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Abstract

We provide definitive results to close the debate between Eeckhout (2004, 2009) and Levy (2009)
on the validity of Zipf’s law, which is the special Pareto lawwith tail exponent1, to describe the tail of
the distribution of U.S. city sizes. Because the origin of the disagreement between Eeckhout and Levy
stems from the limited power of their tests, we perform theuniformly most powerful unbiased testfor
the null hypothesis of the Pareto distribution against the lognormal. Thep-value and Hill’s estimator
as a function of city size lower threshold confirm indubitably that the size distribution of the 1000
largest cities or so, which include more than half of the total U.S. population, is Pareto, but we rule out
that the tail exponent, estimated to be1.4± 0.1, is equal to1. For larger ranks, thep-value becomes
very small and Hill’s estimator decays systematically withdecreasing ranks, qualifying the lognormal
distribution as the better model for the set of smaller cities. These two results reconcile the opposite
views of Eeckhout (2004) and Levy (2009). We explain how Gibrat’s law of proportional growth
underpins both the Pareto and lognormal distributions and stress the key ingredient at the origin of
their difference in standard stochastic growth models of cities (Gabaix 1999, Eeckhout 2004).

JEL classification: D30, D51, J61, R12.
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Based upon the U.S. Census 2000 data, Eeckhout (2004) reports that the whole size distribution of
cities is lognormal rather than Pareto. This conclusion is obtained by using the Lilliefors test (L-test)
(Lilliefors 1967, Stephens 1974) for normal distributionswith empirical mean̂µ = 7.28 and standard
deviationσ̂ = 1.25. This empirical conclusion is consistent with Gibrat’s lawof proportionate effect
and is rationalized by an equilibrium theory of local externalities in which the driving force is a random
productivity process of local economies and the perfect mobility of workers.

Levy (2009) argues that the top 0.6% of the largest cities of the U.S. Census 2000 data sample, which
accounts for more than 23% of the population, dramatically departs from the lognormal distribution and
is more in agreement with a power law (Pareto) distribution.The bulk of the distribution actually follows
a lognormal but, due to the departure in the upper tail, aχ2-test unequivocally rejects the null of a
lognormal for cities whose log-size is larger thanµ̂ + 3σ̂ = 12.53. The non-rejection of the lognormal
by the L-test used by Eeckhout (2004) is ascribed to the fact that the relative number of cities in the upper
tail is very small (only 0.6% of the sample), and the L-test isdominated by the center of the distribution
rather than by its tail, where the interesting action occurs.

In reply, Eeckhout (2009) provides the 95%-confidence bandsof the lognormal estimates based upon
the L-test and shows that the tail of the sample distributionof log-size is well within the confidence bands.
In addition, Eeckhout asserts that “both [Pareto and lognormal] distributions are regularly varying, i.e.
they are heavy tailed, and their tails have similar properties. [...] It is natural that the upper tail of city
sizes can be fit to a Pareto distribution”. Therefore “[g]iven that the tail of a lognormal is indistinguish-
able from the Pareto under certain circumstances, the researcher who is interested in the tail properties
of a size distribution can choose which one to use.”

In the first part of this comment, we summarize the propertiesthat make often difficult the task of
distinguishing between the Pareto and the lognormal distributions. While the Pareto and the lognormal
distributions have indeed distinct asymptotic tails – in contrast with the Pareto, the lognormalis not
regularly varying but rapidly varying – the lognormal can easily be mistaken for a Pareto over a range
which can cover several decades as soon as its standard deviation is sufficiently large (a few units is
sufficient). Furthermore, both distributions may be generated by Gibrat’s law of proportional growth,
with some additional apparently innocuous but actually profound twist(s) for the Pareto. In a second
part, using exactly the same data set, we find that the origin of the disagreement between Eeckhout and
Levy stems from the limited power of their tests. Using theuniformly most powerful unbiased testfor
the null hypothesis of a Pareto distribution against the lognormal, we confirm and extend Levy’s result,
by showing that the Pareto model holds for the 1000 largest cities or so, i.e. for more than 50% of the
total population. Zipf’s law, corresponding to Pareto withexponent1, is found incompatible with the
data at the 90% confidence level. The Pareto index for the uppermost tail (about 1000 largest cities) is
approximately1.4.

1 Why the Pareto and the Lognormal distributions are difficult to distin-
guish

1.1 Structural similarities and differences

In order to justify that Levy’s results are compatible with his own, Eeckhout (2009) asserts that both the
Pareto distribution and the lognormal distribution are regularly varying, which makes their tail indistin-
guishable. We recall that a positive functionf(x) is regularly varying at infinity if there exists a finite
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real numberα such that (Binghamet al.1987)

lim
x→∞

f(t · x)
f(x)

= tα, ∀t > 0. (1)

Pareto distributions are regularly varying. However, it isnot the case for lognormal distributions. Indeed,
the lognormal density reads

f(x) =
1√
2πσ

· 1
x
e−

(lnx−µ)2

2σ2 , (2)

so that

lim
x→∞

f(t · x)
f(x)

= lim
x→∞

1

t
e−

(ln t)2

2σ2 e− ln t· lnx−µ

σ2 =











0, t > 1,

1, t = 1,

∞, t < 1.

(3)

This limit behavior characterizes a rapidly decreasing function at infinity. Therefore, Pareto and lognor-
mal distributions exhibitqualitativelydifferent behaviors in their upper tails. The lognormal density goes
to zero, in the upper tail, faster than any Pareto density. Inthis respect, they cannot be mistaken into one
another, provided that one has enough data to sample the tail.

However, writing the lognormal density as follows

f(x) =
1√
2πσ

· 1
x
e−

(lnx−µ)2

2σ2 =
1√
2πσ

e−
µ2

2σ2 · x−1+
µ

σ2−
lnx
2σ2 , (4)

we observe that the lognormal distribution is superficiallylike a Pareto distribution with a slowly increas-
ing effective exponent

α(x) =
1

2σ2
ln

( x

e2µ

)

. (5)

Expression (5) allows us to make two points. First, as statedabove, it shows that the lognormal distribu-
tion decays at infinity faster than any Pareto distribution,since the apparent exponentα(x) diverges with
x. Second, ifσ2 is large enough, the apparent exponentα(x) varies so slowly so as to give the impression
of constancy over several decades inx. Quantitatively, in the rangeX ≤ x ≤ λX, the apparent exponent
varies fromα(X) to α(X) + 1

2σ2 lnλ. For instance, forσ = 3.4, the apparent exponent varies by no
more than0.3 over three decades (λ = 1000).

However, with the smaller estimatêσ = 1.25 provided by Eeckhout (2004) for the U.S. Census
2000 data, the apparent exponent varies by1.5 units over just two decades. This is an indication that a
powerful test, as implemented in the next section, should beable to distinguish the two hypotheses over
a range of two to three decades corresponding to the tail regime suggested by Levy (2009).

1.2 Generating process

Gibrat’s law of proportional growth is often taken as a key starting point to understand the origin of
the distribution of city sizes (see the recent review by Saichev et al. (2009) and references therein).
Eeckhout (2009) also stressed that Gibrat’s law remains thecorner stone for building economic models
of population dynamics. Considered as the unique ingredient, Gibrat’s law predicts that the distribution
of city sizes should tend to a lognormal distribution, but asa more and more degenerate one as time
increases. Indeed, Gibrat’s law leads to model the growth ofa given city as following a random walk in
its log-size, which therefore never admits a steady state distribution.

The equation of city growth embodying Gibrats law is

Si,t = ai,t · Si,t−1 , (6)
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whereSi,t is the the size of cityi at time t andai,t is the random positive growth factor. Taking the
logarithm of (6) and iterating yields

lnSi,t = lnSi,t−1 + ηi,t = lnSi,0 + ηi,1 + ηi,2 + ...+ ηi,t , (7)

whereηi,t ≡ ln ai,t. Assuming (for a time) that termsηi,t are iid random variables with expectationA
and standard deviationB, the Central Limit Theorem of Probability Theory gives

lnSi,t ≃ t · A+ t1/2B · ξ , (8)

whereξ is a standard Gaussian random variableN(0, 1). Of course, the stationarity of theηi,t’s should
be verified by an appropriate analysis. Assuming in additionthat the stochastic growth process for a
typical city as a function of time is equivalent to sampling the growth of many cities at a given instant,
i.e., that a strong form of ergodicity holds, expression (8)ensures that the the distribution of city sizes is
lognormal, i.e., the variablelnSi,t−t·A

t1/2B
isN(0, 1).

As recalled for instance by Gabaix (1999), an apparently minor modification leads to a bona fide
steady state and, therefore, to a stationary distribution of city sizes. This modification, which can take
many forms (Sornette 1998), consists in preventing the small cities from becoming too small. The
corresponding generic equation of motion for city sizes embodying this idea together with Gibrat’s law
is (Gabaix 1999)

Si,t = ai,t · Si,t−1 + εi,t , (9)

where the termsεi,t > 0 prevent the accumulation of a large number of cities with vanishingly small
sizes. In absence ofεi,t, expression (9) is nothing but the random walk in log-size leading to the log-
normal distribution obtained from (8). Because the process(9) with non-zeroεi,t leads to a stationary
distribution,1 if we assume ergodicity, then the distribution of an ensemble of cities is the same as that of
the set of realizations{Si,t} for a fixed cityi as a function oft for large times.

The presence of the “minor modification”εi,t > 0 ensures that the size distribution of cities switches
from a lognormal to a Pareto, even if it is arbitrarily small,as long as it is non-zero (Kesten 1973). The
tail indexα of the Pareto distribution is the solution toE [(ai,t)

α] = 1. Gabaix (1999) argued for the
validity of the constraintE [ai,t] = 1, which then leads to Zipf’s law:α = 1. Saichev et al. (2009) shows
that Zipf’s law is more realistically the result of Gibrat’slaw together with a condition balancing the
birth rate, random growth and possible death rate of cities2.

The intuition behind the transformation of the lognormal into the Pareto distribution, upon the in-
troduction of the apparently minor additive termεi,t > 0 is the following. Because of the stationarity
conditionE [ln ai,t] < 0, in the absence ofεi,t, the processSi,t tends to shrink stochastically towards
zero, while exhibiting a more and more degenerate lognormaldistribution. During this phase, a few ex-
cursions of exponentially large sizes associated with transient occurrences of the growth factorai,t larger
than1 can occur with exponentially small probability. The termεi,t allows the process to repeatedly ex-
hibit the exponentially rare exponentially large excursions. The combination of these two exponentials
leads to the Pareto distribution3.

Eeckhout (2004)’s model provides an expression for the growth of cities of the form (6), with
ai,t = 1/Λ−1(1 + σi,t) as defined on page 1447. The functionΛ(Si,t) ∼ SΘ

i,t denotes the net local
size effect on the growth of cities,σi,t corresponds to exogenous technology shock impacting cityi at

1The condition for stationarity isE [ln ai,t] < 0.
2In the case of cities, death means falling below a moving threshold for qualifying as a city.
3For the more realistic situation where cities are on averagegrowing, by an exponentially growing termεi,t so as to represent

immigration or population fluxes across cities for instance, the same reasoning applied once a change of frame has been
performed with respect to the exponentially growingεi,t term (see Sornette (1998) for details).
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time t andΘ = −(θ − γ − β/α) in the notations of Eeckhout (2004). The exponentsα andβ quantify
the consumer preference with respect to consumption, amount of land and housing, and leisure. The ex-
ponentθ describes the dependence of the positive externality of being in a city of sizeS. The exponentγ
describes the dependence of the negative external effect ofhow leisure can be used for labor. Then, any
mechanism, ensuring a minimum (even random) city size helping to transform (6) into (9) or equivalent
(Sornette 1998), leads to the Pareto distribution for the tail of the distribution of city sizes with tail ex-
ponentα = −Θ. SinceΘ < 0, the “net local size effect”Λ(Si,t) is an inverse power of the city size so
that a faster decay of the tail of the distribution of city sizes corresponds to a weaker relative impact of
net local externalitiesΛ(Si, t) on large cities compared to smaller cities. Zipf’s law is recovered for the
special caseΘ = −1.

2 Testing the Pareto against the lognormal distribution

2.1 The uniformly most powerful unbiased test

As summarized in the introduction, Eeckhout (2004) and Levy(2009) have used general tests (L-test and
χ2-test respectively) of the null hypothesis that the whole sample or just the upper tail is generated by
a lognormal distribution, and they reach opposite conclusions. While these two tests are quite versatile,
they are not always very powerful. For the purpose of comparing the lognormal distribution with Zipf’s
law, their lack of power can be ascribed to the fact that they test the null hypothesis against any alternative
distribution, and not specifically against the Pareto distribution. But the later is the alternative of interest.
For instance, figure 2 in (Eeckhout 2009) illustrates the dramatic lack of power of the L-test in the upper
tail of the distribution under the null of a lognormal: the confidence bands derived from this test fan
out very strongly, which makes this test completely unable to decide if the deviations observed in the
data are genuine or fake. Of course, the main reason for the decreasing power observed in figure 2 in
(Eeckhout 2009) is the shrinking sample size for the upper ranks, but this does not remove the necessity
of using the most possible powerful test in such a situation.

The discussion following equations (4) and (5) suggests that it might be possible to clearly distinguish
between the explanatory power offered by a lognormal distribution versus a Pareto distribution for the
U.S. Census 2000 data sample, when using a more powerful test. The most general test that addresses the
core question, whether the Pareto law holds in the tail or thelognormal model is sufficient, is to consider
the two hypotheses: Pareto distribution for values ofx larger than some thresholdu and lognormal
distribution also for value ofx above the same thresholdu. Specifically, we propose to test the null
hypothesis that, beyond some thresholdu, the upper tail of the size distribution of cities is Pareto

H0 : f0(x;α) = α · uα

xα+1
· 1x≥u, α > 0, (10)

against the alternative that it is a (truncated) lognormal

H1 : f1(x;α, β) =

[
√

π

β
e

α2

4β

(

1− Φ

(

α√
2β

))]−1 1

x
e−α ln

x
u
−β ln2

x
u · 1x≥u, α ∈ R, β > 0,

(11)
whereΦ(·) denotes the CDF of the normal distribution.

This is equivalent to testing the null hypothesis that the upper tail of the log-size distribution of cities
is exponential against the alternative that it is a (truncated) normal. For this later problem, Del Castillo
and Puig (1999) have shown that the clipped sample coefficient of variation ĉ = min(1, c) provides the
uniformly most powerful unbiased test, wherec is the sample coefficient of variation defined as the ratio
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of the sample standard deviation to the sample mean. The critical point of the test can be derived with
extremely high accuracy (even for very small samples) by a saddle point approximation (Del Castillo
and Puig 1999, Gattoa and Jammalamadakab 2002) or by Monte Carlo methods.

2.2 Results

The upper panel of figure 1 depicts thep-value of the test as a function of the lower thresholdu expressed
in terms of the rank of city sizes represented in a logarithmic scale. Thep-values have been calculated
using the saddle point approximation (Del Castillo and Puig1999, Gattoa and Jammalamadakab 2002).
Extensive Monte-Carlo simulations reproduce basically the same results. Figure 1 indubitably shows that
the size distribution of the 1000 largest cities or so, whichinclude more than half of the total population,
is Pareto. This confirms and makes more precise the claim of Levy (2009). For larger ranks, thep-value
becomes very small, qualifying the lognormal distributionas the better model for the set of smaller cities.
This explains Eeckhout (2004)’s results.

The lower panel of figure 1 depicts Hill’s estimatêα−1 of the inverse of the tail indexα of the Pareto
distribution (10) again as a function of city rank. This estimator is the best unbiased estimator for the
inverse of the tail index4 (Hill 1975). For the U.S. census 2000 data (blue upper noisy curve), the inverse
of the tail index is approximately constant and fluctuates around the value0.7 for ranks less than one
thousand or so, confirming the validity of the Pareto model over this range. For ranks larger than one
thousand, the Hill’s estimatêα−1 deviates rapidly, confirming a deviation from the Pareto model for the
set of smaller cities.

In the lower panel of figure 1, we also show Hill’s estimatêα−1 for ten random samples drawn
from a lognormal distribution with parametersµ = 7.28 andσ = 1.25 (red curves). One can observe
the absence of a plateau, and therefore no well-defined exponent, thus disqualifying the Pareto model.
The increase of ˆα−1 with rank is the expected signature of the fact that the lognormal density is rapidly
decreasing, i.e., it goes to zero faster than any power law, so that its effective tail index is equal to
infinity and its inverse is vanishing. Therefore, for very low ranks (largest cities), Hill’s estimator should
converge to zero for data generated by a lognormal distribution.

The contrast between the U.S. Census 2000 data and the samples drawn from a lognormal distribution
with parametersµ = 7.28 andσ = 1.25 is striking and provides additional evidence in favor of thePareto
distribution for the upper tail. This makes clear that the Pareto and lognormal models are distinguishable
in their tail for the available U.S. Census 2000 data sample.

2.3 Pareto model versus Zipf’s law

Now that we have established that the tail of the size distribution of cities is Pareto, we turn to the
question of whether this Pareto law is Zipf’s law, i.e., whether the exponent isα = 1.

First, the lower panel of figure 1 shows the confidence band at the 95%- and 99% significance levels,
derived from the uniformly most powerful unbiased test thatthe tail indexα = 1 against a two-sided
alternative (Lehman and Romano 2006). At the 95% significance level, Zipf’s law is rejected, except
for the twenty largest cities. Figure 2 improves on this statistics by plotting thep-value defined as the
probability ofexceedingthe observed index estimate (one side-test) under the hypothesis that Zipf’s law
holds (index equals to unity). For rank thresholds larger than20, all p-values are smaller than0.05. For
rank thresholds larger than16, all p-values are smaller than0.10. We are thus led to conclude that Zipf’s

4It is not possible to get an unbiased estimate forα.
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law cannot be accepted to describe the tail of the distribution of city sizes in the US census studied here,
whereas a larger exponent approximately equal to1.4 is significantly more likely.

Coming back to Eeckhout (2004)’s model, our findingα = −Θ ≈ 1.4 implies that the “net local
size effect”Λ(Si,t) decreases faster with city sizeSi,t than would be the case if Zipf’s law held exactly.
We also refer to Saichev et al. (2009) for a review of the mechanisms based on Gibrat’s law leading to
distributions with Pareto tails whose exponents can deviate from the Zipf’s law valueα = 1.
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Figure 1: The upper panel depicts thep-value of the test of the null hypothesis that the upper tail of the
size distribution of cities is Pareto against the alternative that it is a (truncated) lognormal as a function of
the rank threshold, where cities are ordered by decreasing sizes. The lower panel depicts Hill’s estimate
of the inverse of the tail index for the Census 2000 data (blueupper curve) and for ten samples drawn from
a lognormal distribution with parametersµ = 7.28 andσ = 1.25 (red bottom curves). The two dashed
(respectively dot-dash) curves provides the confidence bands at the 5%-significance level (respectively
1% level) derived from the UMPU test that the tail indexα = 1 against a two-sided alternative.
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Figure 2: One-sidedp-value as a function of rank threshold, testing the hypothesis that the tail exponent
of the Pareto distribution is compatible with Zipf’s laws that α = 1. The p-value is defined as the
probability of exceeding the observed index estimate underthe hypothesis that Zipf’s law holds.
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