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This paper is concerned with addressing how biological cells react to mechanical impulse. We propose a
particle based model to numerically study the mechanical response of these cells with subcellular detail. The
model focuses on a plant cell in which two important features are present: �1� the cell’s interior liquidlike phase
inducing hydrodynamic phenomena, and �2� the cell wall, a viscoelastic solid membrane that encloses the
protoplast. In this particle modeling framework, the cell fluid is modeled by a standard smoothed particle
hydrodynamics �SPH� technique. For the viscoelastic solid phase �cell wall�, a discrete element method �DEM�
is proposed. The cell wall hydraulic conductivity �permeability� is built in through a constitutive relation in the
SPH formulation. Simulations show that the SPH-DEM model is in reasonable agreement with compression
experiments on an in vitro cell and with analytical models for the basic dynamical modes of a spherical liquid
filled shell. We have performed simulations to explore more complex situations such as relaxation and impact,
thereby considering two cell types: a stiff plant type and a soft animal-like type. Their particular behavior
�force transmission� as a function of protoplasm and cell wall viscosity is discussed. We also show that the
mechanics during and after cell failure can be modeled adequately. This methodology has large flexibility and
opens possibilities to quantify problems dealing with the response of biological cells to mechanical impulses,
e.g., impact, and the prediction of damage on a �sub�cellular scale.
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I. INTRODUCTION

Cellular systems—nature’s building blocks—are one of
the most studied systems because these microscopic units
control the overall macroscopic behavior of animals and
plants. With respect to their mechanics, plant cells are intu-
itively somewhat simpler than animal cells, since the former
are mostly immobilized. Nevertheless, the physical nature of
plant tissue remains challenging. It is intrinsically multiscale
as it depends on the microstructure of the cells as well as on
their structural arrangement �aggregate level�. In addition, it
is also a multiphysics problem, since apart from the im-
mersed solid materials �e.g., cell wall, middle lamella�, fluid
and gas transport in the cells, through the cell walls and in
the intercellular spaces, will play a role as well. In this re-
spect the mechanics of plant tissue is considerably more
complicated than other cellular materials such as metallic
foams and trabecular bone, where a single material is the
main load-bearing component.

Plant cells usually have a strong cell wall to protect them
from hostile environments. Inside these cells, a quasi-
incompressible liquid builds up a hydrostatic pressure �turgor
pressure� through osmosis which is responsible for the cel-
lular rigidity �wilting of low hydrated plants�. The cellular
mechanics in plants influences “slow” physiological pro-
cesses inside the cell such as growth, development and most
likely even gene expression �1–4�. It also plays a key role in

short time scale processes such as bruise formation in fruit
during impact and rapid plant movement in Venus Flytraps.
Because of the difficulty to probe physical quantities at such
scale experimentally, the microscopic subcellular mechanics
that goes along with these processes remains for a great part
uncomprehended and unquantified �5–7�.

Therefore, in the past, relevant analytical models have
been proposed to simulate the mechanics of cellular systems
�8–14�, yet with limited flexibility and applicability. Others
have introduced finite element modeling �FEM�, considering
the elastic quasistatic response of a cell �15,16�, or particle
approaches, focusing more on the rheological properties
�17�. Nevertheless, to get more insight in the micromechani-
cal response of cellular systems, it remains essential to de-
velop models which can capture and describe more subcel-
lular detail, including differences in cell shapes and sizes,
and the intercellular interactions �18,19�.

This paper is concerned with building a model that can
describe the mechanics of a cell in static and dynamic situ-
ations. To this end, we introduce a particle based method and
focus on spherical shaped plant cells whereby a solid phase
and a liquid phase are considered. Our approach is a combi-
nation of smoothed particle hydrodynamics �SPH� to model
the liquid phase and a discrete element method �DEM� to
describe the solid phase of the cell walls �6�. SPH is a mature
mesh-free simulation method typically used in situations
dealing with large deformations, discontinuities, and free
boundaries. Originally developed in astronomical contexts
�20�, it has now become a versatile technique in modeling
gas and fluid dynamics. The choice to apply SPH in bio-
logical systems lies also in the possibilities of modeling
non-Newtonian liquids, viscoelastic liquids, water transport
in porous media, multiphase flow, and diffusion �see, e.g.,
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�21–23��. Furthermore, mesh-free particle methods are quite
suitable for coarse-graining and multiscaling approaches
�24�. For example, the recent modeling technique smoothed
dissipative particle dynamics �SDPD� couples the hydrody-
namic interactions of SPH with thermal fluctuations in a
thermodynamically consistent way �25–27�. Such formalism
is useful in coarse-grained models of subcellular processes
where these fluctuations become important.

The presented model here is primarily meant to predict
force transmission and stresses in biological cells. We con-
sider a parenchyma cell, which makes the bulk of plant tis-
sue, and can be mechanically regarded as a stiff, thin walled
vessel �the cell wall� containing a viscous fluid. The system
as a whole is regarded as incompressible and isothermal. The
focus is on short time scales, typically those arising at im-
pact, where most long-term physiological responses are neg-
ligible. Due to the adaptivity and flexibility of the particle
framework, this cell-centered approach can be extended add-
ing other cells to form a multicellular system �6�, supplying
representative volume elements for computational homog-
enization to obtain tissue constitutive behavior �28,29�. On
the other side, it can also be refined to capture the detail of
the subcellular structure.

In the following, we give a detailed description of the
model and compare it with the results of an analytical model
and an experimental test case on an in vitro cell during qua-
sistatic compression. Thereafter, we introduce two cell types:
a stiff type, resembling a plant cell; and a soft type, which
mimics a mammalian cell. We compare and discuss the re-
laxation times of these types. Simulations of impact with a
plate are performed, and we treat the arising intracellular
stresses and intercellular stresses �transmitted forces� in more
detail. Finally, we show that this model is able to capture the
failure dynamics of a cell.

II. METHODOLOGY

A. Cell fluid model

Parenchyma cells are typically thin walled cells that retain
their content. By removing the stiff cell wall, on obtains a
protoplast which is a soft heterogeneous substance contain-
ing water, membranes, a nucleus, organelles, macromol-
ecules, ions, and a cytoskeleton. The latter causes that the
protoplasm �30� �the living content of the cell� usually be-
haves like a gel-like liquid. However, in parenchyma large
vacuoles are present which serve as containers for the stor-
age of water �up to 80–90 % of the cell’s volume �4�� and in
addition, these cells do not have the dense cytoskeleton like
in animal cells. Therefore, we will preliminary assume that
the protoplasm is a Newtonian homogeneous liquid which
can be described by the Navier-Stokes �NS� equations.

In SPH, the particle approximation of a function evalua-
tion f�xi� using a set of neighboring particles j can be written
as

f�xi� � �
j

V j f�x j�Wij , �1�

where xi is the position of the particle, and Vi is the volume
occupied by one particle. The approximation function is a

kernel Wij �W�q ,s� were q=rij /s, rij is the distance from a
particle i to another fluid particle j, and s is the smoothing
length, representing the domain over which the particle i has
interaction with particles j. It is symmetrical, i.e.,

Wij = Wji, �2�

and should be normalized,

�
V

WdV = 1. �3�

In this paper, we choose the cubic spline function W�q ,s� as
a kernel function, which reads

W�q,s� =
2

3�s3	
2

3
− q2 +

1

2
q3 0 � q � 1

1

6
�2 − q�3 1 � q � 2

0 q � 2.

 �4�

In NS, the force Fi on a particle can be decomposed in a
pressure driven and a viscous component. Correspondingly, a
fluid particle i is moving according to a standard SPH ap-
proximation of NS for a set of surrounding particles j

Fi = − mi�
j

mj�Pi

�i
2 +

Pj

� j
2��iWij

+ mi�
j

mj��i + � j

�i� j
�vij

1

rij

�Wij

�rij
, �5�

where P is the pressure of the fluid particle, m is its mass, �
is the density, � is the dynamic viscosity and furthermore
vij =vi−v j denotes the relative particle velocity. Kernels of
higher order and kernel corrections may be used to improve
the accuracy or stability of the method �31,32�.

In the weakly compressible SPH method, it is convenient
to use the following equation of state �EOS� �33� to maintain
a relation between the pressure and the density,

P = P0 + �
� �

�0
�7

− 1� , �6�

where P0 is the initial net pressure �turgor� across the cell, �0

is the initial density of the fluid, and �=
�0c2

7 is the compres-
sion modulus where c is the speed of sound of the medium.
Through Eq. �6�, variations in density will be penalized by
increasing the pressure, thus make the fluid weakly com-
pressible. To update the density, we use the SPH approxima-
tion of the continuity equation

d�i
�

dt
= �

j

mjvij . �iWij = mi�
j

vij . �iWij , �7�

where �i
� represents the density assuming a constant particle

mass. The general definition of density reads of course

�i =
mi

Vi
. �8�

The time derivative of Eq. �8� yields
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d�i

dt
= mi

d

dt
� 1

Vi
� +

1

Vi

dmi

dt
=

d�i
�

dt
+

�i

mi

dmi

dt
. �9�

Equation �9� can be interpreted as follows. The first term is
the change in density due to the deformation of the cell vol-
ume, given by Eq. �7�, while the second term in Eq. �9� can
be attributed to a change in water content of the cell. Since
plant cells have semipermeable walls, a net transport of wa-
ter through the cell wall will be established as long as the
turgor pressure in the cell does not equal the osmotic poten-
tial ����0� of the cell content. If the cell fluid mass loss or
gain is not too high, � can be assumed constant. This fluid
mass transport through the cell wall can be computed for
each particle by the following constitutive relation �4�:

dmi

dt
= −

AcLp�i

Nf
�Pi + �� , �10�

where Lp is the hydraulic conductivity which is assumed to
be isotropic over the cell’s surface, Nf is the number of fluid
particles, and Ac is the total cell surface. If the cell absorbs
water, the density will initially increase according to the last
term in Eq. �9�, and hence augment the pressure by Eq. �6�.
This is counterbalanced by the fact that the fluid will push
the cell wall outward, thus, lowering the density. The final
density, which should differ only slightly from the initial
density, will be obtained when the fluid particles cease to
move further, i.e., when there is a force balance between the
fluid pressure and the cell wall stress.

B. Cell wall model

A plant cell wall is a polymerlike structure which princi-
pally cannot be described by simple linear elasticity theory.
Mechanically, the cell wall material exhibits elastic and plas-
tic behavior and energy dissipation can be attributed to vis-
cous and structural damping. This behavior further strongly
depends on the time scale �34�. On short time scales how-
ever, in which the material composition can be assumed con-
stant, the cell wall can be seen as a thin shell structure, de-
scribed by a hyperelastic or elastoviscoplastic constitutive
law. In this paper, we employ a DEM procedure in which
particles are distributed on a surface, having a local connec-
tivity and interacting through discrete forces. We implement
the simplest model to describe a polymer: the isotropic in-
compressible Neo-Hookean solid. Our ansatz is a spherical
shell whereby the particles are positioned on the vertices
obtained by triangulating its surface using icosahedral sym-
metry. These form a net of nodes with sixfold connectivity
�bonds� and contain 12 so-called topological defects with a
fivefold connectivity. All the particles have discrete elastic
interaction forces fe and a linear damping force fv to account
for the viscous effects. Particles which are not bonded �no
fixed connectivity� are subjected to excluded volume inter-
actions fr to avoid interpenetration with other wall particles
and fluid particles �see Fig. 1�a��. The force law proposed for
these interactions is similar to a Lennard-Jones �LJ� poten-
tial. The force on a cell wall particle i due to other cell wall
particles �j ,k� can be written as

fi = fe + fv + fr = �
j

fij
e − �

j

�vij + �
k

fkrik + �
k

fk�vik,

�11�

with

fk = f0
� r0

rik
�8

− � r0

rik
�4� 1

rik
2 . �12�

The summation in Eq. �11� is taken over all bonded �j� and
all nonbonded �k� particles. Here f0 is the strength of the
Lennard-Jones contact, and r0 is the distance at which the
force changes sign. The damping term fk�, which depends on
the stiffness of the LJ contact and the masses of the particles,
is primarily meant as a noise reduction term which damps
out the currently uninteresting fast behavior of the repulsive
contacts. To avoid a large amount of weak interactions in the
LJ term, the number of non-neighbors is limited to a cutoff
distance dcutof f where fk becomes negligible. To employ the
constitutive model into a discrete particle system, we first
consider the stress-strain relationship for a Neo-Hookean
material in principal directions i,

	i = G
i
2 − 	0, �13�

where G is the shear modulus of the material, 
i is the ex-
tension ratio �in principal directions� and 	0 is a hydrostatic
constant. In case the material has the geometry of a thin
spherical shell with initial radius r0 and thickness t0, we can
consider the stretch ratios 
=r /r0 and 
t= t / t0. Assuming the
wall material is incompressible �
2
t=1�, one has thus


t = 
−2. �14�

Because there is little stress in the direction of the wall thick-
ness �	t�0�, one can calculate 	0 and obtain the stress in the

FIG. 1. �Color online� �a� Particles and their interactions in-
volved in the model. The green particles connected with lines rep-
resent the cell wall, while the blue clustered ones represent the cell
fluid. The dashed circles indicate virtual particles. Forces acting
between particles are either elastic �fe�, viscous �fv� or repulsive
�fr�. �b� Close up: elastic forces fe acting on an opposite tether with
length l and thickness t in a triangular element.
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direction of the surface meridians on the sphere under iso-
tropic expansion

	 = G�
2 − 
−4� . �15�

The stresses that develop in this expansion mode are used to
estimate the forces between the tethers. Therefore, we start
from one single triangle on the sphere. If the sphere’s radius
is increased or decreased, the equilateral tethers with thick-
ness t and length l which form this triangle will change ac-
cordingly �
l=
�. The stress in the triangle can be written as
the total force on a tether divided by its lateral surface area
�see Fig. 1�b��.

	l =
�f1

e + f2
e�

lt
. �16�

Owing to the triangular geometry, one obtains the elastic
force between two bonds

fe =
Gtl
�3

�
l
2 − 
l

−4� . �17�

Furthermore, because of isotropic stretching and the incom-
pressibility of the material

lt =
l0t0


l
, �18�

one can thus conclude that the force between two particles
reads

fe =
Gl0t0

�3
�
l − 
l

−5�n , �19�

where n denotes the unit interconnecting particle vector.
Note that this force model in the limit of small deformations
can be regarded as a linear spring model with stiffness k
where

k =
6Gt0

�3
. �20�

For an estimation of stress prediction errors that arise in the
DEM implementation, see Appendix, Sec. 1.

Finally, the scaling of the linear damping parameter �
in Eq. �11� with macroscopic viscosity � can be done using
�� �

t0
, where � can be estimated from a characteristic relax-

ation time �=� /E of the material.

C. Boundary conditions

In fluid mechanics, the contact between the fluid and the
boundary is often modeled by no-slip boundary conditions.
In SPH, this is accomplished by a direct fluid-boundary cou-
pling, assuming ghost particles on the other side of the
boundary �31�, or simply assuming that outer SPH particles
represent the boundary and superimpose elastic interactions
�35�. Both approaches however are not preferable here be-
cause the first one can only treat fixed boundaries, while in
the second, the boundaries do not have a distinct physical
identity. In our implementation, the boundaries are repre-

sented by the discrete wall particles which repel the fluid
particles by a LJ type force �see Eq. �12��, ensuring that only
the normal components of the velocities of the fluid particle
vanish at the boundaries. On the other hand, the soft attrac-
tive side in Eq. �12� could quantify the forces that the fluid
particles need to separate from the cell wall, but this option
was not elaborated further. In order to have no-slip condi-
tions, one can include the boundary particles in the viscous
part of the momentum SPH equations, but here we simply
ensure this by coarsening the potential energy landscape
around the boundary. By using approximately the same res-
olution for the SPH and DEM particles, the LJ interaction
energy landscape formed by particles becomes then saddle
shaped. When a fluid particle approaches boundary particles,
it will be trapped in one of these potential energy wells �on
the condition that its velocity is not too high�, see Fig. 2.
This boundary model has been tested for a 2D shear cavity
test at low-Reynolds numbers �32�, showing good agreement
with a finite difference solution.

By lowering the ratio of the interparticle spacing to the LJ
cutoff distance, the surface can be made smoother �slip con-
ditions�. Increasing this parameter will approximate no-slip
conditions. Note that in practice, the LJ cutoff cannot be
made too small compared to the interparticle distance, other-
wise the fluid particles will be able to penetrate the wall. On
the other hand, a too large cutoff distance results in too much
distance between the fluid and the boundary particles. To
prevent the fluid particles from penetrating the cell wall,
without a significant increase in computational effort, “vir-
tual” particles can be introduced. These massless particles lie
in the bary center of the triangle �ijk� formed by the real
particles, but can interact with the fluid particles �see Figs.
1�a� and 2�. The forces are distributed to the surrounding real
particles, so that linear and angular momenta are conserved.

D. Cell initialization

Typical plant cell dimensions range from a few �m to a
few hundred �m. Because of these small dimensions and the

fr

fr

Fluid

Boundary

FIG. 2. �Color online� Repulsive SPH-DEM contacts: SPH par-
ticles �big circles� having contact with particles from the cell wall
�small circles, equipotentials are solid lines�. To prevent that SPH
particles penetrate the wall, virtual particles can be added �small
dashed circles� between the real particles. In this two-dimensional
equivalent, the additional contact force is distributed half to both
real neighboring boundary particles.
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fact that biological materials generally show great variability,
it is a formidable task to probe mechanical properties of
cells. Moreover, plant cell walls usually have a large elastic
modulus, making it difficult to measure them by AFM or
optical tweezers such as is done on animal cells. Neverthe-
less, Wang et al. �36� derived a cell wall Young modulus by
conducting plate compression experiments on in vitro tomato
cells. In their model, based on the analytical calculations by
Lardner and Puljara �9�, the cell wall is described by a gen-
eralized Hooke’s law using a Young modulus E, the initial
thickness of the cell wall, Poisson’s ratio 
, and the initial
stretch ratio 
 as physical parameters, and their model is
extended with a cell wall permeability to account for volume
loss during compression. The initial turgor pressure was
measured. By monitoring the contact force between the cell
and the plates and using model parameter fitting, the authors
generally found good agreement with the experiment up to
20% of compression strain by adopting in their model a cell
wall thickness 126 nm, a wall Young modulus of 2.4 GPa,
and an initial wall stretch ratio of 1.015. Following the work
of Wang and his co-workers, our model considers a spherical
cell with radius 30 �m. The wall shear modulus is estimated
by G=E /3 and hence we use G=0.8 GPa and t0=126 nm in
Eq. �19�. In this work, we also consider another cell type,
which is mechanically softer and has a lower internal pres-
sure. This “soft” type mimics an animal cell to the degree
that its wall mechanical properties are in the range of a lipid
bilayer. However, it still has the same radius and the New-
tonian protoplasm as in the stiff plant cell type. In fact, this
cell may also be regarded as a protoplast of the plant cell.
See Table I for all the input parameters.

The cell was initialized with 2562 wall particles �obtained
by icosahedral triangulation, with all bond lengths l0 ap-
proximately 2.5 �m� and 3500 fluid particles, initially posi-
tioned on a cubic lattice, but delimited by the cell’s radius
�see Fig. 3�a��. For the simplicity, all LJ forces were assumed
to be repulsive only �dcutof f =r0 in Eq. �12��. We initially set
the wall damping to an arbitrarily small value �pure elastic
behavior� while still retaining stable computations. Both
SPH and DEM equations of motion are integrated by a Leap-

frog algorithm. The time step for the SPH equations is de-
rived from the CFL criterion, the magnitude of particle ac-
celerations, and viscous forces �31,32�. However, this must
be combined with an additional requirement on the time step
imposed by the stiffness �Eq. �20�� of the wall. In fluid dy-
namics, when using an EOS, the compression modulus �
plays a crucial role and should be chosen with care. If � is
large, the simulations normally will require a small time step
in order to be stable. If it is chosen too low, the fluid will
behave more like a compressible one. In many SPH simula-
tions, the Mach number defines the condition to where the
fluid can be regarded as incompressible �33�. Here, this con-
dition is further restricted by the flexible boundaries. To en-
sure apparent incompressibility of the fluid, it is necessary to
set the compression modulus sufficiently high with respect to
the stiffness of the cell wall.

The cell is first simulated to grow artificially fast into a
fully turgid one by setting a high hydraulic conductivity in
Eq. �10�. Once the fluid pressure reaches the osmotic poten-
tial �38�, the cell is in mechanical equilibrium. During the
inflation, the SPH particles are driven outward by the pres-
sure, and repelled if they come too close to the cell wall. By
Newton’s third law, this repulsive force will in turn push the
cell wall outward. As a consequence, stresses in the cell wall
proportional to the fluid pressure will develop �Young-
Laplace law�, and the bonds between the boundary particles
become slightly extended. On average, we find an initial
stretch ratio of the tethers of 1.01, close to what is found by
Wang and his co-workers. The SPH-DEM coupling has been
benchmarked with the Young-Laplace condition, and with
analytical solutions for centrosymmetric oscillations, see Ap-
pendix, Sec. 2. In Appendix, Sec. 3 we give an idea of the
variations on the results that can be expected due to the dis-
cretization.

TABLE I. Model parameters used in the cell model.

Parameter
Value

�stiff cell/soft cell� Reference

Cell wall thickness, t 126/5 nm �36�/�37�
Cell wall Young modulus, E 2400/20 MPa �36�/�37�
Cell radius, R 30 �m �36�
Cell wall damping, � 10−10 Nm−1 s Set

Cell fluid viscosity, � 10−3 Pa s–1 Pa s Set

Fluid compression modulus, � 10 MPa Set

Cell turgor pressure, P0 364/0.1 kPa �36�/set

Cell hydraulic conductivity, Lp 10−12 m2 N−1 s �4,36�
SPH smoothing length, s 3.2 �m Set

Number fluid particles per cell, Nf 3500 Set

Number wall particles per cell 2562 Set

Cell-plate contact stiffness, kp 1000 Nm−1 Set

FIG. 3. �Color online� Snapshot of �a� an uninflated cell and �b�
an inflated cell under compression �X between two plates. The big
inner particles represent the cell protoplasm, the small outer par-
ticles the cell wall.
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III. RESULTS AND DISCUSSION

A. Quasistatic compression

Following the in vitro experiment conducted in �36�, the
stiff cell is simulated to be compressed between two flat
plates. This is achieved by introducing two virtual horizontal
planes with one kept at its position while the other one is
moved downward by a distance �X �see Fig. 3�b��. If the
wall particles geometrically overlap this boundary by �, they
are repelled by a force f i=−kp�i. The displacement rate was
0.002 ms−1, sufficiently low to exclude inertial effects. The
total force acting on the plate by the particles i is obtained by

Fplate = �
i

− kp�i, �21�

where kp is chosen sufficiently large to have small � com-
pared to �X. Meanwhile, the fractional deformation of the
cell �=�X /2R is monitored. A resulting force/deformation
plot can thus be obtained. In Fig. 4, we compare the result of
this computer experiment with the experiments and analyti-
cal model provided in �36�, showing good agreement for
strains below 20%. For higher strains, deviations start to de-
velop between both models and the experiment, a fact that is
most likely due the yielding of the cell wall material. The
differences between our model and the analytical one are due
to the geometry distortion and the weak fluid compressibility.
An additional simulation, performed with half of the number
of the initially used SPH and DEM particles gave signifi-
cantly less accurate results �not shown�. This means that in
order to get reliable results, the smoothing length of the SPH
particles and the bond length of the DEM particles should be
sufficiently small compared to the cell’s dimensions.

As in �36�, we did not find any effect of the hydraulic
permeability: water losses are simply too low on the time
scales �1 s. The effect of turgor, which can be highly vari-
able during the lifetime of a cell, is addressed as well. It is
shown both experimentally and by simulations that a lower
turgor decreases the stiffness of the tissue. To model the

effect of turgor pressure on a single cell during an external
stress, we have run compression simulations with different
values of initial turgor. In Fig. 5, the results from a compres-
sion simulation with initial turgor values of P=3 kPa, P
=30 kPa, and P=300 kPa are shown. From the slopes of the
curves, we conclude that higher turgor indeed leads to a
stiffer system, but only for small deformations �the slopes for
the curves with low turgor pressure are almost zero at the
beginning, contrary to those for higher turgor�. At higher
strain however, all curves become somewhat parallel, i.e.,
they exhibit the same stiffness. Similar effects are observed
in experiments on fruit tissues �39�.

B. Relaxation

A relaxation experiment reveals the cell’s dynamic re-
sponse. We simulate the viscoelastic response of a cell by
releasing it from a compressed state, i.e., by suddenly remov-
ing the horizontal plates. Since the hydraulic conductivity
can be discarded in this process, we only have two param-
eters contributing to the viscous effect: the cell wall damping
parameter and the protoplasm viscosity. One could put for-
ward that the cell content cannot be regarded as a homoge-
neous material and its viscous properties may vary locally.
Although in the SPH formulation this could be accounted for
by assigning a different viscosity to each particle, the viscous
properties of the cell content are averaged here and assumed
to behave Newtonian. The viscosity of pure water may there-
fore serve as an initial guess and lower limit, although in
reality plant cells generally exhibit a larger protoplasm vis-
cosity due to the presence of larger molecules such as
polysaccharides and proteins �40,41�. The cell wall damping
could in principle be related to rheological experiments, but
to our best knowledge no relevant data are available on that.
Stress relaxation in cell walls has been studied by rheological
experiments, yet on time scales and extension ratios far be-
yond those in the frame we are considering. To estimate the
damping parameter, one can define the parameter � for two
connected cell wall particles
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� =
�

�2km
, �22�

where k=
6Gt0

�3
is the stiffness and m is the cell wall particle

mass. The absence of viscous effects is approached if ��1,
while the wall material reacts as an overdamped system if
��1.

To monitor the relaxation, we compute the equatorial
force Feq for a hemisphere,

Feq = �
i

�
j

fij , �23�

where fij is the internal force acting on a particle i from the
neighboring particles j, and the summation is over all the
particles that lie on this hemisphere �see Appendix, Sec. 2,
Fig. 15�. In Fig. 6�a�, this force is plotted as a function of
time for the stiff cell type with a protoplasm viscosity range
�1 mPa s–1 Pa s�, assuming a purely elastic cell wall. Ad-
ditionally we also show the model results for a slightly over-
damped wall material ��=1.1�. The simulations reveal that
the cell, once released, oscillates several times with a period
less than 1 �s and thus may be regarded as a viscoelastic
solid. The oscillations are damped by both the cell fluid vis-
cosity and cell wall damping and the fluid viscosity seems to
have the major influence on this. Interestingly, the stiff cell
behaves as an overdamped system if the cell fluid viscosity
exceeds approximately 0.5 Pa s. Note that the response is
fast and different from that of animal cells, which behave
more fluidlike. For the soft cell, the equatorial forces in the
relaxation experiments are depicted in Fig. 6�b�, showing
that this cell reacts much slower than the stiff type, and ex-
hibits weaker oscillations. The relaxation times are 30 �s
for the lowest fluid viscosity, and 5 ms for the highest �the
cell wall was assumed to be elastic�. We note that these re-
laxation times are still below these observed in animal cells,
which are typically around 1 s �17,42�. The cause for this
discrepancy is most likely due to the nature of the proto-
plasm of these cells, which is a complex fluid and where, in
contrast to the plant cell type, a dense cytoskeleton plays a
dominant role �37,42�.

C. Impact

The situation during impact is different to the one of qua-
sistatic compression because inertia and viscous effects can-
not be ignored. Impacting a cell causes additional stress
components on both the cell fluid and cell wall. Here, we
concentrate on the protoplasmic stresses and the forces that
are transmitted by the whole cell. To this end, we start from
the same simulation setup as in Sec. III A, but with a loading
rate of 5 ms−1. This velocity is well below the Mach number
imposed by the compressibility modulus, thus ensuring the
apparent incompressibility of the protoplasm during impact.
We look at the two different cell types. Figure 7 provides
snapshots of the two cell types at �=25% when impacted.
The shape of the cells changes as a shock wave travels
through them. The resulting deformation depends on the vis-
cosity, with a stronger effect in the soft cell, while the stiff
type tends to deform more symmetrically �compare Fig. 7�a�

with Fig. 7�b��. We note the link with the relaxation experi-
ments: the impact duration takes only about 3 �s and covers
the relaxation time of the stiff cell. Contrary, it is much
smaller than the relaxation time of the soft cell, and hence
the latter is unable to follow the deformation.

Generally, we find that the lower the fluid viscosity, the
higher the cell shape deforms during impact. This clearly
visible in Fig. 7�b� for the soft cell type, which behaves more
fluidlike as a whole. We visually observe that in the latter the
fluid slightly and locally �in the region of the impacting ob-
ject� detaches from the cell wall in case of a high protoplasm
viscosity �Fig. 7�b�, bottom�, as it seems unable to keep up
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FIG. 6. �Color online� Relaxation experiment, showing the evo-
lution of the equatorial force when releasing the cell from a com-
pressed state, simulated for a protoplasm viscosity range of
1 mPa s–1 Pa s. �0 represents a viscosity of 1 mPa s. �a� Stiff
cell type: the cell relaxes in about 1 �s in all cases and further
oscillates except for the highest fluid viscosity �assuming a low-cell
wall damping, ��1�. The response for a highly damped ��=1.1�
cell wall material is also given �� is five orders of magnitude larger
than the low damped: �0=10−10 Nm s−1, and �=�0�. �b� The soft
cell relaxes in 30 �s for a low fluid viscosity. Larger values
strongly increase the relaxation time. The transition to an over-
damped system occurs for a fluid viscosity of approximately
10 mPa s.
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with the motion of the cell wall. This behavior is related to
the slow reaction time of the cell and was not observed in the
quasistatic situation, nor in any simulations with stiff cells.
Whether this behavior is physically relevant or whether it
should be avoided by introducing attractive fluid-wall forces
and explicitly model the gaseous pressure forces on the cell
wall is an interesting question for future research �43�.

Let us consider the stresses that develop inside the cell.
The protoplasmic stress is defined as the fluid shear stress,
i.e., the dynamic pressure components arising from the shock
waves are discarded. In fluid dynamics, the viscous shear
stress ��� �� ,�� �x ,y ,z�� components can be written as

��� = �� �v�

�x� +
�v�

�x�� , �24�

where v is the fluid velocity field. The corresponding SPH
discretization for each particle reads

�i
�� � �i��

j

mj

� j
v ji

� �Wij

�xi
� + �

j

mj

� j
v ji

� �Wij

�xi
� � . �25�

We further define the total effective shear stress � in a par-
ticle as

�i = ���i
xy�2 + ��i

xz�2 + ��i
yz�2. �26�

Simulations were run capturing the situation at the onset of
compression ��=4%� where the static turgor pressure is rela-
tively constant. A topographic mapping �Fig. 8� provides a
view on the particle stress distribution, and indicates that a
zone with significant stresses covers roughly one fifth of the
cell area below the impact zone. The magnitude of the de-
veloped stresses depends on the protoplasm viscosity and the
impact velocity. For the stiff cell type, linear behavior is

observed in the low viscosity cases with an average stress in
the impact region of 250 and 2450 Pa for a protoplasm vis-
cosity of 1 and 10 mPa s, respectively. For the high-
viscosity �1 Pa s� the average stress is about 180 kPa, thus
locally exceeding the initial hydrostatic pressure. For this
viscosity, the stresses are below the linear expectation, mean-
ing that the particle shear relative velocities have decreased.
For the soft types, the results are in the same range, meaning
that the stresses are largely exceeding the initial hydrostatic
pressure for the highest viscosity. Additional simulations
capturing the situation at a higher compression ��=10%� do
not result in remarkably larger values of the shear stresses,
which indicates that significant protoplasmic stresses de-
velop even at a very low compression strains.

(b)(a)

FIG. 7. �Color� Snapshots �t=3 �s or �=25%� of a simulated cell impacted with a plate with velocity of 5 ms−1, considering �a� a stiff
sphere ��=�0 and �=200�0�, �b� a soft sphere with �=�0 and �=200�0�. Note the difference in shape of the deformed cells. During
impact with the soft sphere with high viscosity the fluid slightly and locally detaches from the cell wall �see case �b�, bottom figure�. �0

represents a viscosity of 1 mPa s.
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The transmitted force �Eq. �21�� is defined as the force
that is measured on one side of a cell with an impact region
on the opposite side. Figures 9 and 10 show the transmitted
forces as a function of compression strain on the opposite
cell side for different cell protoplasm viscosities. With both
cell types, it can be clearly seen that an impact situation is
quite different from the quasistatic case. Because of the in-
ertia, a lag phase exists between this perturbation and the
transmitted force. However, once this phase is past the forces
build up quickly and exceed those in the quasistatic case. For
the stiff cell, this effect remains quite modest for a viscosity
up to 0.1 Pa s, but becomes strongly manifested for a vis-
cosity of 1 Pa s, see Fig. 9. In the latter case the lag phase is
shorter and hence one could state that the cell behaves more
rigid �visible by comparing the top and bottom pictures in
Fig. 7�a�� whereby the momentum is merely transferred
downward by pressure forces and less toward the transverse

sides of the cell �which introduces shear�. In the soft cell
type, the viscous forces play a much larger role than the
pressure forces, as the force transmission builds up relatively
fast at a lower viscosity, see Fig. 10.

These simulations can provide estimations of how much
stress the vital parts in a cell will bear on impact, a subject
where little research has been conducted on so far. More
accurate and local results can be obtained using a finer par-
ticle discretization, i.e., a lower smoothing length compared
to the cell’s dimensions. On the other hand, such a refine-
ment should go along with capturing more detail of the cel-
lular content, by identifying particle clusters with certain
substructures in the cell. Although this approach is well
suited for these kind of problems, such additional work re-
mains out of the scope of this paper.

D. Failure of the cell

The causes for the failure of a thin fluid-filled shell can
either be internal �e.g., because of an excessive pressure� or
external �e.g., impact with another object�. Microscopically,
the failure of materials originates at local weaknesses or de-
fects in the material from where the fracture propagates fur-
ther on. The modeling of cracks and their propagation in
materials is an involved task whereby one could rely on mul-
tiscaling approaches. Nevertheless, DEM models employed
to simulate the breakup of shells have been able to reproduce
the mass fragmental distribution in experiments after impact
or explosion �44�. As in the latter, we implement a failure
criterion by assuming a threshold for the local strains be-
tween two neighboring particles. Our model thus can only
capture crack propagation with limited detail, but it has the
advantage that fluid interaction is taken into account in a
consistent way, allowing to make quantitative predictions
about the behavior of a cell during and after failure. This
could be of particular interest when one focuses on the cell
aggregates, where the mechanics is not only determined by a
single cell but also depends on interactions with neighboring
cells.

We consider a stiff cell type and assume that a tether on
the membrane fails when its stretch ratio exceeds a critical
value 
 f. Since from a material science viewpoint a great
biological variability can be expected we shall not focus on
the absolute values of this critical extension. A simulation
considering quasistatic compression was run with arbitrarily

 f =1.04. This corresponds to a cell compression strain � f
=14%, the point from where the cell starts to fail �see Fig.
11�a��. A main fracture originates near the equator and pro-
ceeds toward the poles, where it stops �this process takes less
than 0.5 �s�. This can indeed be expected as the largest wall
stresses will be those in the directions parallel to the equator.
As a result of the crack, a jet of fluid escapes from the two
partially attached halves �the particle speeds in this jet are
around 3 ms−1� �45�. The behavior during impact shows
quite a different picture. Due to the asymmetry arising from
the inertial effects, the fracture originates in the region of the
impacting object where the wall is deformed the most, and
occurs faster in terms of compression strain. This effect is
stronger for a low fluid viscosity, where the cell wall suffers
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more severe fracture, arising at � f =7% �see Fig. 11�b�, top�.
For a high-fluid viscosity, a single fracture occurs at � f
=10% �see Fig. 11�b�, bottom�. We note that this is in agree-
ment with the observation mentioned in the previous section,
i.e., that larger local deformations of the cell shape arise in
case of lower protoplasm viscosities. Thus, although a cell
with a high-protoplasm viscosity generally suffers higher in-
tracellular stresses and yields higher transmitted forces, its
cell wall may bear lower stresses leading to less fracture
susceptibility during impact. Whether and how these mecha-
nisms are related to the well-known fact that bruise volumes
in fruits tend to increase with lower temperatures �7� �and
thus higher viscosities� is something that should be pursued
in the future.

IV. CONCLUSION AND OUTLOOK

This paper has been concerned with the modeling of the
micromechanical response of a spherical biological cell. To
this end, we have considered a plant parenchyma cell, which
is regarded as a thin walled liquid filled capsule, and pre-
sented a model that couples a Newtonian liquid and a vis-
coelastic polymeric solid. This has been achieved, respec-
tively, by the integration of SPH and a DEM into a particle
framework. A standard weakly compressible SPH technique
was applied to the cell protoplasm while the effects of the
hydraulic permeability of the cell were built in through a
constitutive relation in the SPH formulation. We assumed a
Neo-Hookean behavior of the cell wall and the DEM model

was constructed with particles having a sixfold connectivity.
The SPH-DEM combination holds acceptable accuracy con-
cerning static mechanical equilibrium �Young-Laplace� and
the analytical solutions of centrosymmetric oscillations. In
addition, good agreement was found with an analytical solu-
tion and experiments during compression of an in vitro plant
cell. Therefore, it could be stated that the overall response of
the cell to mechanical stimuli is well covered by this model.

In order to explore the micromechanics of a cell, simula-
tions have been performed considering various situations.
Under quasistatic stress conditions, we reproduce that the
cell’s response is highly dependent on turgor pressure, i.e.,
higher turgor pressure produces stiffer cells �and thus tis-
sues�, a fact that is well described in literature. More impor-
tantly however, this model is also able to capture dynamic
situations. For this, we looked at the behavior of two distinct
cell types, namely, a stiff cell type �plantlike�, and a soft cell
type �animal-like�. In relaxation experiments we show that
both cell responses can be compared to a viscoelastic solid,
whereby both the dissipating effects in the cell wall and pro-
toplasm play a role, though those in the latter are dominant.
We have found that the response time of the stiff cell is about
1 �s as long as the viscosity of the protoplasm is below
approximately 1 Pa s. For the soft cell, this is 30 �s as long
as the viscosity of the protoplasm is below approximately
0.2 Pa s. A higher viscosity �up to 1 Pa s� increases the re-
sponse time of the soft cell, but hardly affects the stiff cell.
We have also considered an impact situation in which the
cells are compressed at a rate of 5 ms−1, corresponding to a
transient state lasting only a few �s. Inside the cell, proto-

(b)(a)

FIG. 11. �Color online� �a� Snapshots of a stiff cell bursting due to excessive load in a quasistatic compression experiment. The cell wall
started ripping open near the equator of the cell ��t=0 s� and proceeds toward the poles. After �t=3�10−5 s the cell has almost completely
ripped open, producing two halves from where the fluid further escapes. �b� Snapshots �both at time t=1.25 �s� of a cell bursting due to
excessive load in a 5 ms−1 impact experiment. Top: for a fluid viscosity of 1 mPa s; bottom: for a fluid viscosity of 1 Pa s. All simulations
are performed with 
 f =1.04. � f denotes the compression strain at which the failure occurs. The arrows indicate the crack propagation
direction. �0 represents a viscosity of 1 mPa s.
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plasmic shear stresses develop in the impact zone, and these
are linearly related to the viscosity for low-viscosity values,
but become lower than linear as the viscosity increases. The
simulations further show that the force transmission through
the cell at impact is very different from that of a low loading
rate. Due to inertial effects, the force transmitted by the cell
is lagged compared to the perturbation, but then rises more
quickly. Higher protoplasm viscosities decrease this lag and
yield a higher transmitted force, making the overall response
more rigid. Again, we notice a distinct behavior regarding
the cell type. The stiff cell seems to be able to follow the
perturbation, but the soft cell does not: it deforms more and
is more susceptible to the protoplasm viscosity.

The strength and failure of shells enclosing a gas or liquid
is an important issue in engineering and even daily life, and
relates also to microscopic scales, as cells build up to tissue.
By introducing a critical strain in a bond between two par-
ticles, we have shown that the dynamics of cell failure can be
modeled quantitatively. Under quasistatic loading, fracture
originates at the equator of the cell and propagates further
toward the poles. This is in contrast with the impact loading
where the fracture originates near the impact region, is af-
fected by the protoplasm viscosity, and occurs at a relatively
low compression strain.

As a conclusion, we have shown that this combination of
two particle methods generates possibilities for simulating
cellular mechanics. A strong advantage is the adaptivity of
the method, which should make a cell centered approach
possible, a task that will be harder to implement in a FEM
approach �24�. Adding more particles to the system can re-
sult in two different approaches. In fine-grained models of a
cell, one could capture more subcellular detail, which is es-
sentially important for a better understanding of the relation
between cellular micromechanics and biological processes.
For example, particles or particle clusters can be viewed as
cell organelles or the cytoskeleton �26,35�. From another
viewpoint, by integrating cells to an aggregate, and introduce
cell-cell adhesion, yielding, and debonding mechanisms, a
resulting multicellular system can provide answers to prob-
lems related to the tissue scale �6�. Considering the benefits
of SPH, one could particularly investigate the micromechani-
cal cellular stresses in tissues that develop during short and
violent situations.
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APPENDIX: ERROR ESTIMATIONS

1. Accuracy of the triangulated particle cell
wall model during deformations

A triangulated particle discretization with equilateral teth-
ers predicts the stress exactly under isotropic stretch, which

applies to a flat surface under equibiaxial stretch. However,
when such a sphere is deformed due to external forces, the
assumed isotropy disappears. To quantify how the network
reacts on anisotropic stresses, we consider a rectangular
sheet with length L and thickness t consisting of equilateral
triangles �400 nodes�, see Fig. 12. We then assume two dis-
tinct loading cases of uniaxial stretching: one where the per-
pendicular sides are fixed, and one where they are free. As a
consequence, different stresses will develop on the perpen-
dicular sides. These two cases can be computed analytically
and compared with computer experiments. In the case where
only one side is fixed, the total force can be written as

Fsheet = GL0t0�
L
2 − 
L

−2� . �A1�

In case there are no free ends, one has

Fsheet = GL0t0�
L
2 − 
L

−1��
L. �A2�

In Figs. 13 and 14, the results of these simulations are
shown. Note that for each case two simulations were run:
one in the direction X parallel to one of the sides of the
triangle �there are three possible directions�, and one perpen-
dicular to the latter �Y�. This is to show how the anisotropy
manifests in the network. However, as can be observed in
Fig. 13, we still have good agreement in the first case up to
a stretch ratio of 1.2, and the anisotropy is still limited. In the
second case �Fig. 14�, the model overestimates the stress in
the beginning of stretching although the deviations remain
below 20%, �here the anisotropy is higher�. It is thus clear
that large distortions in the particle topology will yield less
accurate results. However, in the main text it is shown that
the DEM model can still produce accurate results in case of
the quasistatic compression of a cell.

2. Numerical consistency of the DEM-SPH
mechanical coupling

The cell is simulated to grow artificially fast into a fully
turgid one by setting a high hydraulic conductivity in Eq.
�10�. Once the fluid pressure reaches the osmotic potential,

FIG. 12. �Color online� Loading modes of a rectangular sheet
rendered with triangular nodes. Simulations have been carried out
while measuring the boundary forces on the sheet when extending
in X or Y direction. Two distinct cases were considered: one where
only the opposite side is fixed, but the two other ones are free, and
one where all remaining sides are locked.
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the cell is in mechanical equilibrium. During the inflation,
the SPH particles are driven outward by the pressure, and
repelled if they come too close to the cell wall. By Newton’s
third law, this repulsive force will in turn push the cell wall
outward. As a consequence, stresses in the cell wall propor-
tional to the fluid pressure will develop �Young-Laplace
law�, and the bonds between the boundary particles become
slightly extended. On average, we find an initial stretch ratio
of the tethers of 1.01, close to what is found by Wang and his
co-workers. However, it is not automatically guaranteed that
the Young-Laplace law is fulfilled in the SPH-DEM combi-
nation. To verify this, we consider a hemisphere with radius
R, see Fig. 15. The theoretical force F on the boundary ring
�with has thickness t� is then given by

F = P�R2. �A3�

This force should equal Feq in Eq. �23�. Simula-
tions considering a stiff cell type performed with P
= �0.1,0.2,0.4� MPa show an acceptable agreement with er-
rors below 5%. This quasi-ensures that the hydrostatic cou-
pling between the cell fluid pressure and cell wall tension is
automatically guaranteed in the model.

We further validate the model by comparing it with ana-
lytical solutions concerning the small radial oscillations of a
fluid-filled, thin spherical shell with radius R. The analytical
equation that yields the frequencies � of this system is well
known �46�,

j0�q�
j1�q�

−
q�st

�R
+

4Et

q�c2R
= 0, �A4�

where c, ��=1000 kg /m3� are the speed of sound in the fluid
and its density, and �s, E are the density and the Young
modulus of the wall material. Furthermore, jk are the spheri-
cal Bessel functions of the first kind, with q=�R /c.

We now consider two cases. In a first case, the shell is
completely in vacuo. This case is obtained by either setting
c→0 �corresponding to zero momentum transfer between
fluid and wall�, or setting �→0 �no fluid mass� in Eq. �A4�.
The cell surface will oscillate with a ground frequency,

� =
1

R
�4E

�s
. �A5�

In the model, an oscillation can be triggered easily by con-
sidering a pressurized cell and suddenly remove the enclosed
fluid. By using the values from Table I with E=3G, and
computing �s=Mcellwall /4�R2t, we find �=3.451�107 s−1

�stiff sphere� and �=5.943�105 s−1 �soft sphere� analyti-
cally. The simulation results determining the period of the
radial oscillations of the cell wall are within 1% deviation of
these solutions.

Second, we consider the case that the sphere contains a
compressible liquid. The analytical solution for the vibra-
tions of this system is somewhat more complicated, as there
are more possible frequencies which can be excited. In our
model, we excite the system by giving the wall particles an
initial inward radial velocity. The cell will then start to os-
cillate around its initial state. In Figs. 16�a� and 16�b� the
spectrum of excited frequencies is given for c=50 ms−1 and
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FIG. 13. �Color online� Comparison of the total theoretical force
�indicated by �� obtained by Eq. �21� and the force obtained by the
particle cell wall model in two perpendicular directions �X ,Y�, by
uniaxial extension of a rectangular sheet, keeping the remaining two
opposite sides fixed.
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FIG. 14. �Color online� Comparison of the total theoretical force
�indicated by �� obtained by Eq. �21� and the force obtained by the
particle cell wall model in two perpendicular directions �X ,Y�, by
uniaxial extension of a rectangular sheet, keeping the remaining two
opposite sides free.

FIG. 15. Discrete forces �f� acting on the nodes of the triangu-
lated spherical cap, resulting in a boundary force �F� when a fluid
pressure P is present.
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FIG. 16. �Color online� ��a� and �b�� Frequency spectra of the oscillations with c=50 ms−1 and c=250 ms−1, respectively. The arrows
indicate analytical solutions; the dashed arrow the ground frequency. Not all analytical solutions are shown.
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FIG. 17. �Color online� ��a� and �b�� Frequency spectra obtained from oscillations of a stiff cell with c=50, 250 ms−1 using 14 000 SPH
particles and 10 242 DEM particles �“fine”�. �c� Comparison of force-compression curves at impact for a stiff cell type, obtained for the
initial used number of SPH-DEM particles, and with a fine discretization.
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c=250 ms−1, respectively. In addition, the theoretical fre-
quencies are also shown �arrows�. The dashed arrows indi-
cate ground frequencies. For low c ��50 ms−1�, the frequen-
cies are close to each other and a comparison with the
analytical solution is difficult. For higher values of c the
comparison becomes clearer. The model captures the ground
mode and at least two higher frequencies reasonably �devia-
tions are between 5% and 10%, due to the discretization
errors and the fluid-boundary coupling�. For the large c �Fig.
16�b��, a mode shows up which is not close to any analytical
solution �indicated by dashed ellipse�. We address this dis-
crepancy between model and analytical solution to the influ-
ence of the LJ connection between boundary and fluid,
which is not accounted for in Eq. �A4�. However, we argue
that in the case of high � �c=265 ms−1 is used in the simu-
lations�, the influence of the latter can be minimized because
the time scale of the dynamics we are considering here �e.g.,

impact, relaxation� is ten times higher, and in addition, the
amplitudes of these oscillations are relatively small. The first
two frequencies are within 6% deviation from the analytical
solution.

3. Particle discretization

We have also tested the model for numerical consistency
by performing simulations with four times the number of
SPH-DEM particles. In Figs. 17�a� and 17�b� the frequency
spectrum for the centrosymmetric oscillations in the case of
c=50 ms−1 and c=100 ms−1 are depicted. The results are
comparable with the coarser discretization although showing
a slightly better agreement with the analytical solutions. Fur-
thermore, it is shown in Fig. 17�c� that for the impact of the
cell, the initial and the fine discretization hold an acceptable
consistency.
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