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We analyze the signal processing required for the optimal detection of a stochastic background of gravita-
tional radiation using laser interferometric detectors. Starting with basic assumptions about the statistical
properties of a stochastic gravity-wave background, we derive expressions for the optimal filter function and
signal-to-noise ratio for the cross-correlation of the outputs of two gravity-wave detectors. Sensitivity levels
required for detection are then calculated. Issues relatég ¢alculating the signal-to-noise ratio for arbitrarily
large stochastic backgrounds) performing the data analysis in the presence of nonstationary detector noise,
(iii) combining data from multiple detector pairs to increase the sensitivity of a stochastic background search,
(iv) correlating the outputs of 4 or more detectors, andallowing for the possibility of correlated noise in the
outputs of two detectors are discussed. We briefly describe a computer simulation that was used to “experi-
mentally” verify the theoretical calculations derived in the paper, and which mimics the generation and
detection of a simulated stochastic gravity-wave signal in the presence of simulated detector noise. Numerous
graphs and tables of numerical data for the five major interferom@té8O-WA, LIGO-LA, VIRGO, GEO-

600, and TAMA-300 are also given. This information consists of graphs of the noise power spectra, overlap
reduction functions, and optimal filter functions; also included are tables of the signal-to-noise ratios and
sensitivity levels for cross-correlation measurements between different detector pairs. The treatment given in
this paper should be accessible to both theorists involved in data analysis and experimentalists involved in
detector design and data acquisitip80556-282(99)02708-3

PACS numbg(s): 04.80.Nn, 04.30.Db, 07.05.Kf, 95.55.Ym

I. INTRODUCTION gravity-wave detectors. One might also be able to detect a
faint stochastic background of gravitational radiation, pro-
The design and construction of a number of new and moreuced very shortly after the big bang. These detections may
sensitive detectors of gravitational radiation is currently unfhappen soon after the detectors go “on-line” or they may
derway. These include the two Laser Interferometric Gravifequire a decade of further work to increase the sensitivity of
tational Wave ObservatorfLIGO) detectors being built in the instruments. But it is fairly safe to say that eventually,
Hanford, WA and Livingston, LA by a joint Caltech-MIT When their sensitivity passes some threshold value, the
collaboration[1], the VIRGO detector being built near Pisa, 9ravity-wave detectorwill find sources. Even more exciting
ltaly by an ltalian-French collaboratiof2], the GEO-600 is the prospect that the detectors will discomewsources of
detector being built in Hanover Germa,ny by an Ang|o_gravitational radiation—sources which are different from
German collaboratiof3], and the TAMA-300 detector being ;Eir;]%sel tm?gr:;?sneidtgtt)aoevg,naer;?:irivr?mtki]mvée had not expected to
built near Tokyo, Japaf]. There are also several resonant fhe psub'ect of this paper is gtochéstic(i e., randor
bar detectors currently in operation, and several more refineg N ) pap L

b d interf tric detect fv in the olanni ckground of gravitational radiation, first studied in detail
ar and interferometric detectors presently in the panmn%y Michelson [5], Christensen[6], and Flanagan[7].
and proposal stages.

] , . Roughly speaking, it is the type of gravitational radiation
The qperatlon of. thgse detectprs will have a major 'mpacbroduced by an extremely large number of weak, indepen-
on the field of gravitational physics. For the first time, theregent and unresolved gravity-wave sources. The radiation is
will be a significant amount of experimental data to be anasigchastic in the sense that it can be characterized only sta-
lyzed, and the “ivory tower” relativists will be forced to tistically. As mentioned above, a stochastic background of
interact with a broad range of experimenters and data angravitational radiation might be the result of processes that
lysts to extract the interesting physics from the data streamook place very shortly after the big bang. But since we
“Known” sources such as coalescing neutron gtarblack  know very little about the state of the universe at that time, it
hole) binaries, pulsars, supernovae, and other periodic ani$ impossible to say with any certainty. A stochastic back-
transient(or bursy sources should all be observable with ground of gravitational radiation might also arise from more
recent processe&.g., radiation from many unresolved bi-
nary star systemsand this more recent contribution might
*Email address: ballen@dirac.phys.uwm.edu overwhelm the parts of the background that contain informa-
TPermanent address: Department of Physical Sciences, Universitjon about the state of the early universe. In any case, the
of Texas at Brownsville, Brownsville, Texas 785@&mail address:  properties of the radiation will be very dependent upon the
jromano@utb1.utb.edu source. For example, one would expect a stochastic back-
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ground of cosmological origin to be highly isotropic, tiple detector pairs when searching for a stochastic back-
whereas that produced by white dwarf binaries in our ownground of gravitational radiation. Section VI A also includes
galaxy would be highly anisotropic. We will just have to a graph of the “enhanced” LIGO detector noise curves,
wait and see what the detectors reveal before we can decidéhich track the projected performance of the LIGO detector

between these two possibilities. design over the next de_cade. _ _ _
This paper will focus on issues related to thetectionof ~ In Sec. VII, we describe a computer simulation that mim-
a stochastic background of gravitational radiatiéve will ics the generation and detection of a simulated stochastic

not talk much about possible sourdedle give a complete gravity-wave signal in the presence of simulated detector
and comprehensive treatment of the problem of detecting Boise. The simulation was used to verify some of the theo-
stochastic background, which should be accessible to botf¢tical calculations derived in the previous sections.
theorists involved in the data analysis and experimentalists Section VIII concludes the paper with a brief summary
involved in detector design and data acquisition. and lists some topics for future work.

The outline of the paper is as follows: Note that throughout the paper, we uséo denote the

In Sec. II, we begin by describing the properties of aspeed of light andG to denote Newton’s gravitational
stochastic background of gravitational radiation—its specconstant €¢=2.998<10' cm/sec and G=6.673<10"®
trum, statistical assumptions, and current observational corem’/g sed).
straints.

In Sec. lll, we describe how one can correlate the outputs  Il. STOCHASTIC BACKGROUND: PROPERTIES
of two gravity-wave detectors to detgor put an upper limit
on) a stochastic gravity-wave signal. Section Il B includes a
detailed derivation of the overlap reduction function that A stochastic background of gravitational radiation is a
covers the case where the two arms of a detector are nsandom gravity-wave signal produced by a large number of
perpendiculare.g., GEO-60Dand corrects a typographical weak, independent, and unresolved gravity-wave sources. In
error that appears in the literature. Section 1l C includes anany ways it is analogous to the cosmic microwave back-
rigorous derivation of the optimal signal processing strategyground radiation(CMBR) [9], which is a stochastic back-
Most of the material in Secs. Il and Ill has already appeare@round ofelectromagnetigadiation. As with the CMBR, it
in the literature. Interested readers should see FBffor is useful to characterize the spectral properties of the gravi-
more details, if desired. tational background by specifying how the energy is distrib-

In Sec. IV, we ask the following question$) How do we  uted in frequency. Explicitly, one introduces the dimension-
decide, from the experimental data, if we've detected a stoless quantity
chastic gravity-wave signal@) Assuming that a stochastic
gravity-wave signal is present, how do we estimate its Quy(f)i= 1 dpgw 2.1)
strength7iii) Assuming that a stochastic gravity-wave signal aw Periticar d 1IN T :
is present, what is the minimum value ©6f, required to ) ] o )
detect it 95% of the time? This leads to a discussion of signaf'neredog, is the energy density of the gravitational radia-
detection, parameter estimation, and sensitivity levels fofon contained in the frequency rangeo f+df, andperiical
stochastic background searches, adopting a frequentist poifst the critical energy density requireitoday to close the
of view. The calculation 0f23°***in Sec. IV D corrects an  UNIVerse:
error that has appeared in the literature. 36212 oras

In Sec. V, we return to the problem of detection by ad- Peritical = 0~1.6>< 10—8h%00_g_ (2.2
dressing a series of subtle issues initially ignored in Sec. Ill. el 8wG cn
These includ€i) calculating the signal-to-noise ratio for ar-
bitrarily large stochastic backgroundéi) performing the Ho is the Hubble expansion rateoday,
data analysis in the presence of nonstationary detector noise,

A. Spectrum

-~ . . ) km 1

(iii ) combining data from multiple detector pairs to increase Ho=higo¥ 100—M = 3.2x10 8, pp—

the sensitivity of a stochastic background seafoh, corre- sec Mpc sec

lating the outputs of 4 or more detectors, dmngallowing for 1

the possibility of correlated noise in the outputs of two de- =1.1x10 %&chygo—, (2.3
cm

tectors. The material presented in these sections extends the

I[g't%ll treatment of these issues given, for example, in Refsand h,qo is @ dimensionless factor, included to account for

}he different values ofl , that are quoted in the literatutdt

Section VI consists of a series of graphs and tables o S ) .
numerical data for the five major intgrferr)omete(tSGO— is this dimensionless function of frequendyy,(f), that we

WA, LIGO-LA, VIRGO, GEO-600, TAMA-300. The noise will use to describe the spectrum of a stochastic background
povx;er spectrz'a, overla'p reductioh functions, optimal filterof gravitational radiation. It follows directly from the above

. ey 2 . .
functions, signal-to-noise ratios, and sensitivity levels ford€finitions thatQg,(f)hig, is independentof the actual

cross-correlation measurements between different detector
pairs (not just LIGO are given. This information allows us
to determine the optimal way of combining data from mul- h,,, almost certainly lies within the range K o<1.
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Hubble expansion rate. For this reason, we will often focughe universe is roughly 20 orders of magnitude larger than
attention on this quantity, rather than 6h,,(f) alone. the characteristic period of the waves that LIGO, VIRGO,

Two remarks are in order: etc. can detect, and 9 orders of magnitude larger than the

(i) There appears to be some confusion alfay(f) in  longest realistic observation times. It seems very unlikely
the literature. Some authors assume thag,(f) is  thata stochastic background of gravitational radiation would
constant—i.e., independent of frequency. Although this ishave statistical properties that vary over either of these time
true for some cosmological models, it is not true for all of scales. But unlike the stochastic gravity-wave background,
them. The important point is thany spectrum of gravita- the noise intrinsic to the detectossill change over the
tional radiation can be described by an appropriagg(f).  course of the observation times. This poses a problem for the
With the correct dependence on frequenfy,(f) can de- data analysis, which we initially ignore in Sec. Ill. We return
scribe a flat spectrum, a blackbody spectrum, or any othelo this problem in Sec. V B where we discuss nonstationary
distribution of energy with frequency. detector noise.

(i) Qqu(f) is the ratio of the stochastic gravity-wave en- (iv) The final assumption is that the stochastic gravity-
ergy density contained in a bandwidthf=f to the total wave background is a Gaussian random process. This means
energy density required to close the universe. For théhat the joint probability density function of the gravitational

CMBR, one can define an analogous quantity: strainsh;(t;),h;(t;), . .. in detectors,j, ... is a multivari-
ate Gaussialfi.e., normal distribution. In this case, the mean
dpem values(h;(t)) and the second-order moments(t;)h;(t;))
Qenff) = (2.4 completely specify the statistical properties of the signal. For

Peritical d 1N f . .
many early-unlverse processes, or even for more recent

gources of a gravity-wave background, this is a reasonable
Qem(f)hioo* 10°5 at =102 Hz, the CMBR containgin ass_umption. It can be justified by the central limit thgqrem,
the vicinity of 102 Hz) approximately 10° of the total yvhlch says that the sum of a Iz_;\rge numbe_r of stat|stlcally_
energy density required to close the universe. A similar in_lndep_endent random varlables_|_s a_Gauss_|an random varl-
terpretation applies t6y,(f). able, m_dependen.t of t_he probability distributions of th_e origi-
aw nal variables. This will be the case for the stochastic back-
ground if it is the sum of gravity-wave signals produced by a
B. Statistical assumptions large number of independent gravity-wave sources. This as-

The spectrunf)y,(f) completely specifies the stochastic sumptio_n will not be true, ho_wever, if the stochastic back-
background of gravitational radiation provided we makedround is the sum of the radiation produced, e.g., by only a
enough additional assumptions. We will assume that the std€W unresolved binary star systems radiating in a given fre-
chastic background i) isotropic, (i) unpolarizedyiii) sta-  duency interval at any instant of timeSee, e.g., Ref.11].)
tionary, and(iv) Gaussian. Since these properties might not The_above four properties form the_ba5|s fo_r the statlst_lcal
hold in general, it is worthwhile to consider each one of thenr@nlysis that we will give in the following sections. We will
in turn. assume that they hold throughout, unless we explicitly state

(i) Since it is now well established that the CMBR is Otherwise.
highly isotropic[9], it is not unreasonable to assume that a .
stochastic background of gravitational radiation is also iso- C. Expectation value

tropic. But this assumption might not be true. For example, ysing the definition of the spectrufil 5, (f) and the sta-

as mentioned in Sec. |, if the dominant source of the stochasstical assumptions described in the previous subsection, we
tic gravity-wave background is a large number of unresolvedtany derive a useful result for the expectation value of the
white dwarf binary star systems within our own galaxy, thengoyrier amplitudes of a stochastic background of gravita-
the stochastic background will have a distincdiyisotropic tjonal radiation. This result will be needed in Sec. Il when
distribution, which forms a “band in the sky” distributed e discuss signal detection and optimal filtering.

roughly in the same way as the Milky Way galaxy. Itis also  The starting point of the derivation is a plane wave ex-

possible for a stochastic gravity-wave background of cosmopansjon for the gravitational metric perturbations in a trans-
logical origin to be anisotropic, although one would thenyerse, traceless gauge:

have to explain why the CMBR is isotropic but the gravity-

wave background is not. In either case, such anisotragies - ® N A 2Bt A A

be searched for in the data stred®ee Ref[10] for details) ~ Nab(t,X)= EA: f,mdffsdehA(fﬂ)elz = axdoel ().
(ii) The second assumption is that the stochastic gravity- (2.5

wave background is unpolarized. This means that the gravi- '

tational radiation incident on a detector has statisticallyare () is a unit vector specifying a direction on the two-
equivalent “plus” and “cross” polarization components.

. - e A e
We see no strong reason why this should not be the case.Sp_here’ W'th_ wave Vecm{'_ZWfQ/C;‘ AIS(?; eab(g‘) are fhe

(iii ) The assumption that the stochastic background is stg2P!""2 p0|aI’I2a'[I011 tensors for the "plus™ and “cross” po-
tionary (i.e., that all statistical quantities depend only upon'@rization stated=+,x. Explicitly,

the difference between times, and not on the choice of time oA A~ A aa
origin) is almost certainly justified. This is because the age of €,4p({2) =MyMy—NyNy, 2.9

Since the 2.73 K blackbody spectrum has a peak value
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A AoA A A 2
el (Q)=m,n,+n,my, 2.7 3Hg
2 wh e H(f)= 55311 Qqu ). (2.19
where
R ) R R Thus,
Q) =cos¢ sin #x+ sin ¢ sin dy + cosHz, (2.9
R R R (hx(f,Q)ha (f7,Q7))
M= Sin X — COSeYy, (2.9 3H2
0 A A _
R R R R =———=6%(Q,0") dan 8(F—1)|F| 3Qq(|f]), (2.1
N=COS¢ COSOHX+ Sin ¢ cosdy — sin 6z, (2.10 32m A Tl

and (6, ¢) are the standard polar and azimuthal angles on th#hich is the desired result.
two-sphere. The Fourier amplitudéﬁ(f,()) are arbitrary

complex functions that satisty,(— f,{)) =h%(f,Q), where D. Observational constraints
* denotes complex conjugation. This last relation follows as At present, there are three observational constraints on the
a consequence of the reality bgb(t,i). stochastic gravity-wave spectrufyy,(f). These constraints

The assumptions that the stochastic background is isotr@re quite weak in the frequency range of interest for ground-
pic, unpolarized, and stationary imply that the expectatiorbased interferometers (1 K#<10°* Hz) and for proposed
value (i.e., ensemble averagef the Fourier amplitudes space-based detectors (fOHz<f<10"* Hz). There are

ha(f,Q) satisfies tighter constraints on the spectrum in two frequency ranges,
A and one “wideband” but very weak constraint. In this paper,
(h(f O)ha (F! Q,)>_ 821,07 San 8(F— £ )H(F) we simply state the constraints. For a more complete discus-
ALl 4 ’ - ’ Y ’

2.1 sion, see Refl8] and the references mentioned therein.
' (i) The strongest observational constraint €hy,/(f)
A A ; . from the high degree of isotropy observed in the
where 62(),Q):=8(¢p— ¢') 5(cos#—cose') is the covari- comes ; 9 9 4
ant Dirac delta function on the two-sphere, addf) is a CMBR. In particular, the 1—y|[13,1_4], 2-yr [15], and 4-yr
real, non-negative function, satisfyit(f)=H(— f).2 If we [16] data sets from the Cosmic Background Explorer

further assume that the stochastic background has zero mee{ﬁ:,OBE) satellite p!acg very strong restrictions oh,(f) at
then very low frequencies:

A H 2
(ha(f,Q))=0. (2.12 ng(f)h§00<7><10—11(70) for Hy<f<30H,.

Finally, since we are assuming that the stochastic back- (.17
ground is Gaussian, the expectation val(®41) and(2.12
completelyspecify its statistical properties.

H(f) is related to the spectrufl,(f) of the stochastic
gravity-wave background. This follows from the expression

Note that the above constraint does not apply to any gravi-
tational wave, but only to those of cosmological origin that
were already present at the time of last scattering of the
CMBR. Also, sinceHy=3.2x10 ®h,,, Hz, this limit ap-

2 plies only over a narrow band of frequencies (1® Hz
Pgw=32—<hab(t,§)hab(t,§)> (2.13  <f<10 ' Hz), which is far below any frequency band

7G accessible to investigation by either Earth-based or space-
based interferometers. Thus, although this constraint is se-
vere, it is not directly relevant for any of the present-day
gravity-wave experiments.

(i) The second observational constraint comes from al-
most a decade of monitoring the radio pulses arriving from a
number of stable millisecond pulsdrk7]. These pulsars are
A72c2 [ = dp remarka}bly stable (;Iocks, and the regulari.ty of their pulses
Pon= g f df f2H(f) (::f df d?"")_ places tight constraints dn,(f) at frequencies on the order

0 0 of the inverse of the observation time of the pulsars
(214 (~10°8 Hz):

for the energy density in gravitational wavésee, e.g., p
955 of Ref.[12]). By differentiating the plane wave expan-
sion (2.5 with respect tot, forming the contraction in Eg.
(2.13, and calculating the expectation value using Eq.
(2.12, we find

Using Egs.(2.1) and(2.2) for Q4,(f) then yields ng(f=10*8 Hz)hfoo< 1078 (2.18

Like the constraint on the stochastic gravity-wave back-
2if the stochastic background is anisotropic, we should replacgground from the isotropy of the CMBR, the millisecond pul-
H(f) by a function that depends d in addition tof. If the sto- ~ Sar timing constraint is irrelevant for current gravity-wave
chastic background is polarized, we should reple¢é) by a func-  experiments. The frequencf=10"8 Hz is 10 orders of
tion that depends on the polarizatidn=+,x as well. magnitude smaller than the band of frequencies accessible to
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LIGO, VIRGO, etc., and 4 orders of magnitude smaller thandetectors are coincident and coalign@e., have identical
that for proposed space-based detectors. locations and arm orientationshe gravitational strains are
(iii) The third and final observational constraint on identical:

Qgu(f) comes from the standard model of big-bang nucleo-
synthesiq9]. This model provides remarkably accurate fits
to the observed abundances of the light elements in the uni- h(t):=hy(t)=hy(1). (3.3
verse, tightly constraining a number of key cosmological pa-
rameters. One of the parameters constrained in this way is
the expansion rate of the universe at the time of nucleosyrBut the noises;(t) andn,(t) arenot equal to one another.
thesis. This places a constraint on the energy density of th&s mentioned above, we will assume that they are stationary,
universe at that time, which in turn constrains the energyGaussian, statistically independent of one another and of the
density in a cosmological background of gravitational radia-gravitational strains, and much larger in magnitude than the
tion: gravitational strainé.

Given the detector outpuss(t) ands,(t), we can form a

J' din f Qg (f)h2,,<1075 (2.19 product “signal” S by multiplying them together and inte-
£>1078 Hz gwi 1100 ' ' grating over time:

Although this bound constrains the spectrum of gravitational
radiation(}y,(f) over a broad range of frequencies, it is not T2
very restrictive. S —f ledt s1(t)sa(t). (3.4

Ill. STOCHASTIC BACKGROUND: DETECTION

In this section, we begin our detailed discussion of theThis quantity is proportional to the(zero-lag cross-
detection of a stochastic background of gravitational radiacorrelation ofs,(t) and s,(t) for an observation timeT.
tion. We explain how one can correlate the outputs of twoSinces,(t) ands,(t) are random variables, so tooSslt has
gravity-wave detectors to detef@r put an upper limit ona @ mean value
stochastic background signal. In Sec. Il B, we give a de-
tailed derivation of the overlap reduction function that covers
the case where the two arms of a detector are not perpen- w:=(S) (3.9
dicular (e.g., GEO-600 In Sec. lll C, we give a rigorous
derivation of the optimal signal processing strategy. The sta-
tistical assumptions that we will use for the stochasticand variance
gravity-wave background are those described in Sec. Il B. In
addition, we will assume that the noises intrinsic to the de-
tectors ardi) stationary,(ii) Gaussian(iii ) statistically inde- a?:=(S?—(S)?, (3.6
pendent of one another and of the stochastic gravity-wave
background, andiv) much larger in magnitude than the sto-
chastic gravity-wave background. The modifications that argvhich are related to the variances nf(t), n,(t), and

necessary when one relaxes most of these assumptions w(t).° The goal is to calculate ando, and then to construct
be discussed in Sec. V. the signal-to-noise ratio

A. Coincident and coaligned detectors

To begin, let us consider the simplest possible case. Let us SNRzzﬁ. (3.7
suppose that we have twamincidentand coalignedgravity- o
wave detectors with outputs

S1(t):=hy(t) +ny(t), (3.1 As we shall see in Sec. IV, the value of the signal-to-noise
ratio enters the decision rule for the detection of a stochastic
Sa(t) :=ha(t) +ny(t). (32 gravity-wave signal.

Hereh,(t) andh,(t) denote the gravitational strains in the
two detectors due to the stochastic background, ray{d) 4 ) S
andn,(t) denote the noises intrinsic to the first and second The assumption that the noises intrinsic to the detectors are sta-

detectors respectiverSince we are assuming that the two tistically independent of one another is unrealistic for the case of
' coincident and coaligned detectors. But it is a reasonable assump-

tion for widely separated detector sitgSee Sec. V E for more

details)
3We will assume throughout that the detector outputs are not whit- The mean values ofi;(t), n,(t), andh(t) are equal to zero,
ened. either by assumption or by definition.
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Let us start with the mean valye. By definition, is the response of either detector to a zero frequency, unit
amplitude, A=+, X polarized gravitational wave. Using Eq.
i=(S)= fm dt (sy(D)s(1)) (3.9 (218 for the expectation valuéh’ (f,Q)ha (f/,Q")), the
-T2 above expression forﬁ simplifies to
T2 3H3 (=
_ 2 2_ 0 -3 A EAOVEA! O
_f_mdt (h“(t) +h(t)ny(t) o 327T3f_wdf |f] ng(|f|); deQ FAQ)FA(Q)
(3.19
+ny(Hh(t) +ny(Hny(t)) (3.9
] ar i) 316
TI2 =A5A_ 2 g y .
= dt(ht 3.1 20m°) =
f () (3.10

where we used
=T(h*(t))=:To}, (3.1
> f dQ FAQ)FAQ) = 87 (3.17
whereo? denotes thétime-independentvariance ofh(t).® A Jg? 5 '
Note that we used the statistical independence of
n,(t), ny(t), andh(t) to obtain the third line, and the sta- to obtain the last line. Thus, for coincident and coaligned

tionarity of h(t) to obtain the last. detectors, the mean value of the cross-correlation sigmal
To express the varianagZ:=(h?(t)) in terms of the fre-
guency spectrum(,(f), we will make use of the plane BHS TJW df 1173 (If 31
gui s =— - : :
wave expansiofi2.5) and the expectation valu@.16). Since K= 20m2 " ). ] anl | ) (3.18

This is the first of our desired results.

To evaluate the variance?, we will make use of the
assumption that the noises intrinsic to the detectors are much
larger in magnitude than the gravitational strains. Then

Sl
h(t)::hab(t,xo)i(xaxb—YaYb) (3.12

(wherex, is the common position vector of the central sta-

tion of the two coincident and coaligned detectors, xid 02::<52>_<S>2%<32> (3.19
and Y2 are unit vectors pointing in the directions of the de-
tector armg’ it follows that T2 "o , ,
= dt dt’(s1(t)sp(t)se(t")s(t"))
" - -T2 J-T2
o2=> > dﬂf dfz'f dff df’ (3.20
A A SZ 82 — —»
~ R . .- T/2 /2
X{(hx(f,Q)ha (f7,Q"))e 127 (t=2-xplc) ~ 7T/2dtfimdt’(nl(t)nz(t)nl(t’)nz(t’)>
><eiz’”'(t*ﬁ"QO’C)FA(Q)FA'(()’), (313 (321)
T2 T2
where - dtf dt'(ny(H)ny(t")){(na(D)N,(t")),
-T2 —-T/2
. ALl (3.22
FAQ):=eh(Q) > (XaXP—yayb) (3.149

where we used the statistical independencengdft) and
n,(t) to obtain the last line. By definitiofh,

5The dimensions of-2 ando? are different.o has dimensions of 1 (= ottt
. . ! —_ wf(t—t") .
strairf, while ¢ has dimensions of strdised. [See, e.g., Eq. (ni(Oni(t")) =: 2Jlmdf e Pi(lf]), (3.23
@20]
%o and X2,Y? are actually functions ofime due to the Earth’s whereP;(|f]) is the (one-sidedi noise power spectrumf the

motion with respect to the cosmological rest frame. They can b§in detector (=1,2). pi(|f|) is a real, non-negative func-
treated as constants, however, sirigethe velocity of the Earth

with respect to the cosmological rest frame is small compared to the———

speed of light andii) the distance that the central stations and arms

move during the correlation time between the two detectors is small Equation(3.23 can also be written in the frequency domain:
compared to the arm lengtkiThe correlation time equals zero for

coincident and coaligned detectors; it equals the light travel time (ﬁ-*(f)ﬁ-(f’))=35(f—f’)P-(|f|).
between the two detectors when the detectors are spatially sepa- ' ' 2 '
rated) See Ref[10] for more details. See the discussion surrounding E8.64 for more details.
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107 - - . is a finite-time approximation to the Dirac delta function
8(f). In the limit T—w, §7(f) reduces tod(f), but for a
finite observation timél, one hasét(0)=T. Since in prac-
tice the observation timd will be large enough so that
or(f—1") is sharply peaked over a region fr-f’ whose
size~1/T is very small compared to the scale on which the
functionsP;(|f|) andP,(|f|) are varying'® we can replace
one of the finite-time delta functiong;(f—f’) by an ordi-
nary Dirac delta function, and evaluate the othelf atf .
Doing this yields

P(f) (strain’/Hz)

IS
]

o
i

Initial LIGO

T (e
“zwzjwdfPl(lfl)Pz(lfl), (3.28

Advanced LIGO

1 10 100 1000 w000 which is the second of our desired results.
) Using Eq.(3.18 and(3.28, we can now form the signal-

FIG. 1. A log-log plot of the predicted noise power spectra for {0-Noise ratio
the initial and advanced LIGO detectors. The data for these noise "
power spectra were taken from the published design ddals -3
df 20 f])

50

107

p 3HG
tion, defined with a factor of 1/2 to agree with the standard SNRi=—~ 2‘E = 12"
(one-sidedl definition used by instrument builders. It o 10w [f df P1(|f|)P2(|f|)}
satisfied .
(3.29
Uﬁi =(nf(t))= fo df Pi(f), (324 The multiplicative factor ofyT means that we caalways

exceed any prescribed value of the signal-to-noise ratio by
and so the total noise power is the integralPoff) over all correlating the outputs o_f two gravity-wave detectors for a
positive frequenciesf from 0 to «, not from —o to .  10ng enough period of tim& We will have more to say
(Hence the reason for the namee-sided Graphs of the about signal detection, parameter estimation, and sensitivity
predicted noise power spectra for the initial and advancelVels for stochastic background searches in Sec. IV.
LIGO detectors are shown in Fig. 1. Graphs of the predicted

noise power spectra for the other major interferometiees, B. Overlap reduction function

VlRGO-” GEO-600, and TAMA-300 and for the “en- To provide a rigorous treatment of the signal analysis for
hanced” LIGO detectors are shown in Figs. 11-15 in Secy giochastic background of gravitational radiation, we must
VIA. , i . take into account the fact that the two gravity-wave detectors
Inserting Eq.(3.23 into Eq.(3.22 yields will not necessarily be either coincident or coaligned. There

1 (T 12 " " will be a reduction in sensitivity due t@) the separation

o2~ _f dt dt’ f dff df’ ei2nf(t-t") time delay between the two detectors dinflthe non-parallel
4) -tz J -T2 —o —o alignment of the detector arms. These two effects imply that
C2at (-t ) h,(t) andh,(t) are no longer equal; the overlap between the
xe P([f)P2(IF']), 3.25 gravitational strains in the two detectors is only partial. Sta-
tistically, these effects are most apparent in the frequency

where we used the reality af,(t) and P,(|f|) to produce domai

. S : omain.
the minus sign in the power of the second exponential. If we
integrate this expression oveandt’, we find

, 1(~ © @ , , OTypically, an observation tim& will be on the order of months
o= Zf_wdff_xdf or(f—f )'31(|f|)|32(|‘c |)’ (i.e., 10 seg, while the noise power spectRy(|f|) vary on a scale
(3.26 of greater than a few Hz.
11Be warned that the signal processing strategy described above,

where leading to Eq(3.29, is not optimal even for the case of coincident
and coaligned detectors. The optimal signal processing strategy,
T2 ) sin(7fT) which is described in Sec. Ill C, leads to the signal-to-noise ratio
or(f) ==J ledt 87'2”“=T (8.27  given by Eq(3.75. Settingy(f)=1 in Eq.(3.75 yields an expres-

sion for the optimally filtered signal-to-noise ratio for the case of
coincident and coaligned detectors.
12This assumes that there is no systematic source of correlated
Unlike of and o?, of and ‘Tﬁi have the same dimensions detector noise. In Sec. V E, we discuss the limits that correlated
(strair?). detector noise imposes.
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02

o\ i

) ) ) ) ) FIG. 3. The surface of the Earth (18latitude<75°,—130°
e 1°°"°(HZ) 200.0 ! 10 f}gg) 1000 10000 <longitude<20°) including the LIGO detectors in Hanford, WA
(L1) and Livingston, LA(L2), the VIRGO detecto(V) in Pisa,
FIG. 2. The overlap reduction functiop(f) for the Hanford, Italy, and the GEO-60QG) detector in Hanover, Germany. The
WA and Livingston, LA LIGO detector paiThe horizontal axis of ~ perpendicular arms of the LIGO detectors are also illustrated
the left-hand graph is linear, while that of the right-hand graph is(though not to scaje A plane gravitational wave passing by the
logy-) The overlap reduction function has its first zero at 64 Hz, agEarth is indicated by successive minimum, zero, and maximum of
explained in the text. It falls off rapidly at higher frequencies. the wave. As this wave passes by the pair of LIGO detectors, it
excites the two in coincidence at the moment shown, since both
The overlap reduction functiony(f), first calculated in detectors are driven negative by the wave. During the time when the
closed form by Flanagafi7], quantifies these two effects. Zero is between L1 and L2, the two detectors respond in anti-
This is a dimensionless function of frequentywhich is coincidence. Provided that the wavelength of the incident gravita-

determined by the relative positions and orientations of a paifion@l wave is larger than twice the separatiah~3001 km) be-
of detectors. Explicitly tween the detectors, the two detectors are driven in coincidence

more of the time than in anti-coincidence.

5 A ai27tQ-AXicEAL AYEAL O . . . LA
y(f) == ng: Sdee F1(Q)FZ(Q), two-sphere is an isotropic average over all directioh®f
(3.30 the incoming radiation(iv) The exponential phase factor is
' the phase shift arising from the time delay between the two
where () is a unit vector specifying a direction on the two- detectors for radiation arriving along the direction In the
sphere,A§:=>Zl—>22 is the separation vector between thehmlt f—0, this phase sh_lft also goes to zero, and th_e two
central stations of the two detector sites. and detectors become effectively coinciderit) The quantity
' SAFT(Q)F5(Q) is the sum of products of the responses of
the two detectors to the- and X polarization waves. For

coaligned detectors;1(Q) =F5 (1) and the integral of this
(3.3)  quantity over the two-sphere equals the inverse of the overall
, ) , normalization factor[See Eq(3.17).]
is the response of thith detector (=1,2) to theA=+,X Figure 2 shows a graph of the overlap reduction function
polarlzatLon.[Se_:g also Eq(..3.14).;| The symmetric, trace-free () for the Hanford, WA and Livingston, LA LIGO detec-
tensord;™ specifies the orientation of the two arms of thle  tor pair’® Note that the overlap reduction function for the
detector. The overlap reduction functiar{f) equals unity LIGO detector pair isegativeas f—0. This is because the
for coincident and coaligned detectors. It decreases belowrm orientations of the two LIGO detectors are not parallel to
unity when the detectors are shifted afad there is a phase one another, but are rotated by 90°. If, for example, the
shift between the signals in the two detecjasrotated out Livingston, LA detector arms were rotated by 90° in the
of coalignment(so the detectors are sensitive to differentclockwise direction, only the overall sign of(f) would
polarization$. In Sec. Il C, we will see thaty(f) arises change. Note also that the magnitudeygD) is not unity,
naturally when evaluating the expectation value of the prodbecause the planes of the Hanford, WA and Livingston, LA
uct of the gravitational strains at two different detectorsdetectors are not identicl. Thus, the arms of the two de-
when they are driven by an isotropic and unpolarized stotectors are not exactly parallel, angi(0)|=0.89, which is
chastic background of gravitational radiation. less than 1.

To get a better feeling for the meaning gff), let us

look at each term in Eq(3.30 separatelyi(i) The overall
normalization factor 5/8 is chosen so that for a pair of 3jgures 16-20 in Sec. VI B show graphs of the overlap reduc-
coincident and coaligned detectoy$f)=1 for all frequen-  tion functions for different detector pairs.
ciesf. (i) The sum over polarizations is appropriate for an  *The two LIGO detectors are separated by an angle of 27.2° as
unpolarized stochastic backgrourtiii.) The integral over the seen from the center of the Earth.

A N P
FR(Q) =eg ()i =efy( Q) 5 (XPXP— VYD)
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From Fig. 2, one also sees that the overlap reduction func- - =A(a)Sr8.4+B St S
tion for the two LIGO detectors has its first zero at 64 Hz. abed @:8) =A(@) dapdeq B()(Sacdha dbcdad)

This can be explained by the fact that a gravitational plane +C(a@)(2p5cSqTt 6cdSaSh)
wave passing by the Earth excites a pair of detectors in co-
incidence when the positiveor negative amplitude part of +D(@)(9acSpSat dadSvSe

the wave is passing by both detectors at the same time; it
excites the two detectors in anti-coincidence when the posi-
tive (or negative amplitude part of the wave is passing by (3.39
one detector, and the negati@ positive amplitude part of We then contract Eq.(3.35 with 6?5550

the wave is passing by the other detect@ee Fig. 3. Pro- ¢ cad abocod . ;
vided that the wavelength of the incident gravitational wave, 8°¢8%), .. . s%"s"s" to obtain a linear system of equa-

+ 0pcSaSy T OpaSaSc) T E(@)S3SpS:Sy -

is larger than twice the distance between the two detectoré',ons for the functions\,B, . . . E:
the detectors will be driven in coinciden¢en averagg For ‘9 6 6 4 11T A7 F 0]
the case of the LIGO detector pair, this means that the Han-
ford, WA and Livingston, LA detectors will be driven in 6 24 4 16 2/| B q
coincidencgon the averageby an isotropic and unpolarized 6 4 8 8 2||Cl(a)=|T](a), (339
stochastic background of gravitational radiation having a fre-
quency of less tharf=c/(2d)=50 Hz. The actual fre- 4 16 8 24 41D S
quency of the zerof(=64 Hz) is slightly larger than this, L1 2 2 4 1)L E] |t
since y(f) is a sum of three spherical Bessel functions,
which does not vanish at exactly 50 Hz. where

In Appendix B of Ref[7], Flanagan outlines a derivation R
of a closed-form expression for the overlap reduction func- p(a) =T apcd @,5) 52°5°,
tion y(f). The resulting expression applies amy pair of
gravity-wave detectors, including interferometers with non- q(@) =T gped @,S)(82°6P9+ 6°¢539),
perpendicular arms and/or arbitrary orientations. This is a
useful result, because, e.g., the arms of the GEO-600 detector F(@)=T gped @,8)(52Pssd+ 5°952sP)

are separated by 94.33°. Below we give a more detailed

version of the derivation that appears in Ré&f, and correct _ - cbod dobc | cbead

a typographical error that appears in EB6) of that paper. S(@):=Taped @,5)(57°8°s°+ 557"+ 55
We take, as our starting point for the derivation, the inte- + 5P9s2gC),

gral expressiorn{3.30 for y(f). To simplify the notation in

what follows, we also define

t(@) =T gped @,S)s2sPsCsd, (3.37)
I 27rfd From Eg.(3.34, we see that the functions,q, ...t are
Ax:=ds and a:= c (3.32  scalar integrals that involve contractions of the spin-two po-

larization tensore4,()).
To evaluate these integrals, we chodggthout loss of

generality a coordinate system where the unit vecsoco-
incides with unit vectoz. Then

wheres is a unit vector that points in the direction connect-
ing the two detectors, andlis the distance between the two
detectors. In terms of these quantities, we can write

Q-s=cosf, m-s=0, n-s=-sing, (3.39

y(1)=d3Pd5T aped @.9), (3.33
and
where p(a)=0,
. 5 N A . 1 X
Fabco(a,s):%% Jszdﬂe'a“Se/;b(Q)e@d(Q). q(e)=10 ﬂdxé =20jo(@),
(3.34
r(a):ou

[aped @,S) is a tensor which is symmetric under the inter- 1 40
changesa«b,c—d,ab«cd. It is also trace-free with re- s(a):loj dx éX(1-x%)=—j;(a),
spect to theab andcd index pairs. -1 «

To evaluatel 4.4 a,S), we begin by writing down the 5 1 00
most general tensor constructed frdiy, ands, that has the t(a)= _f dx €X(1—x2)2= S5 ,(a), (3.39
above-mentioned symmetry properties: 4] a
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where jo(@), ji(@), andj,(a) are the standard spherical start by writing the cross-correlation sign&lbetween the

Bessel functions:

] _sina
Jo(a)—T,

Sina CoSa

ji(a)=

a? a '
) Qsina ,Cosa sina (3.40
a)= - - .
Jjo(a)=3 2 T2 o

Note that p(a)=0 and r(a)=0 are immediate conse-

quences of the trace-free propertyIofyq «,S).
The above linear system of equatiof®&36) can be in-

verted for the function®\,B, ... ,E. The results are

- A r —5a? 10« 57

B 50° —10a  5|rj,
2 _ _ .
C (a)= = S5a 10« 25 i1 ().
D 207 —5a®  20a —25[|j,
E 50> —50a 175
) (3.41)

Finally, to obtain an expression for the overlap reductio

function y(f), we substitute E¢(3.35 into Eq.(3.33. Since
d? (i=1,2) is trace-free, it follows that

Y(F)=2B(a)d3"dyap+ 4D (@) d;dy. sps,
+E(a)d2°d5%s,spS.Sq -

(3.42

Substituting the expressions for the functid®d®D,E given
by Eq.(3.4]) into Eq.(3.42 yields

Y(f)=p1(@)d3°doap+ po( @) d3Pd2,sps,

+ pal@)d3°d5 s, spscSg (3.43
where
p1 . 10a®> —20a 101 jo
p2|(a)=5> —20a®  80a —100||ji|(a).
P3 50> —50a  175||j,
(3.44

This is the desired result.

Note that in Eq.(B6) of Ref.[7], the factor multiplying
j1(a) in p1(a@) is —2/a. As shown in Eq(3.44), this factor
should equal- 10/a.

C. Optimal filtering

outputs of the two detectors in the following form:

T2

T2
Si= dtf dt’ s,(1)s,(t)Q(t,t"),  (3.49
- —-T/2

T2
where as before

S1(t):==hy(t)+ny(t), (3.46

Sa(t) :=hy(t) +ny(t), (3.47)

but nowQ(t,t’) is a filter function, which is not necessarily
equal tos(t—t’) as we assumed in Sec. lll A. Because we
are assuming in this section that the statistical properties of
the stochastic gravity-wave background and noise intrinsic to
the detectors are both stationary, the best choice of filter
function Q(t,t’) can depend only upon the time difference
At:=t—t’. The goal is to find theoptimal choiceof filter
functionQ(t—t'):=Q(t,t") in a rigorous way.

The optimal choice of filter functio®(t—t") will depend
upon the locations and orientations of the detectors, as well
as on the spectrum of the stochastic gravity-wave back-
ground and the noise power spectra of the detectors. It falls
off rapidly to zero for time delaydat=t—t’ whose magni-

"tude is large compared to the light travel timé& between

the two sites? (See Fig. 5, which is located at the end of this
section) Since a typical observation time will be >d/c,

we are justified in changing the limits on one of the integra-
tions in Eq.(3.45 to obtain

T/2

s=| dtf:dt’sl(t)sz(t')Q(t—t'). (3.49

T2

This change of limits simplifies the mathematical analysis
that follows.

We can also write Eq(3.48 in the frequency domain.
Using the convention

g(f):= f dte 2m"g(t) (349
for the Fourier transform of(t), it follows that
s:f dff df’ sr(f—f/)sk (f)s,(f)Q(f'),
(3.50

wheres,(f), s,(f), andQ(f) are the Fourier transforms of
$1(t), sp(t), andQ(t—t"), ands+(f —f') is the finite-time
approximation to the Dirac delta functiof(f —f") defined
by Eq. (3.27). Note also that for a rea(t—t’), Q(—f)

Using the techniques developed in the previous two sub= Q*(f).
sections, we are now in a position to give a rigorous deriva-
tion of the optimal signal processing required for the detec-
tion of a stochastic background of gravitational radiation. We °d/c=10"2 sec for the LIGO detector pair.
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The optimal choice of filter function also depends on thecross-correlation signab defined by Eqs(3.5 and (3.6).
quantity that we want to maximize. As we shall see in SecThe techniques that we will use to evaluateand o are
IV, in the context of stochastic background searches, it igrery similar to those that we used in Sec. Ill A for the case of
natural to maximize the signal-to-noise ratio coincident and coaligned detectors.
The calculation of the mean valye is straightforward.
7’ Since we are assuming that the noises intrinsic to the two
SNR:;' (3.51 detectors are statistically independent of each other and of
the gravitational strains, it follows immediately from Eq.
whereu ando? are the mean value and variance of the  (3.50 that

w9 [ at | arsi- ) ERORAR). (3.52

To calculate the expectation vaI(JE’l* (f)ﬁz(f’)>, we again make use of the plane wave expan&X®) and the expectation
value(2.16. Since

hi(H)=2> deﬁ ha(f, ) 2710 X eEAQ), (3.53
wherei=1,2 labels the two detectors, we find
(AT (Hho(1)) =2 2, deﬁdeﬂ’<h’;(f,ﬂ)hA,(f’,Q’))e‘zwm"zl’ce“z”f'ﬁ";Z’CF’f(Q) FY(@) (354
A/

2

3H3 T . .
zﬁa(f—f')“rmgwqﬂ); dene'Zﬂfﬂ'AX’CFi\(Q)FQ(Q) (3.55
6
=50,2 0= T2 Qaul D ¥((IfD), (3.56
|
where we used Ed2.16) to obtain the second equality and 3HS
the definition(3.30 of the overlap reduction function to ob- Hi(f)= W|f|*3ﬂgw(|f|)y(|f|). (3.59

tain the third. Substituting Eq3.56 into Eq. (3.52 yields

In other words,H(f) is just the Fourier transform of the
9 cross-correlation of the gravitational straimgt) andh,(t")
= 3HG TJOC df |f] 73 Qa(| ) ¥(|fHD(F). (3.57 at the two detector sites. Moreover, since the noises intrinsic
20m2 ) .. o to the two detectors are statistically independent of one an-
other and of the gravitational strains, it follows that

The factor of T on the right hand sidéRHS) arises from (hy(t)ha(t’))=(s1(t)sx(t")). (3.60
evaluatings7(0).

Before calculating the variance?, it is worthwhile to
make a slight digression and study in more detail the expe
tation value(3.56) derived above. It turns out that this equa-
tion has an important physical implication. In terms of the
time domain variable#(t) andh,(t'), Eq. (3.56 can be
rewritten as

Thus,H5(f) is the Fourier transform of the cross-correlation
Cc_)f the outputs of the two detectors. But this correlation is
something that we cameasure(or at least estimajegiven
enough data® This in turn implies that we can measu@

at least estimajeQ,(|f|). Explicitly, given the measured

18For example, suppose we measure the outputs of the two detec-
N i2mf(t—t) tors for a total observation time of 1 yr. To estimate the cross-
(ha(hy(t'))= ﬂcdf € Hi(f), (3.58 correlation(s;(t)s,(t")), we simply form the products af;(t) and
s,(t') for all t andt’ having the samat=t—t’ (e.g., 1 mseg and
then average the results. We then repeat this proceduretfor
where =2 msec, 3 msec, etc.
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values of (s,(t)s,(t')), we take their Fourier transform f<1/T, the Fourier transform lacks sufficient time domain
(with respectt—t’), multiply by |f|*, and divide by data to provide useful information; fdr>c/d, the overlap
(3H3/2072) y(|f]), to determinel),(|f|). This will yield a  reduction function quickly approaches zero, and so the divi-
good approximation to the real stochastic gravity-wave specsion by y(f) makesQ,(|f|) ill-behaved.

trum provided that the noise intrinsic to the detectors is not Let us return now to the calculation of the signal-to-noise
too large or, equivalently, if we measure the detector outputsatio SNR=u/o. To calculate the variance?, we assume
for a long enough period of tim&. Also, the approximation (as in Sec. Il A that the noises intrinsic to the two detectors
of ng(|f|) will be best for frequencies TK f<c/d (where are much larger in magnitude than the stochastic gravity-
d/c is the light travel time between the two detecjofsor  wave background. Then

0?:=(S) —(§)*~(S) (3.61

="t at [ k[ kst 1) antke kR (RITR))RUEIB(K) (3.62

[T at] " ar [ dk [ kst 1) suke k(R KRS (- RKNR(BIK), (363

where we used the statistical independence and reality of The problem now is to find the filter functio@(f) that
ny(t) andny(t) to obtain the last line. maximizes the signal-to-noise rat{®.51), with . ando? as

In Sec. IllA, we defined the noise power spectrumgiven above. This turns out to be remarkably simple if we
Pi(|f[) in terms of the expectation valde;(t)n;(t")) of the first introduce arinner product(A,B) for any pair of com-
time domain random variables(t). [See Eq.(3.23.] An lex functionsA(f) and B(f). The inner product ofA(f)
analogous expression holds in the frequency domain as weﬁnd B(f) is a complex number defined by
Using definition(3.49 for the Fourier transformrm;(f) and

definition (3.23 for the noise power spectrur;(|f]), it %
(AB)= [ df A (DBIPTPy(I1]). (369

follows that
~ ~ 1 . . .
(EHM(E))Y==8(F—)Pi(|f]). (3.64  SinceP;(|f[)>0, it follows that (A,A)=0, and @,A)=0 if
2 and only if A(f)=0. In addition, @,B)=(B,A)* and
o _ . _ (A,B+\C)=(A,B)+X\(A,C) for any complex numbek.
Substituting this result into Eq3.63 then yields Thus, (A,B) is a positive-definitenner product. It satisfies

1.0

1 (= o
o?~ ZJ_wdff_mdf’é-zr(f—f’)

X Py([THP(| ' NHQHQ* (") (3.65

NZf,wdf P.([fhP2(fDIQ(HI% (3.6

Q(f)

Initial LIGO
where we replaced one of the finite-time delta functions

67(f—1") by an ordinary Dirac delta function, and evaluated  _,5|

the other atf =f’ to obtain the last line. v
To summarize, I

3H(2) o 5 _ 0.0 1000 2000 300.0
p= e[ At Il 20gihvI B, 367 e
FIG. 4. Optimal filter functionsQ(f) for the initial and ad-
vanced LIGO detector pairs, for a stochastic background having a

T © - .
o~ _f df P1(|f|)P2(|f|)|Q(f)|2. (3.689 f:onstant frequengy spectrtﬁbw(f)=ﬂo. Both f{lters are normal-
4) = ized to have maximum magnitude equal to unity.
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all of the properties of an ordinary dot product of vectors intwo detectors. We would then analyze the outputs of the two

three-dimensional Euclidean space. detectors for each of these filters separately. Figure 4 shows
In terms of this inner product, the mean valueand the optimal filter functiongdisplayed in the frequency do-
variances? can be written as main) for both the initial and advanced LIGO detector pairs,

spectrumQg,(f)=Qq (i.e., a=0)." Figure 5 shows these
same optimal filter functions displayed in the time domain—
i.e., as a function of théag t—t’'.

o2n I(@ o)) 3.71) Having found the optimal choice of filter functiad@(f),
4 <= ' it is now straightforward to calculate the signal-to-noise ratio
- for a given pair of detectors. Substituting E8.73 into Eq.
The problem is to choos®(f) so that it maximizes the (3.72 and taking the square root gives
signal-to-noise ratio(3.5) or equivalently, the squared
signal-to-noise ratio

3H2 (~ y([F) Qgu(| f])

for a stochastic background having a constant frequency
ILL= 2 ) 1 ( Q
20m |f|3P1<|f|>P2(|f|>)

3H§
T

fw dfﬂlflméwdfl) vz

SNR~ . (8.79
(~ YD) Qgul[f) )2 107 1P (|f)P(If])
2\2 !
SNR2='M—2~ 3H0) T [F1°P1(| T P(IF]) We will use this result in later sections to calculate signal-
o |\ 107 (0,0) ' to-noise ratios and sensitivity levels for different detector

(3.72 pairs, assuming that the stochastic gravity-wave background
has a constant frequency spectrliy,(f) =(,. Tables I-V

But this is trivial. For suppose we are given a fixed three-" Sec. VI D contain the results of these calculations.

dimensional vectorA, and are asked to find the three-
dimensional vectolQ that maximizes the ratio@ﬂ)zlé

(3 Since this ratio is proportional to the squared cosine of
the angle between the two vectors, it is maximized by choos- ©Once the detectors have gone “on-line” and are generat-
ing O to point in the same direction &. The problem of ing data that needs to be analyzed, we will be confronted

S o : L with the following questions(i) How do we decide, from the
maximizing £q.(3.72) is identical. The solution is experimental data, if we have detected a stochastic gravity-

wave signal?(ii) Assuming that a stochastic gravity-wave
- Y| F)Qgu([f]) signal is present, how do we estimate its strendtihp As-
Q(f)=A 3P ([fhP.(lf)) 3.73 suming that a stochastic gravity-wave signal is present, what
[F*P2(IfDP(f]) is the minimum value of), required to detect it 95% of the
time? In this section, we answer these questions, using a
where\ is a(rea) overall normalization constant. frequentist approach to the theory of probability and
One of the curious things about expressi@t73 for the  statistics?®
optimal filter Q(f) is that it depends upon the spectrum
Qg4u(f) of the stochastic gravity-wave background. This is a A. Statistical considerations
function that we do not knowa priori.” In practice this
means that we cannot use a single optimal filter when per-
forming the data analysis; we will need to ussetof such 9
filters. For example, within the bandwidth of interest for the
ground-based interferometers, it is reasonable to assume thaf,

the spectrum is given by a power ldy,(f)=Q,f* (where . . .
— 18 . . functions for different detector pairs.
{1, consy) = We coulld then construct a set of optimal fil 2There are actuallywo approaches that one can take when ana-

tersQ,(f) (say, fora=—4,—-7/2,...,7/2,4) with the over- lyzing data: the frequentigbr classical frequency probabilityp-

IV. DETECTION, ESTIMATION,
AND SENSITIVITY LEVELS

When performing a search for a stochastic background of
ravitational radiation, it is convenient to break the data set

Figures 21-30 in Sec. VI C show the analogous optimal filter

all normalization constants,, chosen so that proach, which is adopted in this paper, and the Baye@arsub-
jective probability approach, which is adopted in Refd8,19.
w=0,T. (3.74  Although we will not describe the similarities and differences of

these two approaches in any detail in this paper, it is important to
) . ) o . ) ) emphasize that the frequentist and Bayesian approachem-are
!Vlth this choice of normalization, the optimal filter functions equivalentmethods of analyzing data. Frequentists and Bayesians
Q,(f) arecompletelyspecified by the exponent, the over-  askdifferentquestions about data and hypotheses, and consequently
lap reduction function, and the noise power spectra of thebtain different answers and draw different conclusions. In fact,
there are certain questions that one can ask and answer in the Baye-
sian approach that are ill-defined for a frequentist. Interested readers
should see Ref$18,19 for a detailed discussion of the frequentist
17See, however, the discussion surrounding E81&8 and(3.59. and Bayesian approaches applied to gravitational-wave data analy-
The o in 1, and ¢ is just a number; it is not an index label. sis with multiple detectors.
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1.0

experiment. From these samples, we can construct the
I samplemean
1 Advanced LIGO
i po=o2 S (4.1
i=1
- /\ and thesamplevariance
% 0.0 ¢ = 1 .
o? ==mz (Si—w)?. (4.2
i=1
-0.5 ~ ~
itial LIGO Given the values of these estimatqrsand o, we would
like to decide, in some reliable way, whether or not we have
o detected a stochastic gravity-wave signal.

5o w0 S0 0 0 0 10 20 @ 40 50 To make such a decision, we will apply a standard theo-
tag -t (msec) rem from the theory of probability and statisticse, e.g., p.
FIG. 5. Optimal filter functiongQ(t—t’) for the initial and ad- 178 of Ref.[20]). The theorem states thatf is the sample
vanced LIGO detector pairs, for a stochastic background having aean of a set ofiindependent samples drawn from a normal

constant frequency spectrufty,(f)=,. Both filters are normal-  distribution having meam and variancer?, then
ized to have maximum magnitude equal to unity.

(which might be hours, days, or weeks in lengtito shorter t==
stretches oN points, which we can then fast Fourier trans- al\n
form (FFT) and correlate with data from other detectors. De-. . . ,
pending on the choice dff and on the sampling rate of the IS _th? v_alue _Of a_random variable _ha_lvmg Stude_nts
detector, these shorter segments of data will typically last offdiStribution with parametew=n—1. This is the classic

the order of second?. From Eq.(3.50, we see that in a tudent’st-test. It is used to compare the means of two nor-
measurement over a éingle obsérvétioh pefiodt sec, the mal distributions that have the same variance, when the vari-

2 .
signalSis a sum(overf andf’) of approximately 400 sta- anceo* is unknown.

tistically independent random variablggoducts of the Fou- Sincg tables of _S_tudgntlfsdigtribution_and its associateq
. . . o ~ cumulative probability distribution function can be found in
rier amplitudes of the signalsThis is becaussy(f) and ot handbooks on statistitsee, e.g21]), we could do all

s,(f") are correlated only whejf —f'|<1/T~.25 Hz, and  of the remaining calculations in this section in terms of the
the bandwidth over which the integral in E@.50 gets its  t-distribution. The drawback to this approach, however, is
major contribution is~100 Hz wide. Thus, by virtue of the that the t-distribution depends on the parametern—1.
central limit theoremS is well approximated by a Gaussian This means that all of our results would depend on the num-
random variable, provided we are not too far away from theper of observations that constitute a single experiment. For
mode of the distribution. Equivalently, the values®fn a  stochastic background searches, this undesirable feature can
set of measurements over statistically independent time imhe avoided by choosingn large enough so that the
tervals(each of lengthl) are normally distributed. The mean t-distribution and standard normal distribution are virtually
value of this distribution isu := (S), and the variance is indistinguishable. Since a typical total observation time will
0% = () —(9)*. be on the order of months or years 10’ sec), whileT (the

Let s:=(S,S;, ... ,S,) be a set of such measurementsduration of a single observation perjoi$ typically on the
over statistically independent time intervals, each of lengthorder of seconds, it is no problem to choose 10° or
T.22 We can think of these measurementsnasdependent more23 For such largen, Eq. (4.3 can be rewritten as
samples drawn from a normal distribution having mgan
and variancer?. The sefsrepresents the outcome of a single w—

Z~——,
O'/\/ﬁ

wherezis the value of a random variable having the standard
T ; . normal distribution—i.e.z is a Gaussian random variable
16.384 kHz=2"" Hz, T=4.0 sec. Since the relevant bandwith

for stochastic background detectionfis 300 Hz, the data stream having zero mean and unit variance. Note that the approxi-

could, in principle, be decimated to sampling rates which are supmMation becomes a strict equality df is replaced by its ex-

stantially smaller—i.e., 1024 Hz. pected values. This is because a linear combination rof
2n order that the measurements be statistically independent, the

time intervals should be non-overlapping, afdhould be> the

light travel timed/c between the two detectors. For the LIGO de- Zin fact, even fom= 30, the 2r values for the-distribution and

tector pair, this corresponds =102 sec, which is satisfied for standard normal distribution differ by less than 5%. s %, this

T~4 sec. difference goes to zero.

4.3

(4.9

2lror example, foN=65536=2'% and a sampling rate of 20 kHz,
T=3.2768 sec. For the sam& and a sampling rate of
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Gaussian random variablés.g., ) is also a Gaussian ran- Signal is present, characterized by the fixed mean value
dom variable, independent af >0.

In the calculations that follow, we will want to assign ~ From Eq.(4.4), it follows that
probabilities to different events. From a frequentist point of

n 2
view, this means that we should perforfor imagine per- _ ~o /2 N O
forming) some fixed experiment many, many times. The P(0)=(2m0*) ex 21 252 4.6
probability of an event is then defined as the frequency of
occurrence of that event, in the limit of an infinite number of (S —p)?
repeated, independent experiments. p(g|M):(2m}2)—n/2eX;{ 2|

i=1 o

(4.7

B. Signal detection

In order to decide whether or not we have detected 4 € fact that we can use the sample varianédinstead of

. 2 . .
stochastic gravity-wave signal, we need a rule that, given &€ true variancer) on the right-hand sides of Eqé.6)

set of measured data, will select for us one of two alternativénd (4.7) follows from the largen approximation that we
hypotheses: used to obtain Eq4.4).

Ho: A stochastic gravity-wave signal is absent. A decision rule that, given the outcome of an experiment,

H,: A stochastic gravity-wave signal is present, charac-Selects for us eitheid, or H,is equivalent to a divisipn of
terized by some fixed, butnknown mean valuew>0. the space of all possible experimental outcomes into two

Moreover, we would like this rule to be “optimal” with diSioint regionsR, andR;: If se Ry, thenHy is chosen; if
respect to some chosen set of criteria. This method of decg€ R, thenH, is chosen. The success and failure of such a
sion making, or “hypothesis testing” as it is more formally fule are characterized by two types of errorsiype | (or
called, is a well-studied branch of frequentist statistics. Ad@lSe alarm error occurs when the decision rule choobfs
such, we will not go into any of the details here. After mak- whenHy is really true. Atype I (or false d|sm|3§alerror
ing the appropriate definitions, we will simply state the rule ©ccurs when the decision rule choos¢gwhenH, is really
that we adopt for our stochastic background searches arfiie- In terms ofp(s0), p(siu), Ro, andRy, we have
explain in what sense it is optimal. Interested readers should
see Ref[22] for a much more thorough discussion of the a=false alarm rate= f dsp(s0), (4.8
statistical theory of signal detection. Ry

To begin, let us note that the two hypothesgsandH,
are exhaustive and mutually exclusive—i.e., a stochastic
gravity-wave signal is either absent or present. And, if
present, it will be characterized by some fixed mean value
which is proportional ta), for a stochastic background of Note that, for the complex hypothests , the false dismissal
gravitational radiation having a constant frequency spectruniate is actually a function of the mean value-0. Note also
Qqu(f)=Q4. The only requirement is that>0. Hy is a  that 1-a is the fraction of experimental outcomes that the
simplehypothesis, since it does not depend on any unknowmlecision rule correctly identifies trebsencenot presence
parametersH is acomplex(or compositg hypothesis, since of a stochastic gravity-wave signal. If we want to talk about
it depends on a range of the unknown paramgteExplic-  detection, we should evaluate

B(u)=false dismissal rate fR dsp(du). (4.9
0

itly,
y v(u)=detection rate= 1— B(u), (4.10
Hi= U Hndudu (4.9  which is the fraction of experimental outcomes that the de-
n=0 cision rule correctly identifies the presence of a stochastic
gravity-wave signal, characterized by the fixed mean value
24
whereH , 4, is the hypothesis that a stochastic gravity—wavef“>0-

signal is present, characterized by a fixed mean value Iyin%_;2 In order for the decision rule to choose the regiggsand
in the range f¢, u+du]. 1 in an “optimal” way, we must first select some set of

As before, lets:= (S,,S,, . . .,S,) be a set o statisti- criteria V\_/ith respect to which “optimal” can be defined. For
cally independent measurements of the cross-correlation sigfochastic background searches, where one does not &now
nal S Because of the noise intrinsic to the detectors andfiori the “costs” that one should associate with false alarm
errors inherent to the measurement process, the outcome 8fid false dismissal errors, it is reasonable to choose a deci-
an experimens is a random variable. It is described statisti- SIONn rule that minimizes the false dismissal rigg.) for a
cally by the probability density functions: fixed value of _th_e false alarm rate. Equivalently, one

p(s0): Probability density function for the outcome of an chooses a decision rule that maximizes the probability of
experiment to bes, given that a stochastic gravity-wave sig-
nal is absent.

p(s|u): Probability density function for the outcome of = 2*The detection rate(x) should not be confused with the overlap
an experiment to be, given that a stochastic gravity-wave reduction functiony(f), which was defined in Sec. Ill B.
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detecting a stochastic gravity-wave signal, while keeping the Given the above decision rule for signal detection, we can
false alarm rate fixed. This decision criterion is known in thenow calculate the false alarm and false dismissal rates de-
literature as théNeyman-Pearsoariterion. In general, for a fined by Eqs.(4.8) and (4.9). First, for the false alarm rate,
complex hypothesis, the Neyman-Pearson criterion yields resne finds

gionsR, andR; that depend on the unknown parameter

But for this case, wherél; involves all parameter values a=Prol u=z,0/ \/ﬁ|,u=0) (4.19
u>0, Ry andR; are actually independent @f.?> Without

going into details here, let us simply state the result: Namely, =Prokhz=z,) (4.17
in the context of stochastic background searches as described

above, the Neyman-Pearson criterion is satisfied if, given the 1 z,

outcome of an experimerst, we form the estimatorsl and =§erf E ' (4.18

e according to Egs(4.1) and(4.2), and then

where we used Eq4.4) with =0 to obtain the second
equality. Thus, our two uses of the symhwol(for the false
alarm rate and for the area under the standard normal distri-
bution to the right ofz,) are consistent.

chooseH, if p=z,0/\n. (4.11) Second, for the false dismissal rate,

chooseH, if w<z,o/\n,

=Prol u<z,o/\n|u>0 fixe 4.1
Herez, is that value of the random variabifor which the Alu) ip 7 \/_l'u 9 419

area under the standard normal distribution to its right is ~
= <z,— .
equal toa. (See Fig. 6.In terms of thecomplementargrror Proliz<z,~ nu/o) (4.20
function -
1 1 ; Z,— \/ﬁ,u/()' .21
=1- cerfgf ———|, .
2 2

2 * 2
— — X
erdz) = \/QL dxe (4.12 where we again used E@.4) (but this time withu>0) to

obtain the second equality. A graph of the detection rate
v(u) :==1—B(w) is shown in Fig. 8. From this graph, we
see that the detection ratg x) approachesr as u—0; it
approaches 1 gg— . Also, the detection rate equals 0.50

z,=\2 erfc }(2a), (4.13  for u=z,0/+/n (or, equivalently, forynu/o=z,). Thus, if
we replace& with its expected valuer, we see that the

where erfc ! denotes the inverse of erfc. Sinseand o are detection rate is only 50% for a signal having a theoretical
- >inpeando signal-to-noise ratio aftan observation periods equal &, .

fAunCt'OAns of the outcome of the faxpenmesmthe inequalities It is also interesting to note that the Neyman-Pearson de-
p<z,0/n and u=z,a/\n defineR, andR;. Note also  tection criterion, when applied to stochastic background

(see Fig. 7,

that the decision rule can be restated as searches, is equivalent to theaximum-likelihooddetection
criterion[22]. In other words, we will obtain the same deci-
chooseH, if JnSNR<z sion rule given above if we first construct the likelihood ratio
p(sip)
S A = —— (4.22
chooseH, if ynSNR=z,, 4.14 (1) =550)
maximizeA (s u) with respect to variations of the parameter
where >0
,U, ’
. A mad(S) == maxA(slu); (4.23
JnSNR:= yn& (4.15 o
g

and then divide the space of all possible experimental out-

. ) . ) ) comess into two regionsRy andR; according to the rule
is the measured signal-to-noise ratio afteobservation pe-

riods. The fact that the signal-to-noise ratio enters the above chooseHy if Ap(9<Ag,
inequalities is one of the main reasons why we paid so much
attention to evaluating it in Sec. Ill. chooseH; if Apa(S)=Ag, (4.24

where A, is chosen so that the false alarm rate equals
25See pp. 152—153 of Refi22] for more details. Explicitly, from Egs.(4.6) and(4.7), it follows that
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. o FIG. 7. The complementary error function.
FIG. 6. The standard normal probability distribution for a

Gaussian random variable having zero mean and unit variapée.
that value ofz for which the area under the standard normal distri-
bution to its right is equal tax. Typical values for -« are 0.90,
0.95, and 0.99. The corresponding values fp; are zj,9
=1.28, 7, ¢s= 1.65, andzy o= 2.33. These are the threshold values
appropriate for the one-sided test described in the text.

nul~ 1
=ex 2|\ M K or, equivalently,
(4.25

is the value of a Gaussian random variable having zero mean
and unit variance. Thus, &, is that value of the random
variablez for which the area under the standard normal dis-
tribution to its right is equal ton/2 (see Fig. 9 then (1
—a)X100% of the time

1n 1 T Zyp<Z<Zyp (4.29
2 STk

A<s|m=exr{r1—’j
g

1= Zarp0 NN u< pt 24007 V. (4.30
. L =26
A(siu) is maximized whenu equals the sample mean Said another way, in an ensemble of observations of the

~y same stochastic background, a fraction & of the intervals

- 1nu
Amak(s):A(slﬂ):eXF{EA_z (4.26
o

| o 5= [ 1= Zapo0l N, 1+ Zg 001\ n], (4.3))

The decision surfac, is obtained by setting equal to the ~ constructed from the measured data, will contain the value of
~ the true meanu. Equivalently,« is the fraction of intervals
threshold valuez o/ n: : . '
20/ |, that fail to contain the value of the true mean Of
course, given the outcome of a single experimgrhe in-

— - _ 1.2
Ao=AmalZoo/ V) =exi 3 Za]. (4.27) tervall , either contains or does not contain the valueuof
And the value ofu, if it is contained inl ,, need not be any
C. Parameter estimation closer to the center of the interval than to either of its edges.

Thus, the confidence that one associates with the above esti-
%ation procedure is not equivalent to our degree of belief
that the true meam lies within a given interval(This is a

Assuming that a stochastic gravity-wave signal is presen
characterized by some fixed, but unknown, mean value

>0, parameter estimation attempts to answer the questio% . : o o
. . ! . ayesian interpretation of probabilifyRather, it is the frac-
2 : . o
what is the value of? It does this by first constructing the tion of experimental outcomes that our estimation procedure

- H ;2 . . . .
sample meanu and sample variancer® of a sets  jll produce an interval that contains the true meanin the

=(S1,S;, ... ,Sy) of n statistically independent measure- |imit of an infinite number of repeated, independent experi-
ments of the cross-correlation sigrfalas described in Sec. ments.

IV A. From Eq. (4.4), we then know that
IAL—M D. Sensitivity levels

Z~ 3 IJn (4.28 Let us assume once again that a stochastic gravity-wave
aivn signal is present, characterized by some fixed, but unknown,

mean valueu>0. Then it is reasonable to ask what is the

minimum value ofu required so that our decision rule cor-

25The sample meap is said to be thenaximum-likelihood esti-  rectly identifies the presence of a signal at legst100% of
mator for this problem. the time?
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FIG. 9. The standard normal probability distribution for a
Gaussian random variable having zero mean and unit variapge.
is that value ofz for which the area under the standard normal

The answer to this question can be obtained by applyingiistribution to its right is equal ta/2. The area under the standard
the results of Sec. IV B. Namely, we require that the detecnormal distribution betweer-z,, andz,, is thus 1— a. Typical

tion rate y(u) :=1— B(un) be greater than or equal to the
desired ratey, and then solve the resulting inequality fer
Explicitly, from Eq. (4.21), it follows that

1 z,—\nulo
1— = —erfC —_— = 43
B(w) 2 ( \/E Y (4.32
or, equivalently,
z,—nulo<\2erfc 1(27y), (4.33

where we replaced the estimateby its expected value to
obtain the LHS of the above equation. Thus,

n= %[Za— V2 erfe}(2y)] (4.34

:T[ [erfc X(2a)—erfc }(2y)]. (4.35
Equivalently,

JnSNR= \2[erfc 1(2a) —erfc 1(2y)],  (4.36

where VnSNR:= \nu/o is the theoretical signal-to-noise
ratio aftern observation periods. Note that the right-hand
sides of Eqs(4.35 and (4.36 depend on bothy and y.%’
This means that to calculate the minimum valueuofor the
minimum signal-to-noise ratjpwe must specify the desired
detection ratey in addition to the false alarm rate. In the
past(see, e.g., Ref$7,8]), physicists have only specified the
false alarm ratex. It seems that they have mistakenly as-

values for - « are 0.90, 0.95, and 0.99. The corresponding values
fOI’ Zu/Z al’eZO_05= 165, 20_025: 196, andZ()_oof 258

ence of a signhal was-1«. But as mentioned in Sec. IV B,
1— «a is the probability that the decision rule correctly iden-
tifies theabsencef a signal. To talk about detectidand the
associated minimum value @f), one needs to include the
additional parametey.

For stochastic background searches, we can rewrite Eq.
(4.35 in terms of )y, y(f), and the noise power spectra
P,(f) andP,(f) of the two detectors:

1 1077,2 -1/2

Q> ————
° Vot 3HO

X \2[erfc L (2a) —erfc 1(2y)],

“(If])

fOP (I Po(] f])

(4.37

where Ty, := nT is the duration of a single experimest
This result follows from Eq.(3.75 for a stochastic back-
ground of gravitational radiation having a constant frequency
spectrumQq,(f)=Q,. Let us now evaluate the minimum
value of Qg for 4 months of observation(i.e., Ty
=10’ sec), for a false alarm rate=0.05, and for a detec-
tion rate y= 0.95. Denoting the solution by3>"*%, we
find®

(i) Q5% 52 =5.74x 10" © for the initial LIGO detector
pair,

(i) Q%3 ,=5.68x10 ! for the advanced LIGO
detector pair.

sumed that the probability of correctly identifying the pres-———

2"The dependence om is via the threshold valug, , which de-
fines the decision rulé4.14).

%There is nothing special about the choice=0.05 and y
=0.95. For exampleg andy need not sum to 1. We could equally
well have choserr=0.10 andy=0.95, and calculated a different

minimum valueQ) 3°%10%,
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Note, however, that these valuesagree with those  wave signal should always be made with these error rates in
guoted in the literaturésee, e.g., Reff7,8]). In Refs.[7,8], mind.
the minimum value of}, is determined by the equation Moreover, one has to be very careful about trying to de-
fine “termination” criteria. For example, it would be mis-
leading to try to terminate an experiment by correlating the

1 1077 = L outputs of tw ity- detect fil th d
Qp= e o f ] utputs of two gravity-wave detectors until the measure
T 3Ho| /== fPP1(TDP([f]) signal-to-noise ratio for the total observation period exceeds
some threshold value,. One can show that the false alarm
X2 erfc Y(a). (4.39  rate associated with such a rule is 100%. In other words, the

conclusion drawn from such an experiment woaldaysbe
There are two mistakes: First, the argument of the inverstat a stochastic gravity-wave signal is present, even in the
complementary error function is instead of 2. But this is absenc;e of a signal. Noises intrinsic to the detectqr_s and
appropriate for awo-sidedtest, which would be correct if ©€fTors inherent to the measurement process are sufficient to
the mean valug: could be either positive or negative. Sec- guarantee that the measured signal-to-noise ratio for the total

ond, and more importantly, there is no term proportional tg®PServation period will eventually exceed any.
erfc1(2y). As mentioned above, it seems that the authors If, however, the value of the threshold level increases

mistakenly assumed that the probability of correctly identi-With observation time in an appropriate manner, then one
fying the presence of a signal was—L. Even the a candefine termination criteria that have false alarm rates less

=0.10,y=0.90 value of Eq(4.37) does not agree with the than 100%. A famous theorem of probability and statistics,
vall;es’ on.QO% quoted in Re;‘s [7.8]. Thus, by Q2% the called thelaw of the iterated logarithni23], states that if
0 10l ) 0

authors do not mean the minimum value @f for a false S1.S,, ... are statistically independent and identically dis-

alarm rate equal to 10% and a detection rate equal to 90%Fr|2buted random variables with zero mean and finite variance

9
Alternatively, the absence of the term erf¢2y) from therf
Eq. (4.38 is equivalent to calculating the minimum value of t{
Pro

Q, for a detection ratey=0.50. This is because erfé(1) lim sup SitSpt 4SS

=0. Thus, the values d23” quoted in Refs[7,8] are for a nx ov2nloglog(n)]

false alarm rate equal to 5% and a detection rate equal to . ) ) ) .

50%—not 90% as they claim. This is why the minimum This means that ik <1, there is unit probability that

values of(}; quoted in those papers are smaller than those

found here. S;+S+---+S,
Table | in Sec. VI D contains theoretical signal-to-noise ov2nlog[log(n)]

ratios after 4 months of observation, for a stochastic back-

ground having a constant frequency spectriig,(f)=Q, for infinitely manyn. If A>1, there is unit probability that

=6X 1O6h1’020. Eq. (4.40 holds for only finitely manyn. In terms of the
Table Il in Sec. VI D contains minimum values 8f;h2,, measured signal-to-noise ratio afterobservation periods,

for 4 months of observation, for a false alarm rate equal td=d- (4-40 can be rewritten as

=1. (4.39

(4.40

5%, and for a detection rate equal to 95%. _
° q ° JRSNR> 2 Tog log(m)]. (4.41)
E. Summary where we have replace@ﬂ in the definition of SNRby its

Tgxpected valuer. Thus, if we want to define a termination

We started this section by asking a series of questions. o ’
y 9 g |;]:(Enenon with a false alarm rate less than 100%, we should

conclude, we summarize the answers obtained above, a

address a couple of other related issues. compareynSNR with threshold levelg,, satisfying
(i) How do we decide, from the experimental data, if we

have detected a stochastic gravity-wave signal? lim t, o (4.42
Answer: We compare the measured signal-to-noise ratio nsyloglog(n)] '

after n observation periods to the threshold valmg. If
JnSNR<z,, we conclude that a stochastic gravity-wave This is consistent with the claim made in the previous para-

signal is absent. IfnSNR=z,,, we conclude that a stochas- 9raph that constant threshold levels=z, will always be

tic gravity-wave signal is present, characterized by somé&xceeded for some. Unfortunately, we have not been able

fixed, but unknown, mean valye>0. to write down a simple analytic expression for the false
Note, however, that we can never conclude, with 1009@larm rate, for arbitrary threshold levets satisfying Eq.

confidence, that a stochastic gravity-wave signal is absent or
present. Our decision rule leads us to infer one of these two

possibilities, but the rule is not perfect. The false alarm rate 29The jim sup .., of a sequence, ,x,, . .. is defined as follows:
a and false dismissal ratg®(u) [defined by Eqs(4.8) and  Let a,, equal the least upper bound of the subsequence
(4.9] are the error rates associated with the rule. Thusx,, ,x,.1,... .(Note thata;=a,= ... .) Then limsup_.. x,

claims about the absence or presence of a stochastic gravity= lim___a,.
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(4.42). The probability that/nSNR=t,, for somen involves 1 1072
integrals of products of the Gaussian probability density QOI\/?W
function with the complementary error function. tot =770

(i) Assuming that a stochastic gravity-wave signal is X2 erfc }(2a). (4.45
present, how do we estimate its strength?

: Answer: Assumlng that a StOCha.St'C gravity-wave Slgnal'I'his alternative upper limit is the maximum value of the test
is present, characterized by some fixed, but unknown, mea

value >0. we estimates by constructing the interval Qatistic leading to the conclusion that a stochastic gravity-
K= e by 9 wave signal is absent. The decision rule—by its very

construction—will never allow one to conclude that a sto-
|y = [ o= Zoo0 !N, o+ 2,001\ ]. (4.43  chastic gravity-wave signal is present with &y less than
this upper limit.
. _ The above two definitions of upper limit agree when the
In an ensemb!e of obser\'/atlons' of the same stochast|c. backatection ratey=0.50. This is because eff&(1)=0. This
ground, I-« is the fraction of intervald , constructed in 1 aans that, if a stochastic gravity-wave signal is present,

this way that contain the value of the true mgan with an Q, less than or equal to this maximum value, then
We should emphasize that parameter estimaliSsUmes  here is more than a 50% chance of falsely dismissing it.

the presencenf a signal. First, as mentioned above, we cangte also that if we change the argument of the inverse
never be 100% certain that a stochastic gravity-wave S'gnac!omplementary error function from to 2« in Eq. (4.38

is present. Second, it does not make any sense to try to esflan, Eqs(4.38 and(4.45 agree. Thus, the minimum values
mate the parameters of something that we assume does rlﬁtﬂo quoted in Refs[7.8] can be interpreted as either the

exist. - )
=0. =0. I f Ed4.4 h
(i) Assuming that a stochastic gravity-wave signal isz 0.50a 00-5 HPPer imit defined by Eq4.44) or the a
. e _ =0.05 upper limit defined by Eq4.45.
present, what is the minimum value@f, required to detect

it yx100% of time?

Answer: Assuming that a stochastic gravity-wave signal V. COMPLICATIONS
is present, characterized by some fixed, but unknown, mean
value u>0, the minimum value of},, for an observation
time T, false alarm rater, and detection rate, is given

J* y(f) Y
— FOP([F)P(]])

In Sec. Ill, we discussed optimal filtering under the as-
sumptions that the noises intrinsic to the detectors vgre
stationary/(ii) Gaussian(iii) statistically independent of one

by another and of the stochastic gravity-wave background, and
(iv) much larger in magnitude than the stochastic gravity-
1 1072 (= Y2(|f]) —1/2 wave background. In this section, we describe the modifica-
Qp=—= ETH f dfm tions that are necessary when most of these assumptions are
\/fot oL == ! 2 removed®® We will also describe how one can correlate the
% \/E[erfcfl(Za)—erfcfl(zy)]_ (4.44) outputs of 4 or more detectors, and how one can combine

data from multiple detector pairs to increase the sensitivity of
a stochastic background search.
For fixed @ and y, the factor ofT,, 2 implies that the mini-
mum value of(), decreases with increasing observation
time. Thus, thesensitivityimproves as the total observation
time increases. This means thaflag increases we can put a

A. Signal-to-noise ratios for arbitrarily large
stochastic backgrounds

tighter “upper limit” on the value ofQ), for a stochastic In Sec. Ill C, we calculated the signal-to-noise ratio for a
gravity-wave signal that we will falsely dismiss more than stochastic background of gravitational radiation, assuming
(1— )X 100% of the time. that the noises intrinsic to the detectors were much larger in

Alternatively, for a fixedQ, and a fixed false alarm rate Magnitude than the gravitational strains. Although this as-
a, the factor of T2 implies that the false dismissmal rate SUMption is most likely valid, there are at least two reasons
1— v, for a stochastic gravity-wave signal having a strengthWhy we want to consider stochastic background signals
equal toQ,, decreases with increasing observation time. Folhose magnitudes are comparable (ew larger than the
example, suppose that a particular theory—such as cosmfo!S€ intrinsic to the detector§) Computer simulations for
strings—predicts a value d®,=10"7. Moreover, Suppose stochastic background searches allow one to “dial-in” arbi-
that, in successive years of observation, we fail to detect tharily large signal strengths. Thus, in order to compare the-

presence of a signal at this level of sensitivity. Then we carPretical predictions with the results of computer simulations,
still say that the probability of our falsely dismissing a sto- W€ need to be able to analyze the large signal dédigeru-

chastic gravity-wave signal having a strength equal ture generation_s of gravity-wave detectors might have intrin-

—10"7 has decreased over the course of the observation. SiC detector noise levels comparable to the level of a real
The above upper limit on stochastic background signal

strengthg[defined by Eq.4.44)] is different from that ob-

tained by setting the measured signal-to-noise ratio for the 3%we will alwaysassume that the noise intrinsic to a detector is

total observation period equal to the threshold vaye Gaussian and statistically independent of the gravitational strains.
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of large signal data will also be necessary. df A*(f)B(f)Py(|f)P2(If]), (5.9
To begin, let us recall the main results of Sec. Il C. Un- -
der the assumption that the noises intrinsic to the detectorgng writing 4 and o in terms of this inner product. The
were much larger than the gravitational strains, the Calcmaéquared signal-to-noise ratio then took the form
tion of the varianceo? := (S?)—(S)? simplified consider-
ably. For the large noise case? was dominated by the pure <~ y(|f|)QgW(|f|)
) 2

stochastic background signal. For this case, optimal filtering (AE) fac
A'B =

2

detector noise contribution: 2 T3
3Hp [T°P1([T))P2([F])
107" @.Q)

which was maximized by choosing

SNR= , (5.6

T * ~
o= [ atPulibPAIROE 5

This is Eq.(3.68 from Sec. Ill C.

If, however, the magnitude of the stochastic background O(f)= YD) Qgullf]) (5.7)
signal is comparable to the noises intrinsic to the detectors, [f13P1(|f)Po(IF]) .
the calculation of the signal-to-noise ratio SNRu/o is
more involved. Although the mean valyeis independent of  Although Q(f) depended orf),(f), we could construct a

the relative_sizle of the stochastic background signal and thggt of optimal filters),(f) for stochastic backgrounds hav-
detector noisé, ing power-law spectrdy,(f)=Q,f* (where Q= const).
312 The proportionality constant@ , could always be absorbed
— 0 - -3 & into the normalization constants,. The resulting set of
® ZOwZwadf 720 DA TDQUD, (5.2 optimal filters was thegompletelyspecified by the exponent
«a, the overlap reduction function, and the noise power spec-

the varianceo? is not. Explicitly, tra of the two detectors.
For the case where the stochastic background is compa-

, T [~ - ) rable to the noise intrinsic to the detectors, we can try to do
o :Zf, df|Q(f)[*R(f), (5.9  something similar. We can definen@winner product
where (A,B) := fﬁ df A*(H)B()R(), (5.8
[ . . 3H3 Q[ f]) whereR(f) is given by Eq.(5.4). Although this inner prod-
R(f) = Pa(lf)P(| )+ 1072 TE uct is more complicated in form than the original inner prod-
uct (5.5), it is still positive-definite, sincdR(f) is real and
Pyl + P+ 3H2 ZQéW(|f|) positive. In terms of Eq(5.8),
l( ) 2( ) 10772 f6 3H(2) T
— ~ 2 _ (A O
X (14 v? : .
@ ydmﬁ 64
— -3 -1
Note the additional terms that contribute to the variance. Af) = f| ng(|f|)7’(|f|)R (f). (5.10

Roughly speaking, they can be thought of as two “signal

5 . : ., ; The squared signal-to-noise ratio is thus
+noise” cross-terms and a “pure signal” variance teim.

WheanW(|f|) is negligible compared to the detector noise 3H2\2 (D,A)2

power spectre;(|f|) (i=1,2), Egs.(5.3 and(5.4) for o2 SNRz:(_OZ) = (5.1
reduce to the “pure noise” variance terifb.l) as they 107 (Q,Q)

should.

ALt sage ofthe analysi,te fitr funcudr) n 1 "% he same form o H8, athough uih 2 much
Eqs.(5.2) and(5.3) is arbitrary. For the case of large detectorment for maximizing the squared signal-to-noise ratio still

noise, we were able to make aptimal choice forQ(f),  goes through. The optimal choice of filter function is
which maximized the signal-to-noise ratio. This was facili-

tated by introducing an inner product O(f)=MA(f), (5.12
where\ is a(rea) overall normalization constant.
31gee the discussion surrounding E(52—(3.57 in Sec. Il C. _But this is where the similarity W|th_the_ large detecto_r
These are the terms proportional(,(|f|) andQ2,(/f[), re- ~ NOise case ends, and where the compl|cat|ons~start to arise.
spectively. The main problem is that the optimal filter functi@(f) has
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a complicated functional dependence on the stochasti
gravity-wave spectrunf)y,(f). For the large detector noise

PHYSICAL REVIEW 39 102001

(3.73)] so that the theoretical meanis equal to some fixed
value[e.g., u=Q,T for a stochastic background having a

case, this problem did not exist. As mentioned earlier, wepower-law spectrunf),(f) = ,f“], then the quiet periods

could always consider stochastic backgrounds having powe
law spectral)q,(f)=Q,f*, and then construct a set of op-

timal filters Q,(f) labeled by the different values of. But

for the optimal filter functionQ(f) given by Egs.(5.12,
(5.10, and (5.4), this idea of constructing a set of filters
labeled by only the power-law exponentsfails. The pro-
portionality constant£), cannotbe absorbed into the nor-
malization constants ,. For example, if we consider a sto-

chastic background having a constant frequency spectrum

Qgu(f) =0, (i.e., a=0), then

é(f)=molf|‘3y<|fl>[Pl(lfl)Pz<|f|>
( 3H§> O,
+ 102 W(Pl(lle P,(|f]))

292
) w5 @+ (1))

2 -1
0

"\ 1022

(5.13

Although the factor of} in the numeratocan be absorbed
into the normalization constant, the factors o), and Q3
in the denominator cannot. In other words, if we want to

will have a correspondingly larger signal-to-noise ratio.
Thus, a natural question that arises in this context is, can one
combine the different sets of measurements, corresponding
to the quiet and noisy periods of detector operation, so as to
maximize the overall signal-to-noise ratio? The answer to
this question is yes, and the proof is sketched below.

In order to handle the most general case, let us congider
different sets of measurements

(i)Sl,(i)Sz, o '(i)sn_

corresponding tam different levels of detector noise an
different periods of detector operation.(Here i
=1,2,...m.) Each of these measurements is taken over an
identical time interval of lengtil. These measurements can
be thought of as realizations oh random variables’S,
each having theametheoretical mean

(5.19

Op=(Vs)=pu, (5.15
but differenttheoretical variances
g2 = (g — (g2, (5.16

The equality of the mean values follows because we

construct a set of optimal filters for arbitrarily large stochas-assume identical normalization conventions on the optimal

tic backgrounds having power-law spectig,(f)=Q .,

we need to specify the proportionality constafits in addi-
tion to the exponenta. The “space of optimal filters” thus
becomes a much larger set, parametrized by(X,). Al-
though in principle this poses no problem, in practice it re-

filters—e.g., u=Q,T for a power-law spectrumy,(f)
=Q,% We also assume thatall of the
measurementSS; ,(Vs,, ... (s, are statistically inde-
pendent of one anothét.

For each set of measurements, we can construct the

quires a more sophisticated search algorithm; the detectarample mearor estimatoy

outputs will have to be analyzed for each of the filters
Q(Q,Qa)(f) separately.

B. Nonstationary detector noise

It is not at all uncommon for the power spectra of the

N

> s,

=1

()7, ;zi (5.17
M n, :

Viewed as a random variable in its own righ,. has mean

noises intrinsic to the detectors to change over the course

of time. There will be periods of time when the detectors
are relatively “quiet,” and other periods of time when
the detectors are relatively “noisy*® These changes in the

power spectra will, in turn, lead to measurements whose sta-

tistical properties also change with time. For example, during

the quiet periods of detector operation, the
measurementd)s; ,(1's,, ... (IS, will have an associated

variance Mg? that will be smaller than the variand® o?
associated with the measuremédts;,?s,, ... s,

taken during the noisy periods. Moreover, if the optimal filter
function is normalizedby an appropriate choice af in Eq.

33although the frequency of these more “noisy” periods should
decrease as the detectors are gradually improved over the course
months or years, variations in the detector noise power spectra wi
still inevitably occur.

i =(Vpy=p (5.18
and variance
) o o (i)0_2
of = <(I)'LL2>_<(I)M>2:T' (5.19
I
What we want to do now is combine all the meas-
urementsVs;, (s, , ... (™S, (o, equivalently, combine

the sample mear®x, @, ... Mu) so as to maximize
the overall signal-to-noise ratio. We thus usegightedav-
erage to define the estimator

ot*As mentioned in Sec. IV A, this means that the measurements
hre taken over distinct, nonoverlapping periods of operation, with
T> the light travel timed/c between the two detectors.
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m ~ ~
2 )\i(i);’« Moptimal *= M|)\i:gi*2 (5.27
= % (5.20 has a very simple form
RN m m
=

‘T(;pztimalzizl 0;2:; ni(i)o'iz- (5.28
and then choosk;>0 to maximize the signal-to-noise ratio

~ . ~ This result says that the variances for the optimal estimator
of u. From Eq.(5.20), it follows that u has mean value Y b

add like electrical resistors in parallel. The squared signal-to-

. TN noise ratio of the optimal estimator also has a very simple
Moo= (pu)=p 52y o
(which is independent of the choice ®»f) and variance m mo
m SNFﬁptimal:;1 SNF$=§1 nSNR,  (5.29
> \of
) ~ A, 171 where
o =)~ (W)= T3 (5.22 v
. SNR = —="— (5.30
12:11 )\J) A g O
The squared signal-to-noise ratio is thus and
moo\2 - Op  u
(1) - =
, (2 )\j) SNR:= Wy g (5.3)
R K ) j=1
SN e (5.23 Thus, the squared signal-to-noise ratio of the optimal estima-
T S 202 tor is simply a sum of the squared signal-to-noise ratios for
R each ('S after n; observation periods, each of length

It is instructive to compare the results for the optimal
To find the\; which maximize SN% (and hence which estimator,&opﬁma. with those for the “naive” estimator
tell us how to optimally combine data from periods of quiet
and noisy detector operatiprs quite easy. This is because R
Eq. (5.23 can be written as a ratio of inner products, just as Mnaive *=
we were able to write the squared signal-to-noise r&id2
in Sec. Il C as a ratio of inner products. Explicitly,

m

> le s, (5.32

1
Not =1

which simply averages all of the signal estimates, paying no
(N, 2)? attention to the different variancé8o? associated with the

SNREL:MZ()\—)\) (524 (s The naive estimatof,gye corresponds to Eq5.20

with \;=n; andn, :== =" ,n;. One can show that

where the inner producta( 8) is defined by

1 1
m 2 _ 2 2 (i) 52
O haive= n‘o = n‘"o 5.3
(a,B) = |=§:1 ai*BiUiz, (5.25 naive ntzm izl i Oi ntzm 21 i (5.33
: . and
for any pair of (compleXy sequencesa; and B (i
=1,2,...m). The inner product¢,8) is positive-definite, 1 m 1 m
sinceo? is real and positive, and it satisfies all of the prop- SNR.2 = —- > n? SNR 2= —- n,(VSNR 2,
erties of the ordinary dot product of vectors in three- ntzot i=1 ntzot =1
dimensional Euclidean space. Thus, choosing (5.39
Nxo 2 (5.26  Note that in addition to the factors ofrf,, the signs of the

. exponents for the variances and signal-to-noise ratios in Egs.
maximizes Eq(5.24) in the same way that choosidgpro-  (5.33 and (5.34 are opposite to those in Eqé.28 and
portional toB maximizes the ratio&-B)?/(A-A). By aver-  (5.29.
aging each set of measurements with the inverse of its asso- T0 give a numerical example, suppose we have just two
ciated theoretical variance, we give more weight to signapifferent periods of detector operation, with the second pe-
values that are measured when the detectors are quiet thanrigd twice as noisy as the first—i.e?o=2x"g. Since
signal values that are measured when the detectors are noisye=o?/n;, it follows that if there are 4 times as many
This weighting maximizes the overall signal-to-noise ratio. measurements during the noisy perige., n,=4n,), then

For the optimal choice of weights;=o; 2, the inverse o2=03. Intuition suggests that the optimal way of combin-
of the variance of the optimal estimator ing the measurements for this case is to weight the estimators
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Mu and P equally (i.e., \q=X,=072). This agrees having a power-law spectrurg,(f)=Q,f], the math-
with the above mathematical analysis, and yields a squareghatical analysis of Sec. V B goes through unchariade
signal-to-noise ratio for the optimal estimator equal to optimal way of combining the estimators
.1
2 ()7 = — 2 (ij)
M M= S (5.4
SNR piima= 2N V'SNRE=2n, W (5.39 nij =1

for each detector pair is
For the naive estimator, [

25 25  pu? i=1]<i
=—n.,@ — e~
SNR: e =M SNR MW 2 (5.36 = — , (5.42
N . o PIPIRY
Thus, for this particular example, the signal-to-noise ratio for i=1j<i

the optimal estimator is/34/25=1.17 times larger than that \yheré”
for the naive estimator.

)\ij:Uﬁzznij(ij)Uiz. (543)
C. Multiple detector pairs The inverse of the variance for the optimal estimator
Combining measurements from multiple detector pairs in Popimeg = /AL| L, (5.44)
order to increase the sensitivity of a stochastic background optimal Nij = i) '
search isidentical to combining different sets of measure- is given by
ments corresponding to quiet and noisy periods of detector Lo
operation in order to maximize the overall signal-to-noise — =Z 2 ne (g2, (5.45
ratio. The only difference between the two is one of inter- optimal g = T
pretation and notation. In Sec. V B, The squared signal-to-noise ratio for the optimal estimator is
g s, .. _(i)S1i (537  9given by .
denotedn; different measurements, each of lengthof the SN'%ptimalzzl §<:| ni;'SNR. (5.46
optimally filtered cross-correlation sign&lS when the level -
of detector noise was characterized by the variance These equations should be compared with E§28 and
)2 a2y /()2 (5.29 in Sec. V B.
of = (VS) (9" (5.38 Using Eq.(5.45 for the inverse variance of the optimal

estimator, we can derive an expression for the minimum
value of Qy after 4 months of observatiorti.e., Ty
=10 sec), for a false alarm rate equal to 5% and a detec-

In this section, for multiple detector pairs,

(ij)Sl,(ij)Sz, . ’(ij)Snij (5.39
denoten;; different measurements, again each of lengtbf
the optimally filtered cross-correlation sign&)S between
theith andjth detectors® As usual,

38although cross-correlation signald’s and S taken during
the sametime intervalT are correlated, i.e.,

B B B coV{(iDs, (g} = ((ihg (Kg) — ((ihgy (kg =0,
(IJ)O-iZ = (1g2) — ((i)g)2 (5.40
. ) s the variance-covariance matrixC ;)i = COV{('J)Sg_(kl)S_}_ is

denotes the variance of the cross-correlation sighs. dominated by the diagonal term€j;,=cov(Ds,(Ds}

Provided that each cross-correlation signal measurement . (ij) 2
occurs over the same time intervia{which should be> the can treaall of the measuremenfd?s, (123, I-1)g as
light travel time between any pair of detectprand that the . . . o D

. . . . . . _ effectively uncorrelated. This is because the detector nggkih
optimal filter functions for each detector pair have identical,e statistically independent of one anojhere the only contribu-
normalizationde.g.,\ in Eq. (3.73 is chosen so thatu  tors 1 (1)g2 in this approximation.
=(Ms)=0 T for a stochastic gravity-wave background

in the large noise approximation. Thus, in practice, one

37For completeness, we note that the optimal way of combining
correlated random variables X, ... X, iS given by a
= Eim:l)\ixi/E?]:l)\j y Where)\i=2j:1(C71)ij and (Cil)ij iS the
inverse of the variance-covariance mat@y := cov{x; ,x;}. When
the variance-covariance matrix is dominated by the diagonal terms
*In Sec. VB,i=1,2,... mlabeledmdifferent levels of detector C;;=cov{x;,x;}=:0?, the optimal combination of data reduces
noise orm different periods of detector operation. In this section, (approximately to the uncorrelated resuk;=o; *. As argued in
i,j=1,2,...) labell different detectors, anoh := (1 —1)/2 is the  the previous footnote, this is what happens for the cross-correlation
number of different detector pairs. signalsx; < (1)s,
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tion rate equal to 95%, where we optimally combine datathe outputs of 4 detectofsr, in general, & detectorin a
from different detector pairs. In order to simplify the analy- manner analogous to the single 2-detector correlation de-
sis, we will assume tha,,=nT, wheren := n;; is the same scribed in Sec. Il 8 In fact, it turns out that one can write
for all pairs of detectors. down expressions for the optimally filtered squ?reod signal-
For a single pair of detectors, the minimum valugkfis  to-noise ratio and the inverse of the square(gf”>* for
given by the 4-detector correlation in terms of a simple sum of prod-
2% 1.65 ucts o_f the corresponding quantities fer the individual detec_-
(ij)QSS%,S%:_'\/ﬁ (D, (5.47  tor pairs. As noted above, the analysis given here can easily
10" sec be generalized to the case dii2letectors. At the end of the
where section, we summarize our results by writing down the key
1072\ 2 V() 1 equations in the generaN2detector form.
(D g2~T ( ) {J df g=—reere | To begin, we define the 4-detector correlation sigh&d
fOPi(IfD P (If]) be the integrated product
(5.48
The above expression fé¥) o2 follows from Eqgs.(3.68 and _ J'le o fm o
(3.73, together with the normalization conditign= QT S= 7T/2dtl dtaSa(ty)---Sata)Qlty, . L),
for a stochastic background having a constant frequency (5.5)
spectrumQ,(f)=Q,. The factor of 2<1.65 in Eq.(5.47)

comes from the choice of the false alarm and detection rate’ here
[See, e.g., Eq4.37).] Table Il in Sec. VI D contains values si(t) = h;(t)+n;(t) (5.52
ij 95%,5%,2 H H
of Qg™ **hiy for different detector pairs. are the outputs of the detectorsi=1,...,4), and
For the optimal combination of data from multiple detec-y(t,, . .. t,) is an arbitrary filter function, wh|ch we will
tor pairs, we have determine shortly. To save some writing in what follows, we
-2 [ will use the shorthand notation
95%,5% -2 2X1.65 -1 (ij) -2
(QO ' r1optimaD = 7 n 2 2 Vo™2, T2 T2 T2
10" se i=1<i f d“tsf dtl...f dty. (5.53
(5.49 -T2 ~T2 —TI2
This can also be written as Throughout, we will assume that the gravitational strains

[ h;(t) satisfy the statistical properties listed in Sec. Il B. We
(QgS%YS%Optima072:E 2 (<ii>QgS%15"/yZ_ (5.50  Will also assume that the noiseg(t) intrinsic to the detec-

i=1j<i tors are(i) stationary|ii) Gaussian(iii ) statistically indepen-
Tables Il and IV in Sec. VID contain values of dentof one enother end of the gravnauc_mel strains, @n)d
much larger in magnitude than the gravitational strains. The

Q3% sptimal for the optimal combination of data from mul-

tiple detector pairs, for all possible triples and quadruples 0908.|. IS to determme the f|_|ter fulnct|o@(t1, - L) that
the five major interferometers, maximizes the signal-to-noise ratio SNRu/o of S

Let us start by calculating the varianeg. Since we are
assuming that the noises intrinsic to the detectors are statis-
tically independent of one another and of the gravitational

Rather than combine data from multiple detector pairs astrains, and that they are much larger in magnitude than the
described in the previous section, one can directly correlatgravitational strains, it follows that

D. Four-detector correlation

0% =(S?)—(S)?~(S?) (5.54
T2 T2

:j d4tf d*t’(sy(ty) - “S4(tg)Sy(ty) - - - 84(11))Q(ts, - - 1) Q(ty, - - - tg) (5.59
-T/2 -T/2
T2 T2

~f d“tJ’ d*t’(ny(ty) - - -Na(ty)ng(t]) - - -Ny(t))Q(ty, - .. tA)Q(t], ... ty) (5.56
—-T/2 -T/2
T2 T2

=f d4tf d*t’(ny(t)ne(t]))- - - (Na(t)Na(t))Q(ty, . .. t)Q(t], ... ty). (5.57
—T/2 —-T/2

[See Eqs(3.19-(3.22.] Using the definition(3.23 of the noise power specti®;(|f|), Eq. (5.57 can be rewritten as

38The correlation of 3 detectofsr, in general, R+ 1 detectorsyields a signal that has zero mean.
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1\4 (e T2 ) :
s3] [ attpanypaina) [ gt e e,
—o -T/2

T2 . ' . ’
xf dt’ e 127l em2maQ(ty, L. ), (5.58

=T/2

If we further define thefinite-time) Fourier transform

where

- T2 . i
Q(fy, ... fy) = J d*t e 27l e 27ty L. ty), (5.60
=TI2
which has as its inversgor —T/2<tq, ... t,<T/2)
Q(ty, ... ,t4)=f d*f e'27fiti. . @27 (f,, L. fy), (5.61)
we obtain
1\4 = ~
0"~ 5) J_md“f Pa(lfal)- - Pa(faDIQ(F1, - . Fa)I2 (5.62
This can be written in an even more convenient form if we define an inner product
(A,B) = f, d4f P1(|fl|) .. P4(|f4|)A*(fl, - ,f4)B(f1, P ,f4), (563
|
where A(fy, ... .fs) and B(fy,....fs) are any o (x;x;XaXa)=(X1X2)(XgXs) T (X1Xg)(XoXs) + (X1Xg)(XpXs3)
complex-valued functions of four variabldSee Eq(3.69.] (5.6
Note that the i duct i itive-definite sirigé|f . . .
>%?Us?ng qu.rgg%r&pir?fotljlgv\lg ﬁ?;tl Ive-definite sirfi¢|f|) for Gaussian random variablgs, x,,x3,X4 each having zero
mean>®
14 _ _ To expressu in terms of the inner produ¢b.63, we first
o= = ,Q). . use Eq.(5.61) to rewrite Q(t,, ... ty) In terms of its Fou-
2 5| (QQ) (5.69 Eq.(5.61) t ite Q( ) fits F
rier transformQ(f,, ... ,f4):
To calculate the mean valyg, we proceed in a similar T
manner. Since the noises intrinsic to the detectors are statis- ,LL:f d*t ((hy(ty)ha(ty)){ha(tg)ha(ts))
-T2

tically independent of one another and of the gravitational

strains, it follows that +(13)(24) +(14)(23))
:=(S 5.6 o
M < > (5.69 Xf d*f ei27fita. . .ei2wf4t4b(f1, . ,f4).

T2 _°°

_ 4

—ﬁmd t (Sp(ty) -~ S4(ta))Q(ts, ... ts) (5.60 (5.70

Then by interchanging the order of integrations and rearrang-

T2 ing terms in the integrand, we see that

- f Bt hy) QU - ). 9 9

o0 T2 X .
(5.67 w= f d*f f dit e'2mfali. .. gl2mlata((hy(t))hy(t,))
— —-T/2

This can be expanded to X(Pa(ta) ha(te)) +(13)(24) + (14)(23))

T/2 ~
p= f At (ha(toha(tz) X hs(ta) ha(ta)) XQ(fy, ... \fa) 5.7

+(13)(24) +(14)(23))Q(t1, - - . ,ts) (5.68
*In Eq. (5.69, (13)(24) is used as a shorthand notation for
by using the “factorization” property (h1(t)hs(ts) ) ha(to)hy(ty)), ete.
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or, equivalently, Also, since the noise power specta(|f;|) and filter func-

- tion Q(f4, .. ..f,) are not expected to vary much over the
u=(AQ), (5.72  support, 1T, of &;(f,—f) and 5;(fz—f'), we are justified
in approximating these two finite-time delta functions by or-

where dinary Dirac delta functions$(f,—f) and 8(f;—f'). This
1 72 approximation allows us to eliminate the integrations dver
A(fq, ... f4) = J d4t andf’, yielding
(fa 2 Pa(Ifa)) - - - Pallfal) ) =712 H.of
| | At PP L VPP
x e 12mht. . e 12mhata((hy (1)) hy(ty)) LA p ()P f) T
X(ha(tz)ha(ts)) +(13)(24) +(14)(23)). Hai(f3)
<srnp e orfat )
(5.73 Pa(|fal)Pa(|f4])
To simplify this expression foA(f4, ... ,f,), we expand . +13,24+ 14’?3' ) (5.79
the expectation value@(t;)h;(t;)) as Given the above expressions foro®, u, and
A(fq, ... ,f4), it is now a simple matter to evaluate the
° . . squared signal-to-noise ratio of the 4-detector correlaion
St VP (t.)\ = 27 (ti—t) .. -
(hiCthy (1) fodf © PH;(D, (574 and to determine the filter functio@(f,, . .. ,f,) that maxi-
mizes this ratio. In terms of the inner prod6t63), we have
where ) ~
Al
3H2 SNRZ::%~24(~?) . (5.80
Hij ()= 552 If1 Qe (). (579 (Q.Q)

As we saw already in Secs. Il C and V A, such a ratio of
and v;;(f) denotes the overlap reduction function betweeninner products is maximized by choosing
theij detector pair[See Eqs(3.58 and(3.59.] Substituting

Eq. (5.74 into (5.73 yields Q. f)=MAM, ) (58D
where\ is an arbitrary(rea) overall normalization constant.
1 For this choice ofQ(f,, ...,f,), the value of the squared
Afy, ... fg) = P.([fa)- - - Pa(fa]) signal-to-noise ratio is given by
o (e SNRpimar~ 2*(A.A). (5.82
XJ de df’ Hyx(f)Hzu(f") To find an explicit expression for Sl\iﬁimm, we substi-
*°° T tute Eq.(5.79 into the RHS of Eq.(5.82 and expand the
TR _ _ product ofA(f, ... ,f,) with itself. This leads to nine dif-
XJ d* e 27t .. g 124l ferent terms: three diagonéle., squarepterms and six off-
-T2 diagonal terms. The diagonal terms are given by
x e/2mf(ti~t)gi2nf (157t + 13 24+ 14,23, - H2(f,)
diagonal terms: 24 f df— =1
(5.79 —w Py([fa))Po(|f2])
where 13,24 and 14,23 denote the analogous terms with the ) H3,(f3)
appropriate interchange of detector indices .1 ,4.Since X or(fi1+12)

P3(|f3))Pa(|f4])
5T(f):f”2 gt g2t (5.79 X 83(fa+f,)+13,24+14,23. (5.8
-T/2

A typical off-diagonal term is given by
[see Eqg. 3.2]f we can explicitly integrate over the time vari-

ablesty, ... t,: off-diagonal term=2* fm d*f !
T —w Py(|fa])- - Pa([fa])
1

= X Hqo(f1)Hga(f3)Hqa(f1)Hos(f
A(fq, ... fs) Pi([f1])- - Pa(|fa]) 120F1)Haa(f3)Hya(f1) Haou(f>)
» » X 67(fy+ 1) or(fa+1,)
inwdfjwdf’ Haa(f)Had(f") X Sp(f1+ F3) r(fo+Ta). (5.84
X 8r(f,—£) 8 (fp+ ) Sy(Fs— ') Let us evaluate each of these terms separately. First, for

the diagonal terms, by approximating one of the two finite-
X o7(f+1')+13,24+14,23. (5.78 time delta functions in each of the factoﬁ%(fl+f2) and
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5$(f3+f3) in Eq. (5.83 by ordinary Dirac delta functions, and by evaluating the other§, atf,=0 andf;+f,=0, we
eliminate two of the integrations, and introduce a factof &f

34( ")

o ey | ol ppalr]) (583

diagonal terms- 24T2f

Sy [ g DRI (= AR

= 2 ’ ’ ’
107 —= o fOPY([FPo(| ) J= £1OP5(F)P(IF])
+13,24+ 14,23 (5.86
= (129gNR CISNR2+ (1ISNR (YN + (19SNRR (23)SNR2, (5.87)

where (SNR denotes the squared signal-to-noise ratios for the optimally filtered cross-correlation signalifodéfector
pair, which we derived in Sec. Il C.

For the off-diagonal terng5.84), we can again approximai®(f,+f,) and 6:(f;+f,) by ordinary Dirac delta functions
to obtain
1

1([F1 D P2([F1)P3(| 3 Pa(lf3])

XHypo(f1)Hag(Fa)Hig(f1)Hou(— 1) 85(F1+F3). (5.89

(5.88

off-diagonalterva“f dflf dfys

By further approximating one of the finite-time delta func- detector outputs;(t;), while the cross-correlation signal val-
tions in 5$(f1+ f3) by an ordinary Dirac delta function, and ues (1S are quadratic in the detector outpUiSee, e.g., Eq.
by evaluating the other dt+ f;=0, we eliminate one more (3.45.]

integration and introduce a factor &f Given Eq.(5.92), we can now ask the question, what is
the minimum value ofQ), required to detect a stochastic
off-diagonal term gravity-wave signal 95% of the time, from data obtained via

a 4-detector correlation experiment? Since
Hao(f)Haa(F)H1a(f)Hou(F)

~ 24 -
27| At e e P -
(5.90 S j d*tsy(ty) - sa(t)Qlly, ... L) (5.92

=T/2

But since this term grows lik&, while the diagonal terms

grow like T2, we can(for large observation tim¢sgnore the

contribution of the off-diagonal terms to the optimal signal- _ f“ a7 - =

to-noise ratio. The final result is tHifs s Sa(T)Q7(Fy, ) (599

SNRimar= 2 SNRE (BUSNR + 1ISNR (PYSNR?
is, effectively, a sumoverf,, ... ,f,) of alarge number of
14 23

Note that th timal sianal-t . tio for the 4-detector Fourier amplitudess;(f;), which are correlated only when
ote that the optimal signal-to-noise ratio for tne 2-detectofe ¢ j|<1/T], the central limit theorem guarantees tftat

_cor_re_lation__isquadraticin_the si_gnal—to-noise ratios for the will be well-approximated by a Gaussian random variable.

|nd|V|du_aI & _detector_palrs. This is becz_sluse th? 4_'deteCtOFI'hus, the statistical analysis of Sec. IV is valid for the

correlation signalS, given by Eq.(5.51), is quartic in the 4-detector correlation as well. In particular, for a false alarm
rate «=0.05 and for a detection ratg=0.95, the minimum
value of (), for the 4-detector correlation is determined by

“4OThis expression should be compared with setting the signal-to-noise ratio aftarobservation periods
a2 . " equal to 2<1.65 [see Eq.(4.36]. For a stochastic back-
SNRpiima=""PSNRE+ISNR+ - +BISNR, ground having a constant frequency spectrg,(f) =Q,

and for a total observation timé&,,:=nT, the squared
which is the squared signal-to-noise ratio that we found in the pre-
vious section for the optimal combination of data from multiple Signal-to-noise ratio for the optimally filtered 4-detector cor-

detector pairs[See Eq(5.46).] relation signalS can be written as
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SN% ~Q4( 3_H(2)> 4T2 JOC dfﬂ S:= JTIZ dZNt Sl(tl)' . 'SZN(tZN)Q(tl P tZN)'
Pimel oL 10mE ] T opy () Py £]) T
(5.99
- Yadlf'])
xf df' — (i) The “factorization” property for N Gaussian ran-
—e o FOPS([F)P4(|f']) dom variables each having zero meaft is
+13,24+14,23. (5.99

(X1Xg - Xon) = (X1X2)(XaXa) - + - (Xan—1X2N)
Setting SNRima= 2% 1.65 and rearranging terms yields +all possible permutations(5.100

95%,5% -4 2
(Lo 1°P"ma') (2x1.69 (iii) The inner product in terms of which

SH%)“ - Yl f) . -
~ L j df ———— =(AQ and ¢*=(3)"™MQ, 5.10
(10772 o e ([fhP(f]) n=(A,Q) (2)77(Q,Q)  (5.10)
2 (1§1 is given by
o f
xf df},G'“ﬁ||)f, 113,24+ 14,23, }
- Pa(I'DP4(IT'D (A,B) ’ZJ’ d?Nf Py([fa])- - - Pon(|fanl)
(5.95 o
*
which can also be written in terms of the minimum XAT (T, fan) BT o),
values (1D 3°%>%for the individualij detector pairs: (5.102
(935%’50/10 i) 2 where A(fq, ...,foy) and B(fq, ... ,fyy) are any two
P complex-valued functions ofl® variables.
~2x 1.69 (122575 ~2((39() 35%.5%) 2 (iv) The optimal filter functiorQ(t, . . . toy) is given in
" the frequency domain by
+13,24+ 14,2312 (5.96

Q(fy, -+, fan) =NA(fq, ... o), 5.10
How does this minimum value d®, compare with those Qfy 2n) (fa n) ( 3

found in previous sections for a single 2-detector correlationhere
and for the optimal combination of data from multiple detec-

. ? . . - H f
tor pairs? First, from Eq(5.95 we see immediately that N ,fzm)zp T T;(Pl()“ |)5T(f1+fz)
Q85%150/1optimarv-rt;tllz' (5-97) Bt 2z
Haa(f3)
This dependence on the total observation tifg is the ><mé}(feﬂffﬂ-)
sameas that for 3% 5%for a single detector pair and for
the optimal combination of data from multiple detector pairs: Hon-1.an(fon-1)

X .

Pon-1([fan—1))Pon([Fonl)
X or(fon—1tfon)

+ all possible permutations. (5.104

(985%,5%1 optimal) -2_ ((12)985%,506 72+ ((13)085%,5%)72
.. +((34)085%,5°/1)—2. (598)

[See EQ.(5.50.] Thus, by correlating 2, 4or even ) ] ) ] ] ]
detectors, one doewtchange the general dependence of the (V) The squared signal-to-noise ratio for the optimally fil-
minimum value ofQ, on the total observation timg&,,. tered N-detector correlation is given by

However, the numerical factors multiplying;? differ NRE..  ~(12gNRR GASNRR. . . CN-LN)gNR2
from one another. In fact, it is fairly easy to show that S RE”“ma' S S S
Q"% sptimal for the single 4-detector correlation aways + all possible permutations. (5.105

greaterthan that for the optimal combination of data from
multiple detector pairs. Thus, in theory, it is better to opti- (Vi) The minimum value of}, required to detect a sto-
mally combine data from multiple detector pairs than to op-chastic gravity-wave signal 95% of the time, with a false
timally filter a single 4-detector correlation. Table V in Sec. alarm rate equal to 5%, from data obtained viaNx@etector
VI D lists values 0f03>" >, imahZoo for the 4-detector cor- ~ Correlation experiment, is given by
relations taken from the five major interferometers: LIGO-
WA, LIGO-LA, VIRGO, GEO-600, and TAMA-300.

Finally, to conclude this section, we rewrite the key equa- 4The number of terms on the RHS of the “factorization” equa-
tions derived above for the general case bf @etectors: tion is given by (N—1)(2N—3)---1. For N=1,2,3 ..., this

(i) The 2N-detector correlation sign& is defined by corresponds to 1,3,15. . terms.
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(985%’50/10mima|)_2=(2>< 1.65)(2N-2/N produces a correlation between the two detectors which
%6 554 s 5% mimics the effect of a stochastic gravity-wave background.
X [((12 5% 5% —2((34)() 95% 5% —2 It is straightforward to determine the point at which a

non-vanishing cross spectru@(f) will significantly inter-

fere with a stochastic background search. Such interference
will not take place if the correlation arising from the cross
spectrum of detector noise is significantly less than that aris-
(5.106  ing from the stochastic gravity-wave background:

N ((2N—1,2N)Q(9)5%,5%)—2

+all possible permutatiof&™,

where (1Q2°%3% are the analogous quantities for thi (N (Ony(t))<(hy(Dhy(t")) for |t—t'|=dlc,
detector pairs. (5.108
where d/c is the light travel time between the two sites.
E. Correlated detector noise Making use of Eqs(5.107 and(5.74), we see that correlated

. detector noise will not impair a stochastic background search
We have shown how to carry out an experimental searck

for a stochastic background of gravitational radiation, by cor-

relating the outputs of widely separated detectors. Our analy- 1

sis assumed that any correlation between the two outputs §|C(f)|<
arises only from a stochastic gravity-wave background. In

this section, we address the validity of this assumption, an
look at possible sources of instrumental contamination th
give rise to a correlated signal between the separated dete
tors. Any source of correlated environmental noise or inter
ference in the separated detectors rmmms_th_e correlation anﬁohfor 10°%; so the RHS is-3x 10~*h2,, sec. Thus, in
ing from a stochastic background; so it is important to

understand the order-of-maanitude effects of an otentia?rder that correlated sources of noise do not interfere with
g yp initial LIGO’s 4-month stochastic background search, one
sources of such correlated noise.

This subject has already been considered in some detalrIT,]USt have

both in the the published paper of Christengéhand, in < — 492
more detail, in Chap. 7 of his Ph.D. the§&]. In the thesis (7] <3 10"hiep sec  for 40 Hgf<300(:i'lo
work, the following sources of correlated detector noise are '
analyzed: This limit can be stated in an interesting way. If we compare
(i) Seismic noise, whose effects on initial LIGO are mini- the allowable cross spectru@(f) with the intrinsic noise
mal. power spectrunP(f)~10 “° sec in each detector, we see
(i) Fluctuations in the residual gafor two interferom-  that they differ by about four orders of magnitude. This,
eters sharing a common vacuum system such as therder that correlated noise sources do not interfere with a
LIGO-WA site). The effects on initial LIGO are minimal, 4-month long stochastic background search for initial LIGO,
and of course there is no effect for separated detectors thgie correlated sources of noise must not contribute more
do not share a common vacuum envelope. than 1% of the motion of the test masses, in the frequency
(iii) Acoustic noise, whose effects on LIGO are minimal. range from 40 Hz to 300 Hz.
(iv) Cosmic ray showers, whose effects on LIGO are Essentially the same limit on correlated noise can be writ-

HE . s
2521112 QeulTh (1) (5.209
g)ver the range of frequencies included in the optimal filter
(f). For example, for the initial LIGO detectors, this range
frequencies is from about 40 Hz to 300 Hz, and in a 4
‘month search, the expected level of sensitivity is about

minimal. o _ ~ten in another fashion. If we make use of E§.52, the
(v) Magnetic field fluctuations, whose effects on initial contribution of correlated noise to the expected mean of the
LIGO might be significant. signal can be written as

In this section, we derive a general formalism for calcu-
lating the effects of such correlated detector noise, and illus- 2
trate this for the case of correlated magnetic fields, which Mcorrelated noise-
Christensen concluded would be the most significant source

of correlated fluctuations at two widely separated sites.  Requiring that this be smaller than the magnitude of the vari-
Although these ideas can be generalized to multiple sitances? [see Eq.3.68] leads immediately to the condition

locations, for simplicity we present only the two-site case that the correlated noise will not interfere with a stochastic
Correlated noise in two detectors can be described by thgackground search over an observation tifiié

cross-spectrafunction C(f) defined by

2

1_ (= ~
szixdfC(f)Q(f) (5.11)

P1(F)P,(f)
—F

IC(H*<——=

(ny(t)ny(t'))= %f:df g2t t=tc(f).  (5.107) (5.112

As before, the contribution of correlated noise to the motion

Because the LHS is real, the cross-spectrum sati€fig$ of the interferometer must be smaller than the intrinsic de-
=C*(—f). If this cross spectrum is non-vanishing, then it tector noise motion by a factor offf) ~*”2. For an observa-
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tion time T of 4 months(i.e., 10 sec) and frequencies  of the magnetic field will not correlate between widely sepa-

~100 Hz, this gives the same 1% bound as before. rated sites; the global part, however, is likely to be highly
One can also give a precise formula showing the effectsorrelated. Studies in the Caltech 40-m prototype laboratory

of correlated noise sources on the expected valuef the [25] have shown that the spectrum of ambient magnetic

signal. Making use of Eqg5.11) and(3.57), we can express fields is of order 107 G/+/Hz, but most of this field is local.

the ratio of the signal mean arising from the correlated nois€hristensen reports in his thesis on a number of studies that

to that arising from the stochastic background as show that the global magnetic fields are well-modeled above

20 Hz by a power-law spectrum:

‘ Mcorrelated noise L —088
Mstochastic background Pg(f)= A( m) (5.119
) f df C(H)Q(f) _ _ _ _ _
_ 107 — with A~1.2x10" 1" G?/Hz during magnetically noisy peri-
3H2 ods such as thunderstorms afe-1.8x 10 1° G%/Hz dur-

f_mdﬂ” 3ng(|f|)7(|f|)Q(f) ing magnetically quiet periods. Separate measurements have
shown that these fields have a coherence of ordet/2 in
(5.113  the frequency range of interest, over widely separded
most antipodal points on the Earth’s surface. These highly
fcorrelated global fields are the main concern here.

This formula allow recisel rmine the eff L
s formula allows us to precisely dete e the eflect o In order to reduce the effects of external magnetic fields

any correlated source of noise on the signal value startin n the test masses and otics. the four maanets on each optic
from a model or measurement of the correlation spectru pucs, 9 P

C(f). In particular, if we assume that the stochastic gravity—o.r test mass are arranged to approxmate!y c_ancel both the

wave background has a constant frequency spectrurﬂ!pOIe and quadrupole parts of the magnetic field. The mag-

Qo) =0y, then nitude of the resulting force on a test mass may be described
gw! T S20»

by
uB A A2

(5114) F=|— €0+ |—61+ |—2—62+~'~ . (5116

Mcorrelated noise ‘ _ Qcorrelated noise limit
ho

Qg '

M stochastic backgrou
Here, u is the magnetic dipole moment of one of the mag-
where Q orreiated noise imidS (DY definition the smallest value nets,B is the magnitude pf the amblent_me_lgne.tlc fldlu_is _
of O, that can be observed before the effects of correlated'® length scale over which the magnetic field is varying in
instrument noise interfere with the measurement. the vicinity of the test masses and optics, ans the sepa-
The effects of a given source of correlated noise can béAtion between the magnets on the test masses and optics.
modeled more precisely. Here, we work through one ex-1Ne quantitieseg,e;, ... are the fractional difference be-
ample: the effects of correlated magnetic field fluctuationstween the dipole, quadrupole, ... moments of the different
Christensen’s work6,24] concludes that these are the mostMagnets(which are not perfectly matchedFor the initial
likely environmental source of correlated noise between twd-IGO detectors, the preliminary design values of these quan-
sites. tities are approximately x=0.11 Anf/c,e,=0.05,
The LIGO interferometers use small magnets to steer antF6 ¢cmA=15 cm. This leads to a force
push the optical elementse., mirrors and beam splitters
These magnets are an integral part of the Length Sensing and F=«B (5.117
Control (LSC) system. Forces are applied to these magnets
with electromagnetic coils, and they are part of the servo ) :
loop that uses modulation techniques to lock and monitor th&" the test masses, wite~0.1 dyn/G[25]. This force ac-
path length difference between the test masses. Extern§flérates the test mass, producing an equivalent strain
magnetic fields, present in the environment, exert forces on
these magnets thus constituting one of the different sources ~ F(f)
of instrument noise. n(f)~ M2af2L
The external magnetic field is of particular concern, be- (27f)
cause it propagates at the speed of light, and therefore can ) ) )
give rise to correlations between sites on the time sgide ~ WhereM =10 kg is the mass of the optic, ahd=4 km is
The magnetic field in the laboratory consists of two parts: 4N€ length of the arm. This gives rise to a cross spectrum
“local” part and a “global” part. The local part is the mag- [ K2
netic field arising from the instrumentation, wiring, and C(f)= WPB(U, (5.119
. S : (2mf)"L
power lines within the laboratory; the global part comes from
Schuman resonances of the Earth and the ionosphere, amdherer is the coherence. Evaluating the integral in Egs.
lightning strikes over the surface of the Earth. The local par{5.113 and(5.114 we find that the limits or{), are

(5.118
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FIG. 13. A log-log plot of the predicted noise power spectrum
for the TAMA-300 detector.
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1077

during magnetically “noisy” times,

“|15x10°° during magnetically “quiet” times.

(5.120

Our conclusion is that for the initial LIGO desigmwhere
sensitivities are on the order ofx610~° for 4 months of
observation magnetic field induced correlations are not a
concern. However, for advanced LIG@here sensitivities
are on the order of 810 1! for 4 months of observation
the magnets must be eliminated from the design or they will
they will significantly constrain the measurementgaflim-

its placed on Q.

VI. NUMERICAL DATA

This section consists of a series of graphs and tables con-

taining numerical data for the five major interferometérs:

Hanford, WA LIGO detector(LIGO-WA), (ii) Livingston,

LA LIGO detector (LIGO-LA),

FIG. 12. A log-log plot of the predicted noise power spectrum
for the GEO-600 detector.

P(f) (strain’/Hz)

(i) VIRGO detector

" Advanced LIGO

1 10 100 1000

10000

FIG. 14. A log-log plot of the predicted noise power spectra for
all the major interferometers.
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FIG. 17. The overlap reduction functiop(f) for the LIGO-LA

the “enhanced” LIGO detectors, showing the probable evolution ofdetector and the other major interferometers.

the detector design over the next decade.

(VIRGO), (iv) GEO-600 detector(GEO-600, and (v)
TAMA-300 detector(TAMA-300). These data were derived
from published site location and orientation information and
detector noise power spectra design gda&8], using the
stochastic background data analysis routines contained ii
GRASP [27]. (See Sec. VIl for more information about the
computer code that we wrote to perform these calculations.

A. Noise power spectra

Figures 10—13 show the predicted noise power spectra fo
the initial and advanced LIGO detectors, and for the VIRGO,
GEO-600, and TAMA-300 detectors. Figure 14 displays all
of the noise power spectra on a single graph. Figure 15
shows the predicted noise power spectra for the “enhanced”
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—-— TAMA-300
---- LIGO-WA
GEO-600
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1 10 100
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FIG. 18. The overlap reduction functiop(f) for the VIRGO

LIGO detectors, which track the projected performance ofyetector and the other major interferometers. Note that the VIRGO
the LIGO detector design over the next decade. The data fQind GEO-600 detectors are sensitive to almost orthogonal polariza-
tions.

—— TAMA-300
—-— VIRGO
---- GEO-600
LIGO-LA
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FIG. 16. The overlap reduction functiox(f) for the LIGO-WA
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---- VIRGO
LIGO-WA
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FIG. 19. The overlap reduction functioy(f) for the GEO-600

detector and the other major interferometers. Note that the overlagetector and the other major interferometers. Note that the VIRGO
reduction functions for the more distant detectors have their firsand GEO-600 detectors are sensitive to almost orthogonal polariza-
zero at lower frequencies than those for the more nearby detectorsons.
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FIG. 20. The overlap reduction functiop(f) for the TAMA-
300 detector and the other major interferometers.

FIG. 23. The optimal filter functionQ(f) for the initial
LIGO-WA and GEO-600 detectors, for a stochastic background
having a constant frequency spectridy,(f)=Q,. The optimal
filter function is normalized to have maximum magnitude of unity.
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FIG. 21. The optimal filter functionQ(f) for the initial %3 000 2000 o0 000 5000

LIGO-WA and initial LIGO-LA detectors, for a stochastic back- f(Hz)

ground having a constant frequency spectrg,(f)=(,. The FIG. 24. The optimal filter functionQ(f) for the initial

optimal filter function is normalized to have maximum magnitude |_|IGO-WA and TAMA-300 detectors, for a stochastic background
having a constant frequency spectréiy,(f)=Q,. The optimal

of unity.
10 filter function is normalized to have maximum magnitude of unity.
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FIG. 22. The optimal filter functionQ(f) for the initial FIG. 25. The optimal filter( f)unctionf)(f) for the initial
LIGO-WA and VIRGO detectors, for a stochastic background hav-LIGO-LA and VIRGO detectors, for a stochastic background hav-
ing a constant frequency spectruiy,(f)=,. The optimal filter  ing a constant frequency spectrui,(f)={,. The optimal filter
function is normalized to have maximum magnitude of unity. function is normalized to have maximum magnitude of unity.
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FIG. 26. The optimal filter f)unctioné(f) for the initial FIG. 29. The optimal filter fdnétio@(f) for the VIRGO and
LIGO-LA and GEO-600 detectors, for a stochastic background havTAMA-300 detectors, for a stochastic background having a con-
ing a constant frequency spectruiy,(f)=,. The optimal filter  stant frequency spectruf,(f)=Q,. The optimal filter function
function is normalized to have maximum magnitude of unity. is normalized to have maximum magnitude of unity.

-1.0 L
0.0 100.0 200.0

1.0 T T T T
the noise power spectra displayed in all of these figures were
os | | taken from the published design gof&s].
A [\ /\ B. Overlap reduction functions
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g 00 ¥ \/ (VY Figures 16—20 show the overlap reduction functigiif)
for different detector pairs.
o | C. Optimal filter functions
Figures 21—30 show the optimal filter functio®gf) for
10,5 oo 000 prvo oD 0.0 different detector pairs, for a stochastic background having a
constant frequency spectrufdg,(f) =€,. The optimal fil-
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FIG. 27. The optimal filter functionQ(f) for the initial  tar fynctions are normalized to have maximum magnitude of
LIGO-LA and TAMA-300 detectors, for a stochastic background unity

having a constant frequency spectriéy,(f)=,. The optimal
filter function is normalized to have maximum magnitude of unity.
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FIG. 28. The optimal filter functio@Q(f) for the VIRGO and
GEO-600 detectors, for a stochastic background having a constaitAMA-300 detectors, for a stochastic background having a con-

FIG. 30. The optimal filter functio®(f) for the GEO-600 and

stant frequency spectrufdg,(f)=Q,. The optimal filter function

frequency spectrunfly,(f)=Q,. The optimal filter function is
is normalized to have maximum magnitude of unity.

normalized to have maximum magnitude of unity.

102001-35



BRUCE ALLEN AND JOSEPH D. ROMANO PHYSICAL REVIEW 39 102001

TABLE I. Theoretical signal-to-noise ratios after 4 months of observation, for the optimally-filtered
cross-correlation signal between different detector pairs, for a stochastic background of gravitational radiation
having a constant frequency spectraitg,(f) =Q,=6X 10’6h1_0%.

LIGO-WA LIGO-LA VIRGO GEO-600 TAMA-300
LIGO-WA — 3.45 1.74 5.0%10°% 6.12<10°2
LIGO-LA 3.45 — 2.10 7.66¢10°1 9.16x10°2
VIRGO 1.74 2.10 — 1.56 9.1410°2
GEO-600 5.0%10°* 7.66x10°1 1.56 — 1.3% 1072
TAMA-300 6.12x1072 9.16x10°2 9.14x 1072 1.32x 1072 —

D. Signal-to-noise ratios and sensitivities discretetime series and Fourier transforms by theiscrete

Table | contains the values of the theoretical signal-tofféquency counterparts. The discrete data can then be pro-
noise ratios after 4 monthe., 10 sec) of observation, for C€ssed by computer code that takes the appropriate FFTs,
the optimally filtered cross-correlation signal between differ-constructs the optimal filters, whitens and windows the data,
ent detector pairs, for a stochastic background of gravita€tc. We have written a number of functiofis ANsI-C) to do
tional radiation having a constant frequency spectrunprecisely this. These functions constitute part of a general-
Qgu(f)=Qp=6X 10*6h1*020_ Table Il contains the minimum purpose data analysis package for gravitational-wave detec-
values OfQOhEOO for 4 months of observation, for a false tion, called GRASP (GraVitational Radiation AnalySiS and
alarm rate equal to 5%, and for a detection rate equal to 959&imulation Packagd27]. In this section, we describe a com-
for cross-correlation measurements between different deteguter simulation(made up of these functionshat mimics
tor pairs. Tables lll and IV contain the minimum values the generation and detection of a simulated stochastic
Qoh?,, for 4 months of observation, for a false alarm rategravity-wave signal in the presence of simulated detector
equal to 5%, and for a detection rate equal to 95%, for thenoise. Documentation and further information about the code
optimal combination of cross-correlation measurements besan be found in th&RASP user’'s manual.
tween multiple detector pairs, taken from all possible triples
and quadruples of the five major interferometers. Table V
contains the minimum values d®qh3,, for 4 months of
observation, for a false alarm rate equal to 5%, and for a
detection rate equal to 95%, for optimally filtered 4-detector The main reason for writing the computer simulation was
correlations[Note that the calculation of the signal-to-noise to verify many of the theoretical calculations that were de-
ratios and minimum values d@, assumes that the magni- rived in the previous sections. Specifically, we wanted to see
tude of the noise intrinsic to the detectors is much larger thaif the theoretically predicted signal-to-noise ratio SNR, for a
the stochastic gravity-wave background. This corresponds tstochastic background of gravitational radiation having a
Eqg. (3.75 in the text] constant frequency spectruity,(f) =, would agree with
an “experimentally” determined signal-to-noise rafio SNR
produced by the simulation. If the theoretical and experimen-
tal signal-to-noise ratios agreed, we could be confident that

In Secs. llI-V, we described the data analysis and optimathe theoretical calculations were correct. If they did not
signal processing required for the detection of a stochastiagree, we would know that something—either a theoretical
background of gravitational radiation. This analysis was incalculation or a technical issue related to the simulation
terms of continuous time functions and their associated Foutself—needed further investigation.
rier transforms. But, in reality, when one performs the actual The theoretical and experimental signal-to-noise ratios
data analysis, continuous time functions will be replaced bywere said to be in agreement if the relative error defined by

A. Purpose

VIl. COMPUTER SIMULATION

TABLE II. Minimum values ofQ,h?%,, for 4 months of observation, for a false alarm rate equal to 5%,
and for a detection rate equal to 95%, for cross-correlation measurements between different detector pairs.

LIGO-WA LIGO-LA VIRGO GEO-600 TAMA-300
LIGO-WA — 5.74x10°° 1.14x107° 3.89x10°° 3.24x10°4
LIGO-LA 5.74x10°° — 9.45x 10 2.58x10°° 2.16x10°4
VIRGO 1.14<10°° 9.45x10°® — 1.27x10°° 2.17x10°4
GEO-600 3.8%10°° 2.58x10°° 1.27x10°° — 1.50x 1073
TAMA-300 3.24x10°4 2.16x10°4 2.17x10°4 1.50x 1073 —

102001-36



DETECTING A STOCHASTIC BACKGROUND ® ...

TABLE Ill. Minimum values of Q4h%,, for 4 months of obser-

PHYSICAL REVIEW D 59 102001

TABLE IV. Minimum values ofQh?y, for 4 months of obser-

vation, for a false alarm rate equal to 5%, and for a detection rateation, for a false alarm rate equal to 5%, and for a detection rate
equal to 95%, for the optimal combination of cross-correlation meaequal to 95%, for the optimal combination of cross-correlation mea-
surements between multiple detector pairs, taken from all possiblsurements between multiple detector pairs, taken from all possible

triples of the five major interferometers.

quadruples of the five major interferometers.

Detectors Q 85% '50/1 optimarl ioo Detectors Q 85% '5%1 optimahioo
LIGO-WA, LIGO-LA, VIRGO 4.50x10°8 LIGO-WA, LIGO-LA, VIRGO, GEO-600 41%10°°
LIGO-WA, LIGO-LA, GEO-600 5.5510 6 LIGO-WA, LIGO-LA, VIRGO, TAMA-300 4.50<10°°
LIGO-WA, LIGO-LA, TAMA-300 5.74x10°6 LIGO-WA, LIGO-LA, GEO-600, TAMA-300 5.5410°©
LIGO-WA, VIRGO, GEO-600 8.2&10°° LIGO-WA, VIRGO, GEO-600, TAMA-300 8.2810°°
LIGO-WA, VIRGO, TAMA-300 1.14x10°° LIGO-LA, VIRGO, GEO-600, TAMA-300 7.2%10°°©
LIGO-WA, GEO-600, TAMA-300 3.8&10°°
LIGO-LA, VIRGO, GEO-600 7.2%10°°
LIGO-LA, VIRGO, TAMA-300 9.43x10°8 the beginning of the simulation program. These parameters
LIGO-LA, GEO-600, TAMA-300 2.5%K10°° are
VIRGO, GEO-600, TAMA-300 1.2%10°° (i) the site identification numbers for the two detectors
(i) the number of time-series data poiritsto be used
when performing the data analysig.e., FFTs, cross-
SNR—SN correlations, etg. N should equal an integral power of 2
relative error= ‘TRFT (7.9 (i) the sampling periodit of the two detectorgNote

was less tharfor approximately equal jahe inverse of the
theoretical signal-to-noise ratio afteobservation period¥:
This is the error that one would expdeipproximately 68%

of the time if we approximate the sample variane8 by the
true variancer?, and use the fact that the sample mean

2 (7.2

L1
B

can itself be thought of as a random variable with mgan
and variancer?/n. (Recall from Sec. IV tha§,,S,, Sh

aren statistically independent measurements of the optlmall

filtered cross-correlation sign& each associated with one
of the n observation periodsThus,

_ + g 1 1
S LA NRt—, (7.3
a T RN
which implies
- SNR-SNR 1 7.4
relative error= ~ . .
SNR | {nSNR

This criterionwas satisfied by our simulation runs for both
the initial and advanced LIGO detector pairs.

B. Flow chart

A “flow chart” for the simulation is as follows:

(1) Input the parameters defining the simulation. This carDetectors
be done either interactively or via “#define” statements at

42The total observation time i, := nT, whereT is the duration
of a single observation period. For our simulation3,
=3.2768 sec.

thatT := NAt is the duration of a single observation perjod.

(iv) the constant(), that defines the stochastic back-
ground frequency spectrunfy,(f) =1,

(v) the total number of runs that make up the simulation
(Note thatT,:= nT is the duration of the total observation
period)

(2) Using the site identification numbers, obtain site loca-
tion and orientation information, and information about the
noise power spectrum and whitening filter of each detector.
(This information is contained in input data files.

(3) Using the site location and orientation information,
construct the overlap reduction functiof(f;) for the two
)getectors[Herefi :=i/(NAt) wherei=0,1, ... N/2—1. By

convention, we ignore the value o{f), or any other func-
tion of frequency, at or above the Nyquist critical frequency
fNyquist’= 1/(2At).]

(4) Simulate the generation of a stochastic background of
gravitational radiation having a constant frequency spectrum
Qqu(f)=Qq. This can be done in the frequency domain by
using a random number generator to constriecimplex-

valued Gaussian random variablésg(f;) andh,(f;) having
zero mean and joint expectation values:

r;
WT5'Jf'

30
o 0

(R (f)hy(f))= (7.5

TABLE V. Minimum values ofQ24hZ%,, for 4 months of obser-
vation, for a false alarm rate equal to 5%, and for a detection rate
equal to 95%, for optimally filtered 4-detector correlations.

95%,5% 2
Q0 l10ptimathO

LIGO-WA, LIGO-LA, VIRGO, GEO-600 6.4%10°6
LIGO-WA, LIGO-LA, VIRGO, TAMA-300 2.51x10°°
LIGO-WA, LIGO-LA, GEO-600, TAMA-300 5.44107°
LIGO-WA, VIRGO, GEO-600, TAMA-300 4.6810°
LIGO-LA, VIRGO, GEO-600, TAMA-300 3.8410°°
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~ _ é whitened signak-noise data streams output by the two de-
(h’z*(fi)hz(fj)>=mT5ijfi_SQO, (7.6 tectors.(Note that step$4)—(10) make up the signal genera-
tion part of the simulation.
342 (11) Test the input dat@,(t;) ando,(t;) to see if they
B (FOR(F )y =—2 TS 300 v(f). have probability distributions consistent with that of a
(M (Fha((f5)) = 56720 i ov(Fi) Gaussian random variable. If either set fails this test, reject

(7.7 them both, and repeat ste@—(10) to obtain new input data

. . . 04(t;) andoy(t;).

Thes.e are just the discrete frequency versions of(E_tpr) 1((i)2) Winég\;\)/ the data streams, (t;) and o,(t;) in the
speC|.aI|zed~to the Caf‘QgW(f):QO' 'Noteitgr/]zat the Fourier time domain, using a Hann window function to reduce side-
amplitudesh, (f;) andh(f;) fall off like £~~~ lobe contamination of the corresponding power spectra.

(5) Simulate the generation of the noise intrinsic to the  (13) FFT the windowed data into the frequency domain to
detectors, using the information contained in the noise power, . _. ; ; Ty
spectrum data files. This can be done in the frequency doébt?m the corresponding Fourier amplitudes(f;) and
main by using a random number generatc~)r o ConStrUCQZ((lizlj Unwhiten the data in the frequency domain by divid-
Scomplex-valuebj Gaussian random variables,(f;) and ing 9:(f.) andd,(f.) by the frequency componenid, (f,)
n,(f;) having zero mean and joint expectation values: 9 01 2Uti) by q y b o

andW,(f;) of the whitening filters of the two detectors:

~ ~ 1 ~
<nf(fi)n1(fi)>:§T5ijPl(fi)v (7.9 TR 04(f) 71
sy(f) TR (7.19
~ ~ 1 ~
<n§(fi)n2(fj)>:§T5ijPz(fi), (7.9 T e 0,(f))
Sy(fy) TXCAR (7.16
(n} (fny(f)))=0. (7.10 (15) Shift the input data streanus (t;) ando,(t;) forward

in time by T/2, and repeats sted42)—(14), obtaining an-

other set of Fourier componenss(f;) ands,(f;). Distin-
guish these two different sets of data with

superscripts: s, (), s, (f;), s, (), @Ts,(f)).
(16) Average Wsy(f;) and Psy(f;) [Wsy(f) and
Sy(f) = Bo(F) +To(F)). 712 Psaf)] to produces, (f;) [Sy(f)]. si(f;) ands,(f)) are
the Fourier components of the unwhitened time-series data
(7) Whiten the data in the frequency domain by multiply- S1(ti) ands(t;). [Note that the purpose of this averaging is
ing 's;(f;) and's,(f;) by the frequency component,(f;) to reduce the variance in the estimation of the spesit)

These are just the discrete frequency versions of(E§4).
(6) Construct the Fourier amplitudes

S1(f) = ha(F) (), (7.11

andW,(f;) of the whitening filters of the two detectors:  andsy(f;)]. _
- - - (17) Construct the optimal filter functio®@(f;) with the
01(f;) = s1(F)Wy(fy), (7.13  overall normalization constart chosen so thap=Q,T,
- - - using the noise power spectra specified by the input data
02(fi) = sa(f)) Wa(f)). (7.19  files.

This multiplication in the frequency domain corresponds (18 From s,(f;), s,(fj), and Q(f;) calculate the opti-
to the convolution of;(t;) andW;(t;) [Sy(t;) andWa(t;)] rr_1a||y filtered cross—cqrrela‘uon signdl corresponding to a
in the time domain(Note that the purpose of whitening the Single observation perio@. [Note that step$11)—(18) make
data is to reduce the dynamic range of the correspondingP the signal analysis part of the simulatipn.
power spectra. (_19) Repef'it step$4)—(18) n times, generating a set of

(8) FFT0,(f,) and0,(f,) into the time domain to obtain optimally  filtered cross-correlation  signal  values:

. : ; _ . ' S1.S, -5,
t:h:ei Ac?rvrvehseprc;?d:lggl tlmeNSEnf;;l(t') and o,(t;). (Here (20 FromS,;,S,, ... ,S, construct the sample mean

(9) Repeat step$4)—(8) to obtain another set of time- R
series datao(t;) and o,(t;). Distinguish these two dif- M= ﬁzl S (7.17)
ferent sets of data with superscripts’o,(t;),Mo,(t;), _
@0, (t), @Poy(t;). and sample variance
(10) Offset Moy (t) and @oy(t) [Po,(t;) and A 1 " A
)o,(t;)] by T/2, and combine them with one another o= m;l (S— ). (7.18

and with data left over from the previous observa-
tion period to produce acontinuous-in-timedata set The sample(or “experimental”) signal-to-noise ratio pro-
04(t))[0o(ti)]. 04(tj)and o,(t;) represent the “raw”(i.e.,  duced by the simulation is given by
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These results suggest that both the theoretical signal process-
(7.19 ing formulas and the implementation of these formulas in a
computer code are correct. But we should not stop here. For

(21) Calculate the theoretical signal-to-noise ratio, using &€xample, there are still a number of ways that we can im-
discrete frequency approximation to the integral prove the data analysis code before we use it to search for a
2 real stochastic background in the outputsreél interferom-

eters. To conclude this paper, we list some of the desired
improvements below:

(7.20 (i) The first change that we would like to make is to
See Eq.(3.75. [Note that since the data are discretely c@lculatereal-timenoise power spectra for the detectors, and
sampled, we should only integrate up to the Nyquist criticalfo use this calculated dateather than the information con-
frequencyf yyquist:= 1/(2At).] tained in the input noise power spectrum data filescon-

(22) From SNRand SNR, calculate the relative error  struct the optimal filter functio®(f;). [See stef{17) in the
computer simulation described in Sec. VII|Bince the real-

—

SNR:=

q>|7;)

2

3Hg Fyquist YA(f)
SNR‘Q%szﬁ{ZL A fop, (P,

lati - SNR-SN 79 time noise power spectra will change slightly from one mea-
relative error= SNR (7.2 surement to the next, we could then apply the data analysis

strategy discussed in Sec. V B for nonstationary detector
As mentioned in Sec. VII A, this should be compared with noise.

the inverse of the theoretical signal-to-noise ratio afteb- (i) In order to obtain accurate real-time noise power spec-
servation periods 1/(nSNR). [Note that stepg20)—(22) tra for the two detectors, it will probably be necessary to use
make up the statistical analysis part of the simulafion. more sophisticated spectral estimation techniques. Currently,

Note that in order to obtain signal-to-noise ratios on thewe use a Hann window to reduce side-lobe contamination,
order of 10 aftern=1600 runs, we needed to use ratherand we average two overlapped data sets to reduce the vari-

Iarge values OQO (e.g., 103 for the initial LIGO detectors ance, when forming our estimates}a_(fi) andgz(fi)_ [See

and 108 for the advanced LIGO detectorsThese large steps(12), (15), and(16) of the computer simulatiohThis
values meant that expressith20 for the theoretical signal- procedure can be replaced byultitaper spectral estimation
to-noise ratio had to be modified to properly take into ac-methods, which use a special set of window functions—
count the contributions to the theoretical variancethat are  cajled Slepian tapers—to form spectral estimates of time-
due to a large stochastic gravity-wave sign8ee Eqs(5.3)  series dat4® GrAsP [27] contains a modified version of a
and (54)] Without these modifications, the theoretical and pub||c domain package by Lees and PH}@] to perform the
experimental signal-to-noise ratios would be more likely tomultitaper spectral estimation. In addition to providing better
disagree. Thus, instead of E(/.20, we used a “mixed”  spectral estimates, multitaper methods also provide nice

expression for the theoretical signal-to-noise ratio: techniques for “spectral line” parameter estimation and re-
Nyquist y2(f) moval. This feature will be extremely useful when analy;ing
312 \/Ej dfm data produced by a_rea_l detector. For example_, one will b_e
SNR= O 0 JT 0 L 2 able to track contamination of a data set by the line harmonic
01072 fNyquist Y2(f) 12 at 300 Hz, and remove a pendulum resonance at, say, 590
f 0 WR(” HZ."(.SEEGRAS.P.[27] for more informz_ation)._
(7.22 (iii) In addition to being able to identify and to remove

“spectral lines” from a real data set, one would also like to
be able to test the data to see if the distribution of sampled
- values is consistent with normal detector operation. For ex-
tion Q(f). ample, one might check the input data set to see if it has a
probability distribution consistent with that of a Gaussian
ViIl. CONCLUSION random variable. If the test reveals an exceptionally large
In this paper, we derived the optimal signal processin umb_er of “outlier” points, then that partiCL_JIar dqta set can
strategy required for stochastic background searches. We dig€ rejected[See ste11) of the computer simulatioh.The
cussed signal detection, parameter estimation, and sensitivi§RASP data analysis package already contains a routine that
levels from a frequentist point of view. We also discussedPeforms this Gaussian test. But we would also like a more
the complications that arise when one considgrarbitrarily rigorously characterized test that compares the distribution of
large stochastic backgroundéi) non-stationary detector the current data with that during “normal” detector opera-
noise, (il ) multiple detector pairs, an@iv) correlated detec- 10N, which most likely isnot Gaussian.
tor noise. We explained how we verified some of the theo- (IV) Finally, even though it will still be a few years before
retical calculations by writing a computer simulation thatWe ¢an analyze real data from any one of the major interfer-
mimics the generation and detection of a simulated stochas-
tic gravity-wave signal in the presence of simulated detector
noise. And we noted that the “experimental” results and “3See the original paper by Thomsf28] and the text by Percival
theoretical predictions agreed to within the expected errorand Walder{29] for more details.

This involves Eqgs(5.3) and (5.4) for the variances?, but
the large noise expressidB.73 for the optimal filter func-
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ometers, real data frorprototypes—like the Caltech 40-m data analysis code is working as expected, before we can
interferometer—can be used in computer simulations. Fotrust it when searching for a real stochastic background in the
instance, rather than write a computer simulatibke the  outputs of real interferometers.
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presence ofsi_mulatedde_zte_ctor noise, we can write a COM-  This work has been partially supported by NSF grant
puter simulation that mimics the generation and detection opyg5.07740 to the University of Wisconsin at Milwaukee
a simulated stochastic gravity-wave signal in the presence ofng NSF grant PHY93-08728 to Northwestern University.
real detector noisé? The fact that the noise level of a pro- We would like to thank Luca Gammaitoni, Albrecht Rudi-
totype interferometer is much larger than.that of.a _majorger, Kenneth Strain, Masa-Katsu Fujimoto, and Rainer
interferometer poses no problem; we can simply “dial-in” & \yejss for kindly supplying the numerical data for the noise

larger stochastic background signal to be able to detect it i, ar spectra for the VIRGO, GEO-600, TAMA-300, and
the same amount of observation time. Another nice featuregnnanced” LIGO detectors. We would also like to thank

of this fake stochastic background aneal detector noise  gam Finn for carefully proofreading Sec. IV, and for ex-

simulation is that we can address all of the isst#s(iii)  paining the differences between the Bayesian and frequen-
discussed above in a context where we can still compargs; approaches to data analysis, and Eric Key for bringing
experimental” (i.e., simulation performance against theo- e |y of the iterated logarithm to our attention. B.A. grate-
retical expectations. We must be totally convinced that thqu"y acknowledges the LIGO visitors program for support

under NSF grant PHY96-03177, and useful conversations

with Kent Blackburn, Ron Dreever, Eanna Flanagan, B.S.

“The real detector noise would be provided by the prototype outSathyaprakash, David Shoemaker, Kip Thorne, Robbie Vogt,

put. Rainer Weiss, and Stan Whitcomb.

[1] A. Abramovici et al, Science256, 325(1992. [17] V. Kaspi, J. Taylor, and M. Ryba, Astrophys. 428 713

[2] B. Caronet al, in Gravitational Wave Experiment®roceed- (1994.
ings of the Edoardo Amaldi Conference, edited by E. Cocia, G[18] L.S. Finn,“Gravitational-wave data analysis with multiple de-
Pizzella, and F. Rong@Vorld Scientific, Singapore, 1995p. tectors: The gravitational-wave receiver. |. Deterministic
86. sources”(in preparatioh

[3] K. Danzmanret al, in Gravitational Wave Experimen{g], p. [19] L.S. Finn, “Gravitational-wave data analysis with multiple de-
100. tectors: The gravitational-wave receiver. Il. Stochastic sig-

[4] K. Tsubono, inGravitational Wave Experimentg], p. 112. nals” (in preparatioj

[5] P.F. Michelson, Mon. Not. R. Astron. So227, 933 (1987). [20] I. Miller and J.E. FreundProbability and Statistics for Engi-

[6] N. Christensen, Phys. Rev. &5, 5250(1992). neers(Prentice-Hall, Englewood Cliffs, NJ, 1985

[7] E. Flanagan, Phys. Rev. 8, 2389(1993. [21] W.H. Beyer,CRC Standard Probability and Statistics Tables

[8] B. Allen, in Proceedings of the Les Houches School on Astro- _ @nd Formulae(CRC, Boca Raton, 1991 _
physical Sources of Gravitational Wavesiited by J.A. Marck [22] C.W. Helstrom Statistical Theory of Signal DetectipBnd ed.

and J.P. Lasot@ambridge University Press, Cambridge, En- (Pergamon, Oxford, 1968 .
gland, 1997, p. 373. [23] W. Feller, An Introduction to Probability Theory and Its Ap-

[9] E.W. Kolb and M. Turner,The Early UniversgFrontiers in pllcathns(W|Iey, New York_, 1950, Vol. 1. .
Physics(Addison-Wesley, Reading, MA, 1980 [24] N. Christensen, Ph.D. thesis, Massachusetts Institute of Tech-
! ’ ’ nology, 1990.
[10] B. Allen and A.C. Ottewill, Phys. Rev. B6, 545(1997). 9y

lai di d d [25] D. Coyne, LIGO projectprivate communication
[11] D.G. Blair, _R' Burman, L. Ju, S. Woo '”93' M. Mulder, an [26] The data for the predicted noise power spectra for the initial
M.G. Zadnik, “The supernova cosmological background of

e } ) ) and advanced LIGO detectors were taken frpbfi Those
gravitational waves,” report, University of Western Australia,

VS : i for the VIRGO detector were supplied by Luca Gammaitoni
1997; V. Ferraria, irProceedings of the XIl Italian Conference (E-mail address: gammaitoni@perugia.infn.ithe GEO-600

on GR and Gravitational Physicdited by M. Bassaet al. detector by Albrecht Rudiger and Kenneth Stra-mail
(World Scientific, Singapore, 1987D.G. Blair and L. Ju, address: atr@mpg.mpg.de and kstrain@physics.glajac.uk
Mon. Not. R. Astron. Soc283 648(1996. and the TAMA-300 detector by Masa-Katsu FujimgE-mail
[12] C.W. Misner, K.S. Thorne, and J.A. Wheeel@&@ravitation address: fujimoto@gravity.mtk.nao.ad.jp The predicted
(Freeman, San Francisco, 1973 noise power spectra for the “enhanced” LIGO detectors
[13] G.F. Smootet al, Astrophys. J. Lett396, L1 (1992. were supplied by Rainer Weiss(E-mail address:
[14] C.L. Bennettet al, Astrophys. J. Lett396, L7 (1992. weiss@tristan.mit.edu
[15] C.L. Bennettet al., Astrophys. J436, 423(1994. [27] B. Allen, “GRASR a data analysis package for
[16] C.L. Bennettet al, Astrophys. J. Lett464, L1 (1996. gravitational wave detection,” 1997. An up-to-date

102001-40



DETECTING A STOCHASTIC BACKGROUND @ ... PHYSICAL REVIEW D 59102001

version of the users manual may be obtained at[29] D.B Percival and A.T. Walder§pectral Analysis for Physical
http://www.ligo.caltech.edu/LIGO_web/Collaboration/ Applications (Cambridge University Press, Cambridge, En-
manual.pdf or http://www.ligo.caltech.edu/LIGO_web/ gland, 1993.

Collaboration/Isc_interm.html. The software package is avail{30] J.M. Lees and J. Park, Compu. Geall, 199 (1995. The

able upon request. multitaper spectral estimation public domain package can be
[28] D.J. Thomson, Proc. IEEEO, 1055(1982. found at the website http://love.geology.yale.edu/mtm/.

102001-41



