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Disordered packings of equal sized spheres cannot be generated above the limiting density �fraction of
volume occupied by the spheres� of ��0.64 without introducing some partial crystallization. The nature of this
“random-close-packing” limit �RCP� is investigated by using both geometrical and statistical mechanics tools
applied to a large set of experiments and numerical simulations of equal-sized sphere packings. The study of
the Delaunay simplexes decomposition reveals that the fraction of “quasiperfect tetrahedra” grows with the
density up to a saturation fraction of �30% reached at the RCP limit. At this limit the fraction of aggregate
“polytetrahedral” structures �made of quasiperfect tetrahedra which share a common triangular face� reaches it
maximal extension involving all the spheres. Above the RCP limit the polytetrahedral structure gets rapidly
disassembled. The entropy of the disordered packings, calculated from the study of the local volume fluctua-
tions, decreases uniformly and vanishes at the �extrapolated� limit �K�0.66. Before such limit, and precisely
in the range of densities between 0.646 and 0.66, a phase separated mixture of disordered and crystalline
phases is observed.
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I. INTRODUCTION

Sphere packings have been studied for centuries to model
natural structures both at the atomic level and at the macro-
scopic level �1�. One of the main quests in these studies is to
understand the nature of the transition between disordered-
and ordered-crystalline packings. It is known that the densest
packing of equal spheres has a fraction of volume occupied
by the balls with respect to the total volume �packing frac-
tion or density, �� equal to �= �

�18
�0.74 �1�. Such maximal

density can be realized in infinitely many ways, with two
common examples being the face-centered-cubic lattice �fcc�
and the hexagonal-closed-packed structure �hcp�. All these
maximally dense packings are based on stacking close-
packed two-dimensional hexagonal layers of spheres. The
class of such maximally dense layered packings are known
as Barlow packings �named after the mid-19th century sci-
entist who explored several possible stackings of spheres in
an attempt to explain the atomic origin of crystal shapes �1��.
They are the most common crystalline structures in atomic
systems like heavy metals and solid noble gases, and they are
also commonly observed in colloids. Atomic systems can
also have noncrystalline phases, but these are in general
metastable states and the system will eventually relax into
the crystalline phase, which is more stable thermodynami-
cally. Conversely, particles of nonmicroscopic sizes �ather-
mal systems with typical sizes above 50 �m, often called
under the general name of “granular materials”� reveal a
strong tendency to avoid crystallization despite the fact that
this is the most compact arrangement and therefore the one
with the lowest potential energy �gravitational�. To describe
the nature of such noncrystalline packings and to understand
the mechanisms that prevent and induce crystallization is one
of the major challenges in present day research on packings
and granular materials. Empirical studies �1–6� show that
mechanically stable packings of equal spheres can be pro-

duced at different densities in the rather broad range between
the two limiting densities �0.555 �called random loose pack-
ing �RLP�� and �0.646 �called random close packing
�RCP��. The fact that noncrystalline packings of equal
spheres cannot be packed tighter than the limiting density of
�0.64 was first observed in the middle of the last century by
Bernal in experiments with steel balls �7�. However, the mi-
croscopic origin of this bounding density is still unexplained
and even the existence of such a limit is still a controversial
issue �8�.

Some important improvements in our understanding of
the structural changes occurring at the RCP limit were re-
cently reported in a paper by two of the authors �9�. The
paper considered the structure of numerically generated
sphere packings in terms of Delaunay simplexes. These sim-
plexes are unambiguously and uniquely defined for any
�regular or disordered� set of points in space. They define
configurations of quadruples of “atoms,” and they are the
simplest three-dimensional elements to which a three-
dimensional packing can be reduced. Delaunay simplexes
represent a mosaic covered space of a sample, so if we select
simplexes with a given shape, the clusters of such simplexes
give a design on the mosaic to reveal a structural motif
�10,11�. It was observed in Ref. �9� that the volume fraction
occupied by Delaunay simplexes with “quasiregular” shapes
increases with increasing density up to Bernal’s RCP limit.
At this stage a structural transition was observed, with the
volume fraction occupied by clusters of tetrahedra �polytet-
rahedra� passing through a sharp maximum while the frac-
tion of spheres was involved in tetrahedra saturates. The po-
sition of this maximum was estimated at 0.646. That study
clearly indicated that some structural reorganization is occur-
ring at the RCP limit.

In this work, we consider in further detail the nature of
this transition by comparing different measures to identify
the quasiregular tetrahedra and by extending the analysis to
experimental systems. We confirm the polytetrahedral struc-

PHYSICAL REVIEW E 77, 031101 �2008�

1539-3755/2008/77�3�/031101�9� ©2008 The American Physical Society031101-1

http://dx.doi.org/10.1103/PhysRevE.77.031101


ture of disordered packings, we retrieve the drastic behavior
of the clusters of tetrahedra at the limiting density, and we
demonstrate that the structure of packings in physical experi-
ments is very similar to the structure observed in numerically
simulated ideal hard spheres packings. These are important
results that strongly support the original finding �9� that a
structural transition is taking place at the RCP limit. How-
ever, questions are is still left open: why these structural
changes happen and what is the nature of such a transition?
In the second part of this paper we use a statistical mechanics
approach to calculate the system’s entropy and we show that
immediately above the RCP density a rapid increase in the
entropy is observed. We identify such change in entropy with
the formation of mixed disordered-crystalline configurations
which are coexisting in the range of densities between 0.646
and 0.66. The extrapolation of the disordered packings’ en-
tropy identifies the limiting density �K�0.66 at which such
entropy will vanish. We discuss these observations by draw-
ing similarities with glass-forming supercooled liquids.

The structure of the paper is the following: in Sec. II we
present in detail the analyzed systems and their preparation
methods; the Delaunay and Voronoï decompositions are in-
troduced in Sec. III; methods to classify Delunay shapes are
discussed in Sec. IV; the evidence of a structural transition
occurring at the RCP limit is presented in Sec. V; in Sec. VI
a way to calculate the system’s entropy is introduced; the
evidence of a transition taking place above the RCP limit is
reported in Sec. VII and its nature is discussed; finally, con-
clusions are given in Sec. VIII.

II. METHODS AND MATERIALS

A. Computer simulations of sphere packings

We study large sets of numerically simulated hard sphere
packings with packing densities ranging from 0.53 to 0.71.
Each packing contains 10 000 identical spheres in a cubic
box with periodic boundary conditions. In order to test if the
packing structures are independent of the preparation algo-
rithm we produced sphere packings using two different nu-
merical approaches. The majority of the packings �more than
200� were obtained using a modified Jodrey-Tory algorithm
that employs “repulsion” of overlapping spheres with
gradual reduction of their radii �12–14�. In this algorithm the
initial configuration is a set of identical overlapping spheres
uniformly distributed in the box. The algorithm attempts to
reduce overlaps between spheres by shifting overlapping
spheres and gradually shrinking their radii. This procedure is
carried on until all overlaps are removed. This algorithm can
easily produce disordered packings with densities up to the
limiting RCP value of �0.646, but it can also produce more
dense systems containing crystalline inclusions up to densi-
ties around 0.66. Higher densities can be reached by using
the result of an earlier run �with enlarged diameters� as the
starting configuration.

Another set of packings �about 70� was produced in the
range of densities from 0.54 to 0.67 by using a modified
Lubachevsky-Stillinger algorithm �15�. In this algorithm the
initial configuration is also random but overlaps are forbid-
den. The simulation consists of an event-driven Newtonian

dynamics in which the spheres are considered perfectly elas-
tic. During the simulation, the radii of the spheres are gradu-
ally increased until a “jammed configuration” where the radii
cannot be enlarged anymore is reached. In these simulations
the principal control parameter is the growth rate for sphere
radii. Small values of growth rates will result in crystalliza-
tion. To avoid crystallization the growth rate should be rather
large, forcing the packing into “jammed” noncrystalline
structures �8,16�. For this study, we have generated packings
of N=10 000 spheres jammed up to a maximal reduced pres-
sure of 1012 using a growth rate for sphere radii in the range
between 2�10−5 and 0.2 �17�.

B. Sphere packings experiments

The numerical results were compared with a set of six
experiments from the AAS database on disordered packings
�18� which contains structural data from experimental sphere
packings obtained by x-ray computed tomography. In par-
ticular, we analyze six samples �A–F� composed of acrylic
beads in air prepared within a cylindrical container with an
inner diameter of 55 mm and filled to a height of �75 mm
�6,19,20�. Samples A and C contain �150 000 beads with
diameters d=1.00 mm and polydispersity within 0.05 mm.
Whereas samples B, D–F contain �35 000 beads with diam-
eters d=1.59 mm and polydispersity within 0.05 mm. The
geometrical investigation of the packing structure was per-
formed over a central region at 4 sphere-diameters away
from the sample boundaries. The density �packing fraction�
of each of the samples is A, ��0.586; B, ��0.596; C, �
�0.619; D, ��0.626; E, ��0.630; and F, ��0.640. The
two packings at lower densities �A, B� were obtained by
placing a stick in the middle of the container before pouring
the beads into it and then slowly removing the stick �1�.
Sample C was prepared by gently and slowly pouring the
spheres into the container. Whereas sample D was obtained
by a faster pouring. In sample E a higher density was
achieved by gently tapping the container walls. The densest
sample �F� was obtained by a combined action of gentle
tapping and compression from above �with the upper surface
left unconfined at the end of the preparation�. To reduce
boundary effects, the inside of the cylinder was roughened
by randomly gluing spheres to the internal surface. In this
paper we also present data concerning 12 samples of glass
beads with diameters of 0.25 mm prepared in water by
means of the fluidized bed technique �18,21,22�. Packing
densities between 0.56 and 0.60 were obtained by using dif-
ferent flow rates. After each flow pulse, the particles sedi-
mented forming a mechanically stable packing. Packings
created in this way are in a stationary state with packing
densities which are independent of the preparation history
and fluctuate around average values with smaller densities
for higher flow rates. This kind of technique is probably the
best suited for applying statistical mechanics approaches
�21,22�.

III. DELAUNAY AND VORONOÏ DECOMPOSITIONS

Our first aim is to characterize the structure of disordered
sphere packings and quantify structural properties and struc-
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tural changes associated with different densities. The first
step in the quest for a structural characterization is to identify
local configurations and quantify their similarities and rela-
tive occurrences. To this end a convenient approach is to
decompose the system into a set of local “units” whose prop-
erties can then be analyzed statistically. There exists a gen-
eral approach, used in geometry, which allows us to unam-
biguously decompose any arbitrary system of discrete points
into a space-filling set of local “units” or cells. Such an ap-
proach is the Voronoï-Delaunay tessellation �decomposition�,
well-known both in physics �23� and mathematics �24�. This
method exploits an evident geometrical fact that for each
point in a set of points embedded in a given metric space it is
always possible to distinguish the portion of space closest to
such a point with respect to any other point in the set. This
region is called the Voronoï polyhedron �cell, region� and the
space-partition built from the assembly of all Voronoï cells is
called the Voronoï tessellation or Voronoï diagram �24�. For
any Voronoï tessellation, there exists a dual tessellation
called the Delaunay tessellation, which consists of Delaunay
simplexes �irregular tetrahedra, in the general case� whose
vertices are the quadruples of closest points in the set. The
names of these constructions derive from the mathematicians
that posed the mathematical foundations of the methods:
Voronoï �1868–1908� �who explored in detail the properties
of these tessellations by using analytical methods for lattice
systems� and Delaunay �1890–1980� �who proved the cor-
rectness of Voronoï’s main theorems for points positioned at
random in space� �25–28�. The Voronoï cell delimits the “re-
gion of influence” around each point. For packings of iden-
tical spheres, the volumes of the Voronoï cells constructed
from the set of sphere centers are associated with the local
packing density.

IV. SHAPE CHARACTERIZATION

In order to characterize the packing structure we can use
the simplicial decomposition defined by the Voronoï-
Delaunay construction. For a quantitative characterization,
we first need to build a simple instrument to measure the
shape of each simplex. In particular we might look at the
“distance” between a given simplex and a perfect �regular�
tetrahedron. Several approaches have been suggested to char-
acterize the proximity of a simplex to a perfect tetrahedron
�10,29–32�. In this paper we will discuss three different
methods that embrace a significant range of possibilities.

A. Edge differences, T measure

Let us start with a rather old and simple method in which
the irregularity of the tetrahedron is quantified by summing
over the average square of the simplex edge-length differ-
ences �10�,

T =
1

15l̄2
	
i�j

�li − lj�2, �1�

where li, lj are the lengths of the simplex edges, and l̄ is the
mean edge length. In a perfect tetrahedron all edges have

equal length and T is equal to zero. More generally, small
values of T correspond to simplexes which are close to a
perfect tetrahedron. Conversely, large values of T indicate
significant deviations from regularity.

We now want to identify a bound on the value of T which
defines a class of tetrahedra that are regular enough and
therefore can be considered “quasiperfect tetrahedra.” In
Refs. �11,33� this measure was calibrated using models of a
fcc crystal at different temperatures �at different degrees of
perturbation�. It is known that this crystal structure �as any
Barlow packing� can be reduced to a tiling with elementary
tiles made of a mixture with two perfect tetrahedra and one
octahedron. At finite temperatures they are distorted, but as
long as the crystal regularity is retained the two main classes
of Delaunay simplexes, tetrahedra and quartoctahedra �quar-
ters of octahedra�, are present �see Fig. 1�. It was shown in
Refs. �11,33� that the boundary value Tb=0.018 divides the
two classes of simplexes in the calibrating models. This is
therefore the threshold value for the T measure which we
will use in the present paper.

B. Procrustean distance, d measure

From the perspective of mathematical shape theory
�34,35�, the proximity of an arbitrary simplex to a given
reference shape is estimated by the degree of coincidence
upon their superposition. To this end one can compute the
total mean square deviation d2 between the corresponding
vertices of the optimally superimposed simplexes. The quan-
tity d is called the Procrustean distance between the two
simplexes. Let 
x1 ,x2 ,x3 ,x4� and 
y1 ,y2 ,y3 ,y4� be, respec-
tively, the coordinates of the vertices of two simplexes, the
square of Procrustes distance between them is

d2 = minR,t,P� 1

4	
i=1

4


yi − �Rxi + t�
2� , �2�

where the minimum is calculated over all three-dimensional
rotations R, translations t, and all possible combinatorial
mappings between vertices of the simplexes �P�. For a given
correspondence �mapping� between vertices, it is possible to

FIG. 1. �Color online� Typical simplexes in dense packings of
equal spheres: �a� perfect tetrahedron �it has T=0, dt=0, �=0�; �b�
an example of “a boundary” simplex with quasiregular tetrahedral
shape �with T�0.018, dt�dq, ��0.25�; and �c� perfect quartocta-
hedron �a quarter of an octahedron, with one edge �2 longer than
the others, T=0.05, dt=0.179, �=0.41 and dq=0�, see text.
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calculate analytically the Procrustean distance and there are
several algorithms to solve such a least-squares problem �see
Ref. �36� for details�. The measure d allows us to compare a
simplex to any reference shape. For instance, it is possible to
calculate the distance from a given simplex to both the per-
fect tetrahedron dt and to a quartoctahedron dq �a quarter of
an octahedron with one edge �2 longer than the others, see
Fig. 1�. This also suggests that a natural choice to classify
quasiperfect tetrahedra is to select simplexes with Procrust-
ean distances to a perfect tetrahedron smaller than their dis-
tance to a perfect quartoctahedron, i.e.,

dt � dq. �3�

The distance between perfect tetrahedron and quartoctahe-
dron is equal to 0.17936 �31�.

C. Maximal edge length, � measure

A very simple but effective way to determine how close
an irregular simplex is to a perfect tetrahedron consists of
calculating the length of the longest edge emax. This method
of selecting tetrahedral simplexes was used by Hales in his
proof of the Kepler conjecture �32�. This approach seems
especially suitable in packings of hard spheres with equal
�unit� diameters, where the minimal possible length of the
simplex edge is equal to 1. In this case, a value of emax close
to unity unequivocally indicates that all edges are close to 1
and therefore the simplex is close to a regular tetrahedron. A
convenient measure of the simplex shape is therefore the
difference between the lengths of the maximal and the mini-
mal edges: �=emax−1 �9�. Small values of � unambiguously
indicate that the shape of the simplex is close to a perfect
tetrahedron, while large values of � correspond to substan-
tially distorted shapes. In the proof of the Kepler conjecture,
Hales chose the maximal edge length 1.255 as the upper
bound for quasiperfect tetrahedra which in our notation cor-
responds to �=0.255. In this paper, we will also use this
threshold value which is in between the perfect tetrahedron
��=0� and the quartoctahedron ��=0.414. . . �, consistent
with the previous measures.

It is important to remark that the � measure is strictly
related to the two previous measures. One can verify that for
dense packings of hard spheres all these measures pick prac-
tically the same tetrahedral simplexes. For instance, in disor-
dered packing at density 0.64 we estimated that the condi-
tions T�0.018 and ��0.255 select the same simplexes with
an overlap of 90%, and the coincidence rate increases with
the onset of crystallization. Thus each of the measures reli-
ably picks tetrahedra with shapes close to perfection. Some
ambiguity is observed only for simplexes with boundary
shapes, but they are not critical in our analysis.

V. STRUCTURAL REORGANIZATIONS AT THE RANDOM
CLOSE PACKING LIMIT

A. Fraction of quasiperfect tetrahedra

For each packing we calculate all the Delaunay simplexes
and select the quasiperfect tetrahedral shapes accordingly
with the criteria discussed in the previous section. Figure 2

shows the behavior of the fraction of quasiperfect tetrahedra
as a function of the packing density for all numerical models
and experiments A–F. One can verify that the general trends
are comparable for all three measures of shape described
above. Only the Procrustean distance �dt�dq� tends to over-
estimate the fraction of tetrahedra at low densities. Indeed,
this criterion can pick rather distorted simplexes that are far
away from a perfect tetrahedron, but are even farther from a
perfect quartoctahedron. Note that each point on a curve cor-
responds to an independent packing. The good coincidence
of points at similar densities illustrates the representativeness
of our computer models. The agreement between experimen-
tal and numerical results is also evident.

The fraction of tetrahedra rapidly grows with increasing
density, reaching a value around 30% when approaching the
critical density of ��0.646. Interestingly, further increase of
the density has little effect on the fraction of tetrahedra. Note
that the fraction of quasiperfect tetrahedra at ��0.646 is
close to 1 /3, which corresponds to the fraction of perfect
tetrahedra in Barlow packings. Such a coincidence of the
fraction of quasiperfect tetrahedra with the ones in the dens-
est crystalline structure deserves special attention as this can
shed light on the physical meaning of the class of quasiregu-
lar tetrahedra. But the problem is not straightforward. The
question is, which is the maximum fraction of quasiperfect
tetrahedra which can be present in a dense packing of equal
spheres? It seems reasonable to conjecture that the fraction
of 1 /3 is an upper bound. However, a recent work �37�
seems to suggest that some classes of tetrahedral packings
might reach larger fractions. Moreover, the body-centered-
cubic �bcc� crystal consists of Delaunay simplexes which are
all quasiregular tetrahedra according to two of our criteria
�Tbcc=0.011, �bcc=0.15�. It must be also noted that the frac-

FIG. 2. �Color online� Fraction of Delaunay simplexes with qua-
siperfect tetrahedral shape as a function of packing density. From
the top to bottom: dt�dq �blue, online only�, ��0.255 �black�, T
�0.018 �red, online only�. The symbols correspond, respectively, to
dry acrylic beads experiments ��, �, and �, respectively, for T
�0.018, dt�dq, and ��0.255�; numerical simulations by Jodrey-
Tory algorithm ���; and numerical simulations by Lubachevsky-
Stillinger algorithm ���. The vertical line marks the density �
=0.646 which has been individuated as the best estimate for the
position of the maximum. The horizontal line marks the value of
1 /3 that corresponds to the fraction of tetrahedra in the densest
crystals.
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tion of tetrahedra depends also on the softness of the spheres.
For instance, we have found that in Lennard-Jones glasses
one can have up to 40% of such quasiregular tetrahedra.

B. Fraction of polytetrahedral aggregates

We have established so far that in disordered packings of
equal sized spheres the fraction of quasiperfect tetrahedra
increases during densification and reaches a plateau around
30% when the random close packing limiting density is over-
come. We now want to understand how these quasiperfect
tetrahedra can aggregate in more complex structures. To this
end we analyze clusters of face-adjacent tetrahedra �Fig. 3�.
In particular, we consider clusters built from three or more
face-adjacent quasiperfect tetrahedra and we call such struc-
tures polytetrahedra �9,38�. Isolated tetrahedra and pairs of
tetrahedra �bipyramids, Fig. 3�a�� are omitted as they are
found in fcc and hcp structures �see Fig. 4�. We can associate
a graph to such polytetrahedra aggregates. In such a graph a

vertex represents the center of a quasiperfect tetrahedron and
a segment between two vertices is inserted when two quasip-
erfect tetrahedra are sharing a face �Fig. 3 �right sides��. In
general, such graphs have the form of branching chains and
five-edges cycles which combine in various “animals”
�11,38�, see Figs. 3�d� and 5. In mathematical jargon, such a
representation of clusters of the selected Delaunay simplexes
is called “site-coloring on the Voronoï network.” Indeed, be-
cause of the duality of the Delaunay and Voronoï tessella-
tions, the center of any Delaunay simplex is a vertex of the
Voronoï network, and a common edge is connecting two
neighboring vertexes in the Voronoï network �10,23�.

Figure 5 shows the graphs of polytetrahedral clusters in-
side a numerically generated sample and an experimental
sample both at densities �0.64. We see many five-member
rings revealing the “5-symmetry nature” of the disordered
packings discussed by Bernal in his work �7�. Visual analy-
ses of these clusters reveal that they are rather irregular. Note
that there are no clusters structured as dodecahedra �polyhe-
dron with 12 five-member faces� which would correspond to
icosahedral local configurations of spheres. This fact is an
additional argument that “icosahedral local order” is not typi-
cal in disordered packings of identical spheres �20,39–41�.
Note that we do not observe practically any six-member
rings, although our class of tetrahedra allows distortions of
shape to organize such rings �e.g., a part of the Delaunay
simplexes in the bcc structure are arranged in such rings�. In
disordered packings, six-member rings of tetrahedra seem
not to be preferable.

In Fig. 6 the fraction of tetrahedra which are part of poly-
tetrahedra aggregates is reported as a function of the packing
density. We observe that the polytetrahedra aggregates rap-
idly grow with increasing density. Upon approaching the
Bernal’s limit density, the fraction of polytetrahedral aggre-
gates also accounts for about 30% of all Delaunay simplexes
indicating that almost all quasiperfect tetrahedra are involved
in such polytetrahedral aggregates. However, after the RCP
density the fraction of the tetrahedra belonging to polytetra-
hedral aggregates sharply decreases. This is a consequence
of the formation of crystalline nuclei.

Figure 6 clearly demonstrates the polytetrahedral nature
of disordered hard sphere packings. The transition from a

FIG. 3. �Color online� Examples of polytetrahedral aggregates
�clusters of face-adjacent tetrahedra�. �a� Two tetrahedra; �b� three
tetrahedra; �c� a ring of five tetrahedra; and �d� a typical cluster in a
dense disordered packing. The graphs on the right sides show the
motives of the tetrahedra clusters: the points mark the centers of
tetrahedra and the lines indicate that they are adjacent through a
common face. Clusters of three and more face-adjacent tetrahedra
are impossible in Barlow packings and lattices in general �incom-
patible with translational symmetry�.

FIG. 4. �Color online� �Top� Two edge-adjacent tetrahedra
�present in the fcc lattices�; they have edge-adjacent quartoctahedra
between them. �Bottom� Two face-adjacent tetrahedra �hcp struc-
tures�; they have neighbor face-adjacent quartoctahedra.

FIG. 5. Illustration of spatial distribution of the polytetrahedral
clusters in packings of hard spheres at �0.64 in experiments �left�
and computer models �right�. To simplify pictures only skeletons of
the polytetrahedra are shown. Tetrahedral simplexes are selected
according the measure T�0.018.
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lower density to higher density packing occurs via increasing
the fraction of quasiperfect tetrahedral configurations and
their coalescence into polytetrahedral aggregates. At the lim-
iting density ��0.646 the fraction of quasiperfect tetrahedra
reaches its maximum and the polytetrahedral aggregates span
their largest extension. Questions then arise: Why this
mechanism stops to work for higher densities? What re-
source of packing becomes exhausted upon approaching the
critical density? The answer to these questions might be
found in Fig. 7 which demonstrates that the parameter reach-
ing its limit is the number of spheres involved in quasiperfect
tetrahedra �9�. For each packing we counted all spheres that
are vertexes of at least one quasiperfect tetrahedron. �Recall
that each sphere of the packing is a common vertex for sev-
eral Delaunay simplexes.� As can be seen, the fraction of
these spheres grows with increasing density and reaches
100% at the RCP density. At the limiting density ��0.646
all spheres in the packing have been involved in the forma-
tion of quasiperfect tetrahedra. So a process of densification
by means of formation of polytetrahedral nuclei becomes
exhausted.

VI. ENTROPIC CHARACTERIZATION

The structural analysis presented in the previous section
clearly reveals that a significant reorganization in the packing
is occurring at the random-close-packing limit. The open
question is now to understand whether such a structural re-
organization has the properties of a phase transition. In a
classical thermodynamic system, phase transitions occur
when at a given temperature, pressure or volume, a new
phase becomes more favorable as a result of having a smaller
free energy. On the other hand, the sphere packings that we
are investigating are dissipative systems that do not conserve
energy. They are athermal systems to which the application
of thermodynamics concepts is not straightforward. How-
ever, in recent years extensions of classical statistical me-
chanics approaches to these systems have been proposed
�42–62�. The main reasoning underlying these approaches
relies on the observation of three facts. �1� Mechanically
stable packings can be produced with different densities in a
wide range between 0.555 to 0.74 by using different prepa-
ration methods �or different numerical simulations�; �2� for a
given preparation procedure, the resulting packing density is
highly reproducible within a narrow range of about 0.5%;
and �3� the structural properties of the packings at rest are
characterized by only a small set of parameters regardless of
the preparation procedure �6,56,57,63,64�.

The idea is that to this reproducible set of configurations
one can apply an extended statistical mechanics reasoning
where the role traditionally played by the energy is instead
played by the total occupied volume V �=�N / �6��, with N
the number of spheres� �21,43,62�. In this context the canoni-
cal ensemble corresponds to a system exploring a set of con-

figurations with average volume V̄. This average volume is
determined by the exact nature of the preparation procedure.

Whereas fluctuations around V̄ are associated with the sys-
tem’s entropy.

The applicability of a statistical mechanics approach to
our computer simulations and experiments is a “working hy-
pothesis” which is strongly supported by important evidence.
In particular, it was shown in Refs. �21,62,64,65� that by
using a deductive statistical mechanics approach one can in-
fer precise predictions for the distribution of the volume fluc-
tuations at all levels of investigation from the single grain to
the whole system. Within such a framework the probability
distribution for a configuration with volume V is
�21,62,64,65�

p�V� =
	�V�
	�
�

exp�−
V



� , �4�

which recalls the equivalent expression in classical thermo-
dynamics, with 	�V� counting all the microscopic configu-
rations occupying a total volume V, 	�
� the partition func-
tion, and 
−1 a Lagrange multiplier which controls the

average volume V̄. By considering the system as made of a
number k of “elementary cells” which can have arbitrary
volumes above vmin, under the condition that the whole sys-
tem must occupy a total volume V, and by assuming that all
the cell properties are either completely determined by the

FIG. 6. �Color online� Fraction of quasiperfect tetrahedra which
are also part of polytetrahedra aggregates vs packing density. Sym-
bols are as in Fig. 2. The behavior of these curves is quite different
from the curves in Fig. 2 revealing a sharp peak at the RCP limiting
density.

FIG. 7. �Color online� Fraction of spheres in the packing in-
volved in quasiperfect tetrahedra as a function of packing density
�9�. Symbols are as in Fig. 2.
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volumes vi or they are independent from vi, one can write

�62,66� 	�V�=
�V−kvmin�k−1

�3k�k−1�! , with � a constant analogous to the

Debye length. Substituting into Eq. �4� one finds 
= �V̄
−Vmin� /k and the distribution p�V� is identified as a gamma
distribution in the variable V−Vmin, with a “shape” parameter

k and a “scale” parameter �V̄−Vmin� /k �67�. Therefore the

volume distribution is characterized by the average volume V̄
and by the parameter k, regardless of the preparation method.
The very good agreement between this theoretical prediction
and the empirical distributions observed both in experiments
and simulations �21,62� is a strong argument in favor of the
applicability of this statistical mechanics approach to our
packings.

Within the same statistical mechanics approach, we can
calculate explicitly the system’s entropy �62�:

S = k�1 + ln� V̄ − Vmin

k�3 �� , �5�

with V̄ the average volume and Vmin=kvmin the minimum
attainable volume. The entropy Eq. �5� is the Gibbs entropy
over all the accessible states associated with a preparation

method which yields to an average volume V̄. Let us note
that, despite the great differences in the physical properties
of the systems under investigation �namely, Lubachevsky-
Stillinger simulations, Jodrey-Tory models, fluidized bed
systems �21�, and packings of plastic beads in air �6��, all
these systems share a common property: the system’s vol-
umes are free to fluctuate and the final packings at rest have
average volumes that are determined by the preparation pro-
cedure and are independent on the initial configuration.

Let us consider the average entropic contribution from
each Voronoï cell. In this case Eq. �5� simplifies because the

average volume is directly related to the average density V̄
=� / �6�̄� and the minimum volume is fixed by geometry to
the one of a regular dodecahedron Vmin

=5�5/4� /�2�29+13�5��0.694 �1�. The quantity k can be de-
termined from the standard deviation ��v� of the Voronoï
volume fluctuations by using the relation �21,62�

k =
�V̄ − Vmin�2

�v
2 . �6�

Typical values of k associated to Voronoï partitions in
jammed packings of equal spheres vary in a relatively nar-
row range between 11 and 14 �21,62,66�. In Ref. �66� it was
highlighted that large changes in the value of k are observed
near critical densities such as the random-loose and the
random-close-packing limits.

VII. ENTROPIC CHANGES ABOVE THE RANDOM-
CLOSE-PACKING LIMIT

Let us now investigate whether there is any sizeable
change in the entropy when approaching the random-close-
packing limit. Figure 8 shows the behavior of the system’s
entropy �obtained from Eqs. �5� and �6�, by using �3=1 /50�

as a function of the packing density for all the computer
models and the experimental packings �A–F� considered in
the previous sections. Furthermore, Fig. 8 reports data for 12
experiments with glass beads in water �21� also from the
AAS database �18�. We observe that all the experiments and
simulations fall into a common trend characterized by three
distinct regions.

�1� In the density region between the random-loose-
packing limit ��0.555 and the random-close-packing limit
��0.646 the entropy uniformly decreases.

�2� Just above the random-close-packing limit and pre-
cisely between the densities ��0.646 and 0.66 the entropy
suddenly increases.

�3� After ��0.66 the entropy decreases again heading
towards zero at the crystalline limit �=0.7405. . ..

The fact that the overall trend of the entropy is decreasing
with the density is simple to explain: the more compact the
packing becomes, less possibilities are left to the spheres to
explore equivalent configurations. In other words the number
of degrees of freedom decreases with the density. The re-
markable fact is that just above the RCP limit the entropy
suddenly increases.

Let us note that the behavior of entropy reported Fig. 8
has strong analogies with what is observed in glass-forming
supercooled liquids. If we follow the decreasing trend of the
entropy of the disordered packings in the region before the
RCP limit ���0.646�, we can extrapolate a density where
the entropy of the disordered packing will vanish ��K
�0.66, see dashed line in Fig. 8�. Such a behavior is very
closely related to the Kauzmann paradox in supercooled liq-
uid where, as the temperature decreases, the so-called “con-
figuration entropy” decreases and is extrapolated to zero at a
given finite temperature called the Kauzmann temperature
�68�. It is usually explained that approaching such a tempera-
ture the number of disordered configurations becomes
smaller and the relaxation time increases drastically. As a
consequence, close to the Kauzmann temperature, it is not
longer possible to equilibrate the system on the experimental
time scales. Similarly, we may think that as the “Kauzmann
density” �K is approached, the number of disordered configu-
rations becomes vanishingly small and numerical simula-
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FIG. 8. �Color online� Packing entropy S �Eq. �5�� vs packing
density � for dry acrylic beads experiments ���, glass beads in
water prepared by fluidized bed technique ���, numerical simula-
tions by Jodrey-Tory algorithm ���, and numerical simulations by
Lubachevsky-Stillinger algorithm ���.
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tions are not able to find them any longer. An independent
support for such a scenario is given by the analysis of the
equation of state in hard sphere simulations by Aste and
Coniglio �69� where diverging relaxation times were ob-
served when the packing density approaches the limit �0.65.
More recently, Kamien and Liu �70� give an estimation of
such limiting density at �0.6465. Above this density the
numerical procedures or the experiments fail in finding dis-
ordered packings. Conversely, it becomes more probable to
produce phase-separated mixtures of crystalline and disor-
dered phases. As we have seen, this mixing occurs in the
range of densities between 0.646 and 0.66. This is consistent
with what was observed from the analysis of the Delaunay
simplexes that highlighted the disassemblement of the qua-
siperfect polytetrahedral aggregates occurring in the same
density region between ��0.646 and 0.66 �Fig. 2�. Above
the Kauzmann density �K�0.66, only the �poly�crystalline
phase is present, and the entropy will vanish at the maximal
density �=0.7405. . ..

Let us finally note that there is a change in the behavior of
the entropy for both experiments and Jodrey-Tory simulation
around ��0.6, but at this stage we do not have enough data
to establish if there is effectively any transition occurring at
this density.

VIII. CONCLUSIONS

We have studied structural and entropic properties of
equal sphere packings produced by using numerical simula-
tions and experiments. We have shown that at the random-
close-packing limit ���0.646� the system undergoes a struc-
tural reorganization which is also associated with a sharp
increase in the system’s entropy.

The structural transition has been studied by using the
Delaunay simplex decomposition by measuring, with differ-
ent criteria, the fraction of tetrahedra with quasiregular
shapes. We have shown that, independently of the criterion
used to classify shape, the fraction of quasiregular tetrahedra
grows with the density reaching a plateau around 30% at the
RCP limit. Interestingly, such a plateau value coincides with
the number of tetrahedra present in the Barlow packings. The
analysis of the polytetrahedral aggregates �formed by quasi-
regular tetrahedra which share a common triangular face�
reveals that during compaction large clusters of polytetrahe-
dral aggregates �with more than two elements� are formed
and they increase in number until the RCP limit where al-
most all quasiregular tetrahedra are involved in such clusters.
The important properties of such aggregates are, on one
hand, their rather high local density, and on the other hand

their incompatibility with crystalline structures. �In crystals
they either contact at edges or are organized in bipyramids.�
At the RCP limit all the spheres are involved in quasiregular
tetrahedra. This means that the supply for polytetrahedral
cluster growth becomes exhausted. Any further increase in
density cannot exploit this noncrystalline organization. To
reach higher densities the “crystalline” organization has to be
exploited. At the RCP limit a sharp transition is observed and
the polytetrahedral aggregates are rapidly disassembled. It
must be stressed that to observe this sharp structural transi-
tion it is important that the basic tetrahedra are quasiregular
but not perfect. Indeed, in the configurations that we have
considered the gaps between the neighboring spheres may be
up to �25% of the sphere diameter.

In order to understand the origin of this structural transi-
tion in terms of a statistical mechanics perspective, we com-
puted the system’s entropy from the measurements of the
Vorornoï volume distribution. The entropy of the disordered
packings decreases linearly with density, this is analogous
with the behavior of the configuration entropy in glass-
forming supercooled liquids when temperature decreases.
The extrapolation of the entropy behavior for the disordered
phase indicates that it will vanish at a critical “Kauzmann
density” �K�0.66. This might indicate that this point iden-
tifies a “genuine” phase transition where only one disordered
configuration or a nonextensive number of disordered states
is left. However, approaching this limit the system fails to
find these disordered configurations both in computer simu-
lation and physical experiment. In this condition, mixed
disordered-crystalline configurations become more favor-
able. This mechanism is clearly visible in the region 0.646–
0.66, where the polytetrahedral aggregates are disassembled
and the entropy has a sharp increase. For densities above this
region the packings are in a crystalline phase with an entropy
which goes to zero at the densest crystalline packing limit
�0.74…�.
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