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Abstract

We present a unified approach of several boundary conditions for
lattice Boltzmann models. Its general framework is a generalization
of previously introduced schemes such as the bounce-back rule, linear
or quadratic interpolations, etc. The objectives are two fold: first
to give theoretical tools to study the existing boundary conditions
and their corresponding accuracy; secondly to design formally third-
order accurate boundary conditions for general flows. Using these
boundary conditions, Couette and Poiseuille flows are exact solution
of the lattice Boltzmann models for a Reynolds number Re = 0 (Stokes
limit).



Numerical comparisons are given for Stokes flows in periodic ar-
rays of spheres and cylinders, linear periodic array of cylinders between
moving plates and for Navier-Stokes flows in periodic arrays of cylin-
ders for Re < 200. These results show a significant improvement of
the overall accuracy when using the linear interpolations instead of
the bounce-back reflection (up to an order of magnitude on the hy-
drodynamics fields). Further improvement is achieved with the new
multi-reflection boundary conditions, reaching a level of accuracy close
to the quasi-analytical reference solutions, even for rather modest grid
resolutions and few points in the narrowest channels. More important,
the pressure and velocity fields in the vicinity of the obstacles are much
smoother with multi-reflection than with the other boundary condi-
tions.

Finally the good stability of these schemes is highlighted by some
simulations of moving obstacles: a cylinder between flat walls and a
sphere in a cylinder.

1 Introduction

Boundary conditions in kinetic (or particle) methods, lattice Boltzmann
model being one such example, are fundamentally different from their equiv-
alent for more traditional Computational Fluid Dynamics (CFD) methods,
such as finite-difference or finite-element ones. In many traditional CFD
methods the boundary conditions (for instance fluid velocity, pressure, or
some of their derivatives) are explicitly set on the nodes defining the mesh
boundary. In kinetic methods, the particles (populations) leaving the com-
putational domain have to be replaced by particles (populations) entering it.
The properties of these entering particles define the boundary conditions and
can be either given a priori or computed from those of the leaving particles.
Such boundary conditions can only be set exactly from a perfect knowledge
of the kinetic properties of the studied flow. In general this perfect knowl-
edge is not available and some approximations have to be used, leading to
some discrepancies between the particle distributions prescribed by the fluid
dynamics and the boundary conditions. The resulting mismatch obviously
limits the accuracy of modelling usual macroscopic boundary conditions by
kinetic methods. It is well known in the context of rarefied gas dynamics
that the physical effect of such mismatch creates a region, located near the
boundary, where the discrepancy between the local distributions and the fluid



ones is exponentially damped away from it (see for instance [1]). This layer
near the boundaries is known as Knudsen or accommodation layer and leads
at the macroscopic level to an apparent non-zero velocity at the boundary
(slip velocity). Moreover, in numerical methods using an underlying grid,
the actual boundaries are not located on the grid points but at positions
depending upon the details of the boundary conditions.

It has been recognized quite early that such effects indeed exist in lattice
gases and lattice Boltzmann equation. In reference [2] Knudsen layers have
been studied for two simple orientations of the boundary on a triangular lat-
tice and it has been shown for Couette flows that the bounce-back condition
locates the no-slip walls midway through the last fluid node and the first
outside one. This result has been extended in [3, 4] to Poiseuille-Hagen flows
for which it has been shown that exact parabolic profiles, for the same no-slip
walls as in the Couette case, can be recovered for special relations between
some eigenvalues of the collision operator. Despite these results there have
been numerous attempts to still set the boundary conditions on the lattice
nodes (see for instance [5, 6, 7, 8, 9], to name a few). Although most of them
have given reasonable results for flat boundary parallel to the main lattice
planes, they are not accurate enough when dealing with inclined flat walls
or curved ones. To solve this problem we had proposed a different approach
based on the reconstruction of the unknown populations from a second-order
Chapman-Enskog expansion in [10]. Recently several authors have proposed
various boundary conditions based on a link approach [11, 12, 13, 14, 15].

The motivation of the present work is to extend the results of [14] in or-
der to derive formally third-order accurate boundary conditions for general
flows, called here “multi-reflection”. This study has been done in the con-
text of moderate resolutions and/or moving boundaries. The analysis of the
boundary conditions is done along the lines already introduced in [2, 3, 4]:
the boundary condition is written as a closure relation between an unknown
population entering the fluid and some others, known from the fluid dy-
namics; the populations are then replaced in the closure relation by their
second-order approximations; finally a Taylor expansion of the result at the
boundary node gives a second-order estimate of the perturbation of the ideal
solution by boundary condition. If this estimate is zero, the boundary con-
dition is formally third-order accurate. For some flows and geometries (for
instance Poiseuille flows along the symmetry axis of the lattice), a non-zero
estimate can be recast as a shift in the actual location of the walls and the
boundary condition does not create Knudsen layers; this is not the case for



general flows and the estimate gives the order of magnitude of the Knudsen
layer produced by the boundary condition.

The scope of this work is restricted to boundary conditions involving only
populations moving along the same or opposite directions on the same line
and on at most three fluid nodes at the same time. Presently the formal
third-order accuracy of multi-reflection is proven theoretically and studied
numerically for incompressible steady flows. The extension of these results
to compressible and/or unsteady flows is left for future work.

In section 2 we give the general framework for our lattice Boltzmann
models and sketch the associated Chapman-Enskog expansion. Section 3 is
devoted to the definition of the boundary conditions considered here and
to their theoretical analysis. The results are summarized in section 3.6. In
section 4 the standard definition of the momentum exchange between the
fluid and a boundary is recalled and a new definition is proposed to improve
the accuracy. Using the D3(Q15 model in three dimensions, these boundary
conditions have been tested for Stokes flows over a cubic array of spheres
in section 5.1.4, a square array of cylinders in section 5.1.5, and a periodic
line of cylinders between moving walls in section 5.1.6. Results for Navier-
Stokes flows over a square array of cylinders are given in section 5.2. In
section 6 we presents some possible modifications of the static algorithms
to deal with moving boundaries and we test them by simulating a cylinder
moving between two parallel flat walls and a sphere moving in a cylinder.

2 Lattice Boltzmann models

2.1 General models

The lattice Boltzmann model considered here are defined on a cubic lattice
in D dimensions by b = b, + 1 velocities &, i € {0,...,b,} (& being a zero
vector). The velocity set is chosen such that it has the same symmetry group
as the cubic lattice; in particular it is invariant under the central symmetry
(i.e. if ¢, is an element of the set, ¢; = —¢, is also an element), and the set
is invariant by any exchange of coordinates.

These models obey the following evolution equation for the population f;
moving with velocity ¢;

firt) = [T )= (A-E2(7 1)) + 1) G- F (2)



where A is the collision matrix, the ¢ are parameters given later (see eqs. (7)
and (8), and table 1), F is a body force, and f*¢ = f — f*¢ (f = (f;)). The
equilibrium distribution £*¢ = (f;%) is a function of the conserved quantities
p and J such that

b b
M EY =Y fi=0, (3)
i=0 =0

bm bm
Zfieq'cioé = Zfz Cia = Ja s Va . (4)

Here and in the sequel, greek subscripts stand for the spatial coordinates,
x, y, and so on; in addition repeated greek indices correspond to implicit
summations over the space coordinates.

The collision matrix A is defined by its eigenvectors e; and eigenvalues
Ax (in the interval |0, 2] for linear stability):

b
A
A= (- e ey (5)
= llexll

As in [16], the eigenvectors e, are built from polynomials of the components
of the ¢; which are then orthogonalized. The procedure starts with the D +1
b-vectors e, (€9); = 1, and ey, (ex); = ¢io (k € {1,...,D}). It then proceeds
with a b-vector epyy built on the ¢ = ||¢;||* and orthogonal to eq, D — 1
pairwise orthogonal vectors built from Dc?, —c?, and D(D —1)/2 vectors ey,
(ex)i = cinCip with oo # (. Note that the preceding vectors have to be all non-
zero in order to recover the usual Navier-Stokes equations. The procedure
continues with higher degree polynomials and ends when the set of linearly
independent orthogonal vectors has been exhausted. This construction is
unique if it proceeds by increasing polynomial degrees and decreasing sym-
metry, ¢. e. b-vectors having in the physical space the symmetry of a scalar,
then of a vector, a second rank tensor, and so on. This set of vectors e, defines
what is usually called the moment basis, the moments being the projections
of population distribution f on them: m; = f - e;. Finally the equilibrium is
defined in the moment space as functions of the conserved quantities com-
patible with the symmetries of the lattice (see [15, 16, 17, 18, 19] for details
and examples of moment bases).



2.2 Simplified models

Although the theory for boundary condition can be done in the above general
framework, the algebra is simpler when using only two eigenvalues: A, for
the vectors e, unchanged by central symmetry and A for the others, and the
following equilibrium distribution

g R 37 — 72
[ (p. J) =t (cip + Ti) + 35 (6)
where J; = J-¢; = JaCia, Ji = 7-Ci = JaCias P = ||Gi||?, and p is equal to p(F, t)
for the compressible Navier-Stokes equation and to pg for its incompressible
variant (see [20, 21]). The ¢, and t; are model dependent and must obey at
least the constraints

b, b,
dDoby=) ted = 1, (7)
=0 =0
brm bm
3thciaciﬂ - Zt;Ciaciﬂ - 504[3 ) VOé,B ) (8)
=0 =0

coming from the conservation laws (3) and (4). The momentum ) used in
the nonlinear term of equation (6) is defined as

- —

j=J - LF (9)

where Iy = 0 for the standard definition and Iy = —1/2 for the modified one
which is used here (see [3, 22, 23, 24]). The “incompressible” variant with
p = po has also been used for all the steady simulations presented here.

Model to ts t’l( = 3t1 t§ = 3t2 t§ == 3t3
4 | 3—5c 1 1
D2Q9 | - s - — -
@5 3¢2 3 12
21 3-17 1 1
D3Q15 | = sl = - —
QIS5 32 3 24

Table 1: Equilibrium weights ¢, and ¢7.



The parameters ¢, and ¢ are given for the D2Q)9 and D315 models in
table 1 (note that the t, are those given in [25, 26] and the t; are defined
to keep the speed of sound as a free parameter). With these choices the
nonlinear terms and the viscosity are isotropic and the viscosity is given by

1/1 1 21 —1
=_(==—Z) = 10
Y73 <,\V 2) 6 (10)
with 7= 1/A,.
In the simulations reported in section 5.1, we use the following equilibrium
% ) =ty (p+ ) (11)

which leads to the Stokes equation which is written for stationary incom-
pressible case as

VP—F=vAj, V-7=0, P=¢cp. (12)

2.3 Simplified Chapman-Enskog expansion

Neglecting the third-order and higher derivatives of the momentum and the
second-order and higher derivatives of the density and of the non-linear terms,
the populations can be approximated as

fim ff 4 4 P (13)

where fi(l) is related to the first-order derivatives of the momentum through

some second-order tensor Ez(i)ﬂ by

1

1 (2

1 = =5 Osia Bl (14)
and fi(z) is related to the second-order derivatives of the momentum and

the first-order derivatives of the non-linear terms through some third-order

tensor Ez(iiw by

o 1 . JaJ 3
fi( = )\_2 <V85’YJO¢ -9, Qﬁﬂ Ei(a)ﬂv : (15)

The projections of the tensors Ez(zg and Efiiay on the first D + 1 vectors ey
must be equal to zero due to the conservation laws (3) and (4). Since J3,Jq
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is unchanged by a central symmetry while 0s,j, and 0,(jajs/(2p)) change
their signs, it comes

(A . fne.)i _ )\ufi(l) + Azfi(z) ) (16)

Taking the value of the terms in equation (13) at (7,¢) and (7+ ¢, t + 1),
the Taylor expansion of the difference f;(¥+ ¢, t+1) — i (7, t) must be equal
to the corresponding expansion of —(A - £¢); + t5¢; - F. After some tedious
but straightforward algebra, one gets

2 *
B = ty(Ciatin — &20as) | (17)
and
Ez'(z)ﬁy = t*(3ciacigci7 — Cioé(sg7 — cwém — Ci'yfsaﬂ) . (18)

The tensors £ (2 }3 and Ez(a)ﬂ are unchanged by any permutation of their Greek
subscripts. In general their components are linear combinations of the com-
ponents of the e;’s introduced in section 2.1. For the D2Q)9 and D3Q15

models considered here, most of the components E( 23 and Ez(aiiv are equal to

components of some ey, except for the Ewa Writing

() * sz sz 2
Ezaa_t a_B + B_Cs ) (19)

the Ez(alé are linear combinations of the moments built on Dc¢;,¢io — c? and

of ¢ — Dc?. The latter components can be expressed in turn as linear com-
b1nat1ons depending on 2, of the e;’s built on ¢ and ¢}

For the models such that = cm, the dlagonal elements of Ez(aiiv are zero:
Ez(aléa = 0. For the D29 model, E® and E® are, up to a multiplicative

z:ryy zy:m:
constant, the components of the two “cubic” e;’s. For the D3Q15 model,
Eg’;y = Ez(gglz and Emyz # 0; with their independent permutations of z, v,
and z, they are, up to a multiplicative constant, the components of the four

cubic e;’s.

3 Six-population boundary conditions

3.1 Definitions

The boundary conditions presented here are based on the following defini-
tions:



. Fluid nodes are defined as the nodes 7" such that
a) the collision step is given by eq. (2) without any change;
b) the propagation step between them is given by eq. (1).

The set of fluid nodes is denoted F. The nodes which are not in F are
considered as “outside” nodes.

b + 04 Cy
2¢, Th — Cq ™ T+ Cy
—e— —0— —0— | —O
K_o K_1 K_1 R 77 . 1o K1
b + ECq

Figure 1: A boundary surface cutting at 7}, 49, ¢; the link between fluid node
7 and an outside one at 71, 4+ ¢;. The solid circles represent the fluid nodes
and the open circle represents an “outside” node.

2. A boundary node 7}, € B is defined as a fluid node having at least

one neighbor 74, + ¢, (where &, € {¢;}) which is not a fluid node. The
set of boundary nodes and the set of cut links (connecting a boundary
node to an outside one) are denoted B and C respectively.

. The boundary conditions are given on a (D — 1)-surface © which in-
tersects the link between 74, and 7, + &, at 7, + J, ¢, (see Fig. 1). We
here consider only Dirichlet boundary conditions corresponding to a
given velocity @y (7}, + 0,C,,t + 1) on €. The associated momentum 7,
is defined by

Juw = Polly (20)

where py, is equal to p(7},t) for the compressible Navier-Stokes and to
po for its incompressible variant [20, 21], according to the choice made
for equation (6) .

After the propagation step at ¢, the post-collision population fq(Fb,t)

has left the fluid and can be thought to be on the outside node 7}, + ¢, as

9



f4(F+C,. t+1). At the same time the population fz(7,, t+1), corresponding
to the direction ¢; = —¢;, is unknown and has to be supplied by the boundary
condition. In the sequel we will restrict our attention to the following closure
relation

f7(7h, t+1) K1 fy(Th + Cpt + 1)
Hofq(Fb,t + 1) + H—lfq(Fb - 5qat + 1)
Fo1fq(M — gyt + 1) + Foofg(7h, — 264, 1 +1)

— WetyJgw + U FTT (21)

o

where the symbols with an overbar refer to quantities associated with cz.
The coefficients k1, kg, R_1, K_1, k_g are referred to as the coefficients of
the interpolations or of the multi-reflection boundary condition. The term
Wty jow 18 used to set the Dirichlet boundary condition (jgw = Ju * ¢;). The
term Fy“ is discussed in section 3.5.

Using (1), the relation (21) can also be written in term of the post-collision
distributions, either for some terms or for all of them as in

Ja(Mo, T+ 1) Y AG))

ko fy (T — Cpt) + k1 fy(7 — 28,,1)

F_ fq(rb, t)+R_ 2fq(7’b Cpt)

— ety Jgw + L FFC (22)

+ +

The choice between (21) and (22) is mostly a matter of taste. The equa-
tions (28) and (30) below have been obtained with (22); using (21) instead
leads to the same final results for steady Stokes flows, but with different
intermediate steps.

The above boundary condition has the following properties. First, with
FP“ =0, it is a generalization of the bounce-back rule (with the Dirichlet
condition) and of the linear and quadratic interpolations introduced in [14]:
bounce-back corresponds to

-2 = 0 y (23)

=

k=1, w,=2, and Ky=kK_1 =FK_1=
the upwind linear interpolation for 0 < ¢, < 1/2 corresponds to

H1:2(5q, Ii0:1—2(5q, ’U)q:2, and /i_lzﬁ_l:/?;_g:O, (24)
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and the downwind linear interpolation for 1/2 < ¢, corresponds to

1 25,1 1
Ki=——, h_1= Wy = —
T Y HEE N
and Ky =KkK_1=HK_o= 0. (25)

The upwind (respectively downwind) quadratic interpolations in [14] corre-
spond to & 1 = k5 = 0 (respectively kg = k1 = 0), the other coefficients
being given in their equation (6a) (respectively (6b), their ¢ being replaced
by our §,).

Secondly the relations (21) and (22) involve only the populations consid-
ered in [14].

Finally all the required information is available at the boundary node 77},
and its fluid neighbor 7, — ¢, using their four post-collision distributions
at time ¢, see (22), and f, (7}, — €;, ¢t + 1) after the propagation step. This
property is quite important for parallel codes in which the communications
are restricted to the nearest neighbors along +¢,. Equation (22) requires
three fluid nodes along the link in order to be used as such. When there
are only two fluid nodes available, the equation can be modified in several
ways. The simplest one, used here, consists in replacing f, (7, — &, t + 1)
by f,(7, — &, t) in relation (21). A second one applies when the boundary
for 7, — 2¢, is a flat wall located at 6, = 1/2; in this case the bounce-back
condition is applied first and its result provides the missing population.

3.2 Closure relation

In the sequel we use the following notations: j, = 7-¢; and F, = F. Cq
are the projections of 7 and F on Cq; Oq and 0y, are the first and second
derivatives along ¢, (0, = ¢4a0,). With these notations the first and second
order non-equilibrium terms (26) and (27) become respectively

1 .
fY = (0,5, — 2V - j) . (26)

q P)\
v

and

1 . . - 3J2_j2 ]J
(2) — gr— 30,05, — Njg — 20,V - 7 ) — 9,—2 o222l (27
fq W <V( qqJq Jq 'V ]> 95 + F; (27)

11



The closure relation (21) is then analyzed by replacing the distributions
f, and f; (or f, and f;) by their second order Chapman-Enskog expansion.
This first step is followed by a Taylor expansion of the conserved quantities
around their values at 7}, (see appendix A). For incompressible flows V-5 =0,
relation (21) leads to

342 — 42
Apjg + A10,74 + A204474 + Fg’"" + (Ap — 1) (P + M)

2p
3j; —3° ) Jaj 3 —J°
+ A, <ij +0,~4L—— -9, °‘f’> + AL0 <P+q7~>
q q 2p p PYq 2p
+ ApF, = wyjpw + O(V - §) + O(€), (28)
with
AP = ﬁ1+ﬁo+ﬁ_1+ﬁ_1+ﬁ_2:1, (29)
Ay = 2—-2(R1+FR_2),
Al = 1- (Ii() +2I€_1 - R_g) s
Ap = 1—-2(FR1+FR_2) +2(1 — (Ro1 +R_2)),
Ai) = —(I{() + 2)‘{,1 + I_{,z) y
A2 == —31/141, + Aj + Ajl s
1 1
AI/ — — |:)\—2 + <)\—2—1> (]_ - 2(/2:71 + sz)) ;
_ (fe _fi2
4 = (G =)
1
Aj/ = <)\——1> (I{o + 2/{,1 + I_{,z) s (30)

where the term ; has been removed from A, to A; using Ap = 1. Note
that the non-linear terms disappear when the linear equilibrium (11) is used;
then (28) is obviously verified for the linear equilibrium if the flow and the
forcing are perpendicular to ¢, (j; = jgw = Fy = 0), 0P =0, and F} = 0.

3.3 Couette flow

Let us first consider the flow between two parallel planes moving with parallel
but different velocities. The corresponding steady flow, called Couette flow,
is a pure shear flow for which the density is uniform and only the first-order

12



spatial derivatives are non-zero (uniform shear). Taking F7“ = 0 and the
linear equilibrium (11), eq. (28) becomes

Apjg + A10,3; = Wedgw - (31)

Then the Dirichlet boundary condition j,, is met at 7, + d,¢, when the
following conditions are satisfied

A
1 - dq (32)
w, = A. (33)

Using egs. (29), (32), and (33) the coefficients x1, o, and w, must be related
to the other ones by

R1 = 2(5(] +K_1— (]. + 25q)ﬁ_1 - (2 + 2(5[1)/%_2 s (34)
Rg = 1-— 2(5(1 — 2/671 + 26(]/%,1 + (]. + 26(])/%,2 5 (35)
w, = 2(]. —R_.1— I%,g) . (36)

For the bounce-back coefficients (23) these conditions are satisfied only
if 6, = 1/2. This is possible only when the moving planes are parallel to
the symmetry planes of the underlying lattice, for which the links are either
perpendicular to the velocity or cut midway through the boundary nodes
and the nearest outside ones. For these special orientations of the moving
planes, the solution of the linear LB equation with bounce-back is exact (up
to machine accuracy) if the planes are located at §, = 1/2 (as found in [2]);
note that this exact solution is lost and the apparent convergence rate is only
first-order in the grid resolution if the planes are mistakenly located on the
boundary nodes or on the nearest outside ones. For the other orientations
of the moving planes, the bounce-back rule is no longer compatible with
Couette flows. Since for these orientations 0, takes values between 0 and 1,
one expects a first-order convergence rate with the grid resolution.

When the multi-reflection coefficients are chosen such that the relations
(34) to (36) hold for all the boundary nodes and links, the Couette flow is
an exact solution of the linear LB equation with the corresponding boundary
conditions for any orientation of the moving planes and any distances between
them. It is easy to check that this is the case for the linear interpolations (24)
and (25).

At this point it important to realize that the relations (34) to (36) are
necessary conditions for any order (> 1) boundary conditions and apply
implicitly in the following sections.

13



3.4 Poiseuille-Hagen flow between parallel plates

Let us now consider the flow between two parallel plane walls, at rest and
symmetric with respect to the origin, and due to uniform forcing F parallel
to the walls. Along any line parallel to ¢, the coordinates x, are defined
using ¢, as unit vector and the center of the fluid segment as origin. Then
the planes intersect the line at £(z,, + d,) and the exact solution of the
linear LB equation is a parabolic flow given by

, , 422
Ja = Jog <1 - H—2:f> ) (37)

where H.g is an effective length depending on the boundary condition. De-
noting © the projection of &, on the direction perpendicular to the walls (in

lattice unit), jo, is related to F, H., and v by

8rO?

F, = Jos
eff

(38)
since 9,P = 0 and 9,,5, = ©*Aj, for Poiseuille flows. Using (37) and ne-
glecting the non-linear terms (linear equilibrium (11)), equation (28) leads to
the following relation between Heg and the prescribed one H, = 2(x 4, + 0,)
along ¢

8v 1 4(/671 —I_{,z)

H?% = H?>+6A2—46>— — [ —+1 —_— =

eff T e\ ) T TR —R,
12v

+ ———————(1 =20, + (1 4+ 20)k_1+ (3+20,)r_2) ,  (39)
1-— K_1 — R_2

4 /1 1 1 1
N=-(—2) (=== . 40
3 ()\V 2> <)\2 2> (40)
For a forcing along one of the main axes (z, y, etc.), ©* = 1 and (40) relates
the effective width of the parabolic profile to its prescribed value.

For the bounce-back rule (4, = 1/2) and ©* = 1, taking Iy = —1/2
eq. (39) becomes

where

D2 = D2, +4A* — 1, (41)
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where Deg is the effective diameter and Dy/o is the diameter based on the
middle of the cut links. For A2 =1/4 or

)\2()‘1/) =38

S (42)
the Poiseuille profile is the exact Poiseuille solution found in [3, 4] for walls
located at £(zqg + 1/2), as for Couette flows. Note that for BGK models
(A2 = \), A? = 12v and the walls are located exactly at & (x4, + 1/2) for
V= 1/\/478 When A? # 1/4, the relative error made by taking H,/; instead
of Heg is approximatively (4A? — 1)/(2H12/2). Then locating the walls on the
middle of the cut links is second-order accurate, however the prefactor 4A%—1
can be large for large values of A%, For the BGK case, the prefactor is 482 —1
and increases very rapidly with the viscosity: for instance if Hy/, = 10 lattice
units and v =1 (1 =7/2), Heg ~ 12.1, i. e. the relative error is larger than
20% (for 7 = 50, the effective width is larger than 11 times the prescribed
one, see for instance Fig. 2 in reference [7]).

A very important property of the bounce-back condition for the measure-
ments reported in section 5.1 is that the permeability is independent of the
viscosity if the coefficient A? is kept constant, even for arbitrary complex
flows. For each particular flow, the precision can be further improved for
an appropriate choice of the free parameter A? [27] (a good starting value
being in general close to 1/4). So far we have been unable to prove theoret-
ically this property, however this is strongly confirmed by all our numerical
simulations (see section 5.1.3).

For the interpolations of [14] and ©2? = 1, equation (41) gives the error in
the wall location as a function of v and A% It is again possible to choose ),
as a function of A, to set this error to zero, but this is no longer possible for
a fixed value of A%, For arbitrary inclined Poiseuille flows, the errors cannot
be canceled for all the values of 9, for constant values of A,, A2, and If. As a
consequence, none of the interpolations of [14] give exact parabolic profiles
for arbitrary inclined Poiseuille flows.

By setting two coefficients in the set {ro, k_1,%_1,Rk o} to zero, we have
been able to derive six sets of relations, for the three other coefficients, giving
exact inclined Poiseuille flows. In addition these sets are independent of ©
for Iy = —1/\y. However we did not succeeded to find rules to choose among
them as a function of 9, in order to guarantee numerical stability. In addition,
we think these results are superseded by the results of the next section.
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3.5 General flows

The Dirichlet boundary condition, exact up to second-order:
S . - . . 1 N
Jaw (T + 04 €) = Jo (7 + 04 C)) = (Jg + 040474 + §5q28quq)(rb) ) (43)

is obtained from (28), when the following relations are verified (sufficient
conditions)

1
]f:_§7AF == O,A,PZO,

Al A2+GP'C' . 1(52

N :6qv A, —Eqv (44)

where GP¢ is defined by
Gp'c'aquq = A,,qu + FqP'C' : (45)

The conditions Iy = —1/2 and Ap = 0 implies Ay = 2, K ;1 = —R_5, and
A, = —A?/2. Since the relation between Aj, and 9,,j, is not known a priori
for general flows, the condition (45) cannot be satisfied if F]“ = 0. Noticing
that Aj, and the non-linear terms appear in eq. (27), they can be removed
from eq. (28) by setting

A2

. A2
I = —=Xf?. (46)

t*FP.C.
pma v U

From a technical point of view, fq(z) is computed from the part of the sum
in (5) restricted to the ey built from the third order polynomials (the non-zero
Ez(z)m in section 2.3).

With the above definition of F}*, GP* = —3A%/2 and (44) leads to

R1 = 25q+5§7

3
Ky = 5—3@—2(52,

1
Koy = —§+6q+6§,
_ 1
K1 = 5 6q s
R_g - —+ (Sq )
w, = 2 (47)
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It is easy to check that 0 < rk; <3, =7/2 < Ko < 3/2,and —1/2 < rk_; < 3/2
for 0 < 9, <1, i. e. these coefficients have values outside the interval [—1, 1]
for some value of ¢,. Although we do not have solid stability analysis for the
boundary conditions, we have found numerically that values outside [—1,1]
very often lead to numerical instabilities.

Noticing that the macroscopic closure relation (28) is not changed, at
least up to third order, under the following transformation:

k1 = (k= k)/(K+1),
o1 = (ko1 — K)/(K+1),
K_o — (I%_g —I{,)/(H+1) "

ko — (ko +2K)/(k+1)
o1 — (Ro1+2K)/(k+1),
Wyq _>wq/(’i+1) )

FPo = FY/(k+1), (48)
where x is an arbitrary constant, a one parameter family of coefficient can
be constructed. In order to show this result, one has to use the projected
stationary Navier-Stokes equation:

JaJq _ :
8a7 + aqP = Fq + Vqu . (49)
For instance taking

1
n:—50—2@—53, (50)

leads to a new set of coefficients

R1 = 1

o 1=26,-20;
o= TR =T

52
Koy = —Rop= e
(1+9,)?
4

= — o1

wq (1+6q)27 ( )

which stay in the interval [—1,1] for 0 < 0, < 1. This set of coefficients
share some properties of the bounce-back condition. On the positive side
the higher order errors (hence the permeability) are found independent of
the viscosity for fixed values of A2. On the negative side the corresponding
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boundary condition for the staggered invariants is a free-slip condition, 7. e.
the staggered invariants are not damped by the boundary when they appear.
As for bounce-back, this effect can be killed by using f, (7}, + ¢, t) instead of
fo(fh + ¢t +1) in (21) [28].

A probably better way to avoid staggered invariants is to derive an other
set of coefficients with x; # 1 for 6, > 0 and the following constraints:

0<k; <1and {Iﬁo,l{,_l,rﬁ_l,rﬁ_g} € [—]_, 1] " for 0 < (Sq <1. (52)

Introducing the following polynomials of d,:

Ry — 3+26(I7
e = 1460, + 407,
ke = (ko +hKs)/2=2(1+6,)%, (53)

the family of coefficients derived from (47) with the transformation (48) can
be written as

k1 = _]-7
Ks
Ko = 2—K",
K;*
koy = (ke—Re+2)——1,
S
Ry = 2- 020t
Rs
Foo = (ke—2)" —1,
S
4K*
= 54
Wyq e (54)

where the parameter x* has been chosen such that ky = 2 — k*. The con-
straints (52) are satisfied provided that

2K

max{1, @} <K' < (55)
Rt

K}f'

The upper bound corresponds to the solution (51). The lower bound is 1
for 0 < 6, < 0g (ko = 1) and kg/k¢ for 6 < 6, < 1 (Ry = 1), with
6o = (v/3—1)/2 (when 6, = &, Kt = ki = Ks)-
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For 6, = 0 the interval reduces to k* = 1 and k1 = K9 = 1, Ky = —1, and
k-1 =Fk_o =0. For 6, =1, k* € [11/5,11/4] and kg reach a maximal value
Kom = —1/5 for k* =11/5 (ky =3/5, k.1 =0,k 1 =1, and k5 = —2/5).

When 0, = dp, the interval (55) is [1, 2] and is the largest available. x* =1
gives k) =0, kp =Ry, =1, k1 =323, and Gy = 2(v/3 — 2); k* = 3/2
gives k1 = kg = f_y = 1/2, k1 = 5 — 3v/3, and A_y = (6/3 — 11)/2; and
k*=2gives ki =1, kp=R_1=0,and Ky = —k_o=T7— 44/3.

Among the infinite set of functions x*(d,) which satisfy (55), we have
chosen to use in section 5.2

15+4 44/3 —
+ ot \/ga— V3 352, (56)

w1 0) = Lt 0

based on the following heuristic: the function x*(d,) is quadratic in d,, in-
creasing, and goes through the points (0, 1), (0, 3/2), and (1,11/5).

3.6 Summary

Table 2 summarizes the results of the previous sections. Let us also recall
the following results:

1. The linear LB equation with the bounce-back condition gives an exact
Couette flow if the planes are parallel to the symmetry planes of the
lattice and cut the non-perpendicular links in their middle. The same
result applies for Poiseuille flows if A2 is equal to some particular values:
1/4 if the flow is along the main axes.

2. The linear LB equation with the boundary conditions in Table 2, ex-
cepted the bounce-back one, gives the exact solution for any inclined
Couette flow.

3. The linear LB equation with the multi-reflections gives the exact solu-
tion for any inclined Poiseuille flow.

4. Linear interpolations (24) and (25) are second-order accurate for gen-
eral flows.

5. Multi-reflections with post-correction (46) are formally third-order ac-
curate for general flows.
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BB | ULI DLI uQlL DQI MR
5 L 0, L, 0, Ly [0,1]
@ |3 "9 g T "9 9’ ’
1 1 K*Kg
1 26 — 5,(1 + 262 -1
" ‘ 2, o(LH20) | 555, 1) o
Ko | 0 | 1-29, 0 1 — 457 0 2 — k"
K_1 0 0 0 —(5q(1 — 2(5q) 0 K1 —k_o—1
25, — 1 25, — 1 *
[ 0 a 0 a PR
204 dq Ks
- 26 -1 K* (kg — 2)
- - -1
fiz | 0 0 0 0 1+ 26, K
1 2 4K*
2 2 - 2 .
e 3y 04(20, + 1) Fis
*AZ #(2)
Pl o] o 0 0 0 wA Ty
tpums
Rt 3 + 2(5(1
Ks 1+ 6(5q + 4(52
Kf 2(1 + 6,)?
2 .
max{1, ﬁ} < K" < s
Rt Rf
MR1 MR2
. 2K 1 9
. - = (15+ (15 + 4v/3)6, — (4\/§—3)5q>

Table 2: Valid range for §, and coefficients 1, ko, K_1, F_1, F_2, wg, and FY*
for the different boundary conditions; BB: bounce-back, ULI: upwind linear
interpolation, DLI: downwind linear interpolation, UQI: upwind quadratic
interpolation, DQI: downwind quadratic interpolation, MR: multi-reflection.
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4 Momentum transfer on the boundary

4.1 Classical definition

Let us define the momentum transport M®© on the boundary in the classical
way (see [14, 22]) as

M =" (fy(70)é — Fa(7)e) = D (fo(fb) + f1(75))E, (57)

qeC qeC

where the sum goes through all the cut links ¢ € C for all the boundary nodes
7,. Let us denote

M, (7) = fo(7) + fo(7) . (58)
the sum of equations (A.1) and (A.2) gives

352 —J

M,(7) =t; (2P+ +F > +@=MfY = 0fP o (59)

Using equations (26) and (27) and the projected stationary Navier-Stokes
equation (49), it comes

352 —J

M,(7) = <2P + — 610,73,
J :
+ 0, P + 0, 31/8quq> ;
~ M® (7t i 60
- q (7“ + 504 ) ( )
where M (7) is defined as
. . 352 —J
MP(7) = 2t (P + — 300, ]q> : (61)

the right hand side term being taken at 7.
If the pressure, non-linear terms and momentum derivatives are constant
for all 71, + ¢,/2, they can be factored in eq. (57) to give

M© = (P — —> ZQt (ja‘]ﬂ — Vagja> ZGt CiaCipCy - (62)

qec

21



For a plane surface going through the points Ay, Ajg = Ago + ({4, 0,1,),
and Ag; = Ay + (0, my, m,), where [, [, m,, and m, are integers, it can be
shown that

> 2wxe, = Asii,

Z 6t;CiaciﬂciV = As (na557 + ngoay + nv(saﬂ) ) (63)

where 77 is the normal to the surface directed outwards, Ag is the area of
the plane surface limited by S = (Aoo, A107 Allu A01, Aoo) (Wlth A11 = AOO +
(ly,my, l,+m;)), and Cs is the set of links cut by S. It follows (using V-7'= 0)
that M(© restricted to S is given by the classical formula for incompressible
flows

1) = Ag <Pﬁ + %‘7 — v(Op T+ vm) : (64)

where 7, = 7- 7 and 0, is the derivative along the normal to the surface.
When the external force is constant and the flow is stationary, it follows
from the momentum conservation that

—

M© = Fyt, (65)

where V! is the number of nodes where the force addition ty Ci - F is applied

in equation (2). Consequently, M© is independent of the solution when an
external force F'is used.

4.2 New definition

Let us now give a new definition of the momentum transport on the boundary

M®™ =" MP/(#, + 6,6,)E, , (66)

qec

where M.” (7, + d,4C,) can be computed as

. S 1 . 1 L
MP G 0,E) = (5 0) M)+ (3 -6) M -a). oD
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Indeed relation (67) comes from the following property of any function f(z)

flaz+06) ~ % ((1+25) f<x+%> 4 (1 - 20) f(:c— %)) (68)

With the new definition the momentum exchange is computed on the surface
with a second-order accuracy and not in the middle of the cut links as for the
classical definition. The difference between the first and second definitions is

- - ]- — —
M® — M =3 <5q - 5) O, M) (7)) ¢, . (69)
q

Note that the new definition does not verify eq. (65), in a way similar
to the non-conservation of mass by the interpolation and multi-reflection
schemes (see appendix B for examples).

5 Numerical results for static boundaries

5.1 Stokes flow
5.1.1 Numerical set-up

In order to test accuracy of the different boundary conditions, we compare
first the results with the quasi-analytical solutions of the stationary Stokes
equation (12). At a macroscopic level with respect to the level of the Stokes
equation, the flow of a single fluid in a porous medium is well described by
the Darcy’s Law which relates the flow rate of the fluid Cj to the applied
forcing across the medium in a linear way:

— 1 I —
Q= ;K(—VP + F), (70)
where K is the permeability tensor the porous medium and VP is the mean

value of the pressure gradient across it. The flow rate Cj is usually computed
as a volume mean value of the momentum 7

Q’z%Zf(F)- (71)

Here, the summation goes through all the points in the computational domain
and 7 is equal to a volume of the sample. It can be shown that when the
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momentum is redefined as in rel. (9), @ coincides with the mean centered
population mass flux ®:

i - Y0, (1)
B = 2+ A (73)

One should keep in mind, however, that expression (71) and (72) represent
crude integration rules which do not take into account the exact boundary
position. The permeability can also be derived from the drag F'¢ on the solid

Fl'=—(VP-F). (74)

and approximated by the momentum transport M© or M® on the boundary
as defined in (57) or (66).

When the fluid is forced in a given direction o, and VP = 0 (e.g. peri-
odic porous media), the diagonal terms of the permeability tensor K can be
computed as

LT (75)

«

In the following sections the main flow is in z-direction and the perme-
ability k,, is simply denoted k. For the simulations with an external force
(sections 5.1.4, 5.1.5, and 5.2) only the permeability & in periodic samples is
given. For the simulations without external force (section 5.1.6) the results
are given for both the @ as defined in (71), and the drag force M(©) as defined
in (57). The relative error for any scalar LB variable sy, with respect to its
reference value s, is computed as

EW(sp) =2 1, (76)

Sa
where the subscript h corresponds to the grid spacing, i. e. the inverse of the
number of grid points. Because of the integration errors inherent to the re-
lations (71), (72), and (57), these global measurements are affected not only
by the errors coming from the LB method and the boundary discretization,
but also by these integration errors. We also compare the solutions obtained
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for the velocity or pressure fields with their reference solutions. The differ-
ence between the LB solution for sy, = {u,,u,, P} and the quasi-analytical
solution s, for the same field is computed in L? norm:

E® () = /> (o — 52/ D82 (77)

where the sums are taken either over all the boundary points (‘b’ subscripts)
or over the fluid points on the whole grid.

Let us remind once more, that the simulations at fixed value A? guarantee
the linearity of the the LB Stokes solution (11) with respect to F /v for the
bounce-back reflection and multi-reflection with post correction (51). For
these boundary conditions the results are given for one value of the viscosity
only. With other boundary conditions, the exact position of boundary at
second and/or higher orders still changes with the viscosity, leading to ab-
normal dependency of the permeability on the viscosity. The corresponding
error reduces when v — 0, but the computation time to reach the steady
state increases then accordingly.

5.1.2 Couette and Poiseuille flows

As it was said in the sections 3.3 and 3.4, Couette and Poiseuille flows must
lead to exact solutions for the linear LB equation. For the bounce-back,
linear and quadratic interpolations, this is possible only when the flow is
along the symmetry axes of the lattice and the walls are located at their
effective place (set for Poiseuille flows by the values of A, and Ay, A? for the
bounce-back rule, see eq. (5.1.2)). For the multi-reflections given in section 39
this is true for any inclination of the flows with respect to the axes and any
value of A\, and A,

We do not want to unduly increase the length of the document with results
showing only round-off errors and we ask the reader to take our words that
we have checked and rechecked these results (for at least ten years for some of
them). If the reader is unable to reproduce them, there are only the following
possibilities left:

e We have not been clear enough in our presentation.
e We have left some typos in the text or/and the formulae.

e The forcing term is not exactly implemented as in (2) or/and the mo-
mentum is not redefined as in (9) with Ir = —1/2 (as in [14]).
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Figure 2: Fiber materials, from left to right and top to bottom: a) porosity
¢ ~ 0.965 in a 20 box, b) porosity ¢ ~ 0.973 in a 50° box, c) porosity
¢ =~ 0.941 in a 90° box.
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e The equilibrium distribution is not linear in momentum.
e There is (are) bug(s) in his program.

In our opinion, the merit of these academic flows is first to illustrate our
approach in a simple way, secondly to provide simple tests of the computer
implementation of boundary conditions.

5.1.3 Flow around random fibers

In order to illustrate the benefit of using a constant value of A? in a non-
trivial case, we use models of periodic fibrous material shown in Figures 2a to
c. The fiber web consists of overlapping cylinders (a single fiber for Fig. 2a).
of radius equal to 2 lattice unit. The distribution of the cylinder axes is
obtained from a Poisson line process [29]. The measurements are performed
with a D3@Q15 model having one eigenvalue A, for all the even moments
and one for all the odd moments (A;); the forcing is F' = 2 x 107° and the
boundary condition is the bounce-back rule. We give in Table 3 first the
permeability &, obtained for the three samples with v = 1/6 and A% = 1/4,
then the relative difference in permeability for the case A*> = 1/4 and for the
BGK case (A = A,), with &™()\,) given by

k(M) = : (78)

where k(1) is the value of k,, for A\, = 1 (the choice A\, = 1 being rather
arbitrary).

First we do not want let the reader believe that we measure the perme-
ability of the samples with an accuracy of few 107, We only claim that the
viscosity can change by a factor 60 without changing the measured perme-
abilities by more than +3 x 107'* when using a constant value of A%. This
is to be contrasted with the BGK case where the permeability is rapidly
increasing with the viscosity (by more than a factor five) as expected form
the results for Poiseuille flows. This behavior of the BGK model is in a total
contradiction with the physics of Stokes flows.

Finally the results have been obtained for a convergence criteria based
on the relative difference between the maximum and minimum mass flux,
the computation ending for a relative difference less than 107°. Although
this criteria is quite stringent, it probably accounts for the 1072 error in
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v | A || 205, $~0.965 || 505, ¢~00973 || 905, ¢~ 0.941
1/6 1 34.0659875 42.249358 26.150806
krel. krel. krel.

A’=1/4| BGK |A?’=1/4| BGK | A’=1/4| BGK
x 1012 x 1012 x 10712

1/24 1 8/5 0.1 —0.077 0.1 —0.094 0.1 —0.083

1/6 1 0 0.016 0 0.021 0 0.018

1/2 |1/2 0.5 0.311 1.1 0.356 - -

7/6 | 1/4 1.3 1.243 —0.3 1.123 — —

5/2 11/8 —2.8 4.699 0.3 2.946 —0.1 2.236

Table 3: The third line gives the permeability of the three fiber samples
shown in Figs. 2a to ¢ for » = 1/6. The bottom of the table gives the relative
permeability with respect to the previous values for A> = 1/4 and the BGK
model.

the permeability measurements (this error is a few order of magnitude larger
than the numerical round-off ones).

5.1.4 Cubic array of spheres

The solution for a viscous flow past a cubic array of spheres [30, 31] shows
that the drag force F on the sphere, exerted by the fluid moving with the
average speed U depends on the relative volume solid concentration c as

B 67 pall
B*(x)

where a is the sphere radius and ¢y,,x = 7/6 is the maximal concentration.
The function k*(x), inverse of the nondimensional drag, is tabulated in Table
4.9 of [32]. For dense array, we use their results (b).

We computed the permeability from relations (71) and (75) and tested
the boundary conditions (23), (24), (25), and (51). The external force is
F = 2 x 107°. The results in tables 4 and 5 show the relative permeability
error with respect to the reference value computed from (79) and [32]. The
permeabilities in table 4 were obtained for 7 = 2, but are independent of
the viscosity. Since this no longer the case for the linear interpolations (24)

F = 0 g , X = (C/Cmax)l/?’ ; (79)

~ 67a
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bounce-back Multi-reflection
x | ED(E)%] | n/100 | E®(K)[%] | n/100
0.5 —1.02 21 —0.42 22
0.6 —2.96 13 —0.46 15
0.7 —2.12 9 —0.44 10
0.85 1.50 5 —0.35 19
0.90 —4.38 4 —0.67 4
0.95 —4.28 3 —0.56 5

Table 4: Comparison of the relative errors on permeability for a cubic array
of spheres and the bounce-back and multi-reflection boundary conditions in
a 25% box.

and (25), the corresponding results are given for 7 = 2 and 0.6 in Table 5.
The tables include the number of time steps n required to reach a change in k&
less than 1078 between 10 time steps. Note that for the linear interpolations,
decreasing the viscosity by a factor 15 increases both the accuracy and the
convergence time by almost the same factor.

T=2 7=0.6
x | ED(E)[%] | n/100 | E®(K)[%] | n/100
0.5 4.28 20 0.88 330
0.6 3.38 14 0.32 230
0.7 3.61 9 0.38 150
0.85 7.73 5 1.68 80
0.90 8.67 4 0.65 70
0.95 | 10.27 3 1.084 60

Table 5: Comparison of the relative errors on permeability for a cubic array
of spheres and the linear boundary conditions for 7 = 2 and 0.6 in a 25 box.

Note that for the two most dense arrays, situations where some boundary
nodes have only one fluid neighbor appear. Despite that, higher accuracy is
maintained with the multi-reflection with post correction for all solid frac-
tions.

Although the precision of the linear interpolations in this test is quite
satisfactory for small viscosities, it deteriorates when the gap between the
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spheres approaches 1-2 lattice units. Besides that, the computational time is
then 10 — 20 times higher than for multi-reflection with post correction.

5.1.5 Square array of cylinders

For a periodic square array of cylinders, the force exerted on the cylinders

per unit length is (see [30, 32, 33|)
F B 4 U
I k)’

= 2O r

~ 4l (80)

where [ is the cylinder length and ¢ is the relative solid square fraction (¢jax =
m/4). The function k*(c) is tabulated in Table 4.12 of [32].

Bounce-back | Linear | Multi-reflection

c r krel.(%) krel.(%) krel.(%)
0.2 | 8326 —4.49 —0.04 —0.35
0.3 | 10.198 —2.59 0.04 —0.35
0.4 | 11.775 —0.48 1.76 0.05
0.5 | 13.165 —17.51 —1.36 —0.99
0.6 | 14.422 —15.56 0.70 —0.45
0.7 | 15.577 —6.88 22.49 7.50

Table 6: Comparison of the relative errors on permeability for a square array
of cylinders and the bounce-back, linear and full multi-reflection boundary
conditions on a 33% grid, 7 is cylinder radius.

Simulations are similar as above; they are terminated when a change in
k is less than 10710 between 102 time steps. All computations are done with
7 = 0.875, Ay = —1 (corresponding to (42)). The results with the boundary
conditions in the form (23), (24), (25), and (51) are shown in Tables 6 and 7
for periodic cells 33% and 992, accordingly.

The results with the coefficients (51) but without the post correction
(46) and with the coefficients (6) from [14] are shown in Table 8. We would
like to stress that they are similar to the results obtained with the linear
interpolations.
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c r Bounce-back | Linear | Multi-reflection
0.2 | 24.979 1.08 0.15 —0.01
0.3 | 30.593 —0.73 0.09 0.03
0.4 | 35.326 —1.43 0.04 —0.02
0.5 | 39.495 —2.83 0.05 —0.03
0.6 | 43.265 —5.27 0.02 —0.11
0.7 | 46.732 0.79 3.79 0.31
0.75 | 48.372 —27.18 6.08 0.79
Table 7: Similar to Table 6 for a 99% grid.

Multi-reflection without | Interpolation (6) from [14]
¢ | correction, E®(k)[%] E®(E)[%]
0.2 0.68 0.86
0.3 0.51 0.92
0.4 2.16 2.09
0.5 1.41 2.97
0.6 5.28 0.47
0.7 35.93 28.63

Table 8: Comparison of the relative errors on permeability for a square ar-
ray of cylinders and the multi-reflection without the post-correction and the
quadratic interpolation boundary conditions on a 332 grid.

5.1.6 Cylinder between moving flat walls

The flow configuration is similar to [34]. The box is periodic in the z- and
z-directions. Its dimension is [ x W x L. The axis of the cylinder is along
the z-axis and cut the £ = 0 plane at (yy, 29) referred below as the “center”
of the cylinder; the flat boundaries are found at y = £H and are mov-
ing in the z-direction with velocity —i,,. This set-up simulates a periodic
flow in z-direction past an array of cylinders at rest between moving parallel
planes. Multi-pole solution to this problem is discussed in Appendix A. Pres-
sure/velocity /stream function solution is compared with the quasi-analytical
solution. The lattice Boltzmann results are obtained with the same param-
eters as for periodic array of cylinders. The distance d, between the flat
boundaries and their boundary nodes is put equal to 0.5.

The relative errors of the force and seepage velocity are given in Table 9.
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‘ c ‘ Bounce-back ‘ Linear ‘ Multi-reflection ‘

0.2 214 —191|72x10% —0.12]2.6x 10?2 —0.11
0.3 1.33 —1.12 [ 5.6 x 1072 —0.17 | 4.8 x 1072 —0.21
0.4 | —-0.43 0.21 —0.71 0.60 —0.19 8.4 x 1073
0.5 8.22 =791 0.59 —0.93 | 8.3 x 1072 —0.61
0.6 6.14 —6.67 -0.13 —0.15 —0.69 0.16
0.7 0.95 —-1.68 1.10 —-1.76 5.56 6.39

Table 9: Relative error (in %) of the force (left columns) and seepage velocity
(right columns) for a square array of cylinders between moving flat walls and
the bounce-back, linear and full multi-reflection boundary conditions on a
332 grid and 7 = 0.875.

The errors are below 10%, even for the bounce-back condition, most of them
are below 1% especially for the linear interpolation and the multi-reflection
conditions. As for a periodic array of cylinders, it happens first at the concen-
tration 0.6 that a boundary point lacks one point to perform multi-reflection
in a full form. At the concentration 0.7, in addition, some boundary cells
are intersected by both boundaries (flat wall and the cylinder). We have
found that the coefficients (56) are more stable in this situation than the
coefficients (51). Since the accuracy of the coefficients (56) depends on the
viscosity, we have chosen here to use bounce-back condition on a flat wall
combined with multi-reflection on the cylinder for ¢ = 0.7. In this way,
multi-reflection /bounce-back solution is still controlled by A% but its errors
in flow direction (force, seepage velocity and u,) become larger than the er-
ror of linear interpolation. Finally, for ¢ = 0.7, » = 15.57 here and in the
previous test, bounce-back condition works surprisingly well. Indeed, when
the curvature of the cylinder is small, the flow in a gap is close to Poiseuille
flow (in the previous test) and to Couette flow (in current test). Moreover,
here the cylinder boundary is shifted at approximately 6, = 1/2 from the
last boundary nodes y = +16 (since r = 15.57 and cylinder center y, = 0).
While applied with A% = 1/4, bounce-back and linear interpolation give then
quite good results.

The Table 10 summarizes the results for the pressure and the z and y
components of the momentum. These results based on the norm (77) of the
error are confirmed by a more detailed study of the difference between the
lattice Boltzmann and the quasi-analytical solution. The errors between the
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‘ c ‘ Bounce-back ‘ Linear ‘Multi—reﬂection‘

Pressure
0.2 13.5 8.6 4.9 3.6 4.2 3.4
0.3 21.2 12.1 6.1 4.0 3.6 3.2
0.4 204 15.1 6.5 6.1 3.9 3.9
0.5 19.0 16.5 2.5 2.5 3.5 3.5
0.6 7.5 6.2 6.1 5.7 7.1 6.8

0.7 32.4 28.7 32.0 28.3 30.2  26.7

Momentum in the z-direction

0.2 19.8  1.86 1.15 0.09 0.49 0.04
0.3 172 1.47 1.38 0.15 0.55 0.05
0.4 175  1.59 5.82 0.75 1.39 0.20
0.5 247 6.59 2.85 0.59 1.02  0.24
0.6 16.1  5.17 3.18 1.20 224 1.07

0.7 9.8  5.32 8.86 4.64 13.12  6.67
Momentum in the y-direction

0.2 20.3 108 5.0 1.6 24 0.9
0.3 477 219 5.2 2.3 2.2 0.9
0.4 34.6 274 8.9 7.0 3.2 2.2
0.5 39.0  26.1 7.0 3.5 3.9 2.3
0.6 30.6 159 9.8 5.2 6.6 4.4
0.7 26.1 14.3 17.5 8.9 13.9 7.1

Table 10: Relative error (77) of the pressure and the momentums in the z
and y directions (in %) for the parameters given in Table 9. Left columns:
boundary nodes and right columns: bulk.

LB results and the reference solution at the boundary points as a function of
their angular position for ¢ = 0.4 are plotted in Figure 3 for the pressure and
velocity fields. The streamlines are plotted in Figures 4a (¢ = 0.4) and 4b
(¢ = 0.5). The integration of the velocity fields is done in a similar way for
all LB techniques and quasi-analytical solution.

All the simulations reported above have been done in a fully symmetric
numerical set-up. The LB lift force is then equal to zero and no total mass
violation happens with the boundary interpolations. When the center of the
sphere/cylinder is shifted from the cell center along the flow direction, these
properties do not hold any more. As an example, let us move the cylinder
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Figure 3: Error between the LB results and quasi-analytical solution at the
boundary points for ¢ = 0.4; a) bounce-back, b) linear interpolation, ¢) multi-
reflection. Left to right: pressure rescaled by its max value, y- and z-velocity
components rescaled by u,,. The data corresponds to streamlines in Figure 4.

center from the symmetric position on the node (yo, z9) = (18,15) to a final
position (yo,29) = (18,15.48) close to the middle of a link, with an step
increment (d,,40,) = (0,0.04). The box size is 33% and the cylinder radius
is R = 12 (c ~ 0.42). Figure 5 plots the corresponding mass loss per time
step for the linear interpolation and multi-reflection with post correction
(there is no mass loss for the bounce-back condition). We see that multi-
reflection with post correction has on average a smaller mass loss than the
linear interpolation.
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Figure 4: Streamlines for the flow around a cylinder between flat walls for
c¢=0.4 (a) and ¢ = 0.5 (b). Left to right: bounce-back method, linear inter-
polation and multi-reflection (solid lines) compared to the quasi-analytical
solution (dashed lines).

Figure 6 shows the relative error in drag force, using its value for the
symmetric case (Yo, 20) = (18,15) as reference. The multi-reflection with
post correction is much more accurate than bounce-back, and the accuracy
for the linear interpolation is usually found between bounce-back and multi-
reflection. Note that by definition the error for (yo,zo) = (18,15) is zero
and far away from the values displayed in figure 6: respectively 8%, 2%, and
0.15% for bounce-back, linear interpolation, and multi-reflection. Such large
values are surprising a priori, but we think their explanation is the following.
When (yo,29) = (18,15), in our simulations the points (6,15) and (30, 15)
are considered as solid points of the cylinder; the corresponding links in the
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Figure 5: Mass loss per time step at stationary regime corresponds to the

previous picture. Left: linear interpolation. Right: multi-reflection with post
correction.
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Figure 6: Relative difference in drag with respect to symmetric cylinder
position when its center is shifted along z-axis. Left to right: bounce-back,
linear interpolation, multi-reflection with post correction.

z-direction are then cut by the boundary (for instance (30, 15) to (30, 16)).
When the cylinder center is shifted by a non-zero multiple of (9,,d.), these
nodes become fluid ones (boundary nodes). The links which were cut in the
symmetric case now connect two fluid nodes and are considered as fluid links,
although some of them are tangent to the cylinder (for instance (30,15) to
(30,16)). In our opinion, figure 6 illustrates the order of magnitude of the
errors caused by a too simple treatment of the links tangent to the boundary
surface. It should be noted that multi-reflection with post correction re-
duces considerably the error (an order of magnitude compared to the linear
interpolation). A better treatment of these links is left for future work.
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5.1.7 Summary for Stokes flows

As an attempt to extract some convergence factor, we give in Table 11 the
convergence factor K2, , = n_zET(Lr}Z(k)/E}(Lr)(k) for the square array of cylin-
ders (section 5.1.5). A formal second-order accuracy in the permeability
calculations should correspond to K7, , (k) = 1. The convergence factors are
rather disperse and their values do not reflect the convergence behavior when
the coarse grid errors change their sign and/or when they are very close to

zero. Note that including the data of Table 12 does not help.

¢ | Bounce-back | Linear | Multi-reflection
0.2 —0.46 —0.03 2.65
0.3 0.40 0.05 —1.48
0.4 0.04 4.82 -0.32
0.5 0.69 —3.25 3.60
0.6 0.33 3.21 0.46
0.7 —0.97 0.66 2.65

Table 11: Convergence estimator K7, , for the data in Tables 6 and 7.

In our opinion the best illustration of the difficulties to get convincing
convergence factors is given by the figure 6 of reference [14]. It shows that
the observed dispersion of the global errors is very large, even for a very
extensive numerical test. It seems to us that linear resolutions at least an
order of magnitude smaller than ours (three orders more computer time)
would be required in order to obtain unquestionable convergence factors. As
stated in the introduction, our goals were set in the context of moderate
resolutions and/or moving boundaries and not in the academic context of
convergence factor for an infinite number of grid points.

Despite the difficulties to demonstrate obvious convergence factors, we
hope to have shown in a convincing way that the results given in the tables
and figures of the previous sections share the following trends:

1. The errors are significantly smaller for the bulk than for the boundary
points, which support our assumption that the errors are mostly due
to the boundary conditions rather than to the approximation of the
Stokes equation by the lattice Boltzmann scheme itself.
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2. The errors are significantly larger for the pressure and the y component
of the momentum than for the z component of the momentum.

3. Pressure/velocity fluctuations obtained with the bounce-back rule near
the cylinder boundary are similar to those described in [10] for inclined
Poiseuille flow. The oscillations are considerably smoothed by linear
interpolations and still more by the multi-reflection.

4. The linear interpolation improves the overall accuracy by almost an
order of magnitude compared to the bounce-back condition, while an
additional factor two is achieved when the full the multi-reflection con-
dition is available, 7. e. when ¢ < 0.6 for which the channel width is
larger than three (¢ < 0.6 for the 33% case).

5. Although the results obtained with linear interpolation can be further
improved by decreasing the viscosity, the corresponding computational
time is increased quite significantly.

6. Bounce-back condition provides very satisfactory results for tangential
velocity when the flow is dominated by the flow in very narrow straight
channels and A? is fixed close to the value 1/4 (which gives the exact
Poiseuille solution).

5.2 Navier-Stokes flow in a square array of cylinders

The flow configuration here is the same as in section 5.1.5. Navier-Stokes
equilibrium (6) is applied in its incompressible variant [20, 21]. Solution for
a 667 box is computed at solid fractions ¢ € {0.2,0.6} for Re numbers in the
range [0, 180]. This interval has been chosen for comparison with the results
computed using stationary finite element (FE) method in [35] and with non-
stationary FE method in [36]. Note that these two sets of results differ
significantly for ¢ = 0.5 and ¢ = 0.6 (see figure 8). According to Ghaddar
[36], these differences may come from “a lack of resolution due possibly to
large iteration or/and discretization errors” in [35]. We have also observed a
quite strange feature in the data of their table I: for any Reynolds number
the permeabilities for ¢ = 0.5 are exactly those for ¢ = 0.6 divided by 0.291
(up to the table accuracy). LB method with bounce-back reflection is also
used to simulate this flow in [37].
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¢ | Finite-Element [35] | Bounce-back | Linear | Multi-reflection
0.2 2.54 —1.63 55x107* | —6.5x 1072
0.3 0.53 0.78 0.51 2.8 x 1072
0.4 —0.64 —4.86 0.13 -9.2 x 1072
0.5 —2.54 —1.1 —0.95 —89x 1073
0.6 —8.36 —6.9 0.55 —2.1 x 107t

Table 12: Relative permeability error (in %) for the Stokes regime with
respect to the reference value (80).

Table 12 gives for this grid size the relative error E®) (k) of the Stokes
permeability ks with respect to the reference values computed from (80)
and [32]. The Stokes solution is obtained with A? = 1/4 and the solution
(42) at 7 = 1.

The dimensionless permeabilities are scaled below by the quasi-analytical
solution [33] in the Stokes regime, except the results of Ghaddar which are
scaled by its own Stokes values, being believed “virtually exact” (see Table V
in [36]). They are plotted in Figure 7 for ¢ = 0.3 and 0.5. For these fractions,
bounce-back solution at Stokes regime has a relatively small error (see in
Table 12). We find then that the Navier-Stokes results are also rather close
together for the three boundary techniques. For ¢ = 0.4, the bounce-back
results differ significantly from those obtained with the linear interpolations
and multi-reflections. Figures 8 show for each method the effect of scaling
the apparent permeability either by the quasi-analytical solution (left curve)
or by its own value obtained at Re = 0 (right curve). When rescaled by
its own permeability kg, the bounce-back results approach those obtained
with the boundary interpolations. This comparison shows that most of the
bounce-back error is coming from the 5% error in the Stokes regime.

For the values of 7 € [0.53,0.56] used here, the global measurements
obtained with the linear interpolations and multi-reflections in non-linear
regimes are rather close together. They are also very close to the Ghaddar’s
solution. Unfortunately, we have not yet found another reference to compare
with more accurately for non-linear flows.

Multi-reflection provides in a regular manner higher Re numbers than
the linear interpolations. Similarly, bounce-back solution usually gives an
under-estimated Re numbers. This is probably related to the fact that the
effective radius (square fraction) obtained with bounce-back is higher than

39



k(Re)/k(0)

O Edwards et. al O Edwards et. al

o Bounce—Back o Bounce—Back

o Li o Li
1008 Linear 1 100g Linear o

K A Multi-reflection N A Multi-reflection
Q\ *---* Ghaddar AN *---* Ghaddar
s 0
%\ = [5%Y
> =< o\
0.80 | w0 1 = 080r % B
-2 S 84
o X ToA
~ \\Q\ ) © k-
T \DQ 5%
060 : 0.60 | o ey i
o
0.40 L L 0.40 I I
0.0 100.0 200.0 0.0 100.0 200.0
Re

Re

Figure 7: Dimensionless permeability values versus Re number at ¢ = 0.3
(left) and ¢ = 0.5 (right). In both cases, the quasi-analytical solution [33] in
Stokes regime is used to rescale the apparent permeability.
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Figure 8: Dimensionless permeability values versus Re number for ¢ = 0.4.
Left: the permeability is scaled by the quasi-analytical solution [33] in Stokes
regime. Right: the permeability for each method is scaled by its own value

in the Stokes regime.

the expected value. We want also to stress that multi-reflections with the
coefficients (56) converges much faster to stationary state than the solution
(51). Whereas in the previous tests there were no total mass violation due

4
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to the symmetry, in current tests we observe some loss of mass with respect
to the initial distribution. For instance, the relative mass loss per time step
at stationary regime for ¢ = 0.5, Re ~ 23 is 4 x 1077 by linear interpolation
and 2.3 x 10~7 by multi-reflection. At Re ~ 174, these values are 4.7 x 107°
and 6 x 1077, These data show that the mass violation increases with Re
but its absolute values and rates are smaller for the multi-reflections. Similar
results are obtained in other tests.

Table 17 in appendix D gives the dimensionless apparent permeability
k = k/ks values (right columns) versus Re numbers (left columns) for the
linear interpolations.

6 Moving boundaries

6.1 Algorithms
6.1.1 Definitions

In order to test the robustness of the linear interpolations (24), (25) and
multi-reflections (51), (56) in situations where the distance J, varies in a nat-
ural way, we construct moving boundary algorithms based on these boundary
conditions.

The fluid points are defined as in section 3.1 and the other points are called

“solid”. 1t is then natural to divide the corresponding solids into “static” and
“moving” ones, depending upon the time behavior of their limiting surfaces:
a solid is said “static” if its limiting surface does not change its position
on the lattice, and “moving” otherwise. The points in static and moving
solids are respectively called static and moving solid points. Accordingly, at
each time step ¢, the boundary (fluid) points, defined as in section 3.1, are
also divided into “static” and “moving” boundary points. The ones which
currently have neighbors only in static solids are called static boundary points
and are handled as described in section 3. The boundary points which have
at least one neighbor in a moving solid, at link distance d, (0 < 9§, < 1),
are called moving boundary points and their treatment is described in the
next sections. Fluid, moving solid, and boundary points of both kinds can
exchange their status. The only restriction here is on the velocity of the solid
body which must be less than 1 l.u. per time step in any direction so that
the fluid/solid points cannot exchange their status without staying at least
one time step in the boundary sets.
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Note that in our computer implementation the static solid points are
actually not stored (allocated), while we have found simpler to store the
moving ones in all the following algorithms.

6.1.2 Connections to other methods

Starting from any time ¢ our main algorithm go through the following sub-
steps to get the new state at time ¢ 4+ 1: collision, propagation, boundary
conditions, analysis, advection of the moving solids, and reconstruction of
new fluid points. The first four steps are identical to the ones used in sec-
tion 5. The solid advection corresponds to a sampling of the position of the
moving solids at a time t% = ¢ + A% with 0 < A% < 1. As a result of this
advection step some fluid points become solid and some solid points become
fluid. The state of these new boundary (fluid) points has to be supplied and
in the available literature this is done along two main lines.

Along the first one (see for instance [40, 34]), called the LB in fluid tech-
nique in the sequel, the LB equation (1) and (2) is applied only in fluid
points. The difficulty of this approach is that all the populations in the new
boundary points have to be reconstructed. In [40], the equilibrium distribu-
tion with the mean density of the surrounding fluid and the velocity of the
solid body is used. In [34], all the populations are interpolated from bulk
with second order schemes. In our implementation we try to stay as close as
possible to the static LB algorithm. We first obtain all possible populations
by the advection step (1). Then the links opposite to the new cut ones are re-
constructed using relation (21) with some necessary interpolations discussed
in the next section. Finally, the remaining populations, called “tangential”
below, are reconstructed explicitly (second part of the next section).

Along the second line (see for instance [23, 41]), called LB in solid in the
sequel, the collision and propagation steps are applied in all the fluid and
moving solid points (though the populations are recomputed as an equilib-
rium in [41]) and the state of the new fluid points is automatically supplied
by the value they had in the solid. In addition the boundary conditions are
applied on both (concave and convex) sides of the solid boundary in [23, 41].
In our LB in solid implementation the collision and propagation steps are ap-
plied unchanged everywhere. In particular the propagation takes place from
fluid points to the solid ones according to the evolution equation (1) which,
in our opinion, supplies the continuation of the solution from the fluid to the
solid. When a solid point becomes a boundary fluid point, its populations
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along the links from fluid to solid are already obtained from the advection
step and the opposite cut links are reconstructed exactly as in our LB in fluid
algorithm above (we have noticed that using the value they had in the solid
leads to larger fluctuations of the solution). The other (tangential) links are
the only ones actually keeping their value from the solid.

We compute the force according to (57) or (65) during the analysis step,
before the points change theirs status from solid to fluid. This has to be con-
trasted with the computation of the force contribution from new fluid/solid
points described in [40, 41]. Note also that in both our moving methods, the
boundary conditions are applied only in the boundary fluid nodes.

Finally in the examples given in section 6.2, the dynamic of the solid ob-
jects does not depend on the computed forces, 7.e. their velocity is prescribed.
Further tests are required to evaluate our moving algorithms (especially the
LB in solid one) when the solid dynamics depends on fluid solution.

6.1.3 Details of the moving schemes

Common to the LB in fluid and LB in solid algorithms.

The key point of our moving algorithm is the distinction between the
“tangential” and “non-tangential” links in the new fluid points. A link ¢
belongs to the set of tangential links 7(7,), if 7}, — ¢, is also a new boundary
fluid point or when both neighbors, %, + ¢; and 7, + &, are solid (i.e. 7}, is
in a corner or a narrow channel). Note that 7 (7},) always contains the zero
velocity ¢y. Otherwise, the link is a “non-tangential” link and belongs to the
set 7_'(Fb) (With C(Fb) C 7_'(Fb))

The treatment of the “non-tangential” links is exactly the same for the
LB in fluid and LB in solid algorithms. When 7}, — ¢; is a fluid point, we set
f4(7h,t 4+ 1) according to the propagation step (1):

Fo(Fort +1) = f (7 — @ t) . (81)

When 74, + ¢, belongs to a solid, we set fz(7,,t+1) according to the boundary
rules. However, since the post-collision population fq(Fb,t) is not known
at the new fluid point, one cannot use directly the bounce-back, upwind
linear interpolation or multi-reflection boundary conditions. For the multi-
reflection cases, one could bring the interpolation coefficient x; to zero with
the help of transformations (48) without loss of formal accuracy. However
the resulting coefficients are not always found in “stability interval” [—1; 1].
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In order to keep similar algorithms for all the boundary techniques under
consideration, we interpolate f,(7,, ¢+1) from the bulk. For multi-reflections,

we have also to interpolate the second order post-collision term )\2]?(52) (see
(46)). The low order interpolations

fq(Fbvt) ~ 2fq(Fb +¢g,t) — fo(7h + Cp, t) + 0(62) )
FE(, 1) = [P + &, 1) + O() (82)

q

are used to keep a minimal number of the communications between the neigh-
boring points. In a similar way, we set p in relations (6) and (20) equal to
the arithmetical mean value p, computed from the neighbor values p(7, +¢;),
g & C(7,) U T (7). Then the relations (24), (25) and multi-reflections (51),
(56) can be used to compute the populations f;(7},) according to relation (22).

Differences between the LB in fluid and LB in solid algorithms.

The only difference between our two algorithms is the treatment of the
“tangential” links. In the LB in solid algorithm, the tangential populations
keep the values they have obtained in the solid. In the LB in fluid algorithm
they are computed assuming all the tangential links at equilibrium. Our
heuristic assumes an incompressible flow for which the first (26) and second
(27) order corrections of fy are equal to zero. In a similar way, the projection
of the momentum derivatives (i.e. first and second order corrections) on the
other tangential links can be neglected, otherwise the connected points would
not appear from the solid at the same time.

In order to compute the equilibrium in the new fluid points, one has to
estimate Jand p. A first-order approximation of the velocity @ (7,,t+ 1) is
obtained from the arithmetical mean of the linear interpolations between the
known values of the velocity (7, +9,C,, t) at the boundary and «(7, — ¢, t)
for all ¢ € T(7%,) (the boundary velocity is used if 7 (73,) is empty). Assuming
then the equilibrium solution for the tangential links, the unknown density
is derived from the linear equation:

p{ Y e } Sh-iYee R @
qc€T q¥€T qET

We have found that relation (83) leads to slightly smaller oscillations in the
solution than the direct use of the approximate density value at equilibrium.
Noting that the values @(7, — &, + 1) in the “old” fluid points are already
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known during the reconstruction of the tangential links, their values could
be used instead of @(7m, — ¢,,t). However we have not detected any further
improvement of the accuracy with this change.

6.2 Numerical results
6.2.1 Set-up for moving boundary tests.

In a first set-up we simulate a periodic flow past a cylinder (sphere) at rest,
the velocity of flat (cylindrical) outer boundary being —y,. We refer below
to this set-up as to the static solution (shortly “s”). In static and linear
regime, a cylinder between flat walls is considered in Section 5.1.6. The
quasi-analytical Stokes solution for a sphere travelling along the cylinder axis
is considered in [39]. Static LB solutions are compared with it in [18]. In the
second set-up, an impulsively started cylinder (sphere) moves with velocity
iy and the outer boundary is at rest. When the moving solid reaches the
box boundaries, its position is adjusted by periodicity. We refer below to
this set-up as to moving solution (or simply “m”).

As in [34], we check for the Galilean invariance of the method by com-
paring the results of the first and second set-ups when the solids move with
a constant velocity and the position of their center of mass 7. is given by

P (") = (A it >0, (84)
If the flows are Galilean invariant we expect to obtain the velocity, pressure
distributions and forces as

—

@ = g _ g pe — pm) 6 = fm) (85)

where P®) and P™) are the pressure distributions minus some characteristic
mean pressures. The forces are computed independently, once on the outer
boundary and once on the inner solid, using the standard definition (57)
or the force definition with boundary fitting (66). Since no external force
is applied, the sum of the forces on the internal and external boundaries is
expected to be zero for the stationary solutions. In order to check relations
(85), we measure the values of the velocity and pressure when the moving
solid is found at the same position as in the “s” case. We compare also the
“m” forces and their averages during one period with their “s” counterparts.
Here the period is defined as the minimal number time steps required to move
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the solid to the same position, up to an integer displacement, with respect
to the underlying lattice (assuming a rational value for i,).

When the solid body moves, the LB solution is no longer stationary in the
lattice frame. Since the unsteady Stokes equation does not possess Galilean
invariance, we simulate the Navier-Stokes equation in “m” and “s” cases
(even for small Re numbers). In the next sections our attention will be
mostly focused on the LB in fluid algorithm and comparisons with the LB
in solid one will be done for the multi-reflection case only.

6.2.2 Impulsively started cylinder in a channel

We consider a 1 x 99 x 201 channel, periodic in the z- and z-directions. A
cylinder, of radius R = 12 and axis along the x-direction, is moving along
the z-axis with a velocity u, = —0.04. The cylinder starts at ¢ = 0 from the
point (y, z) = (53.5,29.65) and the time shift A% = 0.5.

A B C D

E@(p) [%] 2.16 0.81 2.4 5.31
E® (u,) [%] 4.40 2.20 5.4 2.52
E® (u,) (%) 1.81 0.05 0.16 0.05
Force at disk

Static F, —0.024 —0.024 -0.024 —0.024

Static F, 0.62 0.62 0.62 0.62
EY(F,) [%] |5.7x1073] 6x107* [1.6 x 1072 0
EW(F,) [%] 0.34 0.26 0.37 0.26
EW(F,) %] |45x107%[26x107% | 3x 1073 [2.6 x 1073
EW(F,) [%)] 2.5 0.56 0.57 0.95
Force at flat

EY(F,) [%] [44x103] 7x107* [11x 1073 0
EW(E,) [%)] 0.29 0.08 3.6 x 102 0.09

mass loss

per period | 2.9 x 1077 [ 1.4x107% | 3.2x 1077 |28 x 10~7

Table 13: Comparison for a 1 x 99 x 201-box, 7 = 0.875, of linear inter-
polations (A), multi-reflections (B), multi-reflections without correction (C),
multi-reflections for the LB in solid algorithm (D).
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Figure 9: Relative difference between the moving and static velocities at the
boundary points for a 1 x99 x 201 box and 7 = 0.875. “Linear Method” and
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Figure 10: Relative pressure error corresponding to figure 9.

Case Re =17

A stationary “static” solution is obtained for 7 = 0.875. The correspond-
ing “moving” solution is compared with the static one at ¢ = 150743 in
point (ye, z.) = (53.5,29.99), when the cylinder finishes its 30st trip through
the channel. Table 13 shows the relative error estimations (77) between
static and moving solutions for pressure and velocity. Figures 9 and 10
show velocity and pressure error distributions at boundary points around
the cylinder. Linear interpolations lead to larger difference between “s” and
“m” solutions. In case of multi-reflection, the algorithms with and without
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Figure 11: Drag and lift forces at disk, computed from (57), upper row, and
(66), lower row, are plotted during one period.

internal fluid give very close results except for the points which have just
changed their status from solid to liquid. For the LB in solid algorithm and
(Ye, 2¢) = (53.5,29.99), such points happen at the rear of the cylinder. The
pressure in these points differs strongly from the bulk value (see Fig. 10, LB
In Solid (1)) and contributes mainly to the pressure error. When no new
point appears, the pressure fluctuations are twice smaller (see Fig. 10, LB In
Solid (2)) and the corresponding £ (p) decreases from 5% to 3%. The com-
parison of the columns B and D in Table 13 confirms that the reconstruction
of the tangential populations leads to smoother bulk solutions than its “in
solid” counterpart.

Table 13 shows also the values of the forces in the static regime, the
force on the flat wall being exactly the opposite of the force on the disk.
The relative differences (76) between the static and moving forces (E®)(F,)
and EW(F,)) and the difference between the “s” force at (y., z.) and the “m”
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A | B | C | D

Force at disk

Static F, | 1.21 x107*] 0.281 0.279 0.281

Static F, 0.86 0.797 0.797 0.797
EY(F,) %] [1.62x 1072 [ 1.1 x 1072 | 3.1 x 1072 1.0
EW(F,) [%)] 3.6 3.78 15 4.77
Force at flat

Static F, [3.27x10°%] —0.279 —0.281 —0.278

Static F, —0.91 —0.911 —0.911 —0.911
EY(E,) [%] | 41x107% [ 6.7x 1072 0.08 6.7 x 1072
EW(F,) [%)] 0.21 0.24 0.29 0.24

mass loss

per period | 2.9x 1077 [ 1.9 x 1077 | 5.2 x 1077 | 1.6 x 1077

Table 14: Same as Table 13 for 7 = 0.5144.

force averaged over one period (here 25 time steps) (E®)(F,) and E®(F,)) are
also given. This last comparison is justified if the force changes weakly in the
static regime compared with the moving one when the cylinder center shifts
within one lattice unit. This is the case here as demonstrated in Figure 11
where the lift and drag distributions during one period are shown for the
moving case (for comparison the static solution is also given for some cylinder
positions). The upper and lower rows correspond respectively to the force
definitions (57) and (66). In the static case, as for the Stokes results of
section 5.1.5, the force (57) fluctuation are bigger for the linear interpolations
than for the multi-reflections. In the moving case, the oscillations of both
methods are similar for the drag. For the lift, they are stronger for the
linear interpolations than with the multi-reflections. Also, whereas the multi-
reflection solution fluctuates around its corresponding static value, the linear
interpolation solution deviates from it.

Case Re = 200

When 7 = 0.5144, the solution is no longer stationary. It appears an
almost periodic-doubling pattern for the drag (probably due to the fact that
the cylinder axis is slightly off the middle of the two flat walls) and an almost
periodic one for the lift (it is difficult to be more precise since the final regime
has not yet been reached at the end of the simulations). The left column in
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Figure 12: Drag on the cylinder as a function of time; from top to bottom:
“static”, linear reflection, LB in fluid and LB in solid multi-reflection al-
gorithms; the force is computed with definitions (57), left, and (66), right.
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figures 12 and 13 shows drag and lift forces as functions of time computed
with the definition (57) at cylinder boundary and the right one shows the
same quantities but computed with the definition (66). Since the flat walls
are located at a distance equal to 0.5 of the nearest lattice nodes, both force
definitions coincide for the flat wall. The results are plotted for the static
case and three moving techniques: linear interpolations and multi-reflections
for the LB in fluid and LB in solid algorithms. The error estimations are
also given in Table 14. Since the solution is nonstationary, the comparison is
only done, without averaging, when the cylinder is at the same location for
the static and moving cases.

Some remarks are now in order for Re = 200. First, when the forces are
computed in the standard way, the multi-reflection LB in solid algorithm is
found to be the most “oscillatory” one, followed by the LB in fluid algorithm,
the linear interpolation algorithm giving the “smoothest” results. When the
force distribution with boundary fitting (66) is used, the smoothness of all
solutions, and especially of the LB in fluid algorithm with multi-reflection, is
improved drastically. One technical explanation could be that the force com-
putation (66) involves populations from the next to boundary nodes where
the solution fluctuates less. Also, when the surface integration error with (66)
happens to be smaller than with definition (57), new definition improves the
computation of forces since the stress values are approximated on the sur-
face. This is also consistent with the fact that the best filtering is achieved
for the multi-reflection algorithms, which have been designed to be the most
accurate near the boundaries.

6.2.3 Moving sphere in a cylinder

We consider a sphere of radius R, = 16.9 in a periodic motion along the
x-axis of an outer cylinder of radius R, = 42.5 and length ¢ = 189 along
z (in Lu.). The sphere starts from the point (xg, yo, 20) = (30.65,4.225,0),
with respect to the cylinder axis, and moves with velocity u, = —0.04. The
moving solution is compared with the static one after 31 cycles across the
cylinder. Quasi-stationary solutions are reached in the “m” and “s” regimes.
The results for forces are shown in Table 15. The drag and lift values are
rescaled by the viscous scaling M® /(67 p||dy||R k*), where k* is a function
of the ratio between the sphere and cylinder radii given in [34, 39]. The table
shows that in this test the errors on the force are about twice smaller for the

multi-reflection algorithm than for the linear interpolation one.
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Linear ‘ Multi-reflection
Force at sphere
Static F, 0.683 0.688
Static F), -3.02x107% | —3.02x 1073
EO(F,) [%)] 2.48 1.63
EWY(F,) [%)] 1.7 x 1073 0.7 x 1073
EY(F,) [%](at sphere) 1.2 0.56
EW(F,) [%)](at sphere) | 4.0 x 1073 2.3 x 1073
Force at cylinder
Static F} —0.682 —0.689
Static F), 3.02 x 103 3.02 x 10?
EW(F,) [%] 2.79 0.54
EW(E,) [%] 8 x 1074 3x 1074
mass loss
per period 3.2x10°° 1.8 x10°¢

Table 15: Comparison between the static and moving solution for a sphere
in a cylinder at 7 = 0.55 using the linear interpolation and multi-reflections
LB in fluid algorithms.

7 Conclusion

We have shown that boundary conditions based on a link approach such
as [14] can be analyzed in the spirit of [2, 3, 4, 10] and their accuracy can
be assessed for simple flows such as Couette or Poiseuille-Hagen ones. From
this analysis we have been able to derive new boundary conditions for which
a formal third-order accuracy can be proven theoretically for steady linear or
non-linear LB solutions, leading to the Stokes and Navier-Stokes equations.

These theoretical results have been confirmed by several simulations of
flows in periodic arrays of spheres or cylinders in the Stokes regime and of
cylinders for the Navier-Stokes one.

We would like to stress that the bounce-back condition has still several
advantages: it is simple, robust and obeys a strict mass conservation. This
is especially true for simulations in complex geometries such as those coming
from weakly resolved tomography in which the boundary position is only
approximately known. In addition the bounce-back accuracy can be very
satisfactory if the following rules are obeyed. First the no-slip condition has

53



to be set in the middle of the cut links. Secondly the eigenvalues of the
collision matrix for the odd and even moments must be chosen such that
the corresponding A? in (40) is set to a constant value between 1/6 and 1/4:
fixed A? ensures viscosity independent measurements.

We have shown that the linear interpolation improves the overall accuracy
over the bounce-back condition for low viscosities and curved walls. The
multi-reflection method provides a further improvement in accuracy for any
combination of the collision eigenvalues, especially for the hydrodynamics
quantities near the walls.

The present theoretical analysis, done for steady flows, has to be extended
to the unsteady situations. Two theoretical difficulties have also to be studied
in more details: it would be useful to go beyond the heuristic arguments used
here to deal with the stability issue; it would also be interesting to find a
way to keep the accuracy of the multi-reflection without any mass loss.

Finally, the method has been extended to moving boundaries. Although
we have only done a preliminary study, interpolations and multi-reflections
exhibit a good overall stability even in changing geometries. As seen by other
authors, we confirm that the main difficulty of these simulations comes from
an unreliable reconstruction of the pressure in the new fluid points, leading
to numerical fluctuations of the physical quantities.

Acknowledgments

We would like to thank K. Steiner, P. Lallemand and L.-S. Luo for stimulating
discussions. Special thanks are given to P. Klein and M. Beck for numeri-
cal help. This work was supported by DFG Project “Die verallgemeinerte
Lattice Boltzmann Methode fiir freie Randwertprobleme und Mehrphasen-
stromungen”. DH also thanks I'TWM for its hospitality during this work.

A Taylor expansion for boundary conditions

In this section we are giving the Taylor expansion for steady solutions of the
LB equation. To shorten the formulae the time dependencies are omitted
and the right-hand sides are taken at 7},. Note also that the second-order
derivatives of P and of the non-linear terms are neglected since they appear
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at the same order as the third-order derivatives of the momentum.
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B Examples of momentum transport.

B.1 Non-inclined channel

When the force addition in each cell is independent on the position of the
boundary (i.e. effective volume of the cell), the momentum transport defini-
tion (57) is independent on the actual boundary position (see relation (65)).
Consequently, even if the population f; is constructed to better fit the bound-
ary, the force M© will stay the same as for the bounce-back reflection.

Let us illustrate this by the simple example of Poiseuille flow in a channel
of width H. If the momentum transport is calculated with definition (57), &
is equal to vQ/(F H'), where H' is number of liquid points across the channel.
Even if the exact value F' H?/(12v) of the flow rate @) is used, the measured
permeability is equal to its exact value H2/12 only if H = H', whereas the
result is always exact with definition (66).

B.2 Example: Inclined channel

We consider either a Couette flow,

azjx’ . .
9.7 = 0, juw)=1, Ju(=B)Y=0, p=p, VP=0, (B.7)
or a Poiseuille flow
azjm’ . /
— Ly =V jx’(ih) - 07 P = po, VP =0 ) (BS)

0212’

in an inclined channel of width 2A/, where the coordinates are written in a
system rotated to align the z'-axis with the flow as

r' = cosf+ z sinf 2= —xsin® + zcosb ,
P

x=1a"cost —2'sinf =2'sinf + 2’ cos O . (B.9)

The exact linear solution is given, for Couette flow, by

1 07y ,
Nz(F) = t; {Cipo + JurCipr + )\—écqu:} , 1=0,... ,bm. (BIO)
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and, for Poiseuille flow, by

Nl(F) = t; {Cipo + (]x’ + ]fo’)Ci:c’ + 5
v 82j$’
)\2 82'2

The substitution of (B.10) and (B.11) into (66) and (67), with the help of
relation (68), yields at 2z’ = £h' the exact result

Cir (1 — 3c§z,)} . i=0,....,by. (B.11)

— a .x’
MW (£1') = Z ty {20?;}0 — 6v é cqggchz:} Cy (B.12)
q€C(+h') +h
with
O v for Couette fl (B.13)
1% pry e I .
5y Tk or Couette flow ,
ajm’ / : :
v = FE.h, for Poiseuille flow . (B.14)
02" | 4
For Couette flow, relation (B.12) reads
M® (£h') = Ag (C?poﬁi + %Z) , (B.15)

where 7i. are the normal vectors at 2’ = +h' as defined in section 4 and 7, is
the unit vector along the flow. For Poiseuille flow, relation (B.12) reads

MW (1) = As(cpoits + Fuh'iy) (B.16)

then the total momentum transport, M® = M® (—=p')+ M@ (B') = Vet-F,,,
is equal to the force applied in the effective volume V" = 2h'Ag, whereas
it is in the volume V', independent of the boundary conditions, when using
definition (57).

B.3 Example: Circular pipe

The solution of the Poisson equation in a circular pipe of radius R is

ry

4—(r2—R2), =+, 0<r<R. (B.17)
124

jy:_

o7



For this flow the second order expansion gives also an exact solution similar
to (B.11) and relation (66) is also exact.
Since the value of v0,j, at r = R is —R F),/2, definition (66) yields

~w  RF -
MW ~ Ty x 2nR{i, (B.18)

where /¢ is the length of the cylinder along the y-axis. Then the accuracy
with the new definition depends of the evaluation of the surface integral
2rR ¢ in (B.18). Whereas for definition (57), relation (65) reads

M© = FV', (B.19)

and the precision of the total force computation depends on the accuracy of
the discretization of a circle on lattice cells: V!/{ ~ 7w R2.

C Multi-pole solution for a flow past square
array of cylinders between flat walls

A quasi-analytical solution is obtained from a modification of the multi-pole
procedure [33] to capture Dirichlet conditions at the flat walls. The method
is based on the computation of the stream function ¢ as a truncated series
of terms which are solution of

A*p =0, (C.1)

and satisfy the no-slip condition on the cylinder and the symmetries with
respect to its center. The coefficients are then obtained from a least-square
fit of boundary conditions at y = H and z = H. In [33] the boundary
conditions are ¥ = 1 and w = 0 on the plane y = H and 0.v¥ = d,w = 0
on the plane z = H in order to match the periodic conditions and a scaled
seepage velocity. In our calculation the boundary conditions are 9,19 = —uy
and 0,y =0ony=H and P=0and 0,4y =0on z = H.

The only difficulty we have found was a severe loss of accuracy (around
one digit per term) when summing the series. We have solved the problem by
doing the calculation with the Mathematica software with an intermediate
accuracy set to twice the number of terms in the sum. The solution for the
drag F'? is normalized as in (80) and tabulated in Table 16 which contains
also the seepage velocity value scaled by the wall velocity .
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c Fllpu, | Q./puy
0.1 5.34388 | 0.384425
0.2 6.86103 | 0.297680
0.3 8.75675 | 0.232982
04 | 114558 | 0.177666
0.5 | 157519 | 0.127767
0.6 | 23.8738 | 0.0812631
0.7 | 459788 | 0.0368363

Table 16: Scaled drag and seepage velocity for a square array of cylinders
between moving flat walls as functions of the volume fractions c.

D Relative permeability of a square array of

cylinders

As reference values, we give in Table 17 the relative permeability obtained
by the LMB method with the linear interpolation as described in section 5.2.

c=0.2 c=0.3 c=04 c=0.5 c=0.6
22.66 0.86 | 12.06 0.93| 13.64 0.93 | 23.82 0.88 | 22.33 0.90
29.44 0.84 | 23.26 0.86| 25.28 0.86 | 28.89 0.86 | 30.30 0.85
42.56 0.81 | 43.40 0.80| 46.46 0.79 | 52.34 0.78 | 47.97 0.77
67.85 0.77| 81.18 0.75| 56.52 0.77 | 71.67 0.74| 64.10 0.72
102.0 0.74 | 96.12 0.74|104.0 0.71 ] 95.24 0.71 |113.0 0.64
1284 0.73 | 124.6 0.72 | 157.5 0.67 | 149.9 0.66 | 124.1  0.62
151.9 0.72 | 152.8 0.71|171.4 0.66 | 174.6 0.65 | 131.4 0.61

Table 17: Re numbers and the corresponding dimensionless apparent perme-

ability k = k/ks values for a 662 box; kg corresponds to (80).
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1. D. Hietel, K. Steiner, J. Struckmeier

A Finite - Volume Particle Method for
Compressible Flows

We derive a new class of particle methods for conserva-
tion laws, which are based on numerical flux functions
to model the interactions between moving particles. The
derivation is similar to that of classical Finite-Volume
methods; except that the fixed grid structure in the Fi-
nite-Volume method is substituted by so-called mass
packets of particles. We give some numerical results on
a shock wave solution for Burgers equation as well as
the well-known one-dimensional shock tube problem.
(19 pages, 1998)

2. M. Feldmann, S. Seibold

Damage Diagnosis of Rotors: Application
of Hilbert Transform and Multi-Hypothesis
Testing

In this paper, a combined approach to damage diagnosis
of rotors is proposed. The intention is to employ signal-
based as well as model-based procedures for an im-
proved detection of size and location of the damage. In
a first step, Hilbert transform signal processing tech-
niques allow for a computation of the signal envelope
and the instantaneous frequency, so that various types
of non-linearities due to a damage may be identified
and classified based on measured response data. In a
second step, a multi-hypothesis bank of Kalman Filters is
employed for the detection of the size and location of
the damage based on the information of the type of
damage provided by the results of the Hilbert transform.
Keywords: Hilbert transform, damage diagnosis, Kalman
filtering, non-linear dynamics

(23 pages, 1998)

3. Y. Ben-Haim, S. Seibold

Robust Reliability of Diagnostic Multi-
Hypothesis Algorithms: Application to
Rotating Machinery

Damage diagnosis based on a bank of Kalman filters,
each one conditioned on a specific hypothesized system
condition, is a well recognized and powerful diagnostic
tool. This multi-hypothesis approach can be applied to a
wide range of damage conditions. In this paper, we will
focus on the diagnosis of cracks in rotating machinery.
The question we address is: how to optimize the multi-
hypothesis algorithm with respect to the uncertainty of
the spatial form and location of cracks and their result-
ing dynamic effects. First, we formulate a measure of
the reliability of the diagnostic algorithm, and then we
discuss modifications of the diagnostic algorithm for the
maximization of the reliability. The reliability of a diag-
nostic algorithm is measured by the amount of uncer-
tainty consistent with no-failure of the diagnosis. Uncer-
tainty is quantitatively represented with convex models.
Keywords: Robust reliability, convex models, Kalman fil-
tering, multi-hypothesis diagnosis, rotating machinery,
crack diagnosis

(24 pages, 1998)

4. F-Th. Lentes, N. Siedow

Three-dimensional Radiative Heat Transfer in
Glass Cooling Processes

For the numerical simulation of 3D radiative heat trans-
fer in glasses and glass melts, practically applicable
mathematical methods are needed to handle such prob-
lems optimal using workstation class computers. Since
the exact solution would require super-computer capa-
bilities we concentrate on approximate solutions with a
high degree of accuracy. The following approaches are
studied: 3D diffusion approximations and 3D ray-tracing
methods.

(23 pages, 1998)

5. A Klar, R. Wegener

A hierarchy of models for multilane
vehicular traffic
Part I: Modeling

In the present paper multilane models for vehicular traffic
are considered. A microscopic multilane model based on
reaction thresholds is developed. Based on this model an
Enskog like kinetic model is developed. In particular, care
is taken to incorporate the correlations between the vehi-
cles. From the kinetic model a fluid dynamic model is
derived. The macroscopic coefficients are deduced from
the underlying kinetic model. Numerical simulations are
presented for all three levels of description in [10]. More-
over, a comparison of the results is given there.

(23 pages, 1998)

Part Il: Numerical and stochastic
investigations

In this paper the work presented in [6] is continued. The
present paper contains detailed numerical investigations
of the models developed there. A numerical method to
treat the kinetic equations obtained in [6] are presented
and results of the simulations are shown. Moreover, the
stochastic correlation model used in [6] is described and
investigated in more detail.

(17 pages, 1998)

6. A.Klar, N. Siedow

Boundary Layers and Domain Decomposition
for Radiative Heat Transfer and Diffusion
Equations: Applications to Glass Manufactur-
ing Processes

In this paper domain decomposition methods for radia-
tive transfer problems including conductive heat transfer
are treated. The paper focuses on semi-transparent ma-
terials, like glass, and the associated conditions at the
interface between the materials. Using asymptotic analy-
sis we derive conditions for the coupling of the radiative
transfer equations and a diffusion approximation. Several
test cases are treated and a problem appearing in glass
manufacturing processes is computed. The results clearly
show the advantages of a domain decomposition ap-
proach. Accuracy equivalent to the solution of the global
radiative transfer solution is achieved, whereas computa-
tion time is strongly reduced.

(24 pages, 1998)

7. I. Choquet

Heterogeneous catalysis modelling and
numerical simulation in rarified gas flows
Part I: Coverage locally at equilibrium

A new approach is proposed to model and simulate nu-
merically heterogeneous catalysis in rarefied gas flows. It
is developed to satisfy all together the following points:
1) describe the gas phase at the microscopic scale, as
required in rarefied flows,

2) describe the wall at the macroscopic scale, to avoid
prohibitive computational costs and consider not only
crystalline but also amorphous surfaces,

3) reproduce on average macroscopic laws correlated
with experimental results and

4) derive analytic models in a systematic and exact way.
The problem is stated in the general framework of a non
static flow in the vicinity of a catalytic and non porous
surface (without aging). It is shown that the exact and
systematic resolution method based on the Laplace trans-
form, introduced previously by the author to model colli-
sions in the gas phase, can be extended to the present
problem. The proposed approach is applied to the mod-
elling of the Eley-Rideal and Langmuir-Hinshelwood re-
combinations, assuming that the coverage is locally at
equilibrium. The models are developed considering one
atomic species and extended to the general case of sev-
eral atomic species. Numerical calculations show that the
models derived in this way reproduce with accuracy be-
haviors observed experimentally.

(24 pages, 1998)

8. J. Ohser, B. Steinbach, C. Lang
Efficient Texture Analysis of Binary Images

A new method of determining some characteristics of
binary images is proposed based on a special linear filter-
ing. This technique enables the estimation of the area
fraction, the specific line length, and the specific integral
of curvature. Furthermore, the specific length of the total
projection is obtained, which gives detailed information
about the texture of the image. The influence of lateral
and directional resolution depending on the size of the
applied filter mask is discussed in detail. The technique
includes a method of increasing directional resolution for
texture analysis while keeping lateral resolution as high
as possible.

(17 pages, 1998)

9. J. Orlik

Homogenization for viscoelasticity of the
integral type with aging and shrinkage

A multi-phase composite with periodic distributed inclu-
sions with a smooth boundary is considered in this con-
tribution. The composite component materials are sup-
posed to be linear viscoelastic and aging (of the
non-convolution integral type, for which the Laplace
transform with respect to time is not effectively applica-
ble) and are subjected to isotropic shrinkage. The free
shrinkage deformation can be considered as a fictitious
temperature deformation in the behavior law. The proce-
dure presented in this paper proposes a way to deter-
mine average (effective homogenized) viscoelastic and
shrinkage (temperature) composite properties and the
homogenized stress-field from known properties of the
components. This is done by the extension of the as-
ymptotic homogenization technique known for pure
elastic non-homogeneous bodies to the non-homo-



geneous thermo-viscoelasticity of the integral non-con-
volution type. Up to now, the homogenization theory
has not covered viscoelasticity of the integral type.
Sanchez-Palencia (1980), Francfort & Suquet (1987) (see
[2], [9]) have considered homogenization for viscoelastici-
ty of the differential form and only up to the first deriva-
tive order. The integral-modeled viscoelasticity is more
general then the differential one and includes almost all
known differential models. The homogenization proce-
dure is based on the construction of an asymptotic solu-
tion with respect to a period of the composite structure.
This reduces the original problem to some auxiliary
boundary value problems of elasticity and viscoelasticity
on the unit periodic cell, of the same type as the original
non-homogeneous problem. The existence and unique-
ness results for such problems were obtained for kernels
satisfying some constrain conditions. This is done by the
extension of the Volterra integral operator theory to the
Volterra operators with respect to the time, whose 1 ker-
nels are space linear operators for any fixed time vari-
ables. Some ideas of such approach were proposed in
[11] and [12], where the Volterra operators with kernels
depending additionally on parameter were considered.
This manuscript delivers results of the same nature for
the case of the space-operator kernels.

(20 pages, 1998)

10. J. Mohring
Helmholtz Resonators with Large Aperture

The lowest resonant frequency of a cavity resonator is
usually approximated by the classical Helmholtz formula.
However, if the opening is rather large and the front wall
is narrow this formula is no longer valid. Here we present
a correction which is of third order in the ratio of the di-
ameters of aperture and cavity. In addition to the high
accuracy it allows to estimate the damping due to radia-
tion. The result is found by applying the method of
matched asymptotic expansions. The correction contains
form factors describing the shapes of opening and cavity.
They are computed for a number of standard geometries.
Results are compared with numerical computations.

(21 pages, 1998)

11. H. W. Hamacher, A. Schobel
On Center Cycles in Grid Graphs

Finding “good” cycles in graphs is a problem of great
interest in graph theory as well as in locational analysis.
We show that the center and median problems are NP
hard in general graphs. This result holds both for the vari-
able cardinality case (i.e. all cycles of the graph are con-
sidered) and the fixed cardinality case (i.e. only cycles
with a given cardinality p are feasible). Hence it is of in-
terest to investigate special cases where the problem is
solvable in polynomial time. In grid graphs, the variable
cardinality case is, for instance, trivially solvable if the
shape of the cycle can be chosen freely.

If the shape is fixed to be a rectangle one can analyze
rectangles in grid graphs with, in sequence, fixed dimen-
sion, fixed cardinality, and variable cardinality. In all cases
a complete characterization of the optimal cycles and
closed form expressions of the optimal objective values
are given, yielding polynomial time algorithms for all cas-
es of center rectangle problems.

Finally, it is shown that center cycles can be chosen as
rectangles for small cardinalities such that the center
cycle problem in grid graphs is in these cases completely
solved.

(15 pages, 1998)

12. H. W. Hamacher, K.-H. Kifer

Inverse radiation therapy planning -
a multiple objective optimisation approach

For some decades radiation therapy has been proved
successful in cancer treatment. It is the major task of clin-
ical radiation treatment planning to realize on the one
hand a high level dose of radiation in the cancer tissue in
order to obtain maximum tumor control. On the other
hand it is obvious that it is absolutely necessary to keep
in the tissue outside the tumor, particularly in organs at
risk, the unavoidable radiation as low as possible.

No doubt, these two objectives of treatment planning -
high level dose in the tumor, low radiation outside the
tumor - have a basically contradictory nature. Therefore,
it is no surprise that inverse mathematical models with
dose distribution bounds tend to be infeasible in most
cases. Thus, there is need for approximations compromis-
ing between overdosing the organs at risk and underdos-
ing the target volume.

Differing from the currently used time consuming itera-
tive approach, which measures deviation from an ideal
(non-achievable) treatment plan using recursively trial-
and-error weights for the organs of interest, we go a
new way trying to avoid a priori weight choices and con-
sider the treatment planning problem as a multiple ob-
jective linear programming problem: with each organ of
interest, target tissue as well as organs at risk, we associ-
ate an objective function measuring the maximal devia-
tion from the prescribed doses.

We build up a data base of relatively few efficient solu-
tions representing and approximating the variety of Pare-
to solutions of the multiple objective linear programming
problem. This data base can be easily scanned by physi-
cians looking for an adequate treatment plan with the
aid of an appropriate online tool.

(14 pages, 1999)

13. C. Lang, J. Ohser, R. Hilfer
On the Analysis of Spatial Binary Images

This paper deals with the characterization of microscopi-
cally heterogeneous, but macroscopically homogeneous
spatial structures. A new method is presented which is
strictly based on integral-geometric formulae such as
Crofton’s intersection formulae and Hadwiger’s recursive
definition of the Euler number. The corresponding algo-
rithms have clear advantages over other techniques. As
an example of application we consider the analysis of
spatial digital images produced by means of Computer
Assisted Tomography.

(20 pages, 1999)

14. M. Junk

On the Construction of Discrete Equilibrium
Distributions for Kinetic Schemes

A general approach to the construction of discrete equi-
librium distributions is presented. Such distribution func-
tions can be used to set up Kinetic Schemes as well as
Lattice Boltzmann methods. The general principles are
also applied to the construction of Chapman Enskog dis-
tributions which are used in Kinetic Schemes for com-
pressible Navier-Stokes equations.

(24 pages, 1999)

15. M. Junk, S. V. Raghurame Rao

A new discrete velocity method for Navier-
Stokes equations

The relation between the Lattice Boltzmann Method,
which has recently become popular, and the Kinetic
Schemes, which are routinely used in Computational Flu-
id Dynamics, is explored. A new discrete velocity model
for the numerical solution of Navier-Stokes equations for
incompressible fluid flow is presented by combining both
the approaches. The new scheme can be interpreted as a
pseudo-compressibility method and, for a particular
choice of parameters, this interpretation carries over to
the Lattice Boltzmann Method.

(20 pages, 1999)

16. H. Neunzert
Mathematics as a Key to Key Technologies

The main part of this paper will consist of examples,
how mathematics really helps to solve industrial prob-
lems; these examples are taken from our Institute for
Industrial Mathematics, from research in the Tech-
nomathematics group at my university, but also from
ECMI groups and a company called TecMath, which
originated 10 years ago from my university group and
has already a very successful history.

(39 pages (4 PDF-Files), 1999)

17. J. Ohser, K. Sandau

Considerations about the Estimation of the
Size Distribution in Wicksell’s Corpuscle
Problem

Wicksell’s corpuscle problem deals with the estimation of
the size distribution of a population of particles, all hav-
ing the same shape, using a lower dimensional sampling
probe. This problem was originary formulated for particle
systems occurring in life sciences but its solution is of
actual and increasing interest in materials science. From a
mathematical point of view, Wicksell's problem is an in-
verse problem where the interesting size distribution is
the unknown part of a Volterra equation. The problem is
often regarded ill-posed, because the structure of the
integrand implies unstable numerical solutions. The accu-
racy of the numerical solutions is considered here using
the condition number, which allows to compare different
numerical methods with different (equidistant) class sizes
and which indicates, as one result, that a finite section
thickness of the probe reduces the numerical problems.
Furthermore, the relative error of estimation is computed
which can be split into two parts. One part consists of
the relative discretization error that increases for increas-
ing class size, and the second part is related to the rela-
tive statistical error which increases with decreasing class
size. For both parts, upper bounds can be given and the
sum of them indicates an optimal class width depending
on some specific constants.

(18 pages, 1999)

18. E. Carrizosa, H. W. Hamacher, R. Klein,
S. Nickel

Solving nonconvex planar location problems
by finite dominating sets

It is well-known that some of the classical location prob-
lems with polyhedral gauges can be solved in polynomi-
al time by finding a finite dominating set, i. e. a finite set



of candidates guaranteed to contain at least one opti-
mal location.

In this paper it is first established that this result holds for
a much larger class of problems than currently considered
in the literature. The model for which this result can be
proven includes, for instance, location problems with at-
traction and repulsion, and location-allocation problems.
Next, it is shown that the approximation of general gaug-
es by polyhedral ones in the objective function of our
general model can be analyzed with regard to the subse-
quent error in the optimal objective value. For the approx-
imation problem two different approaches are described,
the sandwich procedure and the greedy algorithm. Both
of these approaches lead - for fixed epsilon - to polyno-
mial approximation algorithms with accuracy epsilon for
solving the general model considered in this paper.
Keywords: Continuous Location, Polyhedral Gauges,
Finite Dominating Sets, Approximation, Sandwich Algo-
rithm, Greedy Algorithm

(19 pages, 2000)

19. A. Becker
A Review on Image Distortion Measures

Within this paper we review image distortion measures.
A distortion measure is a criterion that assigns a “quality
number” to an image. We distinguish between mathe-
matical distortion measures and those distortion mea-
sures in-cooperating a priori knowledge about the imag-
ing devices ( e. g. satellite images), image processing al-
gorithms or the human physiology. We will consider rep-
resentative examples of different kinds of distortion
measures and are going to discuss them.

Keywords: Distortion measure, human visual system

(26 pages, 2000)

20. H. W. Hamacher, M. Labbé, S. Nickel,
T. Sonneborn

Polyhedral Properties of the Uncapacitated
Multiple Allocation Hub Location Problem

We examine the feasibility polyhedron of the uncapaci-
tated hub location problem (UHL) with multiple alloca-
tion, which has applications in the fields of air passenger
and cargo transportation, telecommunication and postal
delivery services. In particular we determine the dimen-
sion and derive some classes of facets of this polyhedron.
We develop some general rules about lifting facets from
the uncapacitated facility location (UFL) for UHL and pro-
jecting facets from UHL to UFL. By applying these rules
we get a new class of facets for UHL which dominates
the inequalities in the original formulation. Thus we get a
new formulation of UHL whose constraints are all facet—
defining. We show its superior computational perfor-
mance by benchmarking it on a well known data set.
Keywords: integer programming, hub location, facility
location, valid inequalities, facets, branch and cut

(21 pages, 2000)

21. H. W. Hamacher, A. Schobel

Design of Zone Tariff Systems in Public Trans-
portation

Given a public transportation system represented by its
stops and direct connections between stops, we consider
two problems dealing with the prices for the customers:
The fare problem in which subsets of stops are already
aggregated to zones and “good” tariffs have to be

found in the existing zone system. Closed form solutions
for the fare problem are presented for three objective
functions. In the zone problem the design of the zones is
part of the problem. This problem is NP hard and we
therefore propose three heuristics which prove to be very
successful in the redesign of one of Germany’s transpor-
tation systems.

(30 pages, 2001)

22. D. Hietel, M. Junk, R. Keck, D. Teleaga:

The Finite-Volume-Particle Method for
Conservation Laws

In the Finite-Volume-Particle Method (FVPM), the weak
formulation of a hyperbolic conservation law is discretized
by restricting it to a discrete set of test functions. In con-
trast to the usual Finite-Volume approach, the test func-
tions are not taken as characteristic functions of the con-
trol volumes in a spatial grid, but are chosen from a parti-
tion of unity with smooth and overlapping partition func-
tions (the particles), which can even move along pre-
scribed velocity fields. The information exchange between
particles is based on standard numerical flux functions.
Geometrical information, similar to the surface area of
the cell faces in the Finite-Volume Method and the corre-
sponding normal directions are given as integral quanti-
ties of the partition functions. After a brief derivation of
the Finite-Volume-Particle Method, this work focuses on
the role of the geometric coefficients in the scheme.

(16 pages, 2001)

23. T. Bender, H. Hennes, J. Kalcsics,
M. T. Melo, S. Nickel

Location Software and Interface with GIS
and Supply Chain Management

The objective of this paper is to bridge the gap between
location theory and practice. To meet this objective focus
is given to the development of software capable of ad-
dressing the different needs of a wide group of users.
There is a very active community on location theory en-
compassing many research fields such as operations re-
search, computer science, mathematics, engineering,
geography, economics and marketing. As a result, people
working on facility location problems have a very diverse
background and also different needs regarding the soft-
ware to solve these problems. For those interested in
non-commercial applications (e. g. students and re-
searchers), the library of location algorithms (LoLA can be
of considerable assistance. LoLA contains a collection of
efficient algorithms for solving planar, network and dis-
crete facility location problems. In this paper, a detailed
description of the functionality of LoLA is presented. In
the fields of geography and marketing, for instance, solv-
ing facility location problems requires using large
amounts of demographic data. Hence, members of these
groups (e. g. urban planners and sales managers) often
work with geographical information too s. To address the
specific needs of these users, LoLA was inked to a geo-
graphical information system (GIS) and the details of the
combined functionality are described in the paper. Final-
ly, there is a wide group of practitioners who need to
solve large problems and require special purpose soft-
ware with a good data interface. Many of such users
can be found, for example, in the area of supply chain
management (SCM). Logistics activities involved in stra-
tegic SCM include, among others, facility location plan-
ning. In this paper, the development of a commercial
location software tool is also described. The too is em-

bedded in the Advanced Planner and Optimizer SCM
software developed by SAP AG, Walldorf, Germany. The
paper ends with some conclusions and an outlook to
future activities.

Keywords: facility location, software development, geo-
graphical information systems, supply chain management.
(48 pages, 2001)

24. H. W. Hamacher, S. A. Tjandra

Mathematical Modelling of Evacuation
Problems: A State of Art

This paper details models and algorithms which can be
applied to evacuation problems. While it concentrates
on building evacuation many of the results are applica-
ble also to regional evacuation. All models consider the
time as main parameter, where the travel time between
components of the building is part of the input and the
overall evacuation time is the output. The paper distin-
guishes between macroscopic and microscopic evacua-
tion models both of which are able to capture the evac-
uees’ movement over time.

Macroscopic models are mainly used to produce good
lower bounds for the evacuation time and do not con-
sider any individual behavior during the emergency situ-
ation. These bounds can be used to analyze existing
buildings or help in the design phase of planning a
building. Macroscopic approaches which are based on
dynamic network flow models (minimum cost dynamic
flow, maximum dynamic flow, universal maximum flow,
quickest path and quickest flow) are described. A special
feature of the presented approach is the fact, that travel
times of evacuees are not restricted to be constant, but
may be density dependent. Using multicriteria optimiza-
tion priority regions and blockage due to fire or smoke
may be considered. It is shown how the modelling can
be done using time parameter either as discrete or con-
tinuous parameter.

Microscopic models are able to model the individual
evacuee’s characteristics and the interaction among
evacuees which influence their movement. Due to the
corresponding huge amount of data one uses simulation
approaches. Some probabilistic laws for individual evac-
uee’s movement are presented. Moreover ideas to mod-
el the evacuee’s movement using cellular automata (CA)
and resulting software are presented.

In this paper we will focus on macroscopic models and
only summarize some of the results of the microscopic
approach. While most of the results are applicable to
general evacuation situations, we concentrate on build-
ing evacuation.

(44 pages, 2001)

25. J. Kuhnert, S. Tiwari
Grid free method for solving the Poisson
equation

A Grid free method for solving the Poisson equation is
presented. This is an iterative method. The method is
based on the weighted least squares approximation in
which the Poisson equation is enforced to be satisfied in
every iterations. The boundary conditions can also be
enforced in the iteration process. This is a local approxi-
mation procedure. The Dirichlet, Neumann and mixed
boundary value problems on a unit square are presented
and the analytical solutions are compared with the exact
solutions. Both solutions matched perfectly.

Keywords: Poisson equation, Least squares method,
Grid free method
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26. T. Gotz, H. Rave, D. Reinel-Bitzer,
K. Steiner, H. Tiemeier
Simulation of the fiber spinning process

To simulate the influence of process parameters to the
melt spinning process a fiber model is used and coupled
with CFD calculations of the quench air flow. In the fiber
model energy, momentum and mass balance are solved
for the polymer mass flow. To calculate the quench air the
Lattice Boltzmann method is used. Simulations and exper-
iments for different process parameters and hole configu-
rations are compared and show a good agreement.
Keywords: Melt spinning, fiber model, Lattice Boltzmann,
CFD
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27. A. Zemitis
On interaction of a liquid film with an
obstacle

In this paper mathematical models for liquid films gener-
ated by impinging jets are discussed. Attention is stressed
to the interaction of the liquid film with some obstacle.

S. G. Taylor [Proc. R. Soc. London Ser. A 253, 313 (1959)]
found that the liquid film generated by impinging jets is
very sensitive to properties of the wire which was used as
an obstacle. The aim of this presentation is to propose a
modification of the Taylor's model, which allows to simu-
late the film shape in cases, when the angle between jets
is different from 180°. Numerical results obtained by dis-
cussed models give two different shapes of the liquid
film similar as in Taylors experiments. These two shapes
depend on the regime: either droplets are produced close
to the obstacle or not. The difference between two re-
gimes becomes larger if the angle between jets decreas-
es. Existence of such two regimes can be very essential
for some applications of impinging jets, if the generated
liquid film can have a contact with obstacles.

Keywords: impinging jets, liquid film, models, numerical
solution, shape
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28. 1. Ginzburg, K. Steiner

Free surface lattice-Boltzmann method to
model the filling of expanding cavities by
Bingham Fluids

The filling process of viscoplastic metal alloys and plastics
in expanding cavities is modelled using the lattice Boltz-
mann method in two and three dimensions. These mod-
els combine the regularized Bingham model for visco-
plastic with a free-interface algorithm. The latter is based
on a modified immiscible lattice Boltzmann model in
which one species is the fluid and the other one is con-
sidered as vacuum. The boundary conditions at the
curved liquid-vacuum interface are met without any geo-
metrical front reconstruction from a first-order Chapman-
Enskog expansion. The numerical results obtained with
these models are found in good agreement with avail-
able theoretical and numerical analysis.

Keywords: Generalized LBE, free-surface phenomena,
interface boundary conditions, filling processes, Bing-
ham viscoplastic model, reqularized models
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29. H. Neunzert

»Denn nichts ist fiir den Menschen als Men-
schen etwas wert, was er nicht mit Leiden-
schaft tun kann«

Vortrag anlasslich der Verleihung des Akademie-
preises des Landes Rheinland-Pfalz am
21.11.2001

Was macht einen guten Hochschullehrer aus? Auf diese
Frage gibt es sicher viele verschiedene, fachbezogene
Antworten, aber auch ein paar allgemeine Gesichtspunk-
te: es bedarf der »Leidenschaft« fur die Forschung (Max
Weber), aus der dann auch die Begeisterung fur die Leh-
re erwdchst. Forschung und Lehre gehdren zusammen,
um die Wissenschaft als lebendiges Tun vermitteln zu
konnen. Der Vortrag gibt Beispiele dafur, wie in ange-
wandter Mathematik Forschungsaufgaben aus prakti-
schen Alltagsproblemstellungen erwachsen, die in die
Lehre auf verschiedenen Stufen (Gymnasium bis Gradu-
iertenkolleg) einflieBen; er leitet damit auch zu einem
aktuellen Forschungsgebiet, der Mehrskalenanalyse mit
ihren vielfaltigen Anwendungen in Bildverarbeitung,
Materialentwicklung und Strémungsmechanik tber, was
aber nur kurz gestreift wird. Mathematik erscheint hier
als eine moderne Schlusseltechnologie, die aber auch
enge Beziehungen zu den Geistes- und Sozialwissen-
schaften hat.

Keywords: Lehre, Forschung, angewandte Mathematik,
Mehrskalenanalyse, Strémungsmechanik

(18 pages, 2001)

30. J. Kuhnert, S. Tiwari

Finite pointset method based on the projec-
tion method for simulations of the incom-
pressible Navier-Stokes equations

A Lagrangian particle scheme is applied to the projection
method for the incompressible Navier-Stokes equations.
The approximation of spatial derivatives is obtained by
the weighted least squares method. The pressure Poisson
equation is solved by a local iterative procedure with the
help of the least squares method. Numerical tests are
performed for two dimensional cases. The Couette flow,
Poiseuelle flow, decaying shear flow and the driven cavity
flow are presented. The numerical solutions are ob-
tained for stationary as well as instationary cases and are
compared with the analytical solutions for channel
flows. Finally, the driven cavity in a unit square is consid-
ered and the stationary solution obtained from this
scheme is compared with that from the finite element
method.

Keywords: Incompressible Navier-Stokes equations,
Meshfree method, Projection method, Particle scheme,
Least squares approximation

AMS subject classification: 76D05, 76M28
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31. R. Korn, M. Krekel
Optimal Portfolios with Fixed Consumption
or Income Streams

We consider some portfolio optimisation problems
where either the investor has a desire for an a priori
specified consumption stream or/and follows a deter-
ministic pay in scheme while also trying to maximize
expected utility from final wealth. We derive explicit
closed form solutions for continuous and discrete mone-
tary streams. The mathematical method used is classical
stochastic control theory.

Keywords: Portfolio optimisation, stochastic control, HIB
equation, discretisation of control problems.
(23 pages, 2002)

32. M. Krekel
Optimal portfolios with a loan dependent
credit spread

If an investor borrows money he generally has to pay
higher interest rates than he would have received, if he
had put his funds on a savings account. The classical
model of continuous time portfolio optimisation ignores
this effect. Since there is obviously a connection between
the default probability and the total percentage of
wealth, which the investor is in debt, we study portfolio
optimisation with a control dependent interest rate. As-
suming a logarithmic and a power utility function, respec-
tively, we prove explicit formulae of the optimal control.
Keywords: Portfolio optimisation, stochastic control, HIB
equation, credit spread, log utility, power utility, non-
linear wealth dynamics
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33. J. Ohser, W. Nagel, K. Schladitz
The Euler number of discretized sets - on the
choice of adjacency in homogeneous lattices

Two approaches for determining the Euler-Poincaré char-
acteristic of a set observed on lattice points are consid-
ered in the context of image analysis { the integral geo-
metric and the polyhedral approach. Information about
the set is assumed to be available on lattice points only.
In order to retain properties of the Euler number and to
provide a good approximation of the true Euler number
of the original set in the Euclidean space, the appropri-
ate choice of adjacency in the lattice for the set and its
background is crucial. Adjacencies are defined using tes-
sellations of the whole space into polyhedrons. InR 3,
two new 14 adjacencies are introduced additionally to
the well known 6 and 26 adjacencies. For the Euler
number of a set and its complement, a consistency rela-
tion holds. Each of the pairs of adjacencies (14:1; 14:1),
(14:2; 14:2), (6; 26), and (26; 6) is shown to be a pair of
complementary adjacencies with respect to this relation.
That is, the approximations of the Euler numbers are
consistent if the set and its background (complement)
are equipped with this pair of adjacencies. Furthermore,
sufficient conditions for the correctness of the approxi-
mations of the Euler number are given. The analysis of
selected microstructures and a simulation study illustrate
how the estimated Euler number depends on the cho-
sen adjacency. It also shows that there is not a uniquely
best pair of adjacencies with respect to the estimation of
the Euler number of a set in Euclidean space.

Keywords: image analysis, Euler number, neighborhod
relationships, cuboidal lattice
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34. 1. Ginzburg, K. Steiner

Lattice Boltzmann Model for Free-Surface
flow and Its Application to Filling Process in
Casting

A generalized lattice Boltzmann model to simulate free-
surface is constructed in both two and three dimen-
sions. The proposed model satisfies the interfacial
boundary conditions accurately. A distinctive feature of
the model is that the collision processes is carried out



only on the points occupied partially or fully by the fluid.
To maintain a sharp interfacial front, the method in-
cludes an anti-diffusion algorithm. The unknown distri-
bution functions at the interfacial region are constructed
according to the first order Chapman-Enskog analysis.
The interfacial boundary conditions are satisfied exactly
by the coefficients in the Chapman-Enskog expansion.
The distribution functions are naturally expressed in the
local interfacial coordinates. The macroscopic quantities
at the interface are extracted from the least-square solu-
tions of a locally linearized system obtained from the
known distribution functions. The proposed method
does not require any geometric front construction and is
robust for any interfacial topology. Simulation results of
realistic filling process are presented: rectangular cavity
in two dimensions and Hammer box, Campbell box,
Sheffield box, and Motorblock in three dimensions. To
enhance the stability at high Reynolds numbers, various
upwind-type schemes are developed. Free-slip and no-
slip boundary conditions are also discussed.

Keywords: Lattice Boltzmann models, free-surface phe-
nomena, interface boundary conditions; filling processes,
injection molding; volume of fluid method; interface
boundary conditions; advection-schemes; upwind-
schemes
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35. M. Gunther, A. Klar, T. Materne, R. Wegener
Multivalued fundamental diagrams and stop
and go waves for continuum traffic equa-
tions

In the present paper a kinetic model for vehicular traffic
leading to multivalued fundamental diagrams is devel-
oped and investigated in detail. For this model phase
transitions can appear depending on the local density
and velocity of the flow. A derivation of associated mac-
roscopic traffic equations from the kinetic equation is
given. Moreover, numerical experiments show the ap-
pearance of stop and go waves for highway traffic with
a bottleneck.

Keywords: traffic flow, macroscopic equations, kinetic
derivation, multivalued fundamental diagram, stop and
go waves, phase transitions

(25 pages, 2002)

36. S. Feldmann, P. Lang, D. Pratzel-Wolters
Parameter influence on the zeros of network
determinants

To a network N(q) with determinant D(s;q) depending
on a parameter vector g 1 R' via identification of some of
its vertices, a network N" (g) is assigned. The paper deals
with procedures to find N* (g), such that its determinant
D" (s;q) admits a factorization in the determinants of
appropriate subnetworks, and with the estimation of
the deviation of the zeros of D" from the zeros of D. To
solve the estimation problem state space methods are
applied.

Keywords: Networks, Equicofactor matrix polynomials,
Realization theory, Matrix perturbation theory
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37. K. Koch, J. Ohser, K. Schladitz

Spectral theory for random closed sets and
estimating the covariance via frequency
space

A spectral theory for stationary random closed sets is
developed and provided with a sound mathematical ba-
sis. Definition and proof of existence of the Bartlett
spectrum of a stationary random closed set as well as
the proof of a Wiener-Khintchine theorem for the power
spectrum are used to two ends: First, well known sec-
ond order characteristics like the covariance can be esti-
mated faster than usual via frequency space. Second,
the Bartlett spectrum and the power spectrum can be
used as second order characteristics in frequency space.
Examples show, that in some cases information about
the random closed set is easier to obtain from these
characteristics in frequency space than from their real
world counterparts.

Keywords: Random set, Bartlett spectrum, fast Fourier
transform, power spectrum
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38. D. d'Humiéres, |. Ginzburg
Multi-reflection boundary conditions for
lattice Boltzmann models

We present a unified approach of several boundary con-
ditions for lattice Boltzmann models. Its general frame-
work is a generalization of previously introduced
schemes such as the bounce-back rule, linear or qua-
dratic interpolations, etc. The objectives are two fold:
first to give theoretical tools to study the existing bound-
ary conditions and their corresponding accuracy; sec-
ondly to design formally third- order accurate boundary
conditions for general flows. Using these boundary con-
ditions, Couette and Poiseuille flows are exact solution
of the lattice Boltzmann models for a Reynolds number
Re = 0 (Stokes limit).

Numerical comparisons are given for Stokes flows in
periodic arrays of spheres and cylinders, linear periodic
array of cylinders between moving plates and for Navier-
Stokes flows in periodic arrays of cylinders for Re < 200.
These results show a significant improvement of the
overall accuracy when using the linear interpolations
instead of the bounce-back reflection (up to an order of
magnitude on the hydrodynamics fields). Further im-
provement is achieved with the new multi-reflection
boundary conditions, reaching a level of accuracy close
to the quasi-analytical reference solutions, even for rath-
er modest grid resolutions and few points in the narrow-
est channels. More important, the pressure and velocity
fields in the vicinity of the obstacles are much smoother
with multi-reflection than with the other boundary con-
ditions.

Finally the good stability of these schemes is highlighted
by some simulations of moving obstacles: a cylinder be-
tween flat walls and a sphere in a cylinder.

Keywords: lattice Boltzmann equation, boudary condis-
tions, bounce-back rule, Navier-Stokes equation

(72 pages, 2002)
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