding is formulated based 
on binding free energy. Assuming a cluster of molecules connected by double hydrogen 
bonds is a CRR, and approximating the hydrogen-bonding network as a Bethe lattice in 
percolation theory, the temperature dependence of the structural relaxation time can be 
obtained analytically. Reported data on relaxation time are well described by the 
obtained equation. By taking the lower limit of binding free energy with this equation, 
the Vogel-Fulcher-Tammann equation can be derived. Consequently, the fragility index 
and glass transition temperature can be expressed as functions of the number of OH 
groups in a molecule, and this relation agrees well with the reported experimental data. 
 
 
 
1. Introduction 
 Some hydrogen-bonding liquids are well-known glass-forming liquids. Despite their 
simple molecular structure, hydrogen-bonding liquids (especially polyhydric alcohols) 
often maintain a supercooled state without crystallization, and consequently a variety 
of materials are available for studies on glass transition. For this reason, 
hydrogen-bonding liquids can sometimes enable systematic study based on differences 
in molecular structure; actually, they have long been used in studies on glass transition 
[1-9]. Interesting systematic features of the glass transition of polyhydric alcohols have 
been revealed through recent experimental studies [3-9], the results of which should 
inspire new theoretical approaches to studying the glass transition of hydrogen-bonding 
liquids.  
 Sugar alcohols are one type of polyhydric alcohol and generally consist of a linear 



carbon backbone with an equal number of OH groups and C atoms ( COH NN = ): for 
example, glycerol ( COH NN = =3), threitol ( COH NN = =4), xylitol ( COH NN = =5), and 
sorbitol ( COH NN = =6). By using this series of materials, Döß et al. and Minoguchi et 

al. have found systematic features in the glass transition of these materials. In 
particular, the temperature dependence of structural α -relaxation time (or frequency) 
changes systematically against OHN  or CN , or both. Consequently, the fragility 

index (m ) [10] and the glass transition temperature ( gT ) show systematic dependence 

on these parameters [3-7]. In these previous studies, however, no distinction was made 
between the parameters OHN  and CN . To reveal which parameter more strongly 

affects the glass transition, in our previous works we experimentally investigated a 
series of trihydric alcohols ( 3=≠ OHC NN ) [8, 9]. We found that OHN  is more 
dominant than CN  and that the probability of hydrogen bond formation is similar 

among a variety of polyhydric alcohols regardless of differences in their molecular 
structures (position of OH, branching of the carbon chain, etc.).  
 Generally, systematic features imply a simple physical mechanism. From the above 
experimental results, the glass transition behavior of polyhydric alcohols can be 
explained by a model that is much simpler than the actual molecules, which are 
composed of many atoms and are far more complex than spherical particles. From the 
systematic features in relation to OHN , it can be inferred that the network structure of 

a hydrogen-bonding network, especially its topology, is essential for the glass transition. 
Therefore, molecules can be represented by network elements. From the similar 
probability of hydrogen bond formation, it is suggested that the connectivity between 
network elements is essentially identical for all polyhydric alcohols. Consequently, 
polyhydric alcohol can be regarded as a simple network system with a certain number of 
connective bonds per network element. According to this idea, we shall present a simple 
model that explains the temperature dependence of the structural relaxation time in 
the glass transition of polyhydric alcohols. Our purpose is to develop a coarse-grained 
model which provides a link between cooperative dynamics in supercooled liquids and 
microscopic structure. Although only hydrogen bonding liquids are considered in the 
present study, our approach presented here should be extended to other glass forming 
systems. 
 
 
 
2. Overview of Model 



On the basis of the above-mentioned experimental results, we focus on a 
hydrogen-bonding network to construct a model of the cooperative rearranging region 
(CRR) [11, 12]. In this model, a molecule is simplified as a node of the network and has a 
certain number of bonds that are connected or disconnected. A simplified molecule is 
referred to as a node, and a connecting bond represents a hydrogen bond between 
adjacent molecules. One OH group can form two hydrogen bonds because it can both 
donate a hydrogen atom to, and accept a hydrogen atom from, other OH groups. 
Therefore, maximum number of hydrogen bond per molecule is twice of number of OH 
groups in a molecule.  
Experimental results suggest that the probability of hydrogen bond formation is 

insensitive to minor differences in the molecular structures of polyhydric alcohols, such 
as the position and number of OH groups and branching of the carbon chain [8, 9]. 
Therefore, we assume that the probability of forming a hydrogen bond follows a 
Boltzmann distribution with a certain value of binding free energy. Based on this free 
energy, the connectivity can be expressed as a function of temperature.  
In our model, the CRR is regarded as a cluster in which molecules are connected 

through double hydrogen bonds. This assumption is based on the locally favored 
structures [13-15] inferred from local hydrogen bonding structure in the crystalline 
state [16-21]. As we have already defined the probability of hydrogen bond formation 
according to binding free energy, such clusters connected through double hydrogen bond 
can be treated mathematically. 
To calculate the size of the cluster, we assume a Bethe lattice [22, 23] for the structure 

of the hydrogen-bonding network, where each node has a number of connective bonds, 
z . In this lattice, there is no pathway from one node back to itself (i.e., no loop 
structures). The connective probability p  is equal to the probability of double 

hydrogen bond formation and therefore is given by the square of the probability of 
hydrogen bond formation bp . One might question the validity this Bethe lattice 

assumption, since it appears to be physically unrealistic. However, it is known that 
when the cluster is sufficiently small, a Bethe lattice provides a good approximation of 
an actual lattice because the cluster is too small to include a loop structure. 
Furthermore, the Bethe lattice allows an exact solution to be found. 
Thus, the estimated cluster of double hydrogen bonds in the Bethe lattice is identified 

as a CRR in reference to Adam-Gibbs theory [11]. From the size of the CRR, the 
relaxation time (τ ) or frequency ( πτ21=f ) can be obtained. Because the cluster size 
depends on the connective probability, which is a function of temperature, the obtained 
relaxation time is dependent on temperature. With decreasing temperature, the 



connective probability is increased, cluster size is increased, and consequently 
relaxation time is sharply increased.  
 
 
 

3. Hydrogen Bond Formation 
 Experimental results have suggested that hydrogen bond formation is similar among a 
variety of polyhydric alcohols, regardless of minor differences in their molecular 
structures [8, 9]. Accordingly, we assume that hydrogen bond formation can be simply 
described by the binding free energy of hydrogen bonding.  
Let the free energy of the bonded state and that of the non-bonded state be bF  and 

nF , respectively. Then, bbb TSEF −=  and nnn TSEF −= , where bE  is the energy of 
the bonded state, bS  is the entropy of the bonded state, nE  is the energy of the 
non-bonded state, and nS  is the entropy of the non-bonded state. Assuming a 

Boltzmann distribution, the probability of bonded and non-bonded states is proportional 
to ]exp[ bFβ−  and ]exp[ nFβ− , respectively, where TkB/1=β  and Bk  is the 

Boltzmann’s constant. The normalized probability of hydrogen bond formation is given 
by ( )]exp[]exp[]exp[ nbbb FFFp βββ −+−−= . Furthermore, bp  can be expressed as 

the difference in free energy between the bonded and non-bonded states: 
( )]exp[11 Fpb Δ−+= β ,  (1) 

where STEFFF bn Δ−Δ=−=Δ , bn EEE −=Δ , and bn SSS −=Δ . 

To obtain these parameters, the coordination number is analyzed. Supposing that 
hydrogen bonds form independently from one another, the distribution function of 
coordination number )(if  can be expressed by a binomial distribution function: 

iN
b

i
biN ppCif −−⋅= )1()( ,  (2) 

where N  is the maximum number of hydrogen bonds, OHNN 2= , and i  is the 
coordination number. Since bp  is a function of temperature, we have the coordination 

number distribution as a function of temperature with the parameter FΔ .  
To confirm the validity of our assumption and to estimate the parameter FΔ  ( EΔ  

and SΔ ), Eq. (1) is substituted into Eq. (2), and the result is compared with the 
coordination number reported by Chelli et al. from a molecular dynamics (MD) 
simulation on glycerol [16, 17]. In Fig. 1, the coordination number from their MD 
simulation is plotted against temperature. Solid curves in the figure show regression 
curves obtained by least-squares fitting using Eq. (2), where we have two free 
parameters ( EΔ  and SΔ ) for all series of )0(f - )6(f . For low-temperature data, it 



was reported that the MD system did not reach equilibrium within the simulated 
timescale. Therefore, only the data above 270 K (at 394.9 K, 366.3 K, 319.4 K, and 278.1 
K) were used in the fitting.  
Despite having too many series of data ( )0(f - )6(f ), good agreement is found among 

all the regression curves and MD data by using only two adjustable parameters ( EΔ  = 
55.2 meV (5.33 kJ/mol) and SΔ  = 0.122 meV/K  (0.0118 kJ/mol K)). This result 
supports the validity of our simplified treatment of hydrogen-bonding connectivity.  
Furthermore, from the same MD simulation reported by Chelli et al., the activation 

energy of hydrogen bond breaking was estimated to be 65 meV (6.3 kJ/mol) in the 
temperature range of 278-400 K ( T/1000  = 2.5-3.6 K-1) [16, 17]. This activation energy 
should correspond to the hydrogen-bonding energy, EΔ . The values of EΔ  from the 
coordination number distribution and that from the activation energy for hydrogen 
bond breaking agree within an error of 20%. These good agreements support the 
validity of our simplified treatment of hydrogen bonding. 
 
 
 
4. Cluster Size in the Bethe Lattice 
 In the Section 5, the CRR will be treated as a cluster of double hydrogen bonds in a 
Bethe lattice. In this section, we shall briefly describe the Bethe lattice.  
 The schematic diagram of a Bethe lattice is shown in Fig. 2. Each site (solid circle) has 
a number of bonds, z . In the bond-percolation process, these bonds are connected with 
probability p , and disconnected with probability p−1 . Since no loop structures 

appear in a Bethe lattice, exact solutions for several quantities can be easily obtained.  
 For the bond-percolation process, a cluster is defined as a set of sites that are 
connected by bonds. The mean cluster size S  of a Bethe lattice is given exactly by the 
following equation [22, 23]:  

[ ])1(1)1( −−+= zppS .  (3) 
 In a Bethe lattice, each branch is bifurcated infinitely, and the lattice extends infinitely. 
One might point out that such a lattice cannot exist within a realistic space. However, a 
Bethe lattice is still worth using for the following two reasons: firstly, the Bethe lattice 
is one of the few such models that allow an exact solution to be obtained; secondly, the 
Bethe lattice gives a good approximation of an actual lattice when the mean cluster size 
is sufficiently small. This is because the effect of loop structures is modest when the 
cluster size is small. Of course, for the systems of polyhydric alcohols considered in the 
present study, the Bethe lattice should no longer be valid around the critical point, 



where the size of the cluster becomes infinite. As explained below, the critical point 
corresponds to the ideal glass transition point. Because this ideal point is 
experimentally inaccessible, the behavior around the critical point is beyond the scope 
of the proposed model. 
 
 
 
5. Double Hydrogen Bonded Cluster 
 On the basis of Adam-Gibbs theory [11, 12], the structural relaxation is described as a 
cooperative thermally activated process. Consequently, the relaxation time is given by 

[ ]μβ Δ−= )(exp0 Tnff ,  (4) 
where )(Tn  is the number of molecules incorporated into the CRR, μΔ  is the 
activation energy for an independent process, 0f  is the relaxation frequency at the 
high temperature limit, and πτ21=f . 
 We assume that the CRR is a cluster composed of molecules linked by double hydrogen 
bonds. Recently, Tanaka and coworkers have pointed out that the density of locally 
favored structures formed between adjacent particles plays a key role in the glass 
transition [19-21]. Based on that finding, it is natural to consider the local structure 
found in the crystalline state. In the crystalline states of polyhydric alcohols, some 
adjacent molecules are connected by two or more hydrogen bonds [16-21]. If two 
molecules are connected by only one hydrogen bond, then each molecule can rotate 
about their torsional axis, and thus each molecule can undergo rearrangement 
(reorientation) independently. On the other hand, if they are connected by two hydrogen 
bonds, then the molecules cannot undergo rearrangement independently. Therefore, two 
or more hydrogen bonds are required for a rigid connection. In the disordered liquid 
phase, it is inferred that a hydrogen bond is formed according to a certain probability. If 
the hydrogen bonds are formed independently of one another, the probability of double 
hydrogen bond formation is the square of the probability of single hydrogen bond 
formation, the probability of triple hydrogen bond formation is the cube of the 
probability of single hydrogen bond formation, and so on. However, the probability of 
forming three or more hydrogen bonds is much less than that of forming two hydrogen 
bonds. Hence, we ignore the effects of three or more hydrogen bonds. Hence, if two 
molecules are connected by two hydrogen bonds, then they are included in the double 
hydrogen bonded cluster, and this cluster is associated with the CRR.  
Independence of each hydrogen bond formation probability is just an approximation to 

enable us to obtain analytical solution. In actual system, effects of steric hindrance and 



position of OH group might appear. However, experimental results has clearly shown 

that gT  and fragility are insensitive of minor differences in molecular structures [8, 9]. 

Furthermore, analysis on orientational correlation factor regarding OH groups suggests 
that hydrogen bond formation and its temperature dependence are also insensitive of 
molecular structure of polyhydric alcohols [8, 9]. These experimental results support the 
validity of our approximation on independent hydrogen bonds formation. In addition, 
we have presented the analysis on coordination number based on the independent 
hydrogen bond formation in section 3. This analysis successfully reproduces the 
complicated data reported form MD simulation. Therefore, this approximation is 
applicable at least as a primary step to develop a model of the CRR. 
 To evaluate the size of the double hydrogen bonded cluster, we consider the 
bond-percolation process in the Bethe lattice. Here, molecules are represented as nodes 
on the Bethe lattice, and double hydrogen bonds are represented by a connected bond. 
Since each OH group is capable of forming two hydrogen bonds as both a hydrogen 
donor and acceptor, the maximum number of single hydrogen bonds for each molecule is 
twice as number of OH group per molecule ( OHN ). Since maximum number of double 

hydrogen bonds is half of that of single hydrogen bonds, the maximum number of double 
hydrogen bonds is OHN . Therefore, the number of bonds, z , in our Bethe lattice 
should be equal to OHN  ( OHNz = ). The connection probability p  in our Bethe 

lattice is equal to the probability of a double hydrogen bond formation ( 2
bpp = ). Thus, 

recalling Eqs. (3) and (1), we can express the size of the double hydrogen bonded cluster 
as 

[ ])1(1)1( 22 −−+= OHbb NppS  
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Then, this cluster is associated with the CRR ( STn =)( ), and substituting Eq. (5) into 

Eq. (4), we have the relaxation frequency:  
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Thus, the relaxation frequency f  is a function of temperature. Here, the size of the 

CRR, and consequently the relaxation frequency, exhibit divergence at a certain 
temperature due to the critical property of the Bethe lattice. Around the critical point, 
the size of the CRR increases sharply, and then the hydrogen-bonding network can no 
longer be regarded as a Bethe lattice. However, we are not interested in this critical 
point, because it is experimentally inaccessible due to the very long relaxation time.  
 
 
 
6. Comparison between Theoretical and Experimental Results 
 To evaluate the validity of our model, experimentally obtained the relaxation 
frequencies of several polyhydric alcohols [6-9] are fitted using Eq. (6), where the free 
parameters are EΔ , SΔ , μΔ , and 0f  (the hydrogen-bonding energy, 

hydrogen-bonding entropy, independent activation energy, and high-temperature limit 
of relaxation frequency). The results of the fitting are shown in Fig. 3. Clearly, all the 
experimental data are reproduced well by Eq. (6) with reasonable values of the 
parameters EΔ , SΔ , μΔ , and 0f . Although this Eq. (6) has more free-parameters 

than conventionally used Vogel-Fulcher-Tammann (VFT) equation [24-26], the qualities 
of each fit are practically the same. However, now physical picture of each parameter of 
Eq (6) is clear whereas essentially no physical picture has been presented for the 
parameters of VFT equation. In addition, VFT equation can be derived from it as to be 
shown in the next section. 
 In Fig. 4, these obtained parameters, except for 0f , are plotted against OHN , and 

also listed in the table. As can be seen in this figure, the obtained values of EΔ , SΔ , 
and μΔ  are approximately the same for all polyhydric alcohols examined here. The 
mean values of EΔ , SΔ , and μΔ  are 35.1 meV, 0.169 meV/K, and 208 meV (3.39 

kJ/mol, 0.0163 kJ/mol K, and 20.1 kJ/mol ), respectively; and the standard deviations 
are 4.2 meV, 0.016 meV/K, and 13 meV, respectively (12%, 9.6%, and 6.1% of each mean 
value). From this analysis, it can be concluded that the obtained values of these 
parameters are highly similar among a variety of polyhydric alcohols. 
The similarity in the obtained values of EΔ  and SΔ  can be attributed to the 

similarity in the formation of hydrogen bonds. In previous works on polyhydric alcohols 
based on the analysis of orientational correlation factor via the dielectric constant, it 



has been suggested that the formation of hydrogen bonds is similar among all 
polyhydric alcohols, irrespective of differences in their molecular structures [8, 9]. On 
the basis of this finding, we have constructed the present model. Therefore, the 
similarity found in the values of EΔ  and SΔ  supports the validity of our model. 
Furthermore, the values of EΔ  and SΔ  are the same magnitude as the values 
calculated from the coordination number distribution from MD data in Section 3. These 
values are plotted as open triangles in Fig. 4 (a) and (b). Although these values show 
slight differences, the magnitude is of the same order. Since our model is schematic and 
includes some approximation, this degree of agreement is remarkable. Since we 
completely neglect the effect of molecular structure, such as steric requirement of 
hydrogen bonding and intra-molecule hydrogen bonding, this deviation can be 
attributed to these effects. It is expected that this deviation can be compensated by 
taking into account actual probability of inter-molecular hydrogen bonding. 
Although we did not specify a physical description of independent motion, the obtained 

value of μΔ  is nonetheless found to be physically plausible. The values of μΔ  in our 

model are comparable with the activation energy of a configurational change, 
specifically, the energy barrier of a gauche-trans (g-t) conformational change. For 
example, it has been reported from MD simulations on glycerol that the mean g-t 
activation energy is 209 meV (20.2 kJ/mol) [16, 17]. In addition, the barrier height of the 
g-t conformational change of ethane is known to be 120 meV (12 kJ/mol) from 
calorimetric measurement [27]. These two values are plotted in Fig. 4 (c) as open 
diamonds and squares, respectively. From this result, it is inferred that a type of g-t 
conformational change is responsible for the fundamental process of structural 
relaxation. These agreements of obtained value of μΔ  with g-t activation energy, 

further support validity of our model. 
 The size of the CRR, defined as the number of nodes incorporated in the cluster, is next 
calculated using Eq. (5) with the obtained parameters. The temperature dependence of 
the size of the CRR is plotted against reciprocal temperature in Fig. 5. As shown in this 
figure, the size of the CRR increases with decreasing temperature. These results show 

that 2-5 molecules are incorporated into the CRR at gT , and these values are 

consistent with other reports. For several glass-forming materials, Yamamuro and 
coworkers used configurational entropy, obtained from the specific heat in liquid and 
crystalline phases, to estimate the size of the CRR [28, 29]. The reported CRR size is in 

the range of 3-8 at gT , and the magnitude of these values is comparable with our result. 



Since the Bethe lattice approximation is valid when the size of cluster is sufficiently 
small (roughly within the number of adjacent nodes), our Bethe lattice approximation is 
supported by the calculated cluster size. 
 
 
 
7. Lower-Bound Free Energy Approximation 
 By taking the lower limit of free energy, our model yields the VFT equation. The 
validity of this approximation is to be presented after derivation of the VFT equation.  

Assuming 1<<ΔFβ , the approximate probability of hydrogen bond formation is  

1
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Squaring each side of this equation and again taking the lower limit of free energy, we 
have the probability of double hydrogen bond formation:  
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4
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Substituting Eq. (8) into Eq. (5), the size of the CRR is expressed as follows, 
( )

( ) ( ) 0

1
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where ( )( ) ( ) ( )[ ]OHBBBOH NkSkSkENT 1//5/10 −Δ+Δ−Δ−= . Here, again invoking 

1/ <<Δ TkF B , 

( ) ( ) 0

1
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Similar to the derivation of Eq. (6), when Eq. (10) is substituted into Eq. (4), it follows 
that 
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where ( ) ( ) ( )[ ]OHBBB NkSkSkB 1//5/5 −Δ+Δ−Δ= μ . Thus, VFT equation has been 



derived under the lower-bound free energy approximation.  
Invoking the definitions of the fragility index and glass transition temperature, these 

quantities are expressed as functions of OHN : 
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Here, gf  is defined as the frequency at the glass transition temperature (here, 

210−=gf  Hz). 

 To confirm the applicability of our lower-bound free energy approximation, this 
condition should be analyzed in detail. The lower-bound free energy condition, 

11 <<Δ<<− TkF B , can be rewritten as 
( ) [ ] ( ) [ ]1//1// −ΔΔ<<<<+ΔΔ BBBB kSkETkSkE .  (14) 
Therefore, the approximation result, Eq. (11), should be employed only within this 
temperature range. To confirm this, ( ) [ ]1// +ΔΔ= BBlwb kSkET , 

( ) [ ]1// −ΔΔ= BBupb kSkET , and gT  for all examined materials are listed in Table 1. 

Clearly, the values of gT  are within the range from lwbT  to upbT . Therefore, this 

approximation is applicable around gT . Moreover, the experimental temperature range 

for the reported data, 193 - 363 K, is entirely within this applicable temperature range. 

In order to compare the approximation with experimental results, the parameters gT  

and 0T , and m  are plotted against OHN  in Figs. 6 and 7, respectively. For the 



theoretical curves, 0log f =14.05, EΔ =31.6 meV, SΔ =0.157 meV/K, and μΔ =216 
meV ( EΔ =3.05 kJ/mol, SΔ =0.0152 kJ/molK, and μΔ =20.9 kJ/mol) were employed, 

where these values were averaged for a set of sugar alcohols. From Figs. 6 and 7, it can 

be seen that the values of gT , 0T , and m agree well between theory and experiment. 

In particular, the agreement for sugar alcohols is excellent. Since these quantities are 

often used to characterize the slow dynamics around gT , our model successfully 

describes the slow dynamics. It should be noted that experimental values of gT , 0T , 

and m  slightly depend on CN  and molecular structure. Such slight molecular 

structure dependence is not taken into account in our model. Therefore, this may cause 
a slight discrepancy between the experimental and theoretical values, as seen in the 
values for OHN =3 in Figs. 6 and 7.  
To make a comparison between theory and experiment at lower OHN , the VFT 

parameters of ethylene glycol (EG; a sugar alcohol with OHN =2) are discussed. 

However, pure EG in a supercooled state has a high tendency to crystallize. Therefore, 
precise VFT parameters are not available. For this reason, the data on mixtures of EG 
and water are employed here. A water molecule has two hydrogen atoms, and therefore 
has two hydrogen donors. Accordingly, it is presumed that a water molecule (H-O-H) 
consists of two OH groups, although the oxygen atoms in both OH groups are identical. 
Thus, OHN  of water is 2. Since OHN  of both EG and water is 2, OHN  of the mixture 

is also regarded as 2, independent of the mixing ratio. The data on EG and water 
mixtures, as measured by dielectric spectroscopy [30], are plotted in Figs. 6 and 7 as 

open symbols. From these figures, it can be seen that the experimental values of gT , 

0T , and m  are in good agreement with the theoretical values until OHN =2. 

Despite the simplicity of our model, it can sufficiently explain the experimentally 
obtained characteristic of slow dynamics. The agreement for the data on sugar alcohols 
is especially surprising. From these results, the validity of our model is strongly 
supported.  
In the present paper, only hydrogen-bonding liquids are considered, but a similar 

approach should be applicable to other networks of glass-forming materials, such as 
covalent glass. For such extension of the model, the present double hydrogen bonded 
cluster should be replaced by system-specific clusters. For covalent glasses, the 
characteristic local structure of short-range motifs, so-called medium-range order [31], 



may correspond to the double hydrogen bonds considered here. For example, Wilson et 
al. have conducted a computer simulation on 2SiO -based glasses, and found that 
differences in the connectivity of 2SiO  tetrahedral motifs are linked to fragility [32]. In 

fact, similar systematic features in gT  and fragility have also been reported for such 

inorganic glasses [33-36]. Although the alternative structure for the double hydrogen 
bond is still unclear for other systems, shedding light on this type of structure should 
give a new physical picture of the CRR based on more general perspectives. 
 
 
 
8. Conclusion 
We have developed a new model that explains the glass transition of polyhydric 

alcohols on the basis of percolation process of a network of double hydrogen bonds. The 
temperature dependence of the relaxation time for reported polyhydric alcohols (sugar 
alcohols and trihydric alcohols) were reproduced well by our model. In addition, the 
calculated values of parameters agree with microscopic quantities obtained by 
simulation and experiment. By considering the lower-bound approximation of binding 
free energy in the present theory, the VFT equation was derived. Thus, we obtained an 
analytical expression for the glass transition temperature, fragility, and VFT 
parameters as a function of the number of OH in a molecule ( OHN ). These quantities 
were found to depend on OHN , in good agreement with reported experimental results 

for polyhydric alcohols including water-sugar alcohol mixtures.  
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Table 
 
Table 1. List of the obtained parameters for Eq. (6) and the temperature range where 
low free energy approximation is applicable. This approximation is applicable under the 

condition upblwb TTT <<<< , where ( ) [ ]1// +ΔΔ= BBlwb kSkET , 

( ) [ ]1// −ΔΔ= BBupb kSkET . 

Sample OHN  EΔ (meV) SΔ (meV/K) μΔ (meV) )( gTn m 0T
(K) 

lwbT
(K) 

gT (K)
upbT (K

)

Sorbitol 6 32.7 1.89 198 4.3
102.

2
229 131 268 427 

Xylitol 5 31.0 1.80 213 3.7 78.3 198 129 248 450 

Threitol 4 32.7 1.86 225 3.2 68.4 175 133 226 442 

Glycerol 3 29.7 1.75 229 2.7 50.0 129 125 192 460 

Butanetriol 3 37.1 2.00 196 3.0 60.7 153 143 201 430 

3MPT a 3 36.0 1.90 207 3.0 57.0 152 144 206 464 

Hexanetriol 3 40.2 2.18 196 3.0 67.6 161 147 202 395 

Heptanetrio

l 
3 41.2 2.29 206 2.8

68.2
161 145 200 371 

a 3-Methyl-1,3,5-pentanetriol  
 



Figure Captions 
Fig. 1. Distribution function of coordination number against temperature. Symbols 
represent MD simulation data [16, 17], and solid curves show the result of least-squares 
fitting using Eq. (1) substituted into Eq. (2). 
 
Fig. 2. Schematic of Bethe lattice. Solid circles represent nodes. Solid and dotted lines 
stand for connected and disconnected bonds, respectively. This figure is an example of 

3=z . 
 
Fig. 3. Arrhenius diagram of relaxation frequency for polyhydric alcohols. Symbols show 
previously reported data [6-9]. Solid curves show fitting using Eq. (6). 
 
Fig. 4. Parameters in Eq. (6): (a) binding energy, (b) entropy, and (c) independent 
activation energy. Solid circles are obtained from the fitting shown in Fig. 2. Open 
triangles show binding energy and entropy from Fig. 1. Open diamonds show the 
reported energy barrier of the gauche-trans conformational change of glycerol [16, 17]. 
Open squares show the energy barrier of the gauche-trans conformational change of 
ethane [24]. 
 
Fig. 5. Temperature dependence of CRR size, calculated using Eq. (5). Solid curves show 
CRR size for materials shown in Fig. 3. Symbols on each curve show the values of CRR 

size at gT , and each symbol match to that used in Fig. 3. The values of size of CRR at 

gT  are also listed in the table. 

 

Fig. 6. Glass transition temperature gT  and Vogel temperature 0T  against OHN . 

Solid curves show theoretical values from our model presented in Section 7. Solid 
symbols show experimental values from references [6-9]. Open symbols show the values 

for EG-water mixtures (60, 70, and 80 wt %) [30]. Values of gT  and 0T  are also listed 

in the table. 
 
Fig. 7. Fragility index m  against OHN . Solid curve shows theoretical value from our 

model presented in Section 7. Solid symbols show experimental value from references 



[6-9]. Open symbols show the values for EG/water mixtures (60, 70, and 80 wt %) [30]. 

Values of gT  and 0T  are also listed in the table. 
















