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Abstract

We provide definitive results to close the debate betweekitted (2004, 2009) and Levy (2009)
on the validity of Zipf’s law, which is the special Pareto laith tail exponent, to describe the tail of
the distribution of U.S. city sizes. Because the origin efdisagreement between Eeckhoutand Levy
stems from the limited power of their tests, we performuh&ormly most powerful unbiased tést
the null hypothesis of the Pareto distribution against tiygmbrmal. Thep-value and Hill's estimator
as a function of city size lower threshold confirm indubitathiat the size distribution of the 1000
largest cities or so, which include more than half of theltdt&. population, is Pareto, but we rule out
that the tail exponent, estimated tohé + 0.1, is equal tol. For larger ranks, thg-value becomes
very small and Hill's estimator decays systematically vd#itreasing ranks, qualifying the lognormal
distribution as the better model for the set of smaller sitiehese two results reconcile the opposite
views of Eeckhout (2004) and Levy (2009). We explain how &irlaw of proportional growth
underpins both the Pareto and lognormal distributions #redsthe key ingredient at the origin of
their difference in standard stochastic growth modelstigi(Gabaix 1999, Eeckhout 2004).
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Based upon the U.S. Census 2000 data, Eeckhout (2004)sdpattthe whole size distribution of
cities is lognormal rather than Pareto. This conclusionbigined by using the Lilliefors test (L-test)
(Lilliefors 1967, Stephens 1974) for normal distributiongh empirical mear = 7.28 and standard
deviationg = 1.25. This empirical conclusion is consistent with Gibrat’s la#proportionate effect
and is rationalized by an equilibrium theory of local exsdities in which the driving force is a random
productivity process of local economies and the perfectilipbf workers.

Levy (2009) argues that the top 0.6% of the largest citiek@f1.S. Census 2000 data sample, which
accounts for more than 23% of the population, dramaticadlyadts from the lognormal distribution and
is more in agreement with a power law (Pareto) distributibime bulk of the distribution actually follows
a lognormal but, due to the departure in the upper taiy2dest unequivocally rejects the null of a
lognormal for cities whose log-size is larger thar- 3¢ = 12.53. The non-rejection of the lognormal
by the L-test used by Eeckhout (2004) is ascribed to the fiattthe relative number of cities in the upper
tail is very small (only 0.6% of the sample), and the L-testasminated by the center of the distribution
rather than by its tail, where the interesting action occurs

In reply, Eeckhout (2009) provides the 95%-confidence bahtite lognormal estimates based upon
the L-test and shows that the tail of the sample distributidng-size is well within the confidence bands.
In addition, Eeckhout asserts that “both [Pareto and lagiadirdistributions are regularly varying, i.e.
they are heavy tailed, and their tails have similar properti...] It is natural that the upper tail of city
sizes can be fit to a Pareto distribution”. Therefore “[ghithat the tail of a lognormal is indistinguish-
able from the Pareto under certain circumstances, thergmgavho is interested in the tail properties
of a size distribution can choose which one to use.”

In the first part of this comment, we summarize the propettias make often difficult the task of
distinguishing between the Pareto and the lognormal digidns. While the Pareto and the lognormal
distributions have indeed distinct asymptotic tails — imtcast with the Pareto, the lognormial not
regularly varying but rapidly varying — the lognormal carsiabe mistaken for a Pareto over a range
which can cover several decades as soon as its standardialevsasufficiently large (a few units is
sufficient). Furthermore, both distributions may be getegldy Gibrat's law of proportional growth,
with some additional apparently innocuous but actuallyfqurod twist(s) for the Pareto. In a second
part, using exactly the same data set, we find that the origineodisagreement between Eeckhout and
Levy stems from the limited power of their tests. Using timformly most powerful unbiased tdst
the null hypothesis of a Pareto distribution against thedomal, we confirm and extend Levy's result,
by showing that the Pareto model holds for the 1000 largdistsabr so, i.e. for more than 50% of the
total population. Zipf’s law, corresponding to Pareto watkponentl, is found incompatible with the
data at the 90% confidence level. The Pareto index for theropys tail (about 1000 largest cities) is
approximatelyl .4.

1 Why the Pareto and the Lognormal distributions are difficult to distin-
guish

1.1 Structural similarities and differences

In order to justify that Levy’s results are compatible wiils bwn, Eeckhout (2009) asserts that both the
Pareto distribution and the lognormal distribution areutagy varying, which makes their tail indistin-
guishable. We recall that a positive functigiiz) is regularly varying at infinity if there exists a finite



real numberr such that (Bingharet al. 1987)
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Pareto distributions are regularly varying. However, itds the case for lognormal distributions. Indeed,
the lognormal density reads
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This limit behavior characterizes a rapidly decreasingfiom at infinity. Therefore, Pareto and lognor-
mal distributions exhibigualitativelydifferent behaviors in their upper tails. The lognormalsigngoes

to zero, in the upper tail, faster than any Pareto densitthignrespect, they cannot be mistaken into one
another, provided that one has enough data to sample the tail

However, writing the lognormal density as follows
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we observe that the lognormal distribution is superficiilg a Pareto distribution with a slowly increas-
ing effective exponent
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Expression[(b) allows us to make two points. First, as stabede, it shows that the lognormal distribu-
tion decays at infinity faster than any Pareto distributgince the apparent exponenir) diverges with
x. Second, it-? is large enough, the apparent exponefit) varies so slowly so as to give the impression
of constancy over several decades irQuantitatively, in the rang& < z < A X, the apparent exponent
varies froma/(X) to a(X) + ﬁ In A. For instance, for = 3.4, the apparent exponent varies by no
more tharD.3 over three decades & 1000).

However, with the smaller estimate = 1.25 provided by Eeckhout (2004) for the U.S. Census
2000 data, the apparent exponent varied Byunits over just two decades. This is an indication that a
powerful test, as implemented in the next section, shoulahbe to distinguish the two hypotheses over
a range of two to three decades corresponding to the taiheeguggested by Levy (2009).

1.2 Generating process

Gibrat's law of proportional growth is often taken as a kegrtihg point to understand the origin of
the distribution of city sizes (see the recent review by Saicet al. (2009) and references therein).
Eeckhout (2009) also stressed that Gibrat's law remainsdheer stone for building economic models
of population dynamics. Considered as the unique ingréd&ibrat’s law predicts that the distribution
of city sizes should tend to a lognormal distribution, butaasmore and more degenerate one as time
increases. Indeed, Gibrat's law leads to model the growthgiten city as following a random walk in
its log-size, which therefore never admits a steady stateillition.

The equation of city growth embodying Gibrats law is

Si,t = Q- Si,t—l s (6)
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whereS; ; is the the size of city at timet anda;, is the random positive growth factor. Taking the
logarithm of [6) and iterating yields

InS;; =InS;;1+nt=MSio+m1+m2+...+ni¢, (7)

wheren; ; = Ina; ;. Assuming (for a time) that termsg ; are iid random variables with expectatigh
and standard deviatioR8, the Central Limit Theorem of Probability Theory gives

InSij;~t-A+t'/2B.¢, (8)

where¢ is a standard Gaussian random variabl@, 1). Of course, the stationarity of thg,’s should

be verified by an appropriate analysis. Assuming in additiat the stochastic growth process for a
typical city as a function of time is equivalent to samplihg growth of many cities at a given instant,
i.e., that a strong form of ergodicity holds, expressidnef@ures that the the distribution of city sizes is

lognormal, i.e., the variabl% isN(0,1).

As recalled for instance by Gabaix (1999), an apparentlyommodification leads to a bona fide
steady state and, therefore, to a stationary distributfasity sizes. This modification, which can take
many forms (Sornette 1998), consists in preventing the Isoitéds from becoming too small. The
corresponding generic equation of motion for city sizes edying this idea together with Gibrat's law
is (Gabaix 1999)

Sit=ai¢ - Sit—1+¢Eit, 9)

where the terms; ; > 0 prevent the accumulation of a large number of cities withistsingly small
sizes. In absence af ;, expression[({9) is nothing but the random walk in log-sizaieg to the log-
normal distribution obtained froni](8). Because the pro@@svith non-zeros; ; leads to a stationary
distributior@ if we assume ergodicity, then the distribution of an ensenalbkities is the same as that of
the set of realization§s; .} for a fixed city: as a function of for large times.

The presence of the “minor modification;; > 0 ensures that the size distribution of cities switches
from a lognormal to a Pareto, even if it is arbitrarily smal, long as it is non-zero (Kesten 1973). The
tail index o of the Pareto distribution is the solution B{(a;+)*] = 1. Gabaix (1999) argued for the
validity of the constrainE [a; ;] = 1, which then leads to Zipf’s lawy = 1. Saichev et al. (2009) shows
that Zipf’s law is more realistically the result of Gibrataw together with a condition balancing the
birth rate, random growth and possible death rate of Bities

The intuition behind the transformation of the lognormabithe Pareto distribution, upon the in-
troduction of the apparently minor additive teeyy. > 0 is the following. Because of the stationarity
conditionE [Ina; ] < 0, in the absence of; ;, the processS; ; tends to shrink stochastically towards
zero, while exhibiting a more and more degenerate lognodisaiibution. During this phase, a few ex-
cursions of exponentially large sizes associated witrstesmt occurrences of the growth factgr; larger
than1 can occur with exponentially small probability. The term allows the process to repeatedly ex-
hibit the exponentially rare exponentially large excunsioThe combination of these two exponentials
leads to the Pareto distributfn

Eeckhout (2004)'s model provides an expression for the tiravé cities of the form [(6), with
air = 1/A71(1 + 0;,) as defined on page 1447. The functids; ;) ~ Sfft denotes the net local
size effect on the growth of cities; ; corresponds to exogenous technology shock impacting: ity

The condition for stationarity i& [In a; ] < 0.

2In the case of cities, death means falling below a movingstiwie for qualifying as a city.

3For the more realistic situation where cities are on avegageing, by an exponentially growing term; so as to represent
immigration or population fluxes across cities for instanitee same reasoning applied once a change of frame has been
performed with respect to the exponentially growing term (see Sornette (1998) for details).

4



timet and® = —(6 — v — 5/«) in the notations of Eeckhout (2004). The exponentnd s quantify
the consumer preference with respect to consumption, anedlend and housing, and leisure. The ex-
ponentd describes the dependence of the positive externality ofjdaia city of sizeS. The exponeny
describes the dependence of the negative external effbcvofeisure can be used for labor. Then, any
mechanism, ensuring a minimum (even random) city size helfm transform[{6) intd (9) or equivalent
(Sornette 1998), leads to the Pareto distribution for tHeotahe distribution of city sizes with tail ex-
ponenta = —O. Since® < 0, the “net local size effectA(.S; ;) is an inverse power of the city size so
that a faster decay of the tail of the distribution of cityesizorresponds to a weaker relative impact of
net local externalitied\(.S;, t) on large cities compared to smaller cities. Zipf's law isovered for the
special cas® = —1.

2 Testing the Pareto against the lognormal distribution

2.1 The uniformly most powerful unbiased test

As summarized in the introduction, Eeckhout (2004) and L@@09) have used general tests (L-test and
x2-test respectively) of the null hypothesis that the whol@asia or just the upper tail is generated by
a lognormal distribution, and they reach opposite conchsi While these two tests are quite versatile,
they are not always very powerful. For the purpose of conmgattie lognormal distribution with Zipf’s
law, their lack of power can be ascribed to the fact that teeythe null hypothesis against any alternative
distribution, and not specifically against the Pareto itistion. But the later is the alternative of interest.
For instance, figure 2 in (Eeckhout 2009) illustrates thendiiéc lack of power of the L-test in the upper
tail of the distribution under the null of a lognormal: thenfidence bands derived from this test fan
out very strongly, which makes this test completely unablédcide if the deviations observed in the
data are genuine or fake. Of course, the main reason for trea®ng power observed in figure 2 in
(Eeckhout 2009) is the shrinking sample size for the uppatsabut this does not remove the necessity
of using the most possible powerful test in such a situation.

The discussion following equatioris (4) ahdl (5) suggeststthaght be possible to clearly distinguish
between the explanatory power offered by a lognormal Bistion versus a Pareto distribution for the
U.S. Census 2000 data sample, when using a more powerful'tesmost general test that addresses the
core question, whether the Pareto law holds in the tail olatpeormal model is sufficient, is to consider
the two hypotheses: Pareto distribution for valuescdérger than some threshold and lognormal
distribution also for value of above the same threshold Specifically, we propose to test the null
hypothesis that, beyond some thresho]dhe upper tail of the size distribution of cities is Pareto

uCl{
Hy: folz;a) =a- T lo>u, a>0, (10)

against the alternative that it is a (truncated) lognormal

2 -1
Hy: fi(z;0,0) = [\/gei_ﬁ (1 ) <\/L2_ﬁ>>] %e—aln%—ﬁln2 T li>u, a€R, B3>0,
(11)

where®(-) denotes the CDF of the normal distribution.

This is equivalent to testing the null hypothesis that theaupail of the log-size distribution of cities
is exponential against the alternative that it is a (truedphormal. For this later problem, Del Castillo
and Puig (1999) have shown that the clipped sample coeffiofevariation¢ = min(1, ¢) provides the
uniformly most powerful unbiased test, wheres the sample coefficient of variation defined as the ratio
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of the sample standard deviation to the sample mean. Theatipint of the test can be derived with
extremely high accuracy (even for very small samples) bydallsapoint approximation (Del Castillo
and Puig 1999, Gattoa and Jammalamadakab 2002) or by Monter@athods.

2.2 Results

The upper panel of figufe 1 depicts thealue of the test as a function of the lower threshokkpressed

in terms of the rank of city sizes represented in a logarithseile. They-values have been calculated
using the saddle point approximation (Del Castillo and P18§9, Gattoa and Jammalamadakab 2002).
Extensive Monte-Carlo simulations reproduce basicallyshime results. Figuré 1 indubitably shows that
the size distribution of the 1000 largest cities or so, whinthude more than half of the total population,
is Pareto. This confirms and makes more precise the claimwf (2009). For larger ranks, thevalue
becomes very small, qualifying the lognormal distributaathe better model for the set of smaller cities.
This explains Eeckhout (2004)’s results.

The lower panel of figurel 1 depicts Hill's estimate! of the inverse of the tail index of the Pareto
distribution [10) again as a function of city rank. This esttor is the best unbiased estimator for the
inverse of the tail ind@((HiII 1975). For the U.S. census 2000 data (blue upper naisyq), the inverse
of the tail index is approximately constant and fluctuatesiad the value.7 for ranks less than one
thousand or so, confirming the validity of the Pareto modeirdis range. For ranks larger than one
thousand, the Hill's estimate—! deviates rapidly, confirming a deviation from the Pareto etdor the
set of smaller cities.

In the lower panel of figuréll, we also show Hill's estimate! for ten random samples drawn
from a lognormal distribution with parametetis= 7.28 ando = 1.25 (red curves). One can observe
the absence of a plateau, and therefore no well-defined erpotius disqualifying the Pareto model.
The increase ofv—1 with rank is the expected signature of the fact that the logyad density is rapidly
decreasing, i.e., it goes to zero faster than any power lawhat its effective tail index is equal to
infinity and its inverse is vanishing. Therefore, for verwloanks (largest cities), Hill's estimator should
converge to zero for data generated by a lognormal distoitout

The contrast between the U.S. Census 2000 data and the sairglen from a lognormal distribution
with parameterg = 7.28 ando = 1.25 is striking and provides additional evidence in favor of Regeto
distribution for the upper tail. This makes clear that theeRaand lognormal models are distinguishable
in their tail for the available U.S. Census 2000 data sample.

2.3 Pareto model versus Zipf's law

Now that we have established that the tail of the size digioh of cities is Pareto, we turn to the
guestion of whether this Pareto law is Zipf's law, i.e., wiertthe exponent is = 1.

First, the lower panel of figufg 1 shows the confidence barttke®5%- and 99% significance levels,
derived from the uniformly most powerful unbiased test it tail indexa. = 1 against a two-sided
alternative (Lehman and Romano 2006). At the 95% signifiedacel, Zipf's law is rejected, except
for the twenty largest cities. Figuké 2 improves on thisistigs by plotting thep-value defined as the
probability ofexceedinghe observed index estimate (one side-test) under the tgistthat Zipf’s law
holds (index equals to unity). For rank thresholds largantb, all p-values are smaller than05. For
rank thresholds larger thdié, all p-values are smaller than10. We are thus led to conclude that Zipf's

“It is not possible to get an unbiased estimatedfor



law cannot be accepted to describe the tail of the distobutif city sizes in the US census studied here,
whereas a larger exponent approximately equal4ads significantly more likely.

Coming back to Eeckhout (2004)'s model, our findimg= —© =~ 1.4 implies that the “net local
size effect”A(S; ;) decreases faster with city siz; than would be the case if Zipf’s law held exactly.
We also refer to Saichev et al. (2009) for a review of the meigmas based on Gibrat’s law leading to
distributions with Pareto tails whose exponents can deviam the Zipf's law valuex = 1.
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p-value of UMPU test as a function of the rank of the lower threshol of size
1 T T

0.9 b

0.7f i

0.6 b

p-value
o
(6)]
T
1

0.4F b

0.3f b

0.1f i

10 10 10 10
Rank

10 10 10 10 10
Rank

Figure 1: The upper panel depicts thealue of the test of the null hypothesis that the upper tathe
size distribution of cities is Pareto against the altexestnat it is a (truncated) lognormal as a function of
the rank threshold, where cities are ordered by decreaging.sThe lower panel depicts Hill's estimate
of the inverse of the tail index for the Census 2000 data (bjpper curve) and for ten samples drawn from
a lognormal distribution with parametetis= 7.28 ando = 1.25 (red bottom curves). The two dashed
(respectively dot-dash) curves provides the confidencesanthe 5%-significance level (respectively
1% level) derived from the UMPU test that the tail index= 1 against a two-sided alternative.



p-values for Zipf hypothesis (a=1)
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Figure 2: One-sideg-value as a function of rank threshold, testing the hypashibsit the tail exponent
of the Pareto distribution is compatible with Zipf's lawsathh = 1. The p-value is defined as the
probability of exceeding the observed index estimate uttfdehypothesis that Zipf's law holds.
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