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Detecting a stochastic background of gravitational radiation: Signal processing strategies
and sensitivities

Bruce Allen* and Joseph D. Romano†
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We analyze the signal processing required for the optimal detection of a stochastic background of gravita-
tional radiation using laser interferometric detectors. Starting with basic assumptions about the statistical
properties of a stochastic gravity-wave background, we derive expressions for the optimal filter function and
signal-to-noise ratio for the cross-correlation of the outputs of two gravity-wave detectors. Sensitivity levels
required for detection are then calculated. Issues related to~i! calculating the signal-to-noise ratio for arbitrarily
large stochastic backgrounds,~ii ! performing the data analysis in the presence of nonstationary detector noise,
~iii ! combining data from multiple detector pairs to increase the sensitivity of a stochastic background search,
~iv! correlating the outputs of 4 or more detectors, and~v! allowing for the possibility of correlated noise in the
outputs of two detectors are discussed. We briefly describe a computer simulation that was used to ‘‘experi-
mentally’’ verify the theoretical calculations derived in the paper, and which mimics the generation and
detection of a simulated stochastic gravity-wave signal in the presence of simulated detector noise. Numerous
graphs and tables of numerical data for the five major interferometers~LIGO-WA, LIGO-LA, VIRGO, GEO-
600, and TAMA-300! are also given. This information consists of graphs of the noise power spectra, overlap
reduction functions, and optimal filter functions; also included are tables of the signal-to-noise ratios and
sensitivity levels for cross-correlation measurements between different detector pairs. The treatment given in
this paper should be accessible to both theorists involved in data analysis and experimentalists involved in
detector design and data acquisition.@S0556-2821~99!02708-3#

PACS number~s!: 04.80.Nn, 04.30.Db, 07.05.Kf, 95.55.Ym
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I. INTRODUCTION

The design and construction of a number of new and m
sensitive detectors of gravitational radiation is currently u
derway. These include the two Laser Interferometric Gra
tational Wave Observatory~LIGO! detectors being built in
Hanford, WA and Livingston, LA by a joint Caltech-MIT
collaboration@1#, the VIRGO detector being built near Pis
Italy by an Italian-French collaboration@2#, the GEO-600
detector being built in Hanover, Germany by an Ang
German collaboration@3#, and the TAMA-300 detector being
built near Tokyo, Japan@4#. There are also several resona
bar detectors currently in operation, and several more refi
bar and interferometric detectors presently in the plann
and proposal stages.

The operation of these detectors will have a major imp
on the field of gravitational physics. For the first time, the
will be a significant amount of experimental data to be a
lyzed, and the ‘‘ivory tower’’ relativists will be forced to
interact with a broad range of experimenters and data a
lysts to extract the interesting physics from the data stre
‘‘Known’’ sources such as coalescing neutron star~or black
hole! binaries, pulsars, supernovae, and other periodic
transient ~or burst! sources should all be observable wi
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gravity-wave detectors. One might also be able to dete
faint stochastic background of gravitational radiation, p
duced very shortly after the big bang. These detections m
happen soon after the detectors go ‘‘on-line’’ or they m
require a decade of further work to increase the sensitivity
the instruments. But it is fairly safe to say that eventua
when their sensitivity passes some threshold value,
gravity-wave detectorswill find sources. Even more excitin
is the prospect that the detectors will discovernewsources of
gravitational radiation—sources which are different fro
those mentioned above, and which we had not expecte
find. It promises to be an exciting time.

The subject of this paper is astochastic~i.e., random!
background of gravitational radiation, first studied in det
by Michelson @5#, Christensen @6#, and Flanagan@7#.
Roughly speaking, it is the type of gravitational radiatio
produced by an extremely large number of weak, indep
dent, and unresolved gravity-wave sources. The radiatio
stochastic in the sense that it can be characterized only
tistically. As mentioned above, a stochastic background
gravitational radiation might be the result of processes t
took place very shortly after the big bang. But since w
know very little about the state of the universe at that time
is impossible to say with any certainty. A stochastic bac
ground of gravitational radiation might also arise from mo
recent processes~e.g., radiation from many unresolved b
nary star systems!, and this more recent contribution migh
overwhelm the parts of the background that contain inform
tion about the state of the early universe. In any case,
properties of the radiation will be very dependent upon
source. For example, one would expect a stochastic b

ity
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ground of cosmological origin to be highly isotropi
whereas that produced by white dwarf binaries in our o
galaxy would be highly anisotropic. We will just have
wait and see what the detectors reveal before we can de
between these two possibilities.

This paper will focus on issues related to thedetectionof
a stochastic background of gravitational radiation.~We will
not talk much about possible sources.! We give a complete
and comprehensive treatment of the problem of detectin
stochastic background, which should be accessible to b
theorists involved in the data analysis and experimenta
involved in detector design and data acquisition.

The outline of the paper is as follows:
In Sec. II, we begin by describing the properties of

stochastic background of gravitational radiation—its sp
trum, statistical assumptions, and current observational c
straints.

In Sec. III, we describe how one can correlate the outp
of two gravity-wave detectors to detect~or put an upper limit
on! a stochastic gravity-wave signal. Section III B includes
detailed derivation of the overlap reduction function th
covers the case where the two arms of a detector are
perpendicular~e.g., GEO-600! and corrects a typographica
error that appears in the literature. Section III C include
rigorous derivation of the optimal signal processing strate
Most of the material in Secs. II and III has already appea
in the literature. Interested readers should see Ref.@8# for
more details, if desired.

In Sec. IV, we ask the following questions:~i! How do we
decide, from the experimental data, if we’ve detected a
chastic gravity-wave signal?~ii ! Assuming that a stochasti
gravity-wave signal is present, how do we estimate
strength?~iii ! Assuming that a stochastic gravity-wave sign
is present, what is the minimum value ofV0 required to
detect it 95% of the time? This leads to a discussion of sig
detection, parameter estimation, and sensitivity levels
stochastic background searches, adopting a frequentist p
of view. The calculation ofV0

95%,5% in Sec. IV D corrects an
error that has appeared in the literature.

In Sec. V, we return to the problem of detection by a
dressing a series of subtle issues initially ignored in Sec.
These include~i! calculating the signal-to-noise ratio for a
bitrarily large stochastic backgrounds,~ii ! performing the
data analysis in the presence of nonstationary detector n
~iii ! combining data from multiple detector pairs to increa
the sensitivity of a stochastic background search,~iv! corre-
lating the outputs of 4 or more detectors, and~v! allowing for
the possibility of correlated noise in the outputs of two d
tectors. The material presented in these sections extend
initial treatment of these issues given, for example, in Re
@6,7#.

Section VI consists of a series of graphs and tables
numerical data for the five major interferometers~LIGO-
WA, LIGO-LA, VIRGO, GEO-600, TAMA-300!. The noise
power spectra, overlap reduction functions, optimal fil
functions, signal-to-noise ratios, and sensitivity levels
cross-correlation measurements between different dete
pairs ~not just LIGO! are given. This information allows u
to determine the optimal way of combining data from m
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tiple detector pairs when searching for a stochastic ba
ground of gravitational radiation. Section VI A also includ
a graph of the ‘‘enhanced’’ LIGO detector noise curve
which track the projected performance of the LIGO detec
design over the next decade.

In Sec. VII, we describe a computer simulation that mi
ics the generation and detection of a simulated stocha
gravity-wave signal in the presence of simulated detec
noise. The simulation was used to verify some of the th
retical calculations derived in the previous sections.

Section VIII concludes the paper with a brief summa
and lists some topics for future work.

Note that throughout the paper, we usec to denote the
speed of light andG to denote Newton’s gravitationa
constant (c52.99831010 cm/sec and G56.67331028

cm3/g sec2).

II. STOCHASTIC BACKGROUND: PROPERTIES

A. Spectrum

A stochastic background of gravitational radiation is
random gravity-wave signal produced by a large numbe
weak, independent, and unresolved gravity-wave source
many ways it is analogous to the cosmic microwave ba
ground radiation~CMBR! @9#, which is a stochastic back
ground ofelectromagneticradiation. As with the CMBR, it
is useful to characterize the spectral properties of the gr
tational background by specifying how the energy is distr
uted in frequency. Explicitly, one introduces the dimensio
less quantity

Vgw~ f !ª
1

rcritical

drgw

d ln f
, ~2.1!

wheredrgw is the energy density of the gravitational radi
tion contained in the frequency rangef to f 1d f , andrcritical
is the critical energy density required~today! to close the
universe:

rcritical 5
3c2H0

2

8pG
'1.631028h100

2 ergs

cm3
. ~2.2!

H0 is the Hubble expansion rate~today!,

H05h1003100
km

sec Mpc
5 3.2310218h100

1

sec

51.1310228ch100

1

cm
, ~2.3!

and h100 is a dimensionless factor, included to account
the different values ofH0 that are quoted in the literature.1 It
is this dimensionless function of frequency,Vgw( f ), that we
will use to describe the spectrum of a stochastic backgro
of gravitational radiation. It follows directly from the abov
definitions that Vgw( f )h100

2 is independentof the actual

1h100 almost certainly lies within the range 1/2,h100,1.
1-2
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DETECTING A STOCHASTIC BACKGROUND OF . . . PHYSICAL REVIEW D 59 102001
Hubble expansion rate. For this reason, we will often foc
attention on this quantity, rather than onVgw( f ) alone.

Two remarks are in order:
~i! There appears to be some confusion aboutVgw( f ) in

the literature. Some authors assume thatVgw( f ) is
constant—i.e., independent of frequency. Although this
true for some cosmological models, it is not true for all
them. The important point is thatany spectrum of gravita-
tional radiation can be described by an appropriateVgw( f ).
With the correct dependence on frequency,Vgw( f ) can de-
scribe a flat spectrum, a blackbody spectrum, or any o
distribution of energy with frequency.

~ii ! Vgw( f ) is the ratio of the stochastic gravity-wave e
ergy density contained in a bandwidthD f 5 f to the total
energy density required to close the universe. For
CMBR, one can define an analogous quantity:

Vem~ f ! ª
1

rcritical

drem

d ln f
. ~2.4!

Since the 2.73 K blackbody spectrum has a peak value
Vem( f )h100

2 '1025 at f 51012 Hz, the CMBR contains~in
the vicinity of 1012 Hz) approximately 1025 of the total
energy density required to close the universe. A similar
terpretation applies toVgw( f ).

B. Statistical assumptions

The spectrumVgw( f ) completely specifies the stochast
background of gravitational radiation provided we ma
enough additional assumptions. We will assume that the
chastic background is~i! isotropic,~ii ! unpolarized,~iii ! sta-
tionary, and~iv! Gaussian. Since these properties might
hold in general, it is worthwhile to consider each one of th
in turn.

~i! Since it is now well established that the CMBR
highly isotropic@9#, it is not unreasonable to assume tha
stochastic background of gravitational radiation is also i
tropic. But this assumption might not be true. For examp
as mentioned in Sec. I, if the dominant source of the stoch
tic gravity-wave background is a large number of unresolv
white dwarf binary star systems within our own galaxy, th
the stochastic background will have a distinctlyanisotropic
distribution, which forms a ‘‘band in the sky’’ distribute
roughly in the same way as the Milky Way galaxy. It is al
possible for a stochastic gravity-wave background of cosm
logical origin to be anisotropic, although one would th
have to explain why the CMBR is isotropic but the gravit
wave background is not. In either case, such anisotropiescan
be searched for in the data stream.~See Ref.@10# for details.!

~ii ! The second assumption is that the stochastic grav
wave background is unpolarized. This means that the gr
tational radiation incident on a detector has statistica
equivalent ‘‘plus’’ and ‘‘cross’’ polarization components
We see no strong reason why this should not be the cas

~iii ! The assumption that the stochastic background is
tionary ~i.e., that all statistical quantities depend only up
the difference between times, and not on the choice of t
origin! is almost certainly justified. This is because the age
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the universe is roughly 20 orders of magnitude larger th
the characteristic period of the waves that LIGO, VIRG
etc. can detect, and 9 orders of magnitude larger than
longest realistic observation times. It seems very unlik
that a stochastic background of gravitational radiation wo
have statistical properties that vary over either of these t
scales. But unlike the stochastic gravity-wave backgrou
the noise intrinsic to the detectorswill change over the
course of the observation times. This poses a problem for
data analysis, which we initially ignore in Sec. III. We retu
to this problem in Sec. V B where we discuss nonstation
detector noise.

~iv! The final assumption is that the stochastic gravi
wave background is a Gaussian random process. This m
that the joint probability density function of the gravitation
strainshi(t i),hj (t j ), . . . in detectorsi , j , . . . is a multivari-
ate Gaussian~i.e., normal! distribution. In this case, the mea
values^hi(t)& and the second-order moments^hi(t i)hj (t j )&
completely specify the statistical properties of the signal. F
many early-universe processes, or even for more rec
sources of a gravity-wave background, this is a reasona
assumption. It can be justified by the central limit theore
which says that the sum of a large number of statistica
independent random variables is a Gaussian random v
able, independent of the probability distributions of the ori
nal variables. This will be the case for the stochastic ba
ground if it is the sum of gravity-wave signals produced by
large number of independent gravity-wave sources. This
sumption will not be true, however, if the stochastic bac
ground is the sum of the radiation produced, e.g., by onl
few unresolved binary star systems radiating in a given
quency interval at any instant of time.~See, e.g., Ref.@11#.!

The above four properties form the basis for the statist
analysis that we will give in the following sections. We wi
assume that they hold throughout, unless we explicitly s
otherwise.

C. Expectation value

Using the definition of the spectrumVgw( f ) and the sta-
tistical assumptions described in the previous subsection
can derive a useful result for the expectation value of
Fourier amplitudes of a stochastic background of grav
tional radiation. This result will be needed in Sec. III whe
we discuss signal detection and optimal filtering.

The starting point of the derivation is a plane wave e
pansion for the gravitational metric perturbations in a tra
verse, traceless gauge:

hab~ t,xW !5(
A

E
2`

`

d fE
S2

dV̂hA~ f ,V̂!ei2p f ~ t2V̂•xW /c!eab
A ~V̂ !.

~2.5!

Here V̂ is a unit vector specifying a direction on the two
sphere, with wave vectorkWª2p f V̂/c. Also, eab

A (V̂) are the
spin-2 polarization tensors for the ‘‘plus’’ and ‘‘cross’’ po
larization statesA51,3. Explicitly,

eab
1 ~V̂ !5m̂am̂b2n̂an̂b , ~2.6!
1-3
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eab
3 ~V̂ !5m̂an̂b1n̂am̂b , ~2.7!

where

V̂5cosf sinu x̂1sinf sinu ŷ1cosu ẑ, ~2.8!

m̂5sinf x̂2cosf ŷ, ~2.9!

n̂5cosf cosu x̂1sinf cosu ŷ2sinu ẑ, ~2.10!

and (u,f) are the standard polar and azimuthal angles on
two-sphere. The Fourier amplitudeshA( f ,V̂) are arbitrary
complex functions that satisfyhA(2 f ,V̂)5hA* ( f ,V̂), where
* denotes complex conjugation. This last relation follows
a consequence of the reality ofhab(t,xW ).

The assumptions that the stochastic background is iso
pic, unpolarized, and stationary imply that the expectat
value ~i.e., ensemble average! of the Fourier amplitudes
hA( f ,V̂) satisfies

^hA* ~ f ,V̂!hA8~ f 8,V̂8!&5d2~V̂,V̂8!dAA8d~ f 2 f 8!H~ f !,
~2.11!

whered2(V̂,V̂8)ªd(f2f8)d(cosu2cosu8) is the covari-
ant Dirac delta function on the two-sphere, andH( f ) is a
real, non-negative function, satisfyingH( f )5H(2 f ).2 If we
further assume that the stochastic background has zero m
then

^hA~ f ,V̂!&50. ~2.12!

Finally, since we are assuming that the stochastic ba
ground is Gaussian, the expectation values~2.11! and~2.12!
completelyspecify its statistical properties.

H( f ) is related to the spectrumVgw( f ) of the stochastic
gravity-wave background. This follows from the expressi

rgw5
c2

32pG
^ḣab~ t,xW !ḣab~ t,xW !& ~2.13!

for the energy density in gravitational waves~see, e.g., p.
955 of Ref.@12#!. By differentiating the plane wave expan
sion ~2.5! with respect tot, forming the contraction in Eq
~2.13!, and calculating the expectation value using E
~2.12!, we find

rgw 5
4p2c2

G E
0

`

d f f2H~ f ! S 5:E
0

`

d f
drgw

d f D .

~2.14!

Using Eqs.~2.1! and ~2.2! for Vgw( f ) then yields

2If the stochastic background is anisotropic, we should repl

H( f ) by a function that depends onV̂ in addition tof. If the sto-
chastic background is polarized, we should replaceH( f ) by a func-
tion that depends on the polarizationA51,3 as well.
10200
e
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H~ f !5
3H0

2

32p3 u f u23Vgw~ u f u!. ~2.15!

Thus,

^hA* ~ f ,V̂!hA8~ f 8,V̂8!&

5
3H0

2

32p3 d2~V̂,V̂8!dAA8d~ f 2 f 8!u f u23Vgw~ u f u!, ~2.16!

which is the desired result.

D. Observational constraints

At present, there are three observational constraints on
stochastic gravity-wave spectrumVgw( f ). These constraints
are quite weak in the frequency range of interest for grou
based interferometers (1 Hz, f ,103 Hz) and for proposed
space-based detectors (1024 Hz, f ,1021 Hz). There are
tighter constraints on the spectrum in two frequency rang
and one ‘‘wideband’’ but very weak constraint. In this pap
we simply state the constraints. For a more complete disc
sion, see Ref.@8# and the references mentioned therein.

~i! The strongest observational constraint onVgw( f )
comes from the high degree of isotropy observed in
CMBR. In particular, the 1-yr@13,14#, 2-yr @15#, and 4-yr
@16# data sets from the Cosmic Background Explo
~COBE! satellite place very strong restrictions onVgw( f ) at
very low frequencies:

Vgw~ f !h100
2 ,7310211S H0

f D 2

for H0, f ,30H0 .

~2.17!

Note that the above constraint does not apply to any gr
tational wave, but only to those of cosmological origin th
were already present at the time of last scattering of
CMBR. Also, sinceH053.2310218h100 Hz, this limit ap-
plies only over a narrow band of frequencies (10218 Hz
, f ,10216 Hz), which is far below any frequency ban
accessible to investigation by either Earth-based or sp
based interferometers. Thus, although this constraint is
vere, it is not directly relevant for any of the present-d
gravity-wave experiments.

~ii ! The second observational constraint comes from
most a decade of monitoring the radio pulses arriving from
number of stable millisecond pulsars@17#. These pulsars are
remarkably stable clocks, and the regularity of their puls
places tight constraints onVgw( f ) at frequencies on the orde
of the inverse of the observation time of the pulsa
(;1028 Hz):

Vgw~ f 51028 Hz!h100
2 ,1028. ~2.18!

Like the constraint on the stochastic gravity-wave ba
ground from the isotropy of the CMBR, the millisecond pu
sar timing constraint is irrelevant for current gravity-wa
experiments. The frequencyf 51028 Hz is 10 orders of
magnitude smaller than the band of frequencies accessib

e

1-4
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DETECTING A STOCHASTIC BACKGROUND OF . . . PHYSICAL REVIEW D 59 102001
LIGO, VIRGO, etc., and 4 orders of magnitude smaller th
that for proposed space-based detectors.

~iii ! The third and final observational constraint o
Vgw( f ) comes from the standard model of big-bang nucl
synthesis@9#. This model provides remarkably accurate fi
to the observed abundances of the light elements in the
verse, tightly constraining a number of key cosmological
rameters. One of the parameters constrained in this wa
the expansion rate of the universe at the time of nucleos
thesis. This places a constraint on the energy density of
universe at that time, which in turn constrains the ene
density in a cosmological background of gravitational rad
tion:

E
f .1028 Hz

d ln f Vgw~ f !h100
2 ,1025. ~2.19!

Although this bound constrains the spectrum of gravitatio
radiationVgw( f ) over a broad range of frequencies, it is n
very restrictive.

III. STOCHASTIC BACKGROUND: DETECTION

In this section, we begin our detailed discussion of
detection of a stochastic background of gravitational rad
tion. We explain how one can correlate the outputs of t
gravity-wave detectors to detect~or put an upper limit on! a
stochastic background signal. In Sec. III B, we give a d
tailed derivation of the overlap reduction function that cov
the case where the two arms of a detector are not per
dicular ~e.g., GEO-600!. In Sec. III C, we give a rigorous
derivation of the optimal signal processing strategy. The
tistical assumptions that we will use for the stochas
gravity-wave background are those described in Sec. II B
addition, we will assume that the noises intrinsic to the
tectors are~i! stationary,~ii ! Gaussian,~iii ! statistically inde-
pendent of one another and of the stochastic gravity-w
background, and~iv! much larger in magnitude than the st
chastic gravity-wave background. The modifications that
necessary when one relaxes most of these assumptions
be discussed in Sec. V.

A. Coincident and coaligned detectors

To begin, let us consider the simplest possible case. Le
suppose that we have twocoincidentandcoalignedgravity-
wave detectors with outputs

s1~ t !ªh1~ t !1n1~ t !, ~3.1!

s2~ t !ªh2~ t !1n2~ t !. ~3.2!

Here h1(t) and h2(t) denote the gravitational strains in th
two detectors due to the stochastic background, andn1(t)
andn2(t) denote the noises intrinsic to the first and seco
detectors, respectively.3 Since we are assuming that the tw

3We will assume throughout that the detector outputs are not w
ened.
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detectors are coincident and coaligned~i.e., have identical
locations and arm orientations!, the gravitational strains are
identical:

h~ t !ªh1~ t !5h2~ t !. ~3.3!

But the noisesn1(t) andn2(t) arenot equal to one another
As mentioned above, we will assume that they are station
Gaussian, statistically independent of one another and of
gravitational strains, and much larger in magnitude than
gravitational strains.4

Given the detector outputss1(t) ands2(t), we can form a
product ‘‘signal’’ S by multiplying them together and inte
grating over time:

SªE
2T/2

T/2

dt s1~ t !s2~ t !. ~3.4!

This quantity is proportional to the~zero-lag! cross-
correlation of s1(t) and s2(t) for an observation timeT.
Sinces1(t) ands2(t) are random variables, so too isS. It has
a mean value

mª^S& ~3.5!

and variance

s2
ª^S2&2^S&2, ~3.6!

which are related to the variances ofn1(t), n2(t), and
h(t).5 The goal is to calculatem ands, and then to construc
the signal-to-noise ratio

SNRª
m

s
. ~3.7!

As we shall see in Sec. IV, the value of the signal-to-no
ratio enters the decision rule for the detection of a stocha
gravity-wave signal.

it-

4The assumption that the noises intrinsic to the detectors are
tistically independent of one another is unrealistic for the case
coincident and coaligned detectors. But it is a reasonable assu
tion for widely separated detector sites.~See Sec. V E for more
details.!

5The mean values ofn1(t), n2(t), and h(t) are equal to zero,
either by assumption or by definition.
1-5
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Let us start with the mean valuem. By definition,

mª^S&5E
2T/2

T/2

dt ^s1~ t !s2~ t !& ~3.8!

5E
2T/2

T/2

dt ^h2~ t !1h~ t !n2~ t !

1n1~ t !h~ t !1n1~ t !n2~ t !& ~3.9!

5E
2T/2

T/2

dt ^h2~ t !& ~3.10!

5T^h2~ t !&5:Tsh
2 , ~3.11!

wheresh
2 denotes the~time-independent! variance ofh(t).6

Note that we used the statistical independence
n1(t), n2(t), andh(t) to obtain the third line, and the sta
tionarity of h(t) to obtain the last.

To express the variancesh
2
ª^h2(t)& in terms of the fre-

quency spectrumVgw( f ), we will make use of the plane
wave expansion~2.5! and the expectation value~2.16!. Since

h~ t !ªhab~ t,xW0!
1

2
~X̂aX̂b2ŶaŶb! ~3.12!

~wherexW0 is the common position vector of the central s
tion of the two coincident and coaligned detectors, andX̂a

and Ŷa are unit vectors pointing in the directions of the d
tector arms!,7 it follows that

sh
25(

A
(
A8

E
S2

dV̂E
S2

dV̂8E
2`

`

d fE
2`

`

d f8

3^hA* ~ f ,V̂!hA8~ f 8,V̂8!&e2 i2p f ~ t2V̂•xW0 /c!

3ei2p f 8~ t2V̂8•xW0 /c!FA~V̂ !FA8~V̂8!, ~3.13!

where

FA~V̂ !ªeab
A ~V̂ !

1

2
~X̂aX̂b2ŶaŶb! ~3.14!

6The dimensions ofsh
2 ands2 are different:sh

2 has dimensions of
strain2, while s2 has dimensions of strain4 sec2. @See, e.g., Eq.
~3.20!.#

7xW0 and X̂a,Ŷa are actually functions oftime due to the Earth’s
motion with respect to the cosmological rest frame. They can
treated as constants, however, since~i! the velocity of the Earth
with respect to the cosmological rest frame is small compared to
speed of light and~ii ! the distance that the central stations and ar
move during the correlation time between the two detectors is s
compared to the arm length.~The correlation time equals zero fo
coincident and coaligned detectors; it equals the light travel t
between the two detectors when the detectors are spatially s
rated.! See Ref.@10# for more details.
10200
f

-

is the response of either detector to a zero frequency,
amplitude,A51,3 polarized gravitational wave. Using Eq
~2.16! for the expectation valuêhA* ( f ,V̂)hA8( f 8,V̂8)&, the
above expression forsh

2 simplifies to

sh
25

3H0
2

32p3E
2`

`

d f u f u23Vgw~ u f u!(
A

E
S2

dV̂ FA~V̂ !FA~V̂ !

~3.15!

5
3H0

2

20p2E
2`

`

d f u f u23Vgw~ u f u!, ~3.16!

where we used

(
A

E
S2

dV̂ FA~V̂ !FA~V̂ !5
8p

5
~3.17!

to obtain the last line. Thus, for coincident and coalign
detectors, the mean value of the cross-correlation signalS is

m5
3H0

2

20p2 TE
2`

`

d f u f u23Vgw~ u f u!. ~3.18!

This is the first of our desired results.
To evaluate the variances2, we will make use of the

assumption that the noises intrinsic to the detectors are m
larger in magnitude than the gravitational strains. Then

s2
ª^S2&2^S&2'^S2& ~3.19!

5E
2T/2

T/2

dtE
2T/2

T/2

dt8^s1~ t !s2~ t !s1~ t8!s2~ t8!&

~3.20!

'E
2T/2

T/2

dtE
2T/2

T/2

dt8^n1~ t !n2~ t !n1~ t8!n2~ t8!&

~3.21!

5E
2T/2

T/2

dtE
2T/2

T/2

dt8^n1~ t !n1~ t8!&^n2~ t !n2~ t8!&,

~3.22!

where we used the statistical independence ofn1(t) and
n2(t) to obtain the last line. By definition,8

^ni~ t !ni~ t8!& 5:
1

2E2`

`

d f ei2p f ~ t2t8!Pi~ u f u!, ~3.23!

wherePi(u f u) is the~one-sided! noise power spectrumof the
i th detector (i 51,2). Pi(u f u) is a real, non-negative funce

e
s
ll

e
pa-

8Equation~3.23! can also be written in the frequency domain:

^ñi* ~ f !ñi~ f 8!&5
1

2
d~ f 2 f 8!Pi~ u f u!.

See the discussion surrounding Eq.~3.64! for more details.
1-6
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tion, defined with a factor of 1/2 to agree with the standa
~one-sided! definition used by instrument builders.
satisfies9

sni

2
ª^ni

2~ t !&5E
0

`

d f Pi~ f !, ~3.24!

and so the total noise power is the integral ofPi( f ) over all
positive frequenciesf from 0 to `, not from 2` to `.
~Hence the reason for the nameone-sided.! Graphs of the
predicted noise power spectra for the initial and advan
LIGO detectors are shown in Fig. 1. Graphs of the predic
noise power spectra for the other major interferometers~i.e.,
VIRGO, GEO-600, and TAMA-300! and for the ‘‘en-
hanced’’ LIGO detectors are shown in Figs. 11–15 in S
VI A.

Inserting Eq.~3.23! into Eq. ~3.22! yields

s2'
1

4E2T/2

T/2

dtE
2T/2

T/2

dt8E
2`

`

d fE
2`

`

d f8ei2p f ~ t2t8!

3e2 i2p f 8~ t2t8!P1~ u f u!P2~ u f 8u!, ~3.25!

where we used the reality ofn2(t) and P2(u f u) to produce
the minus sign in the power of the second exponential. If
integrate this expression overt and t8, we find

s2'
1

4E2`

`

d fE
2`

`

d f8dT
2~ f 2 f 8!P1~ u f u!P2~ u f 8u!,

~3.26!

where

dT~ f !ªE
2T/2

T/2

dt e2 i2p f t5
sin~p f T!

p f
~3.27!

9Unlike sh
2 and s2, sh

2 and sni

2 have the same dimension
(strain2).

FIG. 1. A log-log plot of the predicted noise power spectra
the initial and advanced LIGO detectors. The data for these n
power spectra were taken from the published design goals@1#.
10200
d

d
d

.

e

is a finite-time approximation to the Dirac delta functio
d( f ). In the limit T→`, dT( f ) reduces tod( f ), but for a
finite observation timeT, one hasdT(0)5T. Since in prac-
tice the observation timeT will be large enough so tha
dT( f 2 f 8) is sharply peaked over a region inf 2 f 8 whose
size'1/T is very small compared to the scale on which t
functionsP1(u f u) and P2(u f u) are varying,10 we can replace
one of the finite-time delta functionsdT( f 2 f 8) by an ordi-
nary Dirac delta function, and evaluate the other atf 5 f 8.
Doing this yields

s2'
T

4E2`

`

d f P1~ u f u!P2~ u f u!, ~3.28!

which is the second of our desired results.
Using Eq.~3.18! and~3.28!, we can now form the signal

to-noise ratio11

SNRª
m

s
'

3H0
2

10p2
AT

E
2`

`

d f u f u23Vgw~ u f u!

F E
2`

`

d f P1~ u f u!P2~ u f u!G1/2.

~3.29!

The multiplicative factor ofAT means that we canalways
exceed any prescribed value of the signal-to-noise ratio
correlating the outputs of two gravity-wave detectors for
long enough period of time.12 We will have more to say
about signal detection, parameter estimation, and sensit
levels for stochastic background searches in Sec. IV.

B. Overlap reduction function

To provide a rigorous treatment of the signal analysis
a stochastic background of gravitational radiation, we m
take into account the fact that the two gravity-wave detect
will not necessarily be either coincident or coaligned. The
will be a reduction in sensitivity due to~i! the separation
time delay between the two detectors and~ii ! the non-parallel
alignment of the detector arms. These two effects imply t
h1(t) andh2(t) are no longer equal; the overlap between t
gravitational strains in the two detectors is only partial. S
tistically, these effects are most apparent in the freque
domain.

10Typically, an observation timeT will be on the order of months
~i.e., 107 sec!, while the noise power spectraPi(u f u) vary on a scale
of greater than a few Hz.

11Be warned that the signal processing strategy described ab
leading to Eq.~3.29!, is not optimal even for the case of coinciden
and coaligned detectors. The optimal signal processing strat
which is described in Sec. III C, leads to the signal-to-noise ra
given by Eq.~3.75!. Settingg( f )51 in Eq.~3.75! yields an expres-
sion for the optimally filtered signal-to-noise ratio for the case
coincident and coaligned detectors.

12This assumes that there is no systematic source of correl
detector noise. In Sec. V E, we discuss the limits that correla
detector noise imposes.
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BRUCE ALLEN AND JOSEPH D. ROMANO PHYSICAL REVIEW D59 102001
The overlap reduction functiong( f ), first calculated in
closed form by Flanagan@7#, quantifies these two effects
This is a dimensionless function of frequencyf, which is
determined by the relative positions and orientations of a
of detectors. Explicitly,

g~ f ! ª
5

8p(
A

E
S2

dV̂ei2p f V̂•DxW /cF1
A~V̂ !F2

A~V̂ !,

~3.30!

whereV̂ is a unit vector specifying a direction on the tw
sphere,DxWªxW12xW2 is the separation vector between t
central stations of the two detector sites, and

Fi
A~V̂ !ªeab

A ~V̂ !di
ab
ªeab

A ~V̂ !
1

2
~X̂i

aX̂i
b2Ŷi

aŶi
b!

~3.31!

is the response of thei th detector (i 51,2) to theA51,3
polarization.@See also Eq.~3.14!.# The symmetric, trace-free
tensordi

ab specifies the orientation of the two arms of thei th
detector. The overlap reduction functiong( f ) equals unity
for coincident and coaligned detectors. It decreases be
unity when the detectors are shifted apart~so there is a phas
shift between the signals in the two detectors! or rotated out
of coalignment~so the detectors are sensitive to differe
polarizations!. In Sec. III C, we will see thatg( f ) arises
naturally when evaluating the expectation value of the pr
uct of the gravitational strains at two different detecto
when they are driven by an isotropic and unpolarized s
chastic background of gravitational radiation.

To get a better feeling for the meaning ofg( f ), let us
look at each term in Eq.~3.30! separately:~i! The overall
normalization factor 5/8p is chosen so that for a pair o
coincident and coaligned detectorsg( f )51 for all frequen-
ciesf. ~ii ! The sum over polarizationsA is appropriate for an
unpolarized stochastic background.~iii ! The integral over the

FIG. 2. The overlap reduction functiong( f ) for the Hanford,
WA and Livingston, LA LIGO detector pair.~The horizontal axis of
the left-hand graph is linear, while that of the right-hand graph
log10.) The overlap reduction function has its first zero at 64 Hz,
explained in the text. It falls off rapidly at higher frequencies.
10200
ir

w

t

-

-

two-sphere is an isotropic average over all directionsV̂ of
the incoming radiation.~iv! The exponential phase factor
the phase shift arising from the time delay between the
detectors for radiation arriving along the directionV̂. In the
limit f→0, this phase shift also goes to zero, and the t
detectors become effectively coincident.~v! The quantity
(AF1

A(V̂)F2
A(V̂) is the sum of products of the responses

the two detectors to the1 and 3 polarization waves. For
coaligned detectors,F1

A(V̂)5F2
A(V̂) and the integral of this

quantity over the two-sphere equals the inverse of the ove
normalization factor.@See Eq.~3.17!.#

Figure 2 shows a graph of the overlap reduction funct
g( f ) for the Hanford, WA and Livingston, LA LIGO detec
tor pair.13 Note that the overlap reduction function for th
LIGO detector pair isnegativeas f→0. This is because the
arm orientations of the two LIGO detectors are not paralle
one another, but are rotated by 90°. If, for example,
Livingston, LA detector arms were rotated by 90° in th
clockwise direction, only the overall sign ofg( f ) would
change. Note also that the magnitude ofg(0) is not unity,
because the planes of the Hanford, WA and Livingston,
detectors are not identical.14 Thus, the arms of the two de
tectors are not exactly parallel, andug(0)u50.89, which is
less than 1.

13Figures 16–20 in Sec. VI B show graphs of the overlap red
tion functions for different detector pairs.

14The two LIGO detectors are separated by an angle of 27.2
seen from the center of the Earth.

s
s

FIG. 3. The surface of the Earth (15°, latitude,75°,2130°
, longitude,20°) including the LIGO detectors in Hanford, WA
~L1! and Livingston, LA ~L2!, the VIRGO detector~V! in Pisa,
Italy, and the GEO-600~G! detector in Hanover, Germany. Th
perpendicular arms of the LIGO detectors are also illustra
~though not to scale!. A plane gravitational wave passing by th
Earth is indicated by successive minimum, zero, and maximum
the wave. As this wave passes by the pair of LIGO detectors
excites the two in coincidence at the moment shown, since b
detectors are driven negative by the wave. During the time when
zero is between L1 and L2, the two detectors respond in a
coincidence. Provided that the wavelength of the incident grav
tional wave is larger than twice the separation (d53001 km) be-
tween the detectors, the two detectors are driven in coincide
more of the time than in anti-coincidence.
1-8
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From Fig. 2, one also sees that the overlap reduction fu
tion for the two LIGO detectors has its first zero at 64 H
This can be explained by the fact that a gravitational pla
wave passing by the Earth excites a pair of detectors in
incidence when the positive~or negative! amplitude part of
the wave is passing by both detectors at the same tim
excites the two detectors in anti-coincidence when the p
tive ~or negative! amplitude part of the wave is passing b
one detector, and the negative~or positive! amplitude part of
the wave is passing by the other detector.~See Fig. 3.! Pro-
vided that the wavelength of the incident gravitational wa
is larger than twice the distance between the two detect
the detectors will be driven in coincidence~on average!. For
the case of the LIGO detector pair, this means that the H
ford, WA and Livingston, LA detectors will be driven in
coincidence~on the average! by an isotropic and unpolarize
stochastic background of gravitational radiation having a
quency of less thanf 5c/(2d)550 Hz. The actual fre-
quency of the zero (f 564 Hz) is slightly larger than this
since g( f ) is a sum of three spherical Bessel function
which does not vanish at exactly 50 Hz.

In Appendix B of Ref.@7#, Flanagan outlines a derivatio
of a closed-form expression for the overlap reduction fu
tion g( f ). The resulting expression applies toany pair of
gravity-wave detectors, including interferometers with no
perpendicular arms and/or arbitrary orientations. This i
useful result, because, e.g., the arms of the GEO-600 dete
are separated by 94.33°. Below we give a more deta
version of the derivation that appears in Ref.@7#, and correct
a typographical error that appears in Eq.~B6! of that paper.

We take, as our starting point for the derivation, the in
gral expression~3.30! for g( f ). To simplify the notation in
what follows, we also define

DxWªdŝ and aª
2p f d

c
, ~3.32!

whereŝ is a unit vector that points in the direction conne
ing the two detectors, andd is the distance between the tw
detectors. In terms of these quantities, we can write

g~ f !5d1
abd2

cdGabcd~a,ŝ!, ~3.33!

where

Gabcd~a,ŝ!ª
5

8p(
A

E
S2

dV̂ eiaV̂• ŝeab
A ~V̂ !ecd

A ~V̂ !.

~3.34!

Gabcd(a,ŝ) is a tensor which is symmetric under the inte
changesa↔b,c↔d,ab↔cd. It is also trace-free with re-
spect to theab andcd index pairs.

To evaluateGabcd(a,ŝ), we begin by writing down the
most general tensor constructed fromdab andsa that has the
above-mentioned symmetry properties:
10200
c-
.
e
o-

it
i-

e
rs,

n-

-

,

-

-
a
tor
d

-

Gabcd~a,ŝ!5A~a!dabdcd1B~a!~dacdbd1dbcdad!

1C~a!~dabscsd1dcdsasb!

1D~a!~dacsbsd1dadsbsc

1dbcsasd1dbdsasc!1E~a!sasbscsd .

~3.35!

We then contract Eq. ~3.35! with dabdcd,(dacdbd

1dbcdad), . . . ,sasbscsd to obtain a linear system of equa
tions for the functionsA,B, . . . ,E:

F 9 6 6 4 1

6 24 4 16 2

6 4 8 8 2

4 16 8 24 4

1 2 2 4 1

GF A

B

C

D

E

G ~a!5F p

q

r

s

t

G ~a!, ~3.36!

where

p~a!ªGabcd~a,ŝ!dabdcd,

q~a!ªGabcd~a,ŝ!~dacdbd1dbcdad!,

r ~a!ªGabcd~a,ŝ!~dabscsd1dcdsasb!,

s~a!ªGabcd~a,ŝ!~dacsbsd1dadsbsc1dbcsasd

1dbdsasc!,

t~a!ªGabcd~a,ŝ!sasbscsd. ~3.37!

From Eq. ~3.34!, we see that the functionsp,q, . . . ,t are
scalar integrals that involve contractions of the spin-two p
larization tensorseab

A (V̂).
To evaluate these integrals, we choose~without loss of

generality! a coordinate system where the unit vectorŝ co-
incides with unit vectorẑ. Then

V̂• ŝ5cosu, m̂• ŝ50, n̂• ŝ52sinu, ~3.38!

and

p~a!50,

q~a!510E
21

1

dx eiax520j 0~a!,

r ~a!50,

s~a!510E
21

1

dx eiax~12x2!5
40

a
j 1~a!,

t~a!5
5

4E21

1

dx eiax~12x2!25
20

a2 j 2~a!, ~3.39!
1-9
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BRUCE ALLEN AND JOSEPH D. ROMANO PHYSICAL REVIEW D59 102001
where j 0(a), j 1(a), and j 2(a) are the standard spheric
Bessel functions:

j 0~a!5
sina

a
,

j 1~a!5
sina

a2 2
cosa

a
,

j 2~a!53
sina

a3 23
cosa

a2 2
sina

a
. ~3.40!

Note that p(a)50 and r (a)50 are immediate conse
quences of the trace-free property ofGabcd(a,ŝ).

The above linear system of equations~3.36! can be in-
verted for the functionsA,B, . . . ,E. The results are

F A

B

C

D

E

G ~a!5
1

2a2F 25a2 10a 5

5a2 210a 5

5a2 210a 225

25a2 20a 225

5a2 250a 175

G F j 0

j 1

j 2

G ~a!.

~3.41!

Finally, to obtain an expression for the overlap reduct
functiong( f ), we substitute Eq.~3.35! into Eq.~3.33!. Since
di

ab ( i 51,2) is trace-free, it follows that

g~ f !52B~a!d1
abd2ab14D~a!d1

abd2a
csbsc

1E~a!d1
abd2

cdsasbscsd . ~3.42!

Substituting the expressions for the functionsB,D,E given
by Eq. ~3.41! into Eq. ~3.42! yields

g~ f !5r1~a!d1
abd2ab1r2~a!d1

abd2a
csbsc

1r3~a!d1
abd2

cdsasbscsd , ~3.43!

where

F r1

r2

r3

G ~a!5
1

2a2F 10a2 220a 10

220a2 80a 2100

5a2 250a 175
GF j 0

j 1

j 2

G ~a!.

~3.44!

This is the desired result.
Note that in Eq.~B6! of Ref. @7#, the factor multiplying

j 1(a) in r1(a) is 22/a. As shown in Eq.~3.44!, this factor
should equal210/a.

C. Optimal filtering

Using the techniques developed in the previous two s
sections, we are now in a position to give a rigorous deri
tion of the optimal signal processing required for the det
tion of a stochastic background of gravitational radiation. W
10200
n

-
-
-

e

start by writing the cross-correlation signalS between the
outputs of the two detectors in the following form:

SªE
2T/2

T/2

dtE
2T/2

T/2

dt8 s1~ t !s2~ t8!Q~ t,t8!, ~3.45!

where as before

s1~ t !ªh1~ t !1n1~ t !, ~3.46!

s2~ t !ªh2~ t !1n2~ t !, ~3.47!

but nowQ(t,t8) is a filter function, which is not necessaril
equal tod(t2t8) as we assumed in Sec. III A. Because w
are assuming in this section that the statistical propertie
the stochastic gravity-wave background and noise intrinsi
the detectors are both stationary, the best choice of fi
function Q(t,t8) can depend only upon the time differenc
Dtªt2t8. The goal is to find theoptimal choiceof filter
function Q(t2t8)ªQ(t,t8) in a rigorous way.

The optimal choice of filter functionQ(t2t8) will depend
upon the locations and orientations of the detectors, as
as on the spectrum of the stochastic gravity-wave ba
ground and the noise power spectra of the detectors. It f
off rapidly to zero for time delaysDt5t2t8 whose magni-
tude is large compared to the light travel timed/c between
the two sites.15 ~See Fig. 5, which is located at the end of th
section.! Since a typical observation timeT will be @d/c,
we are justified in changing the limits on one of the integ
tions in Eq.~3.45! to obtain

S5E
2T/2

T/2

dtE
2`

`

dt8 s1~ t !s2~ t8!Q~ t2t8!. ~3.48!

This change of limits simplifies the mathematical analy
that follows.

We can also write Eq.~3.48! in the frequency domain
Using the convention

g̃~ f !ªE
2`

`

dt e2 i2p f tg~ t ! ~3.49!

for the Fourier transform ofg(t), it follows that

S5E
2`

`

d fE
2`

`

d f8dT~ f 2 f 8!s̃1* ~ f !s̃2~ f 8!Q̃~ f 8!,

~3.50!

wheres̃1( f ), s̃2( f ), andQ̃( f ) are the Fourier transforms o
s1(t), s2(t), andQ(t2t8), anddT( f 2 f 8) is the finite-time
approximation to the Dirac delta functiond( f 2 f 8) defined
by Eq. ~3.27!. Note also that for a realQ(t2t8), Q̃(2 f )
5Q̃* ( f ).

15d/c51022 sec for the LIGO detector pair.
1-10



he
ec
t of

two
d of
q.

DETECTING A STOCHASTIC BACKGROUND OF . . . PHYSICAL REVIEW D 59 102001
The optimal choice of filter function also depends on t
quantity that we want to maximize. As we shall see in S
IV, in the context of stochastic background searches, i
natural to maximize the signal-to-noise ratio

SNRª
m

s
, ~3.51!

wherem ands2 are the mean value and variance of the
d
-

e
a-
he

10200
.
is

cross-correlation signalS defined by Eqs.~3.5! and ~3.6!.
The techniques that we will use to evaluatem and s2 are
very similar to those that we used in Sec. III A for the case
coincident and coaligned detectors.

The calculation of the mean valuem is straightforward.
Since we are assuming that the noises intrinsic to the
detectors are statistically independent of each other an
the gravitational strains, it follows immediately from E
~3.50! that
mª^S&5E
2`

`

d fE
2`

`

d f8dT~ f 2 f 8!^h̃1* ~ f !h̃2~ f 8!&Q̃~ f 8!. ~3.52!

To calculate the expectation value^h̃1* ( f )h̃2( f 8)&, we again make use of the plane wave expansion~2.5! and the expectation
value ~2.16!. Since

h̃i~ f !5(
A

E
S2

dV̂ hA~ f ,V̂!e2 i2p f V̂•xW i /cFi
A~V̂ !, ~3.53!

wherei 51,2 labels the two detectors, we find

^h̃1* ~ f !h̃2~ f 8!&5(
A

(
A8

E
S2

dV̂E
S2

dV̂8^hA* ~ f ,V̂!hA8~ f 8,V̂8!&ei2p f V̂•xW1 /ce2 i2p f 8V̂8•xW2 /cF1
A~V̂! F2

A8~V̂8! ~3.54!

5
3H0

2

32p3 d~ f 2 f 8!u f u23Vgw~ u f u!(
A

E
S2

dV̂ei2p f V̂•DxW /cF1
A~V̂ !F2

A~V̂ ! ~3.55!

5
3H0

2

20p2 d~ f 2 f 8!u f u23Vgw~ u f u!g~ u f u!, ~3.56!
sic
an-

n
is

tec-
ss-

r

where we used Eq.~2.16! to obtain the second equality an
the definition~3.30! of the overlap reduction function to ob
tain the third. Substituting Eq.~3.56! into Eq. ~3.52! yields

m5
3H0

2

20p2 TE
2`

`

d f u f u23Vgw~ u f u!g~ u f u!Q̃~ f !. ~3.57!

The factor ofT on the right hand side~RHS! arises from
evaluatingdT(0).

Before calculating the variances2, it is worthwhile to
make a slight digression and study in more detail the exp
tation value~3.56! derived above. It turns out that this equ
tion has an important physical implication. In terms of t
time domain variablesh1(t) and h2(t8), Eq. ~3.56! can be
rewritten as

^h1~ t !h2~ t8!&5E
2`

`

d f ei2p f ~ t2t8!H12~ f !, ~3.58!

where
c-

H12~ f !5
3H0

2

20p2 u f u23Vgw~ u f u!g~ u f u!. ~3.59!

In other words,H12( f ) is just the Fourier transform of the
cross-correlation of the gravitational strainsh1(t) andh2(t8)
at the two detector sites. Moreover, since the noises intrin
to the two detectors are statistically independent of one
other and of the gravitational strains, it follows that

^h1~ t !h2~ t8!&5^s1~ t !s2~ t8!&. ~3.60!

Thus,H12( f ) is the Fourier transform of the cross-correlatio
of the outputs of the two detectors. But this correlation
something that we canmeasure~or at least estimate! given
enough data.16 This in turn implies that we can measure~or
at least estimate! Vgw(u f u). Explicitly, given the measured

16For example, suppose we measure the outputs of the two de
tors for a total observation time of 1 yr. To estimate the cro
correlation^s1(t)s2(t8)&, we simply form the products ofs1(t) and
s2(t8) for all t andt8 having the sameDt5t2t8 ~e.g., 1 msec!, and
then average the results. We then repeat this procedure foDt
52 msec, 3 msec, etc.
1-11
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values of ^s1(t)s2(t8)&, we take their Fourier transform
~with respect t2t8), multiply by u f u3, and divide by
(3H0

2/20p2)g(u f u), to determineVgw(u f u). This will yield a
good approximation to the real stochastic gravity-wave sp
trum provided that the noise intrinsic to the detectors is
too large or, equivalently, if we measure the detector outp
for a long enough period of timeT. Also, the approximation
of Vgw(u f u) will be best for frequencies 1/T, f ,c/d ~where
d/c is the light travel time between the two detectors!: For
y

m

e

n
ed

10200
c-
t
ts

f ,1/T, the Fourier transform lacks sufficient time doma
data to provide useful information; forf .c/d, the overlap
reduction function quickly approaches zero, and so the d
sion byg( f ) makesVgw(u f u) ill-behaved.

Let us return now to the calculation of the signal-to-no
ratio SNRªm/s. To calculate the variances2, we assume
~as in Sec. III A! that the noises intrinsic to the two detecto
are much larger in magnitude than the stochastic grav
wave background. Then
s2
ª^S2&2^S&2'^S2& ~3.61!

'E
2`

`

d fE
2`

`

d f8E
2`

`

dkE
2`

`

dk8dT~ f 2 f 8!dT~k2k8!^ñ1* ~ f !ñ2~ f 8!ñ1* ~k!ñ2~k8!&Q̃~ f 8!Q̃~k8! ~3.62!

'E
2`

`

d fE
2`

`

d f8E
2`

`

dkE
2`

`

dk8dT~ f 2 f 8!dT~k2k8!^ñ1* ~ f !ñ1~2k!&^ñ2* ~2 f 8!ñ2~k8!&Q̃~ f 8!Q̃~k8!, ~3.63!
e

g a
where we used the statistical independence and realit
n1(t) andn2(t) to obtain the last line.

In Sec. III A, we defined the noise power spectru
Pi(u f u) in terms of the expectation value^ni(t)ni(t8)& of the
time domain random variablesni(t). @See Eq.~3.23!.# An
analogous expression holds in the frequency domain as w
Using definition~3.49! for the Fourier transformñi( f ) and
definition ~3.23! for the noise power spectrumPi(u f u), it
follows that

^ñi* ~ f !ñi~ f 8!&5
1

2
d~ f 2 f 8!Pi~ u f u!. ~3.64!

Substituting this result into Eq.~3.63! then yields

s2'
1

4E2`

`

d fE
2`

`

d f8dT
2~ f 2 f 8!

3P1~ u f u!P2~ u f 8u!Q̃~ f !Q̃* ~ f 8! ~3.65!

'
T

4E2`

`

d f P1~ u f u!P2~ u f u!uQ̃~ f !u2, ~3.66!

where we replaced one of the finite-time delta functio
dT( f 2 f 8) by an ordinary Dirac delta function, and evaluat
the other atf 5 f 8 to obtain the last line.

To summarize,

m5
3H0

2

20p2 TE
2`

`

d f u f u23Vgw~ u f u!g~ u f u!Q̃~ f !, ~3.67!

s2'
T

4E2`

`

d f P1~ u f u!P2~ u f u!uQ̃~ f !u2. ~3.68!
of

ll.

s

The problem now is to find the filter functionQ̃( f ) that
maximizes the signal-to-noise ratio~3.51!, with m ands2 as
given above. This turns out to be remarkably simple if w
first introduce aninner product(A,B) for any pair of com-
plex functionsA( f ) and B( f ). The inner product ofA( f )
andB( f ) is a complex number defined by

~A,B!ªE
2`

`

d f A* ~ f !B~ f !P1~ u f u!P2~ u f u!. ~3.69!

SincePi(u f u).0, it follows that (A,A)>0, and (A,A)50 if
and only if A( f )50. In addition, (A,B)5(B,A)* and
(A,B1lC)5(A,B)1l(A,C) for any complex numberl.
Thus, (A,B) is a positive-definiteinner product. It satisfies

FIG. 4. Optimal filter functionsQ̃( f ) for the initial and ad-
vanced LIGO detector pairs, for a stochastic background havin
constant frequency spectrumVgw( f )5V0 . Both filters are normal-
ized to have maximum magnitude equal to unity.
1-12
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DETECTING A STOCHASTIC BACKGROUND OF . . . PHYSICAL REVIEW D 59 102001
all of the properties of an ordinary dot product of vectors
three-dimensional Euclidean space.

In terms of this inner product, the mean valuem and
variances2 can be written as

m5
3H0

2

20p2 TS Q̃,
g~ u f u!Vgw~ u f u!

u f u3P1~ u f u!P2~ u f u!
D , ~3.70!

s2'
T

4
~Q̃,Q̃!. ~3.71!

The problem is to chooseQ̃( f ) so that it maximizes the
signal-to-noise ratio~3.51! or equivalently, the square
signal-to-noise ratio

SNR25
m2

s2 'S 3H0
2

10p2D 2

T

S Q̃,
g~ u f u!Vgw~ u f u!

u f u3P1~ u f u!P2~ u f u!
D 2

~Q̃,Q̃!
.

~3.72!

But this is trivial. For suppose we are given a fixed thre
dimensional vectorAW , and are asked to find the thre
dimensional vectorQW that maximizes the ratio (QW •AW )2/QW

•QW . Since this ratio is proportional to the squared cosine
the angle between the two vectors, it is maximized by cho
ing QW to point in the same direction asAW . The problem of
maximizing Eq.~3.72! is identical. The solution is

Q̃~ f !5l
g~ u f u!Vgw~ u f u!

u f u3P1~ u f u!P2~ u f u!
, ~3.73!

wherel is a ~real! overall normalization constant.
One of the curious things about expression~3.73! for the

optimal filter Q̃( f ) is that it depends upon the spectru
Vgw( f ) of the stochastic gravity-wave background. This is
function that we do not knowa priori.17 In practice this
means that we cannot use a single optimal filter when p
forming the data analysis; we will need to use asetof such
filters. For example, within the bandwidth of interest for t
ground-based interferometers, it is reasonable to assume
the spectrum is given by a power lawVgw( f )5Va f a ~where
Va5const).18 We could then construct a set of optimal fi
tersQ̃a( f ) ~say, fora524,27/2, . . .,7/2,4) with the over-
all normalization constantsla chosen so that

m5VaT. ~3.74!

With this choice of normalization, the optimal filter function
Q̃a( f ) arecompletelyspecified by the exponenta, the over-
lap reduction function, and the noise power spectra of

17See, however, the discussion surrounding Eqs.~3.58! and~3.59!.
18The a in Va and f a is just a number; it is not an index label.
10200
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two detectors. We would then analyze the outputs of the
detectors for each of these filters separately. Figure 4 sh
the optimal filter functions~displayed in the frequency do
main! for both the initial and advanced LIGO detector pai
for a stochastic background having a constant freque
spectrumVgw( f )5V0 (i.e., a50).19 Figure 5 shows these
same optimal filter functions displayed in the time domain
i.e., as a function of thelag t2t8.

Having found the optimal choice of filter functionQ̃( f ),
it is now straightforward to calculate the signal-to-noise ra
for a given pair of detectors. Substituting Eq.~3.73! into Eq.
~3.72! and taking the square root gives

SNR'
3H0

2

10p2ATF E
2`

`

d f
g2~ u f u!Vgw

2 ~ u f u!

f 6P1~ u f u!P2~ u f u!
G 1/2

. ~3.75!

We will use this result in later sections to calculate sign
to-noise ratios and sensitivity levels for different detec
pairs, assuming that the stochastic gravity-wave backgro
has a constant frequency spectrumVgw( f )5V0 . Tables I–V
in Sec. VI D contain the results of these calculations.

IV. DETECTION, ESTIMATION,
AND SENSITIVITY LEVELS

Once the detectors have gone ‘‘on-line’’ and are gene
ing data that needs to be analyzed, we will be confron
with the following questions:~i! How do we decide, from the
experimental data, if we have detected a stochastic grav
wave signal?~ii ! Assuming that a stochastic gravity-wav
signal is present, how do we estimate its strength?~iii ! As-
suming that a stochastic gravity-wave signal is present, w
is the minimum value ofV0 required to detect it 95% of the
time? In this section, we answer these questions, usin
frequentist approach to the theory of probability an
statistics.20

A. Statistical considerations

When performing a search for a stochastic background
gravitational radiation, it is convenient to break the data

19Figures 21–30 in Sec. VI C show the analogous optimal fil
functions for different detector pairs.

20There are actuallytwo approaches that one can take when a
lyzing data: the frequentist~or classical frequency probability! ap-
proach, which is adopted in this paper, and the Bayesian~or sub-
jective probability! approach, which is adopted in Refs.@18,19#.
Although we will not describe the similarities and differences
these two approaches in any detail in this paper, it is importan
emphasize that the frequentist and Bayesian approaches arin-
equivalentmethods of analyzing data. Frequentists and Bayes
askdifferentquestions about data and hypotheses, and consequ
obtain different answers and draw different conclusions. In fa
there are certain questions that one can ask and answer in the B
sian approach that are ill-defined for a frequentist. Interested rea
should see Refs.@18,19# for a detailed discussion of the frequenti
and Bayesian approaches applied to gravitational-wave data a
sis with multiple detectors.
1-13
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~which might be hours, days, or weeks in length! into shorter
stretches ofN points, which we can then fast Fourier tran
form ~FFT! and correlate with data from other detectors. D
pending on the choice ofN and on the sampling rate of th
detector, these shorter segments of data will typically las
the order of seconds.21 From Eq. ~3.50!, we see that in a
measurement over a single observation periodT'4 sec, the
signalS is a sum~over f and f 8) of approximately 400 sta
tistically independent random variables~products of the Fou-
rier amplitudes of the signals!. This is becauses̃1( f ) and
s̃2( f 8) are correlated only whenu f 2 f 8u,1/T'.25 Hz, and
the bandwidth over which the integral in Eq.~3.50! gets its
major contribution is;100 Hz wide. Thus, by virtue of the
central limit theorem,S is well approximated by a Gaussia
random variable, provided we are not too far away from
mode of the distribution. Equivalently, the values ofS in a
set of measurements over statistically independent time
tervals~each of lengthT) are normally distributed. The mea
value of this distribution ism ª ^S&, and the variance is
s2

ª ^S2&2^S&2.
Let sª (S1 ,S2 , . . . ,Sn) be a set of such measuremen

over statistically independent time intervals, each of len
T.22 We can think of these measurements asn independent
samples drawn from a normal distribution having meanm
and variances2. The sets represents the outcome of a sing

21For example, forN5655365216 and a sampling rate of 20 kHz
T53.2768 sec. For the sameN and a sampling rate o
16.384 kHz5214 Hz, T54.0 sec. Since the relevant bandwi
for stochastic background detection isf ,300 Hz, the data stream
could, in principle, be decimated to sampling rates which are s
stantially smaller—i.e., 1024 Hz.

22In order that the measurements be statistically independent
time intervals should be non-overlapping, andT should be@ the
light travel timed/c between the two detectors. For the LIGO d
tector pair, this corresponds toT@1022 sec, which is satisfied for
T'4 sec.

FIG. 5. Optimal filter functionsQ(t2t8) for the initial and ad-
vanced LIGO detector pairs, for a stochastic background havin
constant frequency spectrumVgw( f )5V0 . Both filters are normal-
ized to have maximum magnitude equal to unity.
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experiment. From these samples, we can construct
samplemean

m̂ ª

1

n(i 51

n

Si ~4.1!

and thesamplevariance

ŝ2
ª

1

n21 (
i 51

n

~Si2m̂ !2. ~4.2!

Given the values of these estimatorsm̂ and ŝ2, we would
like to decide, in some reliable way, whether or not we ha
detected a stochastic gravity-wave signal.

To make such a decision, we will apply a standard th
rem from the theory of probability and statistics~see, e.g., p.
178 of Ref.@20#!. The theorem states that ifm̂ is the sample
mean of a set ofn independent samples drawn from a norm
distribution having meanm and variances2, then

t 5
m̂2m

ŝ/An
~4.3!

is the value of a random variable having Studen
t-distribution with parametern5n21. This is the classic
Student’st-test. It is used to compare the means of two n
mal distributions that have the same variance, when the v
ances2 is unknown.

Since tables of Student’st-distribution and its associate
cumulative probability distribution function can be found
most handbooks on statistics~see, e.g.,@21#!, we could do all
of the remaining calculations in this section in terms of t
t-distribution. The drawback to this approach, however,
that the t-distribution depends on the parametern5n21.
This means that all of our results would depend on the nu
ber of observationsn that constitute a single experiment. F
stochastic background searches, this undesirable feature
be avoided by choosingn large enough so that th
t-distribution and standard normal distribution are virtua
indistinguishable. Since a typical total observation time w
be on the order of months or years (;107 sec), whileT ~the
duration of a single observation period! is typically on the
order of seconds, it is no problem to choosen;103 or
more.23 For such largen, Eq. ~4.3! can be rewritten as

z '
m̂2m

ŝ/An
, ~4.4!

wherez is the value of a random variable having the stand
normal distribution—i.e.,z is a Gaussian random variab
having zero mean and unit variance. Note that the appr
mation becomes a strict equality ifŝ is replaced by its ex-
pected values. This is because a linear combination ofn

b-

he

23In fact, even forn530, the 2s values for thet-distribution and
standard normal distribution differ by less than 5%. Asn→`, this
difference goes to zero.

a
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DETECTING A STOCHASTIC BACKGROUND OF . . . PHYSICAL REVIEW D 59 102001
Gaussian random variables~e.g.,m̂) is also a Gaussian ran
dom variable, independent ofn.

In the calculations that follow, we will want to assig
probabilities to different events. From a frequentist point
view, this means that we should perform~or imagine per-
forming! some fixed experiment many, many times. T
probability of an event is then defined as the frequency
occurrence of that event, in the limit of an infinite number
repeated, independent experiments.

B. Signal detection

In order to decide whether or not we have detecte
stochastic gravity-wave signal, we need a rule that, give
set of measured data, will select for us one of two alterna
hypotheses:

H0 : A stochastic gravity-wave signal is absent.
H1 : A stochastic gravity-wave signal is present, char

terized by some fixed, butunknown, mean valuem.0.
Moreover, we would like this rule to be ‘‘optimal’’ with

respect to some chosen set of criteria. This method of d
sion making, or ‘‘hypothesis testing’’ as it is more formal
called, is a well-studied branch of frequentist statistics.
such, we will not go into any of the details here. After ma
ing the appropriate definitions, we will simply state the ru
that we adopt for our stochastic background searches
explain in what sense it is optimal. Interested readers sho
see Ref.@22# for a much more thorough discussion of th
statistical theory of signal detection.

To begin, let us note that the two hypothesesH0 andH1
are exhaustive and mutually exclusive—i.e., a stocha
gravity-wave signal is either absent or present. And,
present, it will be characterized by some fixed mean valuem,
which is proportional toV0 for a stochastic background o
gravitational radiation having a constant frequency spect
Vgw( f )5V0 . The only requirement is thatm.0. H0 is a
simplehypothesis, since it does not depend on any unkno
parameters.H1 is acomplex~or composite! hypothesis, since
it depends on a range of the unknown parameterm. Explic-
itly,

H15 ø
n50

`

Hndm,dm , ~4.5!

whereHm,dm is the hypothesis that a stochastic gravity-wa
signal is present, characterized by a fixed mean value ly
in the range (m,m1dm#.

As before, letsª (S1 ,S2 , . . . ,Sn) be a set ofn statisti-
cally independent measurements of the cross-correlation
nal S. Because of the noise intrinsic to the detectors a
errors inherent to the measurement process, the outcom
an experiments is a random variable. It is described statis
cally by the probability density functions:

p(su0): Probability density function for the outcome of a
experiment to bes, given that a stochastic gravity-wave si
nal is absent.

p(sum): Probability density function for the outcome o
an experiment to bes, given that a stochastic gravity-wav
10200
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signal is present, characterized by the fixed mean valum
.0.

From Eq.~4.4!, it follows that

p~su0!5~2pŝ2!2n/2 expF2(
i 51

n Si
2

2ŝ2G , ~4.6!

p~sum!5~2pŝ2!2n/2 expF2(
i 51

n
~Si2m!2

2ŝ2 G .

~4.7!

The fact that we can use the sample varianceŝ2 ~instead of
the true variances2) on the right-hand sides of Eqs.~4.6!
and ~4.7! follows from the largen approximation that we
used to obtain Eq.~4.4!.

A decision rule that, given the outcome of an experime
selects for us eitherH0 or H1 is equivalent to a division of
the space of all possible experimental outcomes into
disjoint regionsR0 andR1 : If sPR0 , thenH0 is chosen; if
sPR1 , thenH1 is chosen. The success and failure of suc
rule are characterized by two types of errors: Atype I ~or
false alarm! error occurs when the decision rule choosesH1
when H0 is really true. A type II ~or false dismissal! error
occurs when the decision rule choosesH0 whenH1 is really
true. In terms ofp(su0), p(sum), R0 , andR1 , we have

a[false alarm rateª E
R1

dsp~su0!, ~4.8!

b~m![false dismissal rateª E
R0

dsp~sum!. ~4.9!

Note that, for the complex hypothesisH1 , the false dismissa
rate is actually a function of the mean valuem.0. Note also
that 12a is the fraction of experimental outcomes that t
decision rule correctly identifies theabsence~not presence!
of a stochastic gravity-wave signal. If we want to talk abo
detection, we should evaluate

g~m![detection rateª 12b~m!, ~4.10!

which is the fraction of experimental outcomes that the
cision rule correctly identifies the presence of a stocha
gravity-wave signal, characterized by the fixed mean va
m.0.24

In order for the decision rule to choose the regionsR0 and
R1 in an ‘‘optimal’’ way, we must first select some set o
criteria with respect to which ‘‘optimal’’ can be defined. Fo
stochastic background searches, where one does not kna
priori the ‘‘costs’’ that one should associate with false ala
and false dismissal errors, it is reasonable to choose a d
sion rule that minimizes the false dismissal rateb(m) for a
fixed value of the false alarm ratea. Equivalently, one
chooses a decision rule that maximizes the probability

24The detection rateg(m) should not be confused with the overla
reduction functiong( f ), which was defined in Sec. III B.
1-15
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BRUCE ALLEN AND JOSEPH D. ROMANO PHYSICAL REVIEW D59 102001
detecting a stochastic gravity-wave signal, while keeping
false alarm rate fixed. This decision criterion is known in t
literature as theNeyman-Pearsoncriterion. In general, for a
complex hypothesis, the Neyman-Pearson criterion yields
gionsR0 andR1 that depend on the unknown parameterm.
But for this case, whereH1 involves all parameter values
m.0, R0 andR1 are actually independent ofm.25 Without
going into details here, let us simply state the result: Nam
in the context of stochastic background searches as desc
above, the Neyman-Pearson criterion is satisfied if, given
outcome of an experiments, we form the estimatorsm̂ and
ŝ2 according to Eqs.~4.1! and ~4.2!, and then

chooseH0 if m̂,zaŝ/An,

chooseH1 if m̂>zaŝ/An. ~4.11!

Hereza is that value of the random variablez for which the
area under the standard normal distribution to its right
equal toa. ~See Fig. 6.! In terms of thecomplementaryerror
function

erfc~z! ª
2

Ap
E

z

`

dx e2x2
~4.12!

~see Fig. 7!,

za5A2 erfc21~2a!, ~4.13!

where erfc21 denotes the inverse of erfc. Sincem̂ andŝ are
functions of the outcome of the experiments, the inequalities
m̂,zaŝ/An and m̂>zaŝ/An defineR0 and R1 . Note also
that the decision rule can be restated as

chooseH0 if AnSNR̂,za ,

chooseH1 if AnSNR̂>za , ~4.14!

where

AnSNR̂ª An
m̂

ŝ
~4.15!

is the measured signal-to-noise ratio aftern observation pe-
riods. The fact that the signal-to-noise ratio enters the ab
inequalities is one of the main reasons why we paid so m
attention to evaluating it in Sec. III.

25See pp. 152–153 of Ref.@22# for more details.
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Given the above decision rule for signal detection, we c
now calculate the false alarm and false dismissal rates
fined by Eqs.~4.8! and ~4.9!. First, for the false alarm rate
one finds

a5Prob~m̂>zaŝ/Anum50! ~4.16!

5Prob~z>za! ~4.17!

5
1

2
erfcS za

A2
D , ~4.18!

where we used Eq.~4.4! with m50 to obtain the second
equality. Thus, our two uses of the symbola ~for the false
alarm rate and for the area under the standard normal di
bution to the right ofza) are consistent.

Second, for the false dismissal rate,

b~m!5Prob~m̂,zaŝ/Anum.0 fixed! ~4.19!

5Prob~z,za2Anm/ŝ ! ~4.20!

512
1

2
erfcS za2Anm/ŝ

A2
D , ~4.21!

where we again used Eq.~4.4! ~but this time withm.0) to
obtain the second equality. A graph of the detection r
g(m) ª 12b(m) is shown in Fig. 8. From this graph, w
see that the detection rateg(m) approachesa as m→0; it
approaches 1 asm→`. Also, the detection rate equals 0.5
for m5zaŝ/An ~or, equivalently, forAnm/ŝ5za). Thus, if
we replaceŝ with its expected values, we see that the
detection rate is only 50% for a signal having a theoreti
signal-to-noise ratio aftern observation periods equal toza .

It is also interesting to note that the Neyman-Pearson
tection criterion, when applied to stochastic backgrou
searches, is equivalent to themaximum-likelihooddetection
criterion @22#. In other words, we will obtain the same dec
sion rule given above if we first construct the likelihood ra

L~sum! ª
p~sum!

p~su0!
; ~4.22!

maximizeL(sum) with respect to variations of the paramet
m.0,

Lmax~s! ª max
m.0

L~sum!; ~4.23!

and then divide the space of all possible experimental o
comess into two regionsR0 andR1 according to the rule

chooseH0 if Lmax~s!,L0 ,

chooseH1 if Lmax~s!>L0 , ~4.24!

where L0 is chosen so that the false alarm rate equalsa.
Explicitly, from Eqs.~4.6! and ~4.7!, it follows that
1-16
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L~sum!5expFnm

ŝ2 S 1

n(i 51

n

Si2
1

2
m D G5expFnm

ŝ2 S m̂2
1

2
m D G .

~4.25!

L(sum) is maximized whenm equals the sample meanm̂:26

Lmax~s!5L~sum̂ !5expF1

2

nm̂2

ŝ2 G . ~4.26!

The decision surfaceL0 is obtained by settingm̂ equal to the
threshold valuezaŝ/An:

L05Lmax~zaŝ/An!5exp@ 1
2 za

2 #. ~4.27!

C. Parameter estimation

Assuming that a stochastic gravity-wave signal is pres
characterized by some fixed, but unknown, mean valuem
.0, parameter estimation attempts to answer the ques
what is the value ofm? It does this by first constructing th
sample meanm̂ and sample varianceŝ2 of a set s
ª (S1 ,S2 , . . . ,Sn) of n statistically independent measur
ments of the cross-correlation signalS, as described in Sec
IV A. From Eq. ~4.4!, we then know that

z'
m̂2m

ŝ/An
~4.28!

26The sample meanm̂ is said to be themaximum-likelihood esti-
mator for this problem.

FIG. 6. The standard normal probability distribution for
Gaussian random variable having zero mean and unit variance.za is
that value ofz for which the area under the standard normal dis
bution to its right is equal toa. Typical values for 12a are 0.90,
0.95, and 0.99. The corresponding values forza are z0.10

51.28, z0.0551.65, andz0.0152.33. These are the threshold valu
appropriate for the one-sided test described in the text.
10200
t,

n,

is the value of a Gaussian random variable having zero m
and unit variance. Thus, ifza/2 is that value of the random
variablez for which the area under the standard normal d
tribution to its right is equal toa/2 ~see Fig. 9!, then (1
2a)3100% of the time

2za/2,z,za/2 ~4.29!

or, equivalently,

m̂2za/2ŝ/An,m,m̂1za/2ŝ/An. ~4.30!

Said another way, in an ensemble of observations of
same stochastic background, a fraction 12a of the intervals

I a ª @m̂2za/2ŝ/An,m̂1za/2ŝ/An#, ~4.31!

constructed from the measured data, will contain the valu
the true meanm. Equivalently,a is the fraction of intervals
I a that fail to contain the value of the true meanm. Of
course, given the outcome of a single experiments, the in-
terval I a either contains or does not contain the value ofm.
And the value ofm, if it is contained inI a , need not be any
closer to the center of the interval than to either of its edg
Thus, the confidence that one associates with the above
mation procedure is not equivalent to our degree of be
that the true meanm lies within a given interval.~This is a
Bayesian interpretation of probability.! Rather, it is the frac-
tion of experimental outcomes that our estimation proced
will produce an interval that contains the true meanm, in the
limit of an infinite number of repeated, independent expe
ments.

D. Sensitivity levels

Let us assume once again that a stochastic gravity-w
signal is present, characterized by some fixed, but unkno
mean valuem.0. Then it is reasonable to ask what is th
minimum value ofm required so that our decision rule co
rectly identifies the presence of a signal at leastg3100% of
the time?

-

FIG. 7. The complementary error function.
1-17
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The answer to this question can be obtained by apply
the results of Sec. IV B. Namely, we require that the det
tion rate g(m) ª 12b(m) be greater than or equal to th
desired rateg, and then solve the resulting inequality form.
Explicitly, from Eq. ~4.21!, it follows that

12b~m!5
1

2
erfcS za2Anm/ŝ

A2
D >g ~4.32!

or, equivalently,

za2Anm/s<A2 erfc21~2g!, ~4.33!

where we replaced the estimatorŝ by its expected values to
obtain the LHS of the above equation. Thus,

m>
s

An
@za2A2 erfc21~2g!# ~4.34!

5
s

An
A2@erfc21~2a!2erfc21~2g!#. ~4.35!

Equivalently,

An SNR>A2@erfc21~2a!2erfc21~2g!#, ~4.36!

where AnSNRª Anm/s is the theoretical signal-to-nois
ratio after n observation periods. Note that the right-ha
sides of Eqs.~4.35! and ~4.36! depend on botha and g.27

This means that to calculate the minimum value ofm ~or the
minimum signal-to-noise ratio!, we must specify the desire
detection rateg in addition to the false alarm ratea. In the
past~see, e.g., Refs.@7,8#!, physicists have only specified th
false alarm ratea. It seems that they have mistakenly a
sumed that the probability of correctly identifying the pre

27The dependence ona is via the threshold valueza , which de-
fines the decision rule~4.14!.

FIG. 8. The detection rateg(m) ª 12b(m) plotted as a func-
tion of the mean valuem.
10200
g
-

-
-

ence of a signal was 12a. But as mentioned in Sec. IV B
12a is the probability that the decision rule correctly ide
tifies theabsenceof a signal. To talk about detection~and the
associated minimum value ofm), one needs to include th
additional parameterg.

For stochastic background searches, we can rewrite
~4.35! in terms ofV0 , g( f ), and the noise power spectr
P1( f ) andP2( f ) of the two detectors:

V0>
1

ATtot

10p2

3H0
2 F E

2`

`

d f
g2~ u f u!

f 6P1~ u f u!P2~ u f u!G21/2

3A2@erfc21~2a!2erfc21~2g!#, ~4.37!

where Ttotª nT is the duration of a single experiments.
This result follows from Eq.~3.75! for a stochastic back-
ground of gravitational radiation having a constant frequen
spectrumVgw( f )5V0 . Let us now evaluate the minimum
value of V0 for 4 months of observation~i.e., Ttot
5107 sec), for a false alarm ratea50.05, and for a detec
tion rate g50.95. Denoting the solution byV0

95%,5%, we
find28

~i! V0
95%,5%h100

2 55.7431026 for the initial LIGO detector
pair,

~ii ! V0
95%,5%h100

2 55.68310211 for the advanced LIGO
detector pair.

28There is nothing special about the choicea50.05 and g
50.95. For example,a andg need not sum to 1. We could equall
well have chosena50.10 andg50.95, and calculated a differen
minimum valueV0

95%,10%.

FIG. 9. The standard normal probability distribution for
Gaussian random variable having zero mean and unit variance.za/2

is that value ofz for which the area under the standard norm
distribution to its right is equal toa/2. The area under the standa
normal distribution between2za/2 and za/2 is thus 12a. Typical
values for 12a are 0.90, 0.95, and 0.99. The corresponding val
for za/2 arez0.0551.65, z0.02551.96, andz0.00552.58.
1-18
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Note, however, that these valuesdisagree with those
quoted in the literature~see, e.g., Refs@7,8#!. In Refs.@7,8#,
the minimum value ofV0 is determined by the equation

V05
1

ATtot

10p2

3H0
2 F E

2`

`

d f
g2~ u f u!

f 6P1~ u f u!P2~ u f u!G21/2

3A2 erfc21~a!. ~4.38!

There are two mistakes: First, the argument of the inve
complementary error function isa instead of 2a. But this is
appropriate for atwo-sidedtest, which would be correct i
the mean valuem could be either positive or negative. Se
ond, and more importantly, there is no term proportional
erfc21(2g). As mentioned above, it seems that the auth
mistakenly assumed that the probability of correctly iden
fying the presence of a signal was 12a. Even the a
50.10,g50.90 value of Eq.~4.37! does not agree with the
values ofV0

90% quoted in Refs.@7,8#. Thus, byV0
90% the

authors do not mean the minimum value ofV0 for a false
alarm rate equal to 10% and a detection rate equal to 90

Alternatively, the absence of the term erfc21(2g) from
Eq. ~4.38! is equivalent to calculating the minimum value
V0 for a detection rateg50.50. This is because erfc21(1)
50. Thus, the values ofV0

90% quoted in Refs.@7,8# are for a
false alarm rate equal to 5% and a detection rate equa
50%—not 90% as they claim. This is why the minimu
values ofV0 quoted in those papers are smaller than th
found here.

Table I in Sec. VI D contains theoretical signal-to-noi
ratios after 4 months of observation, for a stochastic ba
ground having a constant frequency spectrumVgw( f )5V0

563106h100
22 .

Table II in Sec. VI D contains minimum values ofV0h100
2

for 4 months of observation, for a false alarm rate equa
5%, and for a detection rate equal to 95%.

E. Summary

We started this section by asking a series of questions
conclude, we summarize the answers obtained above,
address a couple of other related issues.

~i! How do we decide, from the experimental data, if
have detected a stochastic gravity-wave signal?

Answer: We compare the measured signal-to-noise r
after n observation periods to the threshold valueza . If
AnSNR̂,za , we conclude that a stochastic gravity-wa
signal is absent. IfAnSNR̂>za , we conclude that a stochas
tic gravity-wave signal is present, characterized by so
fixed, but unknown, mean valuem.0.

Note, however, that we can never conclude, with 10
confidence, that a stochastic gravity-wave signal is absen
present. Our decision rule leads us to infer one of these
possibilities, but the rule is not perfect. The false alarm r
a and false dismissal ratesb(m) @defined by Eqs.~4.8! and
~4.9!# are the error rates associated with the rule. Th
claims about the absence or presence of a stochastic gra
10200
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wave signal should always be made with these error rate
mind.

Moreover, one has to be very careful about trying to d
fine ‘‘termination’’ criteria. For example, it would be mis
leading to try to terminate an experiment by correlating
outputs of two gravity-wave detectors until the measu
signal-to-noise ratio for the total observation period exce
some threshold valueza . One can show that the false alar
rate associated with such a rule is 100%. In other words,
conclusion drawn from such an experiment wouldalwaysbe
that a stochastic gravity-wave signal is present, even in
absence of a signal. Noises intrinsic to the detectors
errors inherent to the measurement process are sufficie
guarantee that the measured signal-to-noise ratio for the
observation period will eventually exceed anyza .

If, however, the value of the threshold level increas
with observation time in an appropriate manner, then o
candefine termination criteria that have false alarm rates l
than 100%. A famous theorem of probability and statisti
called thelaw of the iterated logarithm@23#, states that if
S1 ,S2 , . . . are statistically independent and identically d
tributed random variables with zero mean and finite varia
s2, then29

ProbS lim sup
n→`

S11S21•••1Sn

sA2n log@ log~n!#
51D 51. ~4.39!

This means that ifl,1, there is unit probability that

S11S21•••1Sn

sA2n log@ log~n!#
.l ~4.40!

for infinitely many n. If l.1, there is unit probability that
Eq. ~4.40! holds for only finitely manyn. In terms of the
measured signal-to-noise ratio aftern observation periods
Eq. ~4.40! can be rewritten as

AnSNR̂.lA2 log@ log~n!#, ~4.41!

where we have replacedŝ in the definition of SNR̂by its
expected values. Thus, if we want to define a terminatio
criterion with a false alarm rate less than 100%, we sho
compareAnSNR̂ with threshold levelstn satisfying

lim
n→`

tn

Alog@ log~n!#
5`. ~4.42!

This is consistent with the claim made in the previous pa
graph that constant threshold levelstn5za will always be
exceeded for somen. Unfortunately, we have not been ab
to write down a simple analytic expression for the fal
alarm rate, for arbitrary threshold levelstn satisfying Eq.

29The lim supn→` of a sequencex1 ,x2 , . . . is defined as follows:
Let am equal the least upper bound of the subseque
xm ,xm11 , . . . . ~Note thata1>a2> . . . .) Then lim supn→` xn

ª lim
m→`

am .
1-19
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~4.42!. The probability thatAnSNR̂>tn for somen involves
integrals of products of the Gaussian probability dens
function with the complementary error function.

~ii ! Assuming that a stochastic gravity-wave signal
present, how do we estimate its strength?

Answer: Assuming that a stochastic gravity-wave sig
is present, characterized by some fixed, but unknown, m
valuem.0, we estimatem by constructing the interval

I a ª @m̂2za/2ŝ/An,m̂1za/2ŝ/An#. ~4.43!

In an ensemble of observations of the same stochastic b
ground, 12a is the fraction of intervalsI a constructed in
this way that contain the value of the true meanm.

We should emphasize that parameter estimationassumes
the presenceof a signal. First, as mentioned above, we c
never be 100% certain that a stochastic gravity-wave sig
is present. Second, it does not make any sense to try to
mate the parameters of something that we assume doe
exist.

~iii ! Assuming that a stochastic gravity-wave signal
present, what is the minimum value ofV0 required to detect
it g3100% of time?

Answer: Assuming that a stochastic gravity-wave sig
is present, characterized by some fixed, but unknown, m
value m.0, the minimum value ofV0 , for an observation
time Ttot , false alarm ratea, and detection rateg, is given
by

V05
1

ATtot

10p2

3H0
2 F E

2`

`

d f
g2~ u f u!

f 6P1~ u f u!P2~ u f u!G21/2

3A2@erfc21~2a!2erfc21~2g!#. ~4.44!

For fixeda andg, the factor ofTtot
21/2 implies that the mini-

mum value of V0 decreases with increasing observati
time. Thus, thesensitivityimproves as the total observatio
time increases. This means that asTtot increases we can put
tighter ‘‘upper limit’’ on the value ofV0 for a stochastic
gravity-wave signal that we will falsely dismiss more th
(12g)3100% of the time.

Alternatively, for a fixedV0 and a fixed false alarm rat
a, the factor ofTtot

21/2 implies that the false dismissmal ra
12g, for a stochastic gravity-wave signal having a stren
equal toV0 , decreases with increasing observation time.
example, suppose that a particular theory—such as cos
strings—predicts a value ofV051027. Moreover, suppose
that, in successive years of observation, we fail to detect
presence of a signal at this level of sensitivity. Then we c
still say that the probability of our falsely dismissing a st
chastic gravity-wave signal having a strength equal toV0
51027 has decreased over the course of the observation

The above upper limit on stochastic background sig
strengths@defined by Eq.~4.44!# is different from that ob-
tained by setting the measured signal-to-noise ratio for
total observation period equal to the threshold valueza :
10200
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V05
1

ATtot

10p2

3H0
2 F E

2`

`

d f
g2~ u f u!

f 6P1~ u f u!P2~ u f u!G21/2

3A2 erfc21~2a!. ~4.45!

This alternative upper limit is the maximum value of the te
statistic leading to the conclusion that a stochastic grav
wave signal is absent. The decision rule—by its ve
construction—will never allow one to conclude that a s
chastic gravity-wave signal is present with anV0 less than
this upper limit.

The above two definitions of upper limit agree when t
detection rateg50.50. This is because erfc21(1)50. This
means that, if a stochastic gravity-wave signal is pres
with an V0 less than or equal to this maximum value, th
there is more than a 50% chance of falsely dismissing
Note also that if we change the argument of the inve
complementary error function froma to 2a in Eq. ~4.38!,
then Eqs.~4.38! and~4.45! agree. Thus, the minimum value
of V0 quoted in Refs.@7,8# can be interpreted as either th
g50.50,a50.05 upper limit defined by Eq.~4.44! or thea
50.05 upper limit defined by Eq.~4.45!.

V. COMPLICATIONS

In Sec. III, we discussed optimal filtering under the a
sumptions that the noises intrinsic to the detectors were~i!
stationary,~ii ! Gaussian,~iii ! statistically independent of on
another and of the stochastic gravity-wave background,
~iv! much larger in magnitude than the stochastic grav
wave background. In this section, we describe the modifi
tions that are necessary when most of these assumption
removed.30 We will also describe how one can correlate t
outputs of 4 or more detectors, and how one can comb
data from multiple detector pairs to increase the sensitivity
a stochastic background search.

A. Signal-to-noise ratios for arbitrarily large
stochastic backgrounds

In Sec. III C, we calculated the signal-to-noise ratio for
stochastic background of gravitational radiation, assum
that the noises intrinsic to the detectors were much large
magnitude than the gravitational strains. Although this
sumption is most likely valid, there are at least two reaso
why we want to consider stochastic background sign
whose magnitudes are comparable to~or larger than! the
noise intrinsic to the detectors:~i! Computer simulations for
stochastic background searches allow one to ‘‘dial-in’’ ar
trarily large signal strengths. Thus, in order to compare t
oretical predictions with the results of computer simulatio
we need to be able to analyze the large signal case.~ii ! Fu-
ture generations of gravity-wave detectors might have int
sic detector noise levels comparable to the level of a r

30We will alwaysassume that the noise intrinsic to a detector
Gaussian and statistically independent of the gravitational strai
1-20
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stochastic background signal. For this case, optimal filter
of large signal data will also be necessary.

To begin, let us recall the main results of Sec. III C. U
der the assumption that the noises intrinsic to the detec
were much larger than the gravitational strains, the calc
tion of the variances2

ª ^S2&2^S&2 simplified consider-
ably. For the large noise case,s2 was dominated by the pur
detector noise contribution:

s2'
T

4E2`

`

d f P1~ u f u!P2~ u f u!uQ̃~ f !u2. ~5.1!

This is Eq.~3.68! from Sec. III C.
If, however, the magnitude of the stochastic backgrou

signal is comparable to the noises intrinsic to the detect
the calculation of the signal-to-noise ratio SNRª m/s is
more involved. Although the mean valuem is independent of
the relative size of the stochastic background signal and
detector noise,31

m5
3H0

2

20p2 TE
2`

`

d f u f u23Vgw~ u f u!g~ u f u!Q̃~ f !, ~5.2!

the variances2 is not. Explicitly,

s25
T

4E2`

`

d f uQ̃~ f !u2R~ f !, ~5.3!

where

R~ f ! ª F P1~ u f u!P2~ u f u!1S 3H0
2

10p2DVgw~ u f u!

u f u3

3„P1~ u f u!1P2~ u f u!…1S 3H0
2

10p2D 2Vgw
2 ~ u f u!

f 6

3„11g2~ u f u!…G . ~5.4!

Note the additional terms that contribute to the varian
Roughly speaking, they can be thought of as two ‘‘sign
1noise’’ cross-terms and a ‘‘pure signal’’ variance term32

WhenVgw(u f u) is negligible compared to the detector noi
power spectraPi(u f u) ( i 51,2), Eqs.~5.3! and ~5.4! for s2

reduce to the ‘‘pure noise’’ variance term~5.1! as they
should.

At this stage of the analysis, the filter functionQ̃( f ) in
Eqs.~5.2! and~5.3! is arbitrary. For the case of large detect
noise, we were able to make anoptimal choice for Q̃( f ),
which maximized the signal-to-noise ratio. This was fac
tated by introducing an inner product

31See the discussion surrounding Eqs.~3.52!–~3.57! in Sec. III C.
32These are the terms proportional toVgw(u f u) andVgw

2 (u f u), re-
spectively.
10200
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l

~A,B! ª E
2`

`

d f A* ~ f !B~ f !P1~ u f u!P2~ u f u!, ~5.5!

and writing m and s2 in terms of this inner product. The
squared signal-to-noise ratio then took the form

SNR25S 3H0
2

10p2D 2

T

S Q̃,
g~ u f u!Vgw~ u f u!

u f u3P1~ u f u!P2~ u f u!
D 2

~Q̃,Q̃!
, ~5.6!

which was maximized by choosing

Q̃~ f !5l
g~ u f u!Vgw~ u f u!

u f u3P1~ u f u!P2~ u f u!
. ~5.7!

Although Q̃( f ) depended onVgw( f ), we could construct a
set of optimal filtersQ̃a( f ) for stochastic backgrounds hav
ing power-law spectraVgw( f )5Va f a ~whereVa5const).
The proportionality constantsVa could always be absorbe
into the normalization constantsla . The resulting set of
optimal filters was thencompletelyspecified by the exponen
a, the overlap reduction function, and the noise power sp
tra of the two detectors.

For the case where the stochastic background is com
rable to the noise intrinsic to the detectors, we can try to
something similar. We can define anew inner product

~A,B! ª E
2`

`

d f A* ~ f !B~ f !R~ f !, ~5.8!

whereR( f ) is given by Eq.~5.4!. Although this inner prod-
uct is more complicated in form than the original inner pro
uct ~5.5!, it is still positive-definite, sinceR( f ) is real and
positive. In terms of Eq.~5.8!,

m5
3H0

2

20p2 T~Q̃,A! and s25
T

4
~Q̃,Q̃!, ~5.9!

where

A~ f ! ª u f u23Vgw~ u f u!g~ u f u!R21~ f !. ~5.10!

The squared signal-to-noise ratio is thus

SNR25S 3H0
2

10p2D 2

T
~Q̃,A!2

~Q̃,Q̃!
, ~5.11!

which has the same form as Eq.~5.6!, although with a much
more complicated expression forA( f ). But the same argu-
ment for maximizing the squared signal-to-noise ratio s
goes through. The optimal choice of filter function is

Q̃~ f !5lA~ f !, ~5.12!

wherel is a ~real! overall normalization constant.
But this is where the similarity with the large detect

noise case ends, and where the complications start to a
The main problem is that the optimal filter functionQ̃( f ) has
1-21
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a complicated functional dependence on the stocha
gravity-wave spectrumVgw( f ). For the large detector nois
case, this problem did not exist. As mentioned earlier,
could always consider stochastic backgrounds having pow
law spectraVgw( f )5Va f a, and then construct a set of op
timal filters Q̃a( f ) labeled by the different values ofa. But
for the optimal filter functionQ̃( f ) given by Eqs.~5.12!,
~5.10!, and ~5.4!, this idea of constructing a set of filter
labeled by only the power-law exponentsa fails. The pro-
portionality constantsVa cannotbe absorbed into the nor
malization constantsla . For example, if we consider a sto
chastic background having a constant frequency spect
Vgw( f )5V0 ~i.e., a50), then

Q̃~ f !5lV0u f u23g~ u f u!FP1~ u f u!P2~ u f u!

1S 3H0
2

10p2D V0

u f u3 „P1~ u f u!1P2~ u f u!…

1S 3H0
2

10p2D 2V0
2

f 6 „11g2~ u f u!…G21

. ~5.13!

Although the factor ofV0 in the numeratorcanbe absorbed
into the normalization constantl, the factors ofV0 andV0

2

in the denominator cannot. In other words, if we want
construct a set of optimal filters for arbitrarily large stocha
tic backgrounds having power-law spectraVgw( f )5Va f a,
we need to specify the proportionality constantsVa in addi-
tion to the exponentsa. The ‘‘space of optimal filters’’ thus
becomes a much larger set, parametrized by (a,Va). Al-
though in principle this poses no problem, in practice it
quires a more sophisticated search algorithm; the dete
outputs will have to be analyzed for each of the filte
Q̃(a,Va)( f ) separately.

B. Nonstationary detector noise

It is not at all uncommon for the power spectra of t
noises intrinsic to the detectors to change over the co
of time. There will be periods of time when the detecto
are relatively ‘‘quiet,’’ and other periods of time whe
the detectors are relatively ‘‘noisy.’’33 These changes in th
power spectra will, in turn, lead to measurements whose
tistical properties also change with time. For example, dur
the quiet periods of detector operation, t
measurements(1)S1 ,(1)S2 , . . . ,(1)Sn1

will have an associated

variance (1)s2 that will be smaller than the variance(2)s2

associated with the measurements(2)S1 ,(2)S2 , . . . ,(2)Sn2

taken during the noisy periods. Moreover, if the optimal fil
function is normalized@by an appropriate choice ofl in Eq.

33Although the frequency of these more ‘‘noisy’’ periods shou
decrease as the detectors are gradually improved over the cou
months or years, variations in the detector noise power spectra
still inevitablyoccur.
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~3.73!# so that the theoretical meanm is equal to some fixed
value @e.g., m5VaT for a stochastic background having
power-law spectrumVgw( f )5Va f a], then the quiet periods
will have a correspondingly larger signal-to-noise rat
Thus, a natural question that arises in this context is, can
combine the different sets of measurements, correspon
to the quiet and noisy periods of detector operation, so a
maximize the overall signal-to-noise ratio? The answer
this question is yes, and the proof is sketched below.

In order to handle the most general case, let us considm
different sets of measurements

~ i !S1 ,~ i !S2 , . . . ,~ i !Sni
~5.14!

corresponding tom different levels of detector noise orm
different periods of detector operation.~Here i
51,2, . . . ,m.) Each of these measurements is taken over
identical time interval of lengthT. These measurements ca
be thought of as realizations ofm random variables( i )S,
each having thesametheoretical mean

~ i !m ª ^~ i !S&5:m, ~5.15!

but different theoretical variances

~ i !s2
ª ^~ i !S2&2^~ i !S&2. ~5.16!

The equality of the mean values follows because
assume identical normalization conventions on the optim
filters—e.g., m5VaT for a power-law spectrumVgw( f )
5Va f a. We also assume that all of the
measurements(1)S1 ,(1)S2 , . . . ,(m)Snm

are statistically inde-
pendent of one another.34

For each set of measurements, we can construct
sample mean~or estimator!

~ i !m̂ ª

1

ni
(
j 51

ni
~ i !Sj . ~5.17!

Viewed as a random variable in its own right,( i )m̂ has mean
value

m i ª ^~ i !m̂&5m ~5.18!

and variance

s i
2
ª ^~ i !m̂2&2^~ i !m̂&25

~ i !s2

ni
. ~5.19!

What we want to do now is combine all the mea
urements(1)S1 ,(1)S2 , . . . ,(m)Snm

~or, equivalently, combine

the sample means(1)m̂,(2)m̂, . . . ,(m)m̂) so as to maximize
the overall signal-to-noise ratio. We thus use aweightedav-
erage to define the estimator

of
ill

34As mentioned in Sec. IV A, this means that the measureme
are taken over distinct, nonoverlapping periods of operation, w
T@ the light travel timed/c between the two detectors.
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m̂ ª

(
i 51

m

l i
~ i !m̂

(
j 51

m

l j

, ~5.20!

and then choosel i.0 to maximize the signal-to-noise rati
of m̂. From Eq.~5.20!, it follows that m̂ has mean value

mm̂ ª ^m̂&5m ~5.21!

~which is independent of the choice ofl i) and variance

sm̂
2
ª ^m̂2&2^m̂&25

(
i 51

m

l i
2s i

2

S (
j 51

m

l j D 2 . ~5.22!

The squared signal-to-noise ratio is thus

SNRm̂
2
ª

mm̂
2

sm̂
2

5m2

S (
j 51

m

l j D 2

(
i 51

m

l i
2s i

2

. ~5.23!

To find thel i which maximize SNRm̂
2

~and hence which
tell us how to optimally combine data from periods of qu
and noisy detector operation! is quite easy. This is becaus
Eq. ~5.23! can be written as a ratio of inner products, just
we were able to write the squared signal-to-noise ratio~3.72!
in Sec. III C as a ratio of inner products. Explicitly,

SNRm̂
2

5m2
~l,s22!2

~l,l!
~5.24!

where the inner product (a,b) is defined by

~a,b! ª (
i 51

m

a i* b is i
2 , ~5.25!

for any pair of ~complex! sequencesa i and b i ( i
51,2, . . . ,m). The inner product (a,b) is positive-definite,
sinces i

2 is real and positive, and it satisfies all of the pro
erties of the ordinary dot product of vectors in thre
dimensional Euclidean space. Thus, choosing

l i}s i
22 ~5.26!

maximizes Eq.~5.24! in the same way that choosingAW pro-
portional toBW maximizes the ratio (AW •BW )2/(AW •AW ). By aver-
aging each set of measurements with the inverse of its a
ciated theoretical variance, we give more weight to sig
values that are measured when the detectors are quiet th
signal values that are measured when the detectors are n
This weighting maximizes the overall signal-to-noise ratio

For the optimal choice of weightsl i5s i
22 , the inverse

of the variance of the optimal estimator
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m̂optimalª m̂ul i5s
i
22 ~5.27!

has a very simple form

soptimal
22 5(

i 51

m

s i
225(

i 51

m

ni
~ i !s22. ~5.28!

This result says that the variances for the optimal estima
add like electrical resistors in parallel. The squared signal
noise ratio of the optimal estimator also has a very sim
form

SNRoptimal
2 5(

i 51

m

SNRi
25(

i 51

m

ni
~ i !SNR2, ~5.29!

where

SNRi ª
m i

s i
5

m

s i
~5.30!

and

~ i !SNRª

~ i !m
~ i !s

5
m

~ i !s
. ~5.31!

Thus, the squared signal-to-noise ratio of the optimal estim
tor is simply a sum of the squared signal-to-noise ratios
each ( i )S after ni observation periods, each of lengthT.

It is instructive to compare the results for the optim
estimatorm̂optimal with those for the ‘‘naive’’ estimator

m̂naiveª
1

ntot
(
i 51

m

(
j 51

ni
~ i !Sj , ~5.32!

which simply averages all of the signal estimates, paying
attention to the different variances( i )s2 associated with the
( i )S. The naive estimatorm̂naive corresponds to Eq.~5.20!
with l i5ni andntotª ( i 51

m ni . One can show that

snaive
2 5

1

ntot
2 (

i 51

m

ni
2s i

25
1

ntot
2 (

i 51

m

ni
~ i !s2 ~5.33!

and

SNRnaive
22 5

1

ntot
2 (

i 51

m

ni
2 SNRi

225
1

ntot
2 (

i 51

m

ni
~ i !SNR22.

~5.34!

Note that in addition to the factors of 1/ntot
2 , the signs of the

exponents for the variances and signal-to-noise ratios in E
~5.33! and ~5.34! are opposite to those in Eqs.~5.28! and
~5.29!.

To give a numerical example, suppose we have just
different periods of detector operation, with the second
riod twice as noisy as the first—i.e.,(2)s52x(1)s. Since
s i

25 ( i )s2/ni , it follows that if there are 4 times as man
measurements during the noisy period~i.e., n254n1), then
s1

25s2
2 . Intuition suggests that the optimal way of combi

ing the measurements for this case is to weight the estima
1-23
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BRUCE ALLEN AND JOSEPH D. ROMANO PHYSICAL REVIEW D59 102001
(1)m̂ and (2)m̂ equally ~i.e., l15l25s1
22). This agrees

with the above mathematical analysis, and yields a squa
signal-to-noise ratio for the optimal estimator equal to

SNRoptimal
2 52n1

~1!SNR252n1

m2

~1!s2
. ~5.35!

For the naive estimator,

SNRnaive
2 5

25

17
n1

~1!SNR25
25

17
n1

m2

~1!s2
. ~5.36!

Thus, for this particular example, the signal-to-noise ratio
the optimal estimator isA34/2551.17 times larger than tha
for the naive estimator.

C. Multiple detector pairs

Combining measurements from multiple detector pairs
order to increase the sensitivity of a stochastic backgro
search isidentical to combining different sets of measur
ments corresponding to quiet and noisy periods of dete
operation in order to maximize the overall signal-to-no
ratio. The only difference between the two is one of int
pretation and notation. In Sec. V B,

~ i !S1 ,~ i !S2, . . . ~ i !Sni
~5.37!

denotedni different measurements, each of lengthT, of the
optimally filtered cross-correlation signal( i )S when the level
of detector noise was characterized by the variance

~ i !s i
2
ª ^~ i !S2&2^~ i !S&2. ~5.38!

In this section, for multiple detector pairs,

~ i j !S1 ,~ i j !S2 , . . . ,~ i j !Sni j
~5.39!

denoteni j different measurements, again each of lengthT, of
the optimally filtered cross-correlation signal( i j )S between
the i th and j th detectors.35 As usual,

~ i j !s i
2
ª ^~ i j !S2&2^~ i j !S&2 ~5.40!

denotes the variance of the cross-correlation signal( i j )S.
Provided that each cross-correlation signal measurem

occurs over the same time intervalT ~which should be@ the
light travel time between any pair of detectors!, and that the
optimal filter functions for each detector pair have identi
normalizations@e.g.,l in Eq. ~3.73! is chosen so that( i j )m
5^ ( i j )S&5VaT for a stochastic gravity-wave backgroun

35In Sec. V B,i 51,2, . . . ,m labeledm different levels of detector
noise orm different periods of detector operation. In this sectio
i , j 51,2, . . . ,l label l different detectors, andmª l ( l 21)/2 is the
number of different detector pairs.
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having a power-law spectrumVgw( f )5Va f a], the math-
ematical analysis of Sec. V B goes through unchanged.36 The
optimal way of combining the estimators

~ i j !m̂ ª

1

ni j
(
k51

ni j
~ i j !Sk ~5.41!

for each detector pair is

m̂ ª

(
i 51

l

(
j , i

l

l i j
~ i j !m̂

(
i 51

l

(
j , i

l

l i j

, ~5.42!

where37

l i j 5s i j
225ni j

~ i j !s22. ~5.43!

The inverse of the variance for the optimal estimator

m̂optimalª m̂ul i j 5s
i j
22 ~5.44!

is given by

soptimal
22 5(

i 51

l

(
j , i

l

ni j
~ i j !s22. ~5.45!

The squared signal-to-noise ratio for the optimal estimato
given by

SNRoptimal
2 5(

i 51

l

(
j , i

l

ni j
~ i j !SNR2. ~5.46!

These equations should be compared with Eqs.~5.28! and
~5.29! in Sec. V B.

Using Eq.~5.45! for the inverse variance of the optima
estimator, we can derive an expression for the minim
value of V0 after 4 months of observation~i.e., Ttot
5107 sec), for a false alarm rate equal to 5% and a det

,

36Although cross-correlation signals( i j )S and (kl)S taken during
the sametime intervalT are correlated, i.e.,

cov$~ i j !S,~kl !S% ª ^~ i j !S ~kl !S&2^~ i j !S&^~kl !S&Þ0,

the variance-covariance matrixC( i j )(kl) ª cov$( i j )S,(kl)S% is
dominated by the diagonal termsC( i j )( i j )5cov$( i j )S,( i j )S%
5: ( i j )s2 in the large noise approximation. Thus, in practice, o

can treatall of the measurements(12)S1 ,(12)S2 , . . . ,( l 21,l )Snl 21,l
, as

effectively uncorrelated. This is because the detector noises~which
are statistically independent of one another! are the only contribu-
tors to ( i j )s2 in this approximation.

37For completeness, we note that the optimal way of combin

correlated random variables x1 , . . . ,xm is given by m̂
ª ( i 51

m l ixi /( j 51
m l j , wherel i5( j 51

m (C21) i j and (C21) i j is the
inverse of the variance-covariance matrixCi j ª cov$xi ,xj%. When
the variance-covariance matrix is dominated by the diagonal te
Cii 5cov$xi ,xi%5:s i

2 , the optimal combination of data reduce
~approximately! to the uncorrelated resultl i5s i

22 . As argued in
the previous footnote, this is what happens for the cross-correla
signalsxi↔ ( i j )S.
1-24
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DETECTING A STOCHASTIC BACKGROUND OF . . . PHYSICAL REVIEW D 59 102001
tion rate equal to 95%, where we optimally combine d
from different detector pairs. In order to simplify the anal
sis, we will assume thatTtot5nT, wheren ª ni j is the same
for all pairs of detectors.

For a single pair of detectors, the minimum value ofV0 is
given by

~ i j !V0
95%,5%5

231.65

107 sec
An ~ i j !s, ~5.47!

where

~ i j !s2'TS 10p2

3H0
2 D 2F E

2`

`

d f
g2~ u f u!

f 6Pi~ u f u!Pj~ u f u!G21

.

~5.48!
The above expression for( i j )s2 follows from Eqs.~3.68! and
~3.73!, together with the normalization conditionm5V0T
for a stochastic background having a constant freque
spectrumVgw( f )5V0 . The factor of 231.65 in Eq.~5.47!
comes from the choice of the false alarm and detection ra
@See, e.g., Eq.~4.37!.# Table II in Sec. VI D contains value
of ( i j )V0

95%,5%h100
2 for different detector pairs.

For the optimal combination of data from multiple dete
tor pairs, we have

~V0
95%,5%uoptimal!

225S 231.65

107 sec
D 22

n21(
i 51

l

(
j , i

l

~ i j !s22.

~5.49!

This can also be written as

~V0
95%,5%uoptimal!

225(
i 51

l

(
j , i

l

~ ~ i j !V0
95%,5%!22. ~5.50!

Tables III and IV in Sec. VI D contain values o
V0

95%,5%uoptimal for the optimal combination of data from mu
tiple detector pairs, for all possible triples and quadruples
the five major interferometers.

D. Four-detector correlation

Rather than combine data from multiple detector pairs
described in the previous section, one can directly corre
10200
a

y

s.

f

s
te

the outputs of 4 detectors~or, in general, 2N detectors! in a
manner analogous to the single 2-detector correlation
scribed in Sec. III C.38 In fact, it turns out that one can write
down expressions for the optimally filtered squared sign
to-noise ratio and the inverse of the square ofV0

95%,5% for
the 4-detector correlation in terms of a simple sum of pro
ucts of the corresponding quantities for the individual det
tor pairs. As noted above, the analysis given here can ea
be generalized to the case of 2N detectors. At the end of the
section, we summarize our results by writing down the k
equations in the general 2N-detector form.

To begin, we define the 4-detector correlation signalS to
be the integrated product

Sª E
2T/2

T/2

dt1•••E
2T/2

T/2

dt4 s1~ t1!•••s4~ t4!Q~ t1 , . . . ,t4!,

~5.51!

where

si~ t ! ª hi~ t !1ni~ t ! ~5.52!

are the outputs of the detectors (i 51, . . . ,4), and
Q(t1 , . . . ,t4) is an arbitrary filter function, which we will
determine shortly. To save some writing in what follows, w
will use the shorthand notation

E
2T/2

T/2

d4t[E
2T/2

T/2

dt1 . . . E
2T/2

T/2

dt4 . ~5.53!

Throughout, we will assume that the gravitational stra
hi(t) satisfy the statistical properties listed in Sec. II B. W
will also assume that the noisesni(t) intrinsic to the detec-
tors are~i! stationary,~ii ! Gaussian,~iii ! statistically indepen-
dent of one another and of the gravitational strains, and~iv!
much larger in magnitude than the gravitational strains. T
goal is to determine the filter functionQ(t1 , . . . ,t4) that
maximizes the signal-to-noise ratio SNRª m/s of S.

Let us start by calculating the variances2. Since we are
assuming that the noises intrinsic to the detectors are st
tically independent of one another and of the gravitatio
strains, and that they are much larger in magnitude than
gravitational strains, it follows that
s2:5^S2&2^S&2'^S2& ~5.54!

5E
2T/2

T/2

d4tE
2T/2

T/2

d4t8^s1~ t1!•••s4~ t4!s1~ t18!•••s4~ t48!&Q~ t1 , . . . ,t4!Q~ t18 , . . . ,t48! ~5.55!

'E
2T/2

T/2

d4tE
2T/2

T/2

d4t8^n1~ t1!•••n4~ t4!n1~ t18!•••n4~ t48!&Q~ t1 , . . . ,t4!Q~ t18 , . . . ,t48! ~5.56!

5E
2T/2

T/2

d4tE
2T/2

T/2

d4t8^n1~ t1!n1~ t18!&•••^n4~ t4!n4~ t48!&Q~ t1 , . . . ,t4!Q~ t18 , . . . ,t48!. ~5.57!

@See Eqs.~3.19!–~3.22!.# Using the definition~3.23! of the noise power spectraPi(u f u), Eq. ~5.57! can be rewritten as

38The correlation of 3 detectors~or, in general, 2N11 detectors! yields a signal that has zero mean.
1-25
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s2'S 1

2D 4E
2`

`

d4f P1~ u f 1u!•••P4~ u f 4u!E
2T/2

T/2

d4t ei2p f 1t1
•••ei2p f 4t4Q~ t1 , . . . ,t4!

3E
2T/2

T/2

d4t8 e2 i2p f 1t18
•••e2 i2p f 4t48Q~ t18 , . . . ,t48!, ~5.58!

where

E
2`

`

d4f [E
2`

`

d f1•••E
2`

`

d f4 . ~5.59!

If we further define the~finite-time! Fourier transform

Q̃~ f 1 , . . . ,f 4! ª E
2T/2

T/2

d4t e2 i2p f 1t1
•••e2 i2p f 4t4Q~ t1 , . . . ,t4!, ~5.60!

which has as its inverse~for 2T/2,t1 , . . . ,t4,T/2)

Q~ t1 , . . . ,t4!5E
2`

`

d4f ei2p f 1t1
•••ei2p f 4t4Q̃~ f 1 , . . . ,f 4!, ~5.61!

we obtain

s2'S 1

2D 4E
2`

`

d4f P1~ u f 1u!•••P4~ u f 4u!uQ̃~ f 1 , . . . ,f 4!u2. ~5.62!

This can be written in an even more convenient form if we define an inner product

~A,B! ª E
2`

`

d4f P1~ u f 1u!•••P4~ u f 4u!A* ~ f 1 , . . . ,f 4!B~ f 1 , . . . ,f 4!, ~5.63!
at
na

ng-

or
where A( f 1 , . . . ,f 4) and B( f 1 , . . . ,f 4) are any two
complex-valued functions of four variables.@See Eq.~3.69!.#
Note that the inner product is positive-definite sincePi(u f u)
.0. Using Eq.~5.63! it follows that

s2'S 1

2D 4

~Q̃,Q̃!. ~5.64!

To calculate the mean valuem, we proceed in a similar
manner. Since the noises intrinsic to the detectors are st
tically independent of one another and of the gravitatio
strains, it follows that

m ª ^S& ~5.65!

5E
2T/2

T/2

d4t ^s1~ t1!•••s4~ t4!&Q~ t1 , . . . ,t4! ~5.66!

5E
2T/2

T/2

d4t ^h1~ t1!•••h4~ t4!&Q~ t1 , . . . ,t4!.

~5.67!

This can be expanded to

m5E
2T/2

T/2

d4t „^h1~ t1!h2~ t2!&^h3~ t3!h4~ t4!&

1^13&^24&1^14&^23&…Q~ t1 , . . . ,t4! ~5.68!

by using the ‘‘factorization’’ property
10200
is-
l

^x1x2x3x4&5^x1x2&^x3x4&1^x1x3&^x2x4&1^x1x4&^x2x3&
~5.69!

for Gaussian random variablesx1 ,x2 ,x3 ,x4 each having zero
mean.39

To expressm in terms of the inner product~5.63!, we first
use Eq.~5.61! to rewriteQ(t1 , . . . ,t4) in terms of its Fou-
rier transformQ̃( f 1 , . . . ,f 4):

m5E
2T/2

T/2

d4t ~^h1~ t1!h2~ t2!&^h3~ t3!h4~ t4!&

1^13&^24&1^14&^23&!

3E
2`

`

d4f ei2p f 1t1
•••ei2p f 4t4Q̃~ f 1 , . . . ,f 4!.

~5.70!

Then by interchanging the order of integrations and rearra
ing terms in the integrand, we see that

m5E
2`

`

d4f E
2T/2

T/2

d4t ei2p f 1t1
•••ei2p f 4t4

„^h1~ t1!h2~ t2!&

3^h3~ t3!h4~ t4!&1^13&^24&1^14&^23&…

3Q̃~ f 1 , . . . ,f 4! ~5.71!

39In Eq. ~5.68!, ^13&^24& is used as a shorthand notation f
^h1(t1)h3(t3)&^h2(t2)h4(t4)&, etc.
1-26
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or, equivalently,

m5~A,Q̃!, ~5.72!

where

A~ f 1 , . . . ,f 4! ª
1

P1~ u f 1u!•••P4~ u f 4u!E2T/2

T/2

d4t

3e2 i2p f 1t1
•••e2 i2p f 4t4

„^h1~ t1!h2~ t2!&

3^h3~ t3!h4~ t4!&1^13&^24&1^14&^23&….

~5.73!

To simplify this expression forA( f 1 , . . . ,f 4), we expand
the expectation valueŝhi(t i)hj (t j )& as

^hi~ t i !hj~ t j !&5E
2`

`

d f ei2p f ~ t i2t j !Hi j ~ f !, ~5.74!

where

Hi j ~ f !5
3H0

2

20p2 u f u23Vgw~ u f u!g i j ~ u f u!, ~5.75!

and g i j ( f ) denotes the overlap reduction function betwe
the i j detector pair.@See Eqs.~3.58! and~3.59!.# Substituting
Eq. ~5.74! into ~5.73! yields

A~ f 1 , . . . ,f 4! ª
1

P1~ u f 1u!•••P4~ u f 4u!

3E
2`

`

d fE
2`

`

d f8 H12~ f !H34~ f 8!

3E
2T/2

T/2

d4t e2 i2p f 1t1
•••e2 i2p f 4t4

3ei2p f ~ t12t2!ei2p f 8~ t32t4!113,24114,23,

~5.76!

where 13,24 and 14,23 denote the analogous terms with
appropriate interchange of detector indices 1, . . . ,4.Since

dT~ f !5E
2T/2

T/2

dt ei2p f t ~5.77!

@see Eq. 3.27#, we can explicitly integrate over the time var
ablest1 , . . . ,t4 :

A~ f 1 , . . . ,f 4! ª
1

P1~ u f 1u!•••P4~ u f 4u!

3E
2`

`

d fE
2`

`

d f8 H12~ f !H34~ f 8!

3dT~ f 12 f !dT~ f 21 f !dT~ f 32 f 8!

3dT~ f 41 f 8!113,24114,23. ~5.78!
10200
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Also, since the noise power spectraPi(u f i u) and filter func-
tion Q̃( f 1 , . . . ,f 4) are not expected to vary much over th
support, 1/T, of dT( f 12 f ) anddT( f 32 f 8), we are justified
in approximating these two finite-time delta functions by o
dinary Dirac delta functionsd( f 12 f ) and d( f 32 f 8). This
approximation allows us to eliminate the integrations ovef
and f 8, yielding

A~ f 1 , . . . ,f 4!'
H12~ f 1!

P1~ u f 1u!P2~ u f 2u!
dT~ f 11 f 2!

3
H34~ f 3!

P3~ u f 3u!P4~ u f 4u!
dT~ f 31 f 4!

113,24114,23. ~5.79!

Given the above expressions fors2, m, and
A( f 1 , . . . ,f 4), it is now a simple matter to evaluate th
squared signal-to-noise ratio of the 4-detector correlationS,
and to determine the filter functionQ̃( f 1 , . . . ,f 4) that maxi-
mizes this ratio. In terms of the inner product~5.63!, we have

SNR2
ª

m2

s2 '24
~A,Q̃!2

~Q̃,Q̃!
. ~5.80!

As we saw already in Secs. III C and V A, such a ratio
inner products is maximized by choosing

Q̃~ f 1 , . . . ,f 4!5lA~ f 1 , . . . ,f 4!, ~5.81!

wherel is an arbitrary~real! overall normalization constant
For this choice ofQ̃( f 1 , . . . ,f 4), the value of the squared
signal-to-noise ratio is given by

SNRoptimal
2 '24~A,A!. ~5.82!

To find an explicit expression for SNRoptimal
2 , we substi-

tute Eq.~5.79! into the RHS of Eq.~5.82! and expand the
product ofA( f 1 , . . . ,f 4) with itself. This leads to nine dif-
ferent terms: three diagonal~i.e., squared! terms and six off-
diagonal terms. The diagonal terms are given by

diagonal terms524 E
2`

`

d4f
H12

2 ~ f 1!

P1~ u f 1u!P2~ u f 2u!

3dT
2~ f 11 f 2!

H34
2 ~ f 3!

P3~ u f 3u!P4~ u f 4u!

3dT
2~ f 31 f 4!113,24114,23. ~5.83!

A typical off-diagonal term is given by

off-diagonal term524 E
2`

`

d4f
1

P1~ u f 1u!•••P4~ u f 4u!

3H12~ f 1!H34~ f 3!H13~ f 1!H24~ f 2!

3dT~ f 11 f 2!dT~ f 31 f 4!

3dT~ f 11 f 3!dT~ f 21 f 4!. ~5.84!

Let us evaluate each of these terms separately. First
the diagonal terms, by approximating one of the two fini
time delta functions in each of the factorsdT

2( f 11 f 2) and
1-27
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dT
2( f 31 f 3) in Eq. ~5.83! by ordinary Dirac delta functions, and by evaluating the others atf 11 f 250 and f 31 f 450, we

eliminate two of the integrations, and introduce a factor ofT2:

diagonal terms'24T2E
2`

`

d f
H12

2 ~ f !

P1~ u f u!P2~ u f u! E
2`

`

d f8
H34

2 ~ f 8!

P3~ u f 8u!P4~ u f 8u!
113,24114,23 ~5.85!

5S 3H0
2

10p2D 4

T2 E
2`

`

d f
g12

2 ~ u f u!Vgw
2 ~ u f u!

f 6P1~ u f u!P2~ u f u!
E

2`

`

d f8
g34

2 ~ u f 8u!Vgw
2 ~ u f 8u!

f 86P3~ u f 8u!P4~ u f 8u!

113,24114,23 ~5.86!

5 ~12!SNR2 ~34!SNR21 ~13!SNR2 ~24!SNR21 ~14!SNR2 ~23!SNR2, ~5.87!

where ( i j )SNR2 denotes the squared signal-to-noise ratios for the optimally filtered cross-correlation signal for thei j detector
pair, which we derived in Sec. III C.

For the off-diagonal term~5.84!, we can again approximatedT( f 11 f 2) anddT( f 31 f 4) by ordinary Dirac delta functions
to obtain

off-diagonal term'24 E
2`

`

d f1E
2`

`

d f3

1

P1~ u f 1u!P2~ u f 1u!P3~ u f 3u!P4~ u f 3u!
~5.88!

3H12~ f 1!H34~ f 3!H13~ f 1!H24~2 f 1!dT
2~ f 11 f 3!. ~5.89!
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By further approximating one of the finite-time delta fun
tions in dT

2( f 11 f 3) by an ordinary Dirac delta function, an
by evaluating the other atf 11 f 350, we eliminate one more
integration and introduce a factor ofT:

off-diagonal term

'24TE
2`

`

d f
H12~ f !H34~ f !H13~ f !H24~ f !

P1~ u f u!P2~ u f u!P3~ u f u!P4~ u f u!
.

~5.90!

But since this term grows likeT, while the diagonal terms
grow like T2, we can~for large observation times! ignore the
contribution of the off-diagonal terms to the optimal sign
to-noise ratio. The final result is thus40

SNRoptimal
2 '~12!SNR2 ~34!SNR21 ~13!SNR2 ~24!SNR2

1 ~14!SNR2 ~23!SNR2. ~5.91!

Note that the optimal signal-to-noise ratio for the 4-detec
correlation isquadratic in the signal-to-noise ratios for th
individual i j detector pairs. This is because the 4-detec
correlation signalS, given by Eq.~5.51!, is quartic in the

40This expression should be compared with

SNRoptimal
2 5~12!SNR21~13!SNR21•••1~34!SNR2,

which is the squared signal-to-noise ratio that we found in the p
vious section for the optimal combination of data from multip
detector pairs.@See Eq.~5.46!.#
10200
r

r

detector outputssi(t i), while the cross-correlation signal va
ues ( i j )S are quadratic in the detector outputs.@See, e.g., Eq.
~3.45!.#

Given Eq.~5.91!, we can now ask the question, what
the minimum value ofV0 required to detect a stochast
gravity-wave signal 95% of the time, from data obtained v
a 4-detector correlation experiment? Since

Sª E
2T/2

T/2

d4t s1~ t1!•••s4~ t4!Q~ t1 , . . . ,t4! ~5.92!

5E
2`

`

d4f s̃1~ f 1!••• s̃4~ f 4!Q̃* ~ f 1 , . . . ,f 4! ~5.93!

is, effectively, a sum~over f 1 , . . . ,f 4) of a large number of
statistically independent random variables@products of the
Fourier amplitudess̃i( f i), which are correlated only when
u f i2 f j u,1/T], the central limit theorem guarantees thatS
will be well-approximated by a Gaussian random variab
Thus, the statistical analysis of Sec. IV is valid for th
4-detector correlation as well. In particular, for a false ala
ratea50.05 and for a detection rateg50.95, the minimum
value of V0 for the 4-detector correlation is determined b
setting the signal-to-noise ratio aftern observation periods
equal to 231.65 @see Eq.~4.36!#. For a stochastic back
ground having a constant frequency spectrumVgw( f )5V0
and for a total observation timeTtotª nT, the squared
signal-to-noise ratio for the optimally filtered 4-detector co
relation signalS can be written as

-
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SNRoptimal
2 'V0

4S 3H0
2

10p2D 4

Ttot
2 E

2`

`

d f
g12

2 ~ u f u!

f 6P1~ u f u!P2~ u f u!

3E
2`

`

d f8
g34

2 ~ u f 8u!

f 86P3~ u f 8u!P4~ u f 8u!

113,24114,23. ~5.94!

Setting SNRoptimal5231.65 and rearranging terms yields

~V0
95%,5%uoptimal!

24~231.65!2

'S 3H0
2

10p2D 4

Ttot
2 E

2`

`

d f
g12

2 ~ u f u!

f 6P1~ u f u!P2~ u f u!

3E
2`

`

d f8
g34

2 ~ u f 8u!

f 86P3~ u f 8u!P4~ u f 8u!
113,24114,23,

~5.95!

which can also be written in terms of the minimu
values ( i j )V0

95%,5% for the individuali j detector pairs:

~V0
95%,5%uoptimal!

22

'231.65@~ ~12!V0
95%,5%!22~ ~34!V0

95%,5%!22

113,24114,23#1/2. ~5.96!

How does this minimum value ofV0 compare with those
found in previous sections for a single 2-detector correlat
and for the optimal combination of data from multiple dete
tor pairs? First, from Eq.~5.95! we see immediately that

V0
95%,5%uoptimal;Ttot

21/2. ~5.97!

This dependence on the total observation timeTtot is the
sameas that for ( i j )V0

95%,5%for a single detector pair and fo
the optimal combination of data from multiple detector pai

~V0
95%,5%uoptimal!

225~ ~12!V0
95%,5%!221~ ~13!V0

95%,5%!22

1•••1~ ~34!V0
95%,5%!22. ~5.98!

@See Eq.~5.50!.# Thus, by correlating 2, 4~or even 2N)
detectors, one doesnot change the general dependence of
minimum value ofV0 on the total observation timeTtot .
However, the numerical factors multiplyingTtot

21/2 differ
from one another. In fact, it is fairly easy to show th
V0

95%,5%uoptimal for the single 4-detector correlation isalways
greater than that for the optimal combination of data fro
multiple detector pairs. Thus, in theory, it is better to op
mally combine data from multiple detector pairs than to o
timally filter a single 4-detector correlation. Table V in Se
VI D lists values ofV0

95%,5%uoptimalh100
2 for the 4-detector cor-

relations taken from the five major interferometers: LIG
WA, LIGO-LA, VIRGO, GEO-600, and TAMA-300.

Finally, to conclude this section, we rewrite the key equ
tions derived above for the general case of 2N detectors:

~i! The 2N-detector correlation signalS is defined by
10200
n
-

:

e

-
-
.

-

-

Sª E
2T/2

T/2

d2Nt s1~ t1!•••s2N~ t2N!Q~ t1 , . . . ,t2N!.

~5.99!

~ii ! The ‘‘factorization’’ property for 2N Gaussian ran-
dom variables each having zero mean is41

^x1x2•••x2N&5^x1x2&^x3x4&•••^x2N21x2N&

1all possible permutations.~5.100!

~iii ! The inner product in terms of which

m5~A,Q̃! and s25~ 1
2 !2N~Q̃,Q̃! ~5.101!

is given by

~A,B! ª E
2`

`

d2Nf P1~ u f 1u!•••P2N~ u f 2Nu!

3A* ~ f 1 , . . . ,f 2N!B~ f 1 , . . . ,f 2N!,

~5.102!

where A( f 1 , . . . ,f 2N) and B( f 1 , . . . ,f 2N) are any two
complex-valued functions of 2N variables.

~iv! The optimal filter functionQ(t1 , . . . ,t2N) is given in
the frequency domain by

Q̃~ f 1 ,•••, f 2N!5lA~ f 1 , . . . ,f 2N!, ~5.103!

where

A~ f 1 , . . . ,f 2N!5
H12~ f 1!

P1~ u f 1u!P2~ u f 2u!
dT~ f 11 f 2!

3
H34~ f 3!

P3~ u f 3u!P4~ u f 4u!
dT~ f 31 f 4!

3•••

H2N21,2N~ f 2N21!

P2N21~ u f 2N21u!P2N~ u f 2Nu!

3dT~ f 2N211 f 2N!

1all possible permutations. ~5.104!

~v! The squared signal-to-noise ratio for the optimally fi
tered 2N-detector correlation is given by

SNRoptimal
2 '~12!SNR2 ~34!SNR2

•••

~2N21,2N!SNR2

1all possible permutations. ~5.105!

~vi! The minimum value ofV0 required to detect a sto
chastic gravity-wave signal 95% of the time, with a fal
alarm rate equal to 5%, from data obtained via a 2N-detector
correlation experiment, is given by

41The number of terms on the RHS of the ‘‘factorization’’ equ
tion is given by (2N21)(2N23)•••1. For N51,2,3, . . . , this
corresponds to 1,3,15, . . . terms.
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~V0
95%,5%uoptimal!

225~231.65!~2N22!/N

3@~ ~12!V0
95%,5%!22~ ~34!V0

95%,5%!22

3•••~ ~2N21,2N!V0
95%,5%!22

1all possible permutations#1/N,

~5.106!

where ( i j )V0
95%,5% are the analogous quantities for thei j

detector pairs.

E. Correlated detector noise

We have shown how to carry out an experimental sea
for a stochastic background of gravitational radiation, by c
relating the outputs of widely separated detectors. Our an
sis assumed that any correlation between the two out
arises only from a stochastic gravity-wave background.
this section, we address the validity of this assumption,
look at possible sources of instrumental contamination
give rise to a correlated signal between the separated d
tors. Any source of correlated environmental noise or int
ference in the separated detectors mimics the correlation
ing from a stochastic background; so it is important
understand the order-of-magnitude effects of any poten
sources of such correlated noise.

This subject has already been considered in some de
both in the the published paper of Christensen@6# and, in
more detail, in Chap. 7 of his Ph.D. thesis@24#. In the thesis
work, the following sources of correlated detector noise
analyzed:

~i! Seismic noise, whose effects on initial LIGO are min
mal.

~ii ! Fluctuations in the residual gas~for two interferom-
eters sharing a common vacuum system such as
LIGO-WA site!. The effects on initial LIGO are minimal
and of course there is no effect for separated detectors
do not share a common vacuum envelope.

~iii ! Acoustic noise, whose effects on LIGO are minim
~iv! Cosmic ray showers, whose effects on LIGO a

minimal.
~v! Magnetic field fluctuations, whose effects on initi

LIGO might be significant.
In this section, we derive a general formalism for calc

lating the effects of such correlated detector noise, and il
trate this for the case of correlated magnetic fields, wh
Christensen concluded would be the most significant sou
of correlated fluctuations at two widely separated sites.

Although these ideas can be generalized to multiple
locations, for simplicity we present only the two-site ca
Correlated noise in two detectors can be described by
cross-spectralfunction C( f ) defined by

^n1~ t !n2~ t8!&5
1

2E2`

`

d f ei2p f ~ t2t8!C~ f !. ~5.107!

Because the LHS is real, the cross-spectrum satisfiesC( f )
5C* (2 f ). If this cross spectrum is non-vanishing, then
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produces a correlation between the two detectors wh
mimics the effect of a stochastic gravity-wave backgroun

It is straightforward to determine the point at which
non-vanishing cross spectrumC( f ) will significantly inter-
fere with a stochastic background search. Such interfere
will not take place if the correlation arising from the cro
spectrum of detector noise is significantly less than that a
ing from the stochastic gravity-wave background:

^n1~ t !n2~ t8!&!^h1~ t !h2~ t8!& for ut2t8u&d/c,
~5.108!

where d/c is the light travel time between the two site
Making use of Eqs.~5.107! and~5.74!, we see that correlated
detector noise will not impair a stochastic background sea
if

1

2
uC~ f !u!

3H0
2

20p2 u f u23Vgw~ u f u!g~ u f u! ~5.109!

over the range of frequencies included in the optimal fil
Q( f ). For example, for the initial LIGO detectors, this rang
of frequencies is from about 40 Hz to 300 Hz, and in a
month search, the expected level of sensitivity is ab
V0h100

2 ;1026; so the RHS is;3310249h100
2 sec. Thus, in

order that correlated sources of noise do not interfere w
initial LIGO’s 4-month stochastic background search, o
must have

uC~ f !u!3310249h100
2 sec for 40 Hz, f ,300 Hz.

~5.110!

This limit can be stated in an interesting way. If we compa
the allowable cross spectrumC( f ) with the intrinsic noise
power spectrumP( f );10245 sec in each detector, we se
that they differ by about four orders of magnitude. Thus,in
order that correlated noise sources do not interfere with
4-month long stochastic background search for initial LIG
the correlated sources of noise must not contribute m
than 1% of the motion of the test masses, in the freque
range from 40 Hz to 300 Hz.

Essentially the same limit on correlated noise can be w
ten in another fashion. If we make use of Eq.~3.52!, the
contribution of correlated noise to the expected mean of
signal can be written as

mcorrelated noise
2 5U12 TE

2`

`

d f C~ f !Q̃~ f !U2

. ~5.111!

Requiring that this be smaller than the magnitude of the v
ances2 @see Eq.~3.68!# leads immediately to the conditio
that the correlated noise will not interfere with a stochas
background search over an observation timeT if

uC~ f !u2!
P1~ f !P2~ f !

T f
. ~5.112!

As before, the contribution of correlated noise to the mot
of the interferometer must be smaller than the intrinsic
tector noise motion by a factor of (T f)21/2. For an observa-
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tion time T of 4 months~i.e., 107 sec) and frequenciesf
;100 Hz, this gives the same 1% bound as before.

One can also give a precise formula showing the effe
of correlated noise sources on the expected valuem of the
signal. Making use of Eqs.~5.11! and~3.57!, we can express
the ratio of the signal mean arising from the correlated no
to that arising from the stochastic background as

U mcorrelated noise

mstochastic background
U

5
10p2

3H0
2U E

2`

`

d f C~ f !Q̃~ f !

E
2`

`

d f u f u23Vgw~ u f u!g~ u f u!Q̃~ f !
U .

~5.113!

This formula allows us to precisely determine the effect
any correlated source of noise on the signal value star
from a model or measurement of the correlation spectr
C( f ). In particular, if we assume that the stochastic grav
wave background has a constant frequency spect
Vgw( f )5V0 , then

U mcorrelated noise

mstochastic background
U5 Vcorrelated noise limit

V0
, ~5.114!

whereVcorrelated noise limitis ~by definition! the smallest value
of V0 that can be observed before the effects of correla
instrument noise interfere with the measurement.

The effects of a given source of correlated noise can
modeled more precisely. Here, we work through one
ample: the effects of correlated magnetic field fluctuatio
Christensen’s work@6,24# concludes that these are the mo
likely environmental source of correlated noise between
sites.

The LIGO interferometers use small magnets to steer
push the optical elements~i.e., mirrors and beam splitters!.
These magnets are an integral part of the Length Sensing
Control ~LSC! system. Forces are applied to these magn
with electromagnetic coils, and they are part of the se
loop that uses modulation techniques to lock and monitor
path length difference between the test masses. Exte
magnetic fields, present in the environment, exert forces
these magnets thus constituting one of the different sou
of instrument noise.

The external magnetic field is of particular concern, b
cause it propagates at the speed of light, and therefore
give rise to correlations between sites on the time scaled/c.
The magnetic field in the laboratory consists of two parts
‘‘local’’ part and a ‘‘global’’ part. The local part is the mag
netic field arising from the instrumentation, wiring, an
power lines within the laboratory; the global part comes fro
Schuman resonances of the Earth and the ionosphere,
lightning strikes over the surface of the Earth. The local p
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of the magnetic field will not correlate between widely sep
rated sites; the global part, however, is likely to be high
correlated. Studies in the Caltech 40-m prototype laborat
@25# have shown that the spectrum of ambient magne
fields is of order 1027 G/AHz, but most of this field is local.
Christensen reports in his thesis on a number of studies
show that the global magnetic fields are well-modeled ab
20 Hz by a power-law spectrum:

PB~ f !5AS f

40 HzD
20.88

~5.115!

with A;1.2310217 G2/Hz during magnetically noisy peri
ods such as thunderstorms andA;1.8310219 G2/Hz dur-
ing magnetically quiet periods. Separate measurements
shown that these fields have a coherence of orderr;1/2 in
the frequency range of interest, over widely separated~al-
most antipodal! points on the Earth’s surface. These high
correlated global fields are the main concern here.

In order to reduce the effects of external magnetic fie
on the test masses and optics, the four magnets on each
or test mass are arranged to approximately cancel both
dipole and quadrupole parts of the magnetic field. The m
nitude of the resulting force on a test mass may be descr
by

F5
mB

l Fe01
D

l
e11

D2

l 2 e21••• G . ~5.116!

Here,m is the magnetic dipole moment of one of the ma
nets,B is the magnitude of the ambient magnetic field,l is
the length scale over which the magnetic field is varying
the vicinity of the test masses and optics, andD is the sepa-
ration between the magnets on the test masses and op
The quantitiese0 ,e1 , . . . are the fractional difference be
tween the dipole, quadrupole, . . . moments of the differ
magnets~which are not perfectly matched!. For the initial
LIGO detectors, the preliminary design values of these qu
tities are approximately m50.11 A m2/c,e050.05,
l56 cm,D515 cm. This leads to a force

F5kB ~5.117!

on the test masses, withk;0.1 dyn/G@25#. This force ac-
celerates the test mass, producing an equivalent strain

ñ~ f !;
F̃~ f !

M ~2p f !2L
, ~5.118!

whereM510 kg is the mass of the optic, andL54 km is
the length of the arm. This gives rise to a cross spectrum

C~ f !5
rk2

M2~2p f !4L2 PB~ f !, ~5.119!

where r is the coherence. Evaluating the integral in Eq
~5.113! and ~5.114! we find that the limits onV0 are
1-31
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FIG. 10. A log-log plot of the predicted noise power spectra
the initial and advanced LIGO detectors.

FIG. 11. A log-log plot of the predicted noise power spectru
for the VIRGO detector.

FIG. 12. A log-log plot of the predicted noise power spectru
for the GEO-600 detector.
10200
Vcorrelated noise limit

5H 1027 during magnetically ‘‘noisy’’ times,

1.531029 during magnetically ‘‘quiet’’ times.

~5.120!

Our conclusion is that for the initial LIGO design~where
sensitivities are on the order of 631026 for 4 months of
observation!, magnetic field induced correlations are not
concern. However, for advanced LIGO~where sensitivities
are on the order of 6310211 for 4 months of observation!,
the magnets must be eliminated from the design or they
they will significantly constrain the measurements of~or lim-
its placed on! V0 .

VI. NUMERICAL DATA

This section consists of a series of graphs and tables
taining numerical data for the five major interferometers:~i!
Hanford, WA LIGO detector~LIGO-WA!, ~ii ! Livingston,
LA LIGO detector ~LIGO-LA !, ~iii ! VIRGO detector

r FIG. 13. A log-log plot of the predicted noise power spectru
for the TAMA-300 detector.

FIG. 14. A log-log plot of the predicted noise power spectra
all the major interferometers.
1-32



d
nd

d
e
ns

f
O
a
1

ed
o
f

fo
o

rl
fir
to

GO
riza-

GO
riza-

DETECTING A STOCHASTIC BACKGROUND OF . . . PHYSICAL REVIEW D 59 102001
~VIRGO!, ~iv! GEO-600 detector~GEO-600!, and ~v!
TAMA-300 detector~TAMA-300!. These data were derive
from published site location and orientation information a
detector noise power spectra design goals@26#, using the
stochastic background data analysis routines containe
GRASP @27#. ~See Sec. VII for more information about th
computer code that we wrote to perform these calculatio!

A. Noise power spectra

Figures 10–13 show the predicted noise power spectra
the initial and advanced LIGO detectors, and for the VIRG
GEO-600, and TAMA-300 detectors. Figure 14 displays
of the noise power spectra on a single graph. Figure
shows the predicted noise power spectra for the ‘‘enhanc
LIGO detectors, which track the projected performance
the LIGO detector design over the next decade. The data

FIG. 15. A log-log plot of the predicted noise power spectra
the ‘‘enhanced’’ LIGO detectors, showing the probable evolution
the detector design over the next decade.

FIG. 16. The overlap reduction functiong( f ) for the LIGO-WA
detector and the other major interferometers. Note that the ove
reduction functions for the more distant detectors have their
zero at lower frequencies than those for the more nearby detec
10200
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FIG. 17. The overlap reduction functiong( f ) for the LIGO-LA
detector and the other major interferometers.

FIG. 18. The overlap reduction functiong( f ) for the VIRGO
detector and the other major interferometers. Note that the VIR
and GEO-600 detectors are sensitive to almost orthogonal pola
tions.

FIG. 19. The overlap reduction functiong( f ) for the GEO-600
detector and the other major interferometers. Note that the VIR
and GEO-600 detectors are sensitive to almost orthogonal pola
tions.
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FIG. 20. The overlap reduction functiong( f ) for the TAMA-
300 detector and the other major interferometers.

FIG. 21. The optimal filter functionQ̃( f ) for the initial
LIGO-WA and initial LIGO-LA detectors, for a stochastic back
ground having a constant frequency spectrumVgw( f )5V0 . The
optimal filter function is normalized to have maximum magnitu
of unity.

FIG. 22. The optimal filter functionQ̃( f ) for the initial
LIGO-WA and VIRGO detectors, for a stochastic background h
ing a constant frequency spectrumVgw( f )5V0 . The optimal filter
function is normalized to have maximum magnitude of unity.
10200
-

FIG. 23. The optimal filter functionQ̃( f ) for the initial
LIGO-WA and GEO-600 detectors, for a stochastic backgrou
having a constant frequency spectrumVgw( f )5V0 . The optimal
filter function is normalized to have maximum magnitude of uni

FIG. 24. The optimal filter functionQ̃( f ) for the initial
LIGO-WA and TAMA-300 detectors, for a stochastic backgrou
having a constant frequency spectrumVgw( f )5V0 . The optimal
filter function is normalized to have maximum magnitude of uni

FIG. 25. The optimal filter functionQ̃( f ) for the initial
LIGO-LA and VIRGO detectors, for a stochastic background ha
ing a constant frequency spectrumVgw( f )5V0 . The optimal filter
function is normalized to have maximum magnitude of unity.
1-34
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FIG. 26. The optimal filter functionQ̃( f ) for the initial
LIGO-LA and GEO-600 detectors, for a stochastic background h
ing a constant frequency spectrumVgw( f )5V0 . The optimal filter
function is normalized to have maximum magnitude of unity.

FIG. 27. The optimal filter functionQ̃( f ) for the initial
LIGO-LA and TAMA-300 detectors, for a stochastic backgrou
having a constant frequency spectrumVgw( f )5V0 . The optimal
filter function is normalized to have maximum magnitude of uni

FIG. 28. The optimal filter functionQ̃( f ) for the VIRGO and
GEO-600 detectors, for a stochastic background having a con
frequency spectrumVgw( f )5V0 . The optimal filter function is
normalized to have maximum magnitude of unity.
10200
the noise power spectra displayed in all of these figures w
taken from the published design goals@26#.

B. Overlap reduction functions

Figures 16–20 show the overlap reduction functionsg( f )
for different detector pairs.

C. Optimal filter functions

Figures 21–30 show the optimal filter functionsQ̃( f ) for
different detector pairs, for a stochastic background havin
constant frequency spectrumVgw( f )5V0 . The optimal fil-
ter functions are normalized to have maximum magnitude
unity.

-

.

nt

FIG. 29. The optimal filter functionQ̃( f ) for the VIRGO and
TAMA-300 detectors, for a stochastic background having a c
stant frequency spectrumVgw( f )5V0 . The optimal filter function
is normalized to have maximum magnitude of unity.

FIG. 30. The optimal filter functionQ̃( f ) for the GEO-600 and
TAMA-300 detectors, for a stochastic background having a c
stant frequency spectrumVgw( f )5V0 . The optimal filter function
is normalized to have maximum magnitude of unity.
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TABLE I. Theoretical signal-to-noise ratios after 4 months of observation, for the optimally-filt
cross-correlation signal between different detector pairs, for a stochastic background of gravitational ra
having a constant frequency spectrumVgw( f )5V05631026h100

22 .

LIGO-WA LIGO-LA VIRGO GEO-600 TAMA-300

LIGO-WA — 3.45 1.74 5.0931021 6.1231022

LIGO-LA 3.45 — 2.10 7.6631021 9.1631022

VIRGO 1.74 2.10 — 1.56 9.1431022

GEO-600 5.0931021 7.6631021 1.56 — 1.3231022

TAMA-300 6.1231022 9.1631022 9.1431022 1.3231022 —
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D. Signal-to-noise ratios and sensitivities

Table I contains the values of the theoretical signal-
noise ratios after 4 months~i.e., 107 sec) of observation, for
the optimally filtered cross-correlation signal between diff
ent detector pairs, for a stochastic background of grav
tional radiation having a constant frequency spectr
Vgw( f )5V05631026h100

22 . Table II contains the minimum
values ofV0h100

2 for 4 months of observation, for a fals
alarm rate equal to 5%, and for a detection rate equal to 9
for cross-correlation measurements between different de
tor pairs. Tables III and IV contain the minimum value
V0h100

2 for 4 months of observation, for a false alarm ra
equal to 5%, and for a detection rate equal to 95%, for
optimal combination of cross-correlation measurements
tween multiple detector pairs, taken from all possible trip
and quadruples of the five major interferometers. Table
contains the minimum values ofV0h100

2 for 4 months of
observation, for a false alarm rate equal to 5%, and fo
detection rate equal to 95%, for optimally filtered 4-detec
correlations.@Note that the calculation of the signal-to-noi
ratios and minimum values ofV0 assumes that the magn
tude of the noise intrinsic to the detectors is much larger t
the stochastic gravity-wave background. This correspond
Eq. ~3.75! in the text.#

VII. COMPUTER SIMULATION

In Secs. III–V, we described the data analysis and opti
signal processing required for the detection of a stocha
background of gravitational radiation. This analysis was
terms of continuous time functions and their associated F
rier transforms. But, in reality, when one performs the act
data analysis, continuous time functions will be replaced
10200
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-
-

,
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discretetime series and Fourier transforms by theirdiscrete
frequency counterparts. The discrete data can then be
cessed by computer code that takes the appropriate F
constructs the optimal filters, whitens and windows the da
etc. We have written a number of functions~in ANSI-C! to do
precisely this. These functions constitute part of a gene
purpose data analysis package for gravitational-wave de
tion, called GRASP ~Gravitational Radiation Analysis an
Simulation Package! @27#. In this section, we describe a com
puter simulation~made up of these functions! that mimics
the generation and detection of a simulated stocha
gravity-wave signal in the presence of simulated detec
noise. Documentation and further information about the co
can be found in theGRASPuser’s manual.

A. Purpose

The main reason for writing the computer simulation w
to verify many of the theoretical calculations that were d
rived in the previous sections. Specifically, we wanted to
if the theoretically predicted signal-to-noise ratio SNR, fo
stochastic background of gravitational radiation having
constant frequency spectrumVgw( f )5V0 , would agree with
an ‘‘experimentally’’ determined signal-to-noise ratio SN̂
produced by the simulation. If the theoretical and experim
tal signal-to-noise ratios agreed, we could be confident
the theoretical calculations were correct. If they did n
agree, we would know that something—either a theoret
calculation or a technical issue related to the simulat
itself—needed further investigation.

The theoretical and experimental signal-to-noise rat
were said to be in agreement if the relative error defined
%,
r pairs.
TABLE II. Minimum values ofV0h100
2 for 4 months of observation, for a false alarm rate equal to 5

and for a detection rate equal to 95%, for cross-correlation measurements between different detecto

LIGO-WA LIGO-LA VIRGO GEO-600 TAMA-300

LIGO-WA — 5.7431026 1.1431025 3.8931025 3.2431024

LIGO-LA 5.7431026 — 9.4531026 2.5831025 2.1631024

VIRGO 1.1431025 9.4531026 — 1.2731025 2.1731024

GEO-600 3.8931025 2.5831025 1.2731025 — 1.5031023

TAMA-300 3.2431024 2.1631024 2.1731024 1.5031023 —
1-36
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DETECTING A STOCHASTIC BACKGROUND OF . . . PHYSICAL REVIEW D 59 102001
relative errorª USNR̂2SNR

SNR
U ~7.1!

was less than~or approximately equal to! the inverse of the
theoretical signal-to-noise ratio aftern observation periods.42

This is the error that one would expect~approximately 68%
of the time! if we approximate the sample varianceŝ2 by the
true variances2, and use the fact that the sample mean

m̂ ª

1

n(i 51

n

Si ~7.2!

can itself be thought of as a random variable with meanm
and variances2/n. ~Recall from Sec. IV thatS1 ,S2 , . . . ,Sn
aren statistically independent measurements of the optim
filtered cross-correlation signalS, each associated with on
of the n observation periods.! Thus,

SNR̂ª

m̂

ŝ
'

m6s/An

s
5

m

s
6

1

An
5SNR6

1

An
, ~7.3!

which implies

relative errorª USNR̂2SNR

SNR
U' 1

AnSNR
. ~7.4!

This criterionwas satisfied by our simulation runs for bot
the initial and advanced LIGO detector pairs.

B. Flow chart

A ‘‘flow chart’’ for the simulation is as follows:
~1! Input the parameters defining the simulation. This c

be done either interactively or via ‘‘#define’’ statements

42The total observation time isTtotª nT, whereT is the duration
of a single observation period. For our simulations,T
53.2768 sec.

TABLE III. Minimum values ofV0h100
2 for 4 months of obser-

vation, for a false alarm rate equal to 5%, and for a detection
equal to 95%, for the optimal combination of cross-correlation m
surements between multiple detector pairs, taken from all poss
triples of the five major interferometers.

Detectors V0
95%,5%uoptimalh100

2

LIGO-WA, LIGO-LA, VIRGO 4.5031026

LIGO-WA, LIGO-LA, GEO-600 5.5531026

LIGO-WA, LIGO-LA, TAMA-300 5.7431026

LIGO-WA, VIRGO, GEO-600 8.2831026

LIGO-WA, VIRGO, TAMA-300 1.1431025

LIGO-WA, GEO-600, TAMA-300 3.8631025

LIGO-LA, VIRGO, GEO-600 7.2731026

LIGO-LA, VIRGO, TAMA-300 9.4331026

LIGO-LA, GEO-600, TAMA-300 2.5731025

VIRGO, GEO-600, TAMA-300 1.2731025
10200
ly

n
t

the beginning of the simulation program. These parame
are

~i! the site identification numbers for the two detectors
~ii ! the number of time-series data pointsN to be used

when performing the data analysis~i.e., FFTs, cross-
correlations, etc.!. N should equal an integral power of 2

~iii ! the sampling periodDt of the two detectors~Note
thatT ª NDt is the duration of a single observation period!

~iv! the constantV0 that defines the stochastic bac
ground frequency spectrum:Vgw( f )5V0

~v! the total number of runsn that make up the simulation
~Note thatTtotª nT is the duration of the total observatio
period.!

~2! Using the site identification numbers, obtain site loc
tion and orientation information, and information about t
noise power spectrum and whitening filter of each detec
~This information is contained in input data files.!

~3! Using the site location and orientation informatio
construct the overlap reduction functiong( f i) for the two
detectors.@Here f i ª i /(NDt) wherei 50,1, . . . ,N/221. By
convention, we ignore the value ofg( f ), or any other func-
tion of frequency, at or above the Nyquist critical frequen
f Nyquistª 1/(2Dt).]

~4! Simulate the generation of a stochastic background
gravitational radiation having a constant frequency spectr
Vgw( f )5V0 . This can be done in the frequency domain
using a random number generator to construct~complex-
valued! Gaussian random variablesh̃1( f i) andh̃2( f i) having
zero mean and joint expectation values:

^h̃1* ~ f i !h̃1~ f j !&5
3H0

2

20p2 Td i j f i
23V0 , ~7.5!

te
-
le

TABLE IV. Minimum values ofV0h100
2 for 4 months of obser-

vation, for a false alarm rate equal to 5%, and for a detection
equal to 95%, for the optimal combination of cross-correlation m
surements between multiple detector pairs, taken from all poss
quadruples of the five major interferometers.

Detectors V0
95%,5%uoptimalh100

2

LIGO-WA, LIGO-LA, VIRGO, GEO-600 4.1731026

LIGO-WA, LIGO-LA, VIRGO, TAMA-300 4.5031026

LIGO-WA, LIGO-LA, GEO-600, TAMA-300 5.5431026

LIGO-WA, VIRGO, GEO-600, TAMA-300 8.2831026

LIGO-LA, VIRGO, GEO-600, TAMA-300 7.2731026

TABLE V. Minimum values ofV0h100
2 for 4 months of obser-

vation, for a false alarm rate equal to 5%, and for a detection
equal to 95%, for optimally filtered 4-detector correlations.

Detectors V0
95%,5%uoptimalh100

2

LIGO-WA, LIGO-LA, VIRGO, GEO-600 6.4931026

LIGO-WA, LIGO-LA, VIRGO, TAMA-300 2.5131025

LIGO-WA, LIGO-LA, GEO-600, TAMA-300 5.4431025

LIGO-WA, VIRGO, GEO-600, TAMA-300 4.6831025

LIGO-LA, VIRGO, GEO-600, TAMA-300 3.8431025
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BRUCE ALLEN AND JOSEPH D. ROMANO PHYSICAL REVIEW D59 102001
^h̃2* ~ f i !h̃2~ f j !&5
3H0

2

20p2 Td i j f i
23V0 , ~7.6!

^h̃1* ~ f i !h̃2~ f j !&5
3H0

2

20p2 Td i j f i
23V0g~ f i !.

~7.7!

These are just the discrete frequency versions of Eq.~3.56!
specialized to the caseVgw( f )5V0 . Note that the Fourier
amplitudesh̃1( f i) and h̃2( f i) fall off like f 23/2.

~5! Simulate the generation of the noise intrinsic to t
detectors, using the information contained in the noise po
spectrum data files. This can be done in the frequency
main by using a random number generator to const
~complex-valued! Gaussian random variablesñ1( f i) and
ñ2( f i) having zero mean and joint expectation values:

^ñ1* ~ f i !ñ1~ f j !&5
1

2
Td i j P1~ f i !, ~7.8!

^ñ2* ~ f i !ñ2~ f j !&5
1

2
Td i j P2~ f i !, ~7.9!

^ñ1* ~ f i !ñ2~ f j !&50. ~7.10!

These are just the discrete frequency versions of Eq.~3.64!.
~6! Construct the Fourier amplitudes

s̃1~ f i ! ª h̃1~ f i !1ñ1~ f i !, ~7.11!

s̃2~ f i ! ª h̃2~ f i !1ñ2~ f i !. ~7.12!

~7! Whiten the data in the frequency domain by multipl
ing s̃1( f i) and s̃2( f i) by the frequency componentsW̃1( f i)
andW̃2( f i) of the whitening filters of the two detectors:

õ1~ f i ! ª s̃1~ f i !W̃1~ f i !, ~7.13!

õ2~ f i ! ª s̃2~ f i !W̃2~ f i !. ~7.14!

This multiplication in the frequency domain correspon
to the convolution ofs1(t i) andW1(t i) @s2(t i) andW2(t i)]
in the time domain.~Note that the purpose of whitening th
data is to reduce the dynamic range of the correspond
power spectra.!

~8! FFT õ1( f i) and õ2( f i) into the time domain to obtain
the corresponding time serieso1(t i) and o2(t i). ~Here t i
ª iDt wherei 50,1, . . . ,N21.)

~9! Repeat steps~4!–~8! to obtain another set of time
series datao1(t i) and o2(t i). Distinguish these two dif-
ferent sets of data with superscripts:(1)o1(t i),

(1)o2(t i),
(2)o1(t i),

(2)o2(t i).
~10! Offset (1)o1(t i) and (2)o1(t i) @ (1)o2(t i) and

(2)o2(t i)] by T/2, and combine them with one anoth
and with data left over from the previous observ
tion period to produce acontinuous-in-time data set
o1(t i)@o2(t i)#. o1(t i)and o2(t i) represent the ‘‘raw’’~i.e.,
10200
er
o-
ct

g

-

whitened! signal1noise data streams output by the two d
tectors.~Note that steps~4!–~10! make up the signal genera
tion part of the simulation.!

~11! Test the input datao1(t i) and o2(t i) to see if they
have probability distributions consistent with that of
Gaussian random variable. If either set fails this test, re
them both, and repeat steps~4!–~10! to obtain new input data
o1(t i) ando2(t i).

~12! Window the data streamso1(t i) and o2(t i) in the
time domain, using a Hann window function to reduce sid
lobe contamination of the corresponding power spectra.

~13! FFT the windowed data into the frequency domain
obtain the corresponding Fourier amplitudesõ1( f i) and
õ2( f i).

~14! Unwhiten the data in the frequency domain by divi
ing õ1( f i) and õ2( f i) by the frequency componentsW̃1( f i)
andW̃2( f i) of the whitening filters of the two detectors:

s̃1~ f i ! ª
õ1~ f i !

W̃1~ f i !
, ~7.15!

s̃2~ f i ! ª
õ2~ f i !

W̃2~ f i !
. ~7.16!

~15! Shift the input data streamso1(t i) ando2(t i) forward
in time by T/2, and repeats steps~12!–~14!, obtaining an-
other set of Fourier componentss̃1( f i) and s̃2( f i). Distin-
guish these two different sets of data wi
superscripts:(1)s̃1( f i),

(1)s̃2( f i),
(2)s̃1( f i),

(2)s̃2( f i).
~16! Average (1)s̃1( f i) and (2)s̃1( f i) @ (1)s̃2( f i) and

(2)s̃2( f i)] to produces̃1( f i) @ s̃2( f i)#. s̃1( f i) and s̃2( f i) are
the Fourier components of the unwhitened time-series d
s1(t i) ands2(t i). @Note that the purpose of this averaging
to reduce the variance in the estimation of the spectras̃1( f i)
and s̃2( f i)].

~17! Construct the optimal filter functionQ̃( f i) with the
overall normalization constantl chosen so thatm5V0T,
using the noise power spectra specified by the input d
files.

~18! From s̃1( f i), s̃2( f i), and Q̃( f i) calculate the opti-
mally filtered cross-correlation signalS corresponding to a
single observation periodT. @Note that steps~11!–~18! make
up the signal analysis part of the simulation.#

~19! Repeat steps~4!–~18! n times, generating a set o
optimally filtered cross-correlation signal value
S1 ,S2 , . . . ,Sn .

~20! From S1 ,S2 , . . . ,Sn construct the sample mean

m̂ ª

1

n(i 51

n

Si ~7.17!

and sample variance

ŝ2
ª

1

n21(i 51

n

~Si2m̂ !2. ~7.18!

The sample~or ‘‘experimental’’! signal-to-noise ratio pro-
duced by the simulation is given by
1-38
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SNR̂ª

m̂

ŝ
. ~7.19!

~21! Calculate the theoretical signal-to-noise ratio, usin
discrete frequency approximation to the integral

SNR5V0

3H0
2

10p2ATF2E
0

f Nyquist
d f

g2~ f !

f 6P1~ f !P2~ f !G1/2

.

~7.20!

See Eq. ~3.75!. @Note that since the data are discrete
sampled, we should only integrate up to the Nyquist criti
frequencyf Nyquistª 1/(2Dt).]

~22! From SNR̂and SNR, calculate the relative error

relative errorª USNR̂2SNR

SNR
U. ~7.21!

As mentioned in Sec. VII A, this should be compared w
the inverse of the theoretical signal-to-noise ratio aftern ob-
servation periods 1/(AnSNR). @Note that steps~20!–~22!
make up the statistical analysis part of the simulation.#

Note that in order to obtain signal-to-noise ratios on
order of 10 aftern51600 runs, we needed to use rath
large values ofV0 ~e.g., 1023 for the initial LIGO detectors
and 1028 for the advanced LIGO detectors!. These large
values meant that expression~7.20! for the theoretical signal-
to-noise ratio had to be modified to properly take into a
count the contributions to the theoretical variances2 that are
due to a large stochastic gravity-wave signal.@See Eqs.~5.3!
and ~5.4!.# Without these modifications, the theoretical a
experimental signal-to-noise ratios would be more likely
disagree. Thus, instead of Eq.~7.20!, we used a ‘‘mixed’’
expression for the theoretical signal-to-noise ratio:

SNR5V0

3H0
2

10p2AT

A2E
0

f Nyquist
d f

g2~ f !

f 6P1~ f !P2~ f !

F E
0

f Nyquist
d f

g2~ f !

f 6P1
2~ f !P2

2~ f !
R~ f !G1/2.

~7.22!

This involves Eqs.~5.3! and ~5.4! for the variances2, but
the large noise expression~3.73! for the optimal filter func-
tion Q̃( f ).

VIII. CONCLUSION

In this paper, we derived the optimal signal process
strategy required for stochastic background searches. We
cussed signal detection, parameter estimation, and sensi
levels from a frequentist point of view. We also discuss
the complications that arise when one considers~i! arbitrarily
large stochastic backgrounds,~ii ! non-stationary detecto
noise,~iii ! multiple detector pairs, and~iv! correlated detec-
tor noise. We explained how we verified some of the th
retical calculations by writing a computer simulation th
mimics the generation and detection of a simulated stoc
tic gravity-wave signal in the presence of simulated detec
noise. And we noted that the ‘‘experimental’’ results a
theoretical predictions agreed to within the expected er
10200
a

l

e
r
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These results suggest that both the theoretical signal proc
ing formulas and the implementation of these formulas in
computer code are correct. But we should not stop here.
example, there are still a number of ways that we can
prove the data analysis code before we use it to search f
real stochastic background in the outputs ofreal interferom-
eters. To conclude this paper, we list some of the des
improvements below:

~i! The first change that we would like to make is
calculatereal-timenoise power spectra for the detectors, a
to use this calculated data~rather than the information con
tained in the input noise power spectrum data files! to con-

struct the optimal filter functionQ̃( f i). @See step~17! in the
computer simulation described in Sec. VII B.# Since the real-
time noise power spectra will change slightly from one me
surement to the next, we could then apply the data anal
strategy discussed in Sec. V B for nonstationary detec
noise.

~ii ! In order to obtain accurate real-time noise power sp
tra for the two detectors, it will probably be necessary to u
more sophisticated spectral estimation techniques. Curre
we use a Hann window to reduce side-lobe contaminat
and we average two overlapped data sets to reduce the
ance, when forming our estimates ofs̃1( f i) and s̃2( f i). @See
steps~12!, ~15!, and ~16! of the computer simulation.# This
procedure can be replaced bymultitaperspectral estimation
methods, which use a special set of window functions
called Slepian tapers—to form spectral estimates of tim
series data.43 GRASP @27# contains a modified version of
public domain package by Lees and Park@30# to perform the
multitaper spectral estimation. In addition to providing bet
spectral estimates, multitaper methods also provide n
techniques for ‘‘spectral line’’ parameter estimation and
moval. This feature will be extremely useful when analyzi
data produced by a real detector. For example, one will
able to track contamination of a data set by the line harmo
at 300 Hz, and remove a pendulum resonance at, say,
Hz. ~SeeGRASP @27# for more information.!

~iii ! In addition to being able to identify and to remov
‘‘spectral lines’’ from a real data set, one would also like
be able to test the data to see if the distribution of samp
values is consistent with normal detector operation. For
ample, one might check the input data set to see if it ha
probability distribution consistent with that of a Gaussi
random variable. If the test reveals an exceptionally la
number of ‘‘outlier’’ points, then that particular data set ca
be rejected.@See step~11! of the computer simulation.# The
GRASP data analysis package already contains a routine
performs this Gaussian test. But we would also like a m
rigorously characterized test that compares the distributio
the current data with that during ‘‘normal’’ detector oper
tion, which most likely isnot Gaussian.

~iv! Finally, even though it will still be a few years befor
we can analyze real data from any one of the major inter

43See the original paper by Thomson@28# and the text by Perciva
and Walden@29# for more details.
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ometers, real data fromprototypes—like the Caltech 40-m
interferometer—can be used in computer simulations.
instance, rather than write a computer simulation~like the
one we described in Sec. VII! that mimics the generation an
detection of a simulated stochastic gravity-wave signal in
presence ofsimulateddetector noise, we can write a com
puter simulation that mimics the generation and detection
a simulated stochastic gravity-wave signal in the presenc
real detector noise.44 The fact that the noise level of a pro
totype interferometer is much larger than that of a ma
interferometer poses no problem; we can simply ‘‘dial-in’’
larger stochastic background signal to be able to detect
the same amount of observation time. Another nice fea
of this fake stochastic background andreal detector noise
simulation is that we can address all of the issues~i!–~iii !
discussed above in a context where we can still comp
‘‘experimental’’ ~i.e., simulation! performance against theo
retical expectations. We must be totally convinced that

44The real detector noise would be provided by the prototype o
put.
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data analysis code is working as expected, before we
trust it when searching for a real stochastic background in
outputs of real interferometers.
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