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This paper aims at giving a novel approach to investigate the behavior of the renormalization group flow
for tensorial group field theories to all order of the perturbation theory. From an appropriate choice of the
kinetic kernel, we build an infinite family of just-renormalizable models, for tensor fields with arbitrary rank
d. Investigating the large d-limit, we show that the self-energy melonic amplitude is decomposed as a
product of loop-vertex functions depending only on dimensionless mass. The corresponding melonic
amplitudes may be mapped as trees in the so-called Hubbard-Stratonivich representation, and we show that
only trees with edges of different colors survive in the large d-limit. These two key features allow to resum
the perturbative expansion for self energy, providing an explicit expression for arbitrary external momenta in
terms of Lambert function. Finally, inserting this resummed solution into the Callan-Symanzik equations,
and taking into account the strong relation between two and four point functions arising frommelonicWard-
Takahashi identities, we then deduce an explicit expression for relevant andmarginal β-functions, valid to all
orders of the perturbative expansion. By investigating the solutions of the resulting flow, we conclude about
the nonexistence of any fixed point in the investigated region of the full phase space.
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I. INTRODUCTION

Tensorial group field theories (TGFT) was born since a
decade, from the merger between group field theories
(GFT) and colored tensor models, both appeared in the
quantum gravity context as peculiar field theoretical frame-
works [1–25].
GFTs on one hand, arise from loop quantum gravity

(LQG) and spin-foam theory, as a promising way to
generate spin-foam amplitudes as Feynman amplitude
for a field theory defined over a group manifold, with
specific nonlocal interactions. GFTs is introduced by the
so-called Boulatov model for three dimensional gravity and
arise as a way to implement simplicial decomposition for a
pseudomanifold, including discrete connection through a
specific invariance called closure constraint [15–17]. More
recently, it was shown that GFTs may be viewed in a
complementary way as a second quantized version of spin
network states of loop quantum gravity [4–12], quantum

excitations being interpreted as spin-network nodes, which
can be combined to build LQG states. The fact that GFT
provides a field theoretical framework for spin foam theory,
allowing to use standard field theoretical methods, re-
present a great progress in itself, explaining the success of
the approach in the last decade. Among these success
highlighting the powerful of the field theoretical frame-
work, the most important one at this day is undoubtedly the
results obtained in the context of the quantum cosmology
[5–10], as a mathematical incarnation of the geometro-
genesis scenario, the space-time Universe is viewed as a
condensate of quantum gravity building blocks. Since the
first approaches describing an homogeneous Universe and
recovering the classical Friedman equations in the classical
limit; These recent results showed that inhomogeneous
effects can be described as well in the same condensation
scenario, considering a multicondensate state, and the
resulting evolution equations for perturbations are in strong
agreement with the classical results, so far from the Planck
scale. There is no doubt that these attractive results are the
beginning of a long history for quantum cosmology, where
GFTs will be demonstrate their powerful.
Despite the fact that they have been originally introduced

in the GFT context to cancel some pathologies as singular
topologies proliferation, colored tensor models (TM) on the
other hand may be viewed as the generalization of random
matrix which is the discrete approach to random geometry
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for two dimensional manifolds [20,21]. The breakthrough
of colored TM, and probably the reason of their success is
certainly the existence of a tractable power counting,
allowing to built a 1=N expansion like for matrix models
[13,14]. The role played by the genus in the case of matrix
theory is now replaced by new quantity called the Gurau
degree. Despite the fact that the Gurau degree is not a
topological invariant, in contrast to the genus, it provides a
good definition of leading order graphs, which corresponds
to a vanish Gurau degree and leads to the so called melonic
diagrams. In contrast to planar graphs, the melons obey to a
recursive definition allowing to map them as d-ary trees,
and then become easy to count. Beyond the vectors and
matrices, tensors, and particularly the melonic diagrams
may provide for the future developments, many different
applications far from quantum gravity.
TGFTs is built by merging some aspect of these two

approaches (GFTs and TMs) such that: The fields remain
defined on a group manifold, but the interactions inherit
their structure from tensor models. A new notion of locality,
usually referred as traciality replace the simplicial con-
straint from which GFT interactions are historically con-
structed. As for tensor models, this locality principle allows
to define a power counting, and then to address the question
of renormalization see [26–34] and references therein. In
standard quantum and statistical field theory context, the
canonical notions of scale and locality arise from the
background space-time itself. For GFT however, there
are no background to support these notions, and the scales,
which are required for standard renormalization procedure
have to be defined extrinsically as well. This is given in
practice through a modification of the kinetic action [35],
the notion of scale arising from the spectrum of the kinetic
kernel, usually a linear combination of the identity and the
Laplace-Beltrami operator, both defined over the group
manifold. Rigorous BPHZ theorems have been proved for
such a kind of field theories, from which potentially
interesting theory have been classified from their pertur-
bative just-renormalizability [26–34]. Finally, nonpertur-
bative renomalization group aspects have been addressed
for these models through the popular Wetterich-Morris
formalism, which is the most suitable to deal with the
specific locality of TGFTs in order to investigate the strong
coupling regime [36–51]. Some non-Gaussian fixed points,
reminiscent of phase transitions have been obtained for all
the investigated models; which have been pointed out to be
in strong agreement with the phase condensation at the
heart of the geometrogenesis scenario [52–54]. More
recently, a series of papers [45–51] took into account
Ward-Takahashi identities in the renormalization group
equations. Indeed, for the models without closure con-
straint, the strong violations of Ward identities for the
discovered fixed points particularly for marginal quartic
interactions have been checked at the level of just-renor-
malizables interactions [46].

In this paper, we address the question of the existence or
not of such a fixed point in completely different point of
view, through an exploration of the large rank limit of a
just-renomalizable family of models. We show that in this
limit, only a subfamily of melons survives, providing a well
recurrence relation for Feynman amplitudes. Taking into
account only the 1PI two point Feynman amplitudes, this
recurrence relation can be solved in terms of Lambert
functions, leading to a explicit expression for two point
function to all orders of the perturbative expansion. From
this explicit solution, and taking into account the strong
relation between two and four point functions arising
from Ward identities in the melonic approximation, we
solve the Callan-Symanzik (C-S) equation, and deduce
explicit expression for relevant and marginal β-functions.
Finally, investigating these solutions, we show that no-fixed
point occurs in the considered region of the full space of
couplings.
Note that the resummed two point function that we

obtain in our computation provides a solution, in a suitable
limit to the so-called closed melonic equation, first intro-
duced in [55–63] by direct inspirations of the Grosse
and Wulkenhaar works for noncommutative field theory
[56–60]. Up to the leading order melonic diagrams, this
equations is reputed to be very hard to solve. In the first
paper on this subject [55–63], the authors only addressed a
perturbative solution of a just-renormalizable model, up to
order six. The same equation has been considered for a
tensorial group field theory endowed with a specific gauge
invariance called closure constraint [34] on which only the
perturbative solution is also given. In the same reference
paper, and from a BPHZ theorem the authors argued in
favor of the existence of a solution to all order of the
perturbative expansion. Recently, a strong progress has
been achieved in [61], where an explicit solution has been
found for a divergent free model. However, at this day, no
such a solution exist for just-renormalizable models. In this
paper, we show that in a suitable large d limit, an explicit
analytic solution can be found for the melonic closed
equation.
In detail, the outline of this paper is the following. In

Sec. II we define the model, and introduce the useful
materials used in the rest of the paper from which more
information may be found in the Appendix and in the list of
references cited above. Among the key results of this
section, we get a strong relation between four and two point
melonic functions, arising from Ward identity, which can
be translated as a local relation between β-function along
the RG flow. In Sec. III we investigate the large rank
behavior of the Feynman amplitude; first we provide the
one and two loops computation in order to get the
recurrence relation which could help to a generalization
at arbitrary n-loops. Then using the recurrence relation on
the perturbative expansion, we derive the same result at all
orders. Explicitly, we show that Feynman amplitudes for
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two point graphs may be factorize as product of functions,
whose, one depends on the external momentum. In the
melonic sector, and for large d, each of these amplitudes
can be indexed by a planar rooted tree with edges of
different colors rather than one obtained in ordinary
Feynman graph. Then, by summing over all such trees,
we get an explicit expression for self energy, from which
we can deduce the β-functions.

II. PRELIMINARIES

In this section we introduce the notations and the
formalism that we will use for the rest of this paper, and
recall some important definitions and results (additional
details could be found in standard references [47]). In a
second time, we build explicitly a just-renormalizable
family of models for arbitrary rank d, some complementary
results about the proof of renormalizability could be found
in Appendix A. Finally, we discuss the existence of a
nontrivial relation between four and two point functions,
holding to all orders in the perturbative expansion, and
show explicitly that the information of the renormalization
group flow in the deep ultraviolet version reduces to the
information of the self-energy at zero momenta and its first
derivative.

A. Just-renormalizable Abelian TGFT in rank d

TGFT that we consider in this paper describes two fields
φ and φ̄, both defined on d copies of a compact Lie group
manifold G: φ; φ̄∶ðGÞd → C. For our purpose we focus
on the Abelian manifolds, choosing G ¼ Uð1Þ and the
fields is then defined on the d-dimensional torus. From the
trivial exponential map θ ↦ eiθ ∈ Uð1Þ, rather than func-
tions of group elements, the fields can be understand as
functions of the angle variables θ ∈ ½0; 2π½, and we denote
as φðθ1;…; θdÞ≡ φðθ⃗Þ the field arguments (same for the
field φ̄). Moreover, instead to focus in the group (or Lie-
Algebra) representation, it is more convenient to use the
Fourier representation, the Fourier components T and T̄ of
φ and φ̄ respectively, being formally tensors of rank d i.e.,
discrete maps fromZd toC. We denote their components as
Tp⃗ and T̄p⃗, with p⃗ ¼ ðp1;…; pdÞ ∈ Zd. At the classical
level, tensors are described by the classical action S½T; T̄�,
which is assumed to be quartic for our purpose:

S½T; T̄� ¼
X
p⃗

T̄p⃗Kðp⃗ÞTp⃗

þ λ
X
i

X
p⃗1;…;p⃗4

VðiÞ
p⃗1;p⃗2;p⃗3;p⃗4

Tp⃗1
T̄p⃗2

Tp⃗3
T̄p⃗4

; ð1Þ

where λ denotes the coupling constant and VðiÞ
p⃗1;p⃗2;p⃗3;p⃗4

the
vertex tensor, i.e., a product of Kronecker deltas which
dictates how the tensor indices are contracted together. This
coupling tensor being obviously not unique, we distinguish

the different choice of them by the subscript i. Note that
with our definition of the classical action all these compo-
nents are chosen with the same coupling. The only

constraint over VðiÞ
p⃗1;p⃗2;p⃗3;p⃗4

comes from the tensoriality
criterion, ensuring that any index of a field T have to be
contracted with an index of a field T̄. In this paper, we focus
on the quartic melonic model, for which the set of coupling
tensors write explicitly as:

VðiÞ
p⃗1;p⃗2;p⃗3;p⃗4

≔ δp1ip4i
δp2ip3i

Y
j≠i

δp1jp2j
δp3jp4j

: ð2Þ

All the interactions whose tensor couplings decompose in
this way i.e., who do not factorize as product over subsets
of indices for some T and T̄, are called bubbles; and the
couplings defined from (2) are known as quartic melonic
bubbles. Bubbles may be fruitfully pictured as bipartite
regular-colored graphs, a representation that we will use
abundantly in the rest of this paper. The rule to build the
correspondence is the following. To each T and T̄ fields we
associate respectively black and white nodes; each of them
being hooked to d colored half edges. These d edges,
corresponding to the d components of the tensor are then
joined following the path provided by the interaction
tensor, any half edge of color c starting from a black node
being hooked to a half edge of the same color hooked to a
white node. For melonic quartic couplings, we have:

ð3Þ

The interacting part of the classical action being fixed, let
us define the kinetic action. Renormalization requires that
the kinetic kernel Kðp⃗Þ must have a nontrivial spectrum in
order to provide a canonical notion of scale. The standard
choice, motivated by radiative computation in GFTs [35],
involves the Laplace-Beltrami operator over the group
manifold Gd. For G ¼ Uð1Þ, this Laplace-Beltrami oper-
ator is diagonal in the Fourier representation. Setting the
kinetic kernel to be:

Kðp⃗Þ ¼ p⃗2 þm2; ð4Þ
and the corresponding field theory, with quartic-melonic
interactions have been stated to be just-renormalizable for
d ¼ 5 [26]. In this paper, we will relax the power of the
Laplacian term, and consider the slight generalization:

Kðp⃗Þ ≔ p⃗2η þm2η; ð5Þ

where η is chosen to be a positive half-integer,
η ¼ n=2; n ∈ N, and the notation p⃗2η simply means
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p⃗2η ≔
P

d
i¼1 jpij2η. The motivation for such a deformation

with respect to the standard choice (4) arises from the
power counting which will be discussed in detail below.
The choice of η influence strongly the divergent degree,
and may be fixed such that the model remains just-
renormalizable for arbitrary rank d. Note that we intro-
duced a η-dependent power on the mass term, in hope to get
the same canonical dimension for a just-renormalizable
theory. Finally let us remark that we do not consider the
closure constraint in our models, even if it is considered as a
crucial ingredient for GFTs.
The statistical theory, introducing integration over

“thermal” fluctuations is defined from the classical action
)1 ) by the path integral:

ZðλÞ ¼
Z

dμC½T; T̄�e−Sint½T;T̄�; ð6Þ

where Sint designates the quartic part of the classical action,
and dμC is the normalized Gaussian measure for the
propagator C, defined as:

Z
dμC½T; T̄�Tp⃗T̄p⃗0 ¼ ΘðΛ2η − p⃗2ηÞ

p⃗2η þm2η δp⃗p⃗0 : ð7Þ

where we introduced the step Heaviside function Θ to
prevent UV divergences. Up to the standard permutation of
sums and integrals (which in general is not well defined),
the perturbative expansion in powers of the coupling λ
organizes as a sum of amplitudes indexed of Feynman
graphs, such that the 1PI-connected N-point function SN
(which depends on N external momenta) writes as:

SN ¼
X
GN

ð−λÞVðGNÞ

sðGNÞ
AGN

; ð8Þ

where the sum run over the connected graphs with N
external edges, VðGNÞ designates the number of melonic
vertices of the graph GN , and sðGNÞ is a combinatorial
factor coming from the Wick theorem.1 Due to the specific
combinatorial structure of the interactions, these Feynman
graphs GN are 2 simplex rather than ordinary graphs, i.e.,
have the sets of vertices, edges and faces. Such a typical
graph with four external edges is given on Figure 1 on
which the Wick contractions are pictured as dotted edges
between black and white nodes, to whose we attribute the
color 0, so that Feynman graphs become dþ 1 bipartite
graphs. We recall that faces are bicolored cycles, including
necessarily the color 0, and may be open or closed,
respectively for external and internal faces.

Renormalizability of the quartic melonic models has
been studied extensively, especially for η ¼ 1 and η ¼ 1=2,
i.e., for linear and quadratic kinetic kernels [26,28,32]. In
particular, just-renormalizability has been proved for η ¼ 1
and d ¼ 5. Here we just fix the parameter η in different
manner, such that the model becomes just-renormalizable
for arbitrary rank d. Such a fixation requires the knowledge
of the power counting which takes place by the important
and useful techniques called multiscale analysis and may be
help to establish the solid power-counting theorem. Note
that in practice, the presence of the parameter η does not
change significantly the main steps of the proofs given in
the previous references. Some details was reproduced in
Appendix A, and the result is the following:
Proposition 1: The power counting ωðGÞ for a

Feynman graph G with LðGÞ internal lines and FðGÞ
internal faces is given by:

ωðGÞ ¼ −2ηLðGÞ þ FðGÞ: ð9Þ

At this step, we choose η such that the leading order graphs,
i.e., the melonic graphs appear in the renormalization
procedure and are just the relevant graphs for the compu-
tation of the beta functions in the UV sector. In Appendix A,
we prove that a sufficient condition is: d > 3, ensuring that
for any deviation from the melonic sector, the deleted faces
never compensate the variation over the number of internal
(dotted) edges. Due to the recursive structure of the melonic
graphs, as well recalled in Appendix A, we can prove the
following statement, which link together the number of
internal dotted edges, vertices, and internal faces:

FðGÞ ¼ ðd − 1ÞðLðGÞ − VðGÞ þ 1Þ: ð10Þ

Combining this expression with the following topological
relation arising from the valence of the quartic vertices:

4VðGÞ ¼ 2LðGÞ þ NðGÞ; ð11Þ

where NðGÞ designates the number of external lines, we
deduce that melonic diagrams diverges as:

ωðGÞ ¼ ½ðd − 1Þ − 4η�V þ
�
ðd − 1Þ −

�
d − 1

2
− η

�
N

�
:

ð12Þ

FIG. 1. A typical Feynman graph with three vertices and four
external lines. The propagator lines hooked to black and white
nodes are dotted lines, and open dotted lines are external lines.

1Note that it does not reduce to the dimension of the auto-
morphism group of the considered graph, due to the absence of
the factor 1=4 in front of λ in the classical action.
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For a just-renormalizable theory, the divergent degrees must
have to be independent of the vertex number2 so that UV-
divergences can be removed from a finite set of counter-
terms, even if the number of graphs is infinite. This condition
fixes the value of η as:

η ¼ d − 1

4
: ð13Þ

For the standard field theories defined on the space-time, the
just-renormalizability property is closely related to the
dimension of the coupling, which has to vanish for just-
renormalizable theories. For TGFTs, there are nomeaning to
talk about dimension, because there are no space-time
background, and the sums over Zd are dimensionless. An
intrinsic notion of dimension however emerges from the
renormalization group flow itself, following the behavior of
the renormalization group trajectories. In the vicinity of the
Gaussian point, the canonical dimension is then fixed from
the behavior of the leading order Feynman amplitudes—the
dimension being fixed from the scaling of the leading order
quantum corrections with respect to some UV cutoff. This
notionbeingof a great interest for the rest of this paper andwe
provide here a brief explanation of its origin. As an
illustration, let us consider the first quantum corrections
for the mass parameter, which provides from the diagram
pictured on Fig. 2 (on left) below. If we denote byL1 the loop
involved on the diagram, the mass correction takes the form:

δm2η ¼ λK1L1; ð14Þ

where K1 is a numerical (cutoff independent) factor.
Denoting by [x] the dimension of the quantity x, we get
the first relation:

½m2η� ¼ ½λ� þ ½L1�: ð15Þ

Asecond relation comes from the first radiative correction for
the 4-points function, see Fig. 2 (on right). denote by L2 the
loop of length 2 involved on the diagram, we get the relation:
½λ� ¼ 2½λ� þ ½L2�. Now, observe that, L1 and L2 have the
same number of internal faces, i.e., d − 1. There respective
scaling then becomes:

ωðL1Þ ¼ −2ηþ ðd − 1Þ; ωðL2Þ ¼ −4ηþ ðd − 1Þ;
ð16Þ

as a result:

½m2η� ¼ ½λ� þ ðd − 1Þ − 2η; ½λ� ¼ 2½λ� þ ðd − 1Þ − 4η;

ð17Þ

leading to:

½λ� ¼ 4η − ðd − 1Þ; ½m2η� ¼ 2η: ð18Þ

Note that dimension ofm2η is fixed to be 2η, as suggested by
the notations. Moreover, if the theory is renormalizable,
½λ� ¼ 0, as expected from standard quantum field theory.
Then we come to the following definition which ends

this section
Definition 1 Boundary and heart vertices and faces:
(i) Any vertex hooked with an external edges is said to

be a boundary vertex. Other vertices are called heart
vertices

(ii) Any external faces running through a single external
vertex is said to be an boundary external faces.

(iii) Any external faces running through at least one heart
vertex is said to be an heart external face.

B. Exact relation between effective (melonic)
vertex and wave function

Because of their recursive definition, there exist strong
relations between melonic diagrams with two, four or
arbitrary number of external edges, such that the melonic
sector is entirely determined by the knowledge of the
melonic self-energy. The aim of this section is to establish
the exact relation holding between two and four point
functions, and the corresponding relations between
counter-terms.
The melonic self energy Σðp⃗Þ, i.e., whose perturbative

expansion keep only the melonic diagrams, is related to the
two point function Γð2Þðp⃗Þ as in ordinary field theory:

Γð2Þðp⃗Þ ¼ p⃗2η þm2η − Σðp⃗Þ: ð19Þ

Moreover, as a direct consequence of the recursive defi-
nition of the melonic diagrams, the melonic self energy
obey to a closed equation, which as we announced in the
introduction is reputed to be very difficult to solve. The

FIG. 2. Leading order contributions for 1PI 2 and 4 point
functions. The figures have been drawn for d ¼ 4.

2If the divergent degree decrease with the number of vertices,
the situation is still interesting, because it means that there are
only a finite set of divergent graphs, which could be subtracted to
rend the theory finite. This corresponds to a superrenormalizable
theory. In the other hand, the divergent degree increases with the
number of vertices, and an infinite number of counterterms is
required to make the theory well defined in the UV. Fixing an
infinite number of counterterms, or equivalently an infinite
number of “initial conditions” break the predictivity of the
theory, which is said to be nonrenormalizable.
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proof of this closed equations and the main corollary
statements can be found in [34,55,63]. To summarize:
Proposition 2 Closed equation for self-energy: Let

Σðp⃗Þ be the melonic self energy, whose Feynman expan-
sion involves only melonic diagrams. Then, all the varia-
bles are completely decoupled and Σðp⃗Þ is a sum of d
independent terms, one per variables:

Σðp⃗Þ≕
Xd
i¼1

τðpiÞ; ð20Þ

where the function τ∶Z → R has a single argument, and
satisfies the closed equation:

τðpÞ ≔ −2λ
X
q⃗

δpq1
ΘðΛ2η − q⃗2ηÞ

q⃗2η þm2η −
P

d
i¼1 τðqiÞ

: ð21Þ

Note that τðpÞ only depends on p2. From the power
counting theorem, only the two and four point melonic
diagrams diverge, and then require renormalization.
Moreover, in the deep UV limit, the knowledge of the
counterterms allows to compute the beta functions. As we
will see, the unitary symmetry of the action, explicitly
broken by the kinetic kernel imply the existence of a strong
relation between four and two point functions through the
standard Ward-Takahashi identity. More precisely, we have
the following statement:
Proposition 3 Zero-momenta Ward identity: Let γð4Þ ≔

Γð4Þ
0⃗;0⃗;0⃗;0⃗

be the zero momenta 1PI melonic 4-point function.

In the continuum limit, γð4Þ is related to the first derivative
of the 2-point melonic function Γð2Þðp⃗Þ as:

1

2
γð4ÞLð1þ ∂τÞ ¼ τ0ð0Þ; ð22Þ

with the notation τ0ð0Þ ≔ ∂τ=∂p2η
1 jp1¼0, and the loop L as

the “boundary contribution” ∂τ are defined as:

L ≔
X
q⃗

δq10½Γð2Þðq⃗Þ�−2; ð23Þ

L∂τ ≔X
q⃗

δq10ðq⃗2η þm2ηÞ½Γð2Þðq⃗Þ�−2δðΛ2η − q⃗2ηÞ: ð24Þ

Proof.—Let us consider the unitary transformations
U ∈ U×d acting independently over each components of
the tensors T and T̄. U is a d-dimensional vector U ¼
ðU1; U2;…; UdÞ whose components Ui are unitary matri-
ces acting on the indices of color i. The action of U on the
two tensors is defined as (we sum over repeated indices):

U½T�p1;p2;…;pd
≔ ½U1�p1q1

½U2�p2q2
� � � ½Ud�pdqd

Tq1;q2;…;qd

ð25Þ

U½T̄�p1;p2;…;pd
≔ ½U�

1�p1q1
½U�

2�p2q2
� � � ½U�

d�pdqd
T̄q1;q2;…;qd ;

ð26Þ

where �means complex conjugation. Obviously,
P

p⃗ T̄p⃗Tp⃗

and any higher valence tensorial interactions are invariant
under any such transformations. Then:

U½Sint� ¼ Sint: ð27Þ

However, this is not the case for the kinetic term, due to the
nontrivial propagator, which explicitly break the unitary
invariance. Now, let us consider the two point function
hT̄p⃗Tq⃗i. It is tempting to think that it transform like a
representation of U ⊗ U�. Indeed, even if the kinetic term
does not transform like a tensorial invariant, the integral:

hT̄p⃗Tq⃗i ≔
Z

dμCT̄p⃗Tq⃗e−Sint½T̄;T�; ð28Þ

does not depend on the broken symmetry transformation
of the kinetic term because of the formal translation invari-
ance of the Lebesgue integration measure, and in fact it has
to be invariant under any unitary transformation.
Furthermore, hT̄p⃗Tq⃗i transforms like a trivial representation
of U×d ⊗ U�×d. This can be translated in an infinitesimal
point of view considering an infinitesimal transformation
U ¼ I þ iϵ, where ϵ ¼ ϵ† is a Hermitian operator and I the
identity operator. At the first order in ϵ, we get:

U ¼ Iþ
X
i

ϵ⃗i; ð29Þ

where I ≔ I⊗d and ϵ⃗i ¼ I⊗ði−1Þ ⊗ ϵi ⊗ Id−iþ1. Then, the
invariance of hT̄p⃗Tq⃗i simply means that ϵ⃗i½hT̄p⃗Tq⃗i� ¼ 0.
Expanding this relation at the leading order in ϵi, and due to
the symmetry ϵ⃗i½Sint� ¼ 0, we get:Z

ϵ⃗i½dμC�T̄p⃗Tq⃗e−Sint½T̄;T� þ
Z

dμCϵ⃗i½T̄p⃗Tq⃗�e−Sint½T̄;T� ¼ 0:

ð30Þ
Each terms can be computed separately. The variation of the
covariance requires to be carefully derived, because the
propagator C is not invertible on Zd due to the Θ-function
ΘðΛ2η − p⃗2ηÞ. The computationof thevariation then requires
regularization of the infinite coming from 1=Θ. The variation
of the second term however can be computed straightfor-
wardly. From:

ϵ⃗i½T̄p⃗Tq⃗� ¼ −ϵ�pip0
i
T̄p⃗0
Y
j≠i

δpjp0
j
Tq⃗ þ T̄p⃗ϵqiq0iTq⃗0

Y
j≠i

δqjq0j

¼ ϵqiq0i T̄p⃗

Y
j≠i

δqjq0jTq⃗0 − ϵp0
ipi
T̄p⃗0
Y
j≠i

δpjp0
j
Tq⃗

¼ T̄p⃗Tq⃗⊥i
∪fq0igϵqiq0i − T̄p⃗⊥i

∪fp0
igTq⃗ϵp0

ipi
; ð31Þ
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where p⃗⊥i
≔ p⃗=fpig ∈ Zd−1. Integrating with the measure

dμCe−Sint½T̄;T�, and after restrict our computation on the
perturbative sector, it is obvious that hT̄p⃗Tq⃗i ∝ δp⃗ q⃗ due to
the momentum conservation along all the external faces.
Then, setting:

hT̄p⃗Tq⃗i ¼ Gðp⃗Þδp⃗ q⃗; ð32Þ

we get:Z
dμCϵ⃗i½T̄p⃗Tq⃗�e−Sint½T̄;T� ¼ δp⃗⊥i

q⃗⊥i
½Gðp⃗Þ −Gðq⃗Þ�ϵqipi

:

ð33Þ

Now let us focus on to the variation of the measure dμC. As
explained before, we have to regularized the Θ-function

occurring on the propagator. We use the well know relation
between Heaviside and Dirac function: θ0 ¼ δ, and the
Gaussian representation of the finite range δ-function:

δaðxÞ ≔
1

a
ffiffiffi
π

p e−x
2=a2 ; ð34Þ

which goes to the standard Dirac function3 when a → 0.
Then we get the following limit:

θaðxÞ ≔
1

a
ffiffiffi
π

p
Z

x

−∞
e−y

2=a2dy; lim
a→0

θa ¼ Θ: ð35Þ

Therefore, defining C−1
0 ðp⃗Þ ≔ p⃗2 þm2, our regularized

propagator can bewritten Caðp⃗Þ ¼ θaðΛ2 − p⃗2ÞC0ðp⃗Þ such
that the Gaussian measure and its variation are written as:

dμCa
≔ e−

P
p⃗
T̄p⃗C−1

a ðp⃗ÞTp⃗ ; ϵ⃗i½dμCa
� ¼ −ϵ⃗i

�X
p⃗

T̄p⃗C−1
a ðp⃗ÞTp⃗

�
dμCa

: ð36Þ

The variation of the kinetic term then becomes:

ϵ⃗i

�X
p⃗

T̄p⃗C−1
a ðp⃗ÞTp⃗

�
¼
X
p⃗;q⃗

ϵqipi
δp⃗⊥i

q⃗⊥i
½C−1

a ðp⃗Þ − C−1
a ðq⃗Þ�T̄p⃗Tq⃗: ð37Þ

By considering the results (33) and (37), we get:X
r⃗;s⃗

ϵrisiδr⃗⊥i
s⃗⊥i
½C−1

a ðr⃗Þ − C−1
a ðs⃗Þ�hT̄r⃗Ts⃗T̄p⃗Tq⃗i

¼
X
ri;si

½δp⃗⊥i
q⃗⊥i

ðGðp⃗Þ −Gðq⃗ÞÞδriqiδsipi
�ϵrisi ;

or, because of the arbitrariness of the infinitesimal transformation ϵ:X
r⃗⊥i

;s⃗⊥i

δr⃗⊥i
s⃗⊥i
½C−1

a ðr⃗Þ − C−1
a ðs⃗Þ�hT̄r⃗Ts⃗T̄p⃗Tq⃗i ¼ ½δp⃗⊥i

q⃗⊥i
ðGðp⃗Þ − Gðq⃗ÞÞδriqiδsipi

�: ð38Þ

Let Γð4Þ
p⃗1;p⃗2;p⃗3;p⃗4

be the 1PI four points function defined by the following relation

hT̄r⃗Ts⃗T̄p⃗Tq⃗i≕ ð−Γð4Þ
r⃗;s⃗;p⃗;q⃗Gðp⃗ÞGðq⃗Þ þ δr⃗ p⃗δs⃗ q⃗ÞGðr⃗ÞGðs⃗Þ: ð39Þ

Expression (38) becomes:

X
r⃗⊥i

;s⃗⊥i

δr⃗⊥i
s⃗⊥i
½C−1

a ðr⃗Þ − C−1
a ðs⃗Þ�Gðr⃗ÞGðs⃗Þ½−Γð4Þ

r⃗;s⃗;p⃗;q⃗ þ Γð2Þðp⃗ÞΓð2Þðq⃗Þδr⃗ p⃗δs⃗ q⃗�

¼ ½δp⃗⊥i
q⃗⊥i

ðΓð2Þðq⃗Þ − Γð2Þðp⃗ÞÞδriqiδsipi
�; ð40Þ

3More precisely, it goes to the delta distribution on the space of test functions DðRÞ.
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with Γð2Þðp⃗Þ ≔ 1=Gðp⃗Þ. Using the proposition 8 in the
Appendix A and taking into account the leading order

contributions, Γð4Þ
r⃗;s⃗;p⃗;q⃗ is such that any diagrams in its

Feynman expansion has two heart external faces of the
same color, running through the interior of the graph. As a
consequence, the leading contributions for Γð4Þ may be
decomposed a sum indexed by a single color like the free
energy Σ:

Γð4Þ ≔
Xd
i¼1

Γð4Þ;i; ð41Þ

Moreover, from the same proposition 8, in addition to these
two heart external faces, we have (d − 1) boundary external
faces of length 1 per external vertices (in the case when we
have only one vertex, it can be considered like an external
vertex because external lines are hooked to him). Then, a
moment of reflection show that the leading order 4-point
function must have the following structure:

Γð4Þ;i
p⃗1;p⃗2;p⃗3;p⃗4

¼ γð4Þp1ip3iðVðiÞ
p⃗1;p⃗2;p⃗3;p⃗4

þ p⃗1 ↔ p⃗3Þ
≕ γð4Þp1ip3iSymVðiÞ

p⃗1;p⃗2;p⃗3;p⃗4
; ; ð42Þ

where the last term comes from the Wick theorem. As a
result, only the component ΓðiÞ contributes significantly to
(40) at leading order. Also only a single term in SymVðiÞ
have to be retained. Then setting qi ¼ ri and pi ¼ si in a
first time, and p⃗ ¼ q⃗ → 0⃗ in a second time, (40) becomes at
leading order:

1

2

�X
r⃗

δr10
dC−1

a

dr2η1
ðr⃗ÞG2ðr⃗Þ

�
× γð4Þ

¼ −
∂

∂p2η
1

Γð2Þð0⃗Þ þ dC−1
a

dp2η
1

ð0⃗Þ: ð43Þ

where γð4Þ ¼ 2γð4Þ00 . From the definition:

dC−1
a

dr2η1
ðr⃗Þ ¼

�
1þ ðr⃗2η þm2ηÞ θ

0
a

θa
ðΛ2η − r⃗2ηÞ

�
θ−1a

× ðΛ2η − r⃗2ηÞ: ð44Þ

The derivative on the right hand side requires the explicit
expression for Γð2Þ. The effective propagator G is obtained
from Ca and Σ as a geometric progression:

G ¼ Ca þ CaΣCa þ CaΣCaΣCa þ � � � ¼ 1

1 − CaΣ
Ca;

ð45Þ

explicitly:

Gðp⃗Þ ¼ θaðΛ2η − p⃗2ηÞ
p⃗2η þm2η − θaðΛ2η − p⃗2ηÞΣðp⃗Þ ; ð46Þ

and we get

Γð2Þðp⃗Þ ¼ θ−1a ðΛ2η − p⃗2ηÞðp⃗2η þm2ηÞ − Σðp⃗Þ: ð47Þ

We deduce that

∂Γð2Þ

∂p2η
1

ð0⃗Þ − dC−1
a

dp2η
1

ð0⃗Þ ¼ −
∂

∂p2η
1

Σð0⃗Þ: ð48Þ

Finally, taking into account the factor θ2a coming from G2,
and by choosing a to 0, the equation (43) writes as:

1

2
Lð1þ ∂τÞ × γð4Þ ¼ ∂

∂p2η
1

Σð0⃗Þ: ð49Þ

With the decomposition Σðp⃗Þ ¼Pi τðpiÞ the proof of the
proposition is therefore completed. ▪
Corollary 1 Exact relation between τ and γð4Þ: The

zero-momenta melonic function γð4Þ and the loop L are
related as:

γð4Þ ¼ 4λ

1þ 2λL
: ð50Þ

Proof.—The proof is straightforward. From the closed
equation for self-energy (21), we deduce an expression for
τ0 involving L:

τ0ð0Þ ¼ 2λLð1 − τ0ð0Þ þ ∂τÞ → τ0ð0Þ ¼ 2λLð1þ ∂τÞ
1þ 2λL

;

ð51Þ

Then, inserting this equation in Eq. (22) of proposition 3,
and after simplification of the factors ð1þ ∂τÞ, we deduce
the corollary. ▪
Now let us defined the functional action with the

counterterms which will be free for divergences.
Denoting as Z, Zm and Zλ the counterterms respectively
for field strength, mass and coupling, such that the
renormalized classical action, writing as:

S½T; T̄� ¼
X
p⃗

T̄p⃗ðZp⃗2η þ Zmm2ηÞTp⃗

þ Zλλ
X
i

X
p⃗1;…;p⃗4

VðiÞ
p⃗1;p⃗2;p⃗3;p⃗4

Tp⃗1
T̄p⃗2

Tp⃗3
T̄p⃗4

; ð52Þ

The existence of such a set of counterterm is ensured by the
renormalizability theorem. An other point of view is the
behavior of effective vertex with the UV cutoff. To be more
precise, γð4Þ can be interpreted as an effective coupling λeff :
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λeff ¼ zλλ; zλ ≔
1

1þ 2λL
; ð53Þ

Moreover, the relation between τð0Þ, τ0ð0Þ and the effective
mass and wave functions can be easily found from the
definition of Γð2Þ. We have:

Γð2Þðp⃗Þ ¼ p⃗2η þm2η − Σðp⃗Þ ¼ ð1 − τ0ð0ÞÞp⃗2η

þ ðm2η − d × τð0ÞÞ þOðp⃗2ηÞ; ð54Þ

from which we deduce the effective wave function Zeff and
the effective mass m2

eff :

Zeff ≔ 1 − τ0ð0Þ ¼ 1 −
2λLð1þ ∂τÞ
1 − 2λL

¼ zλð1 − 2λL∂τÞ;
m2η

eff ≔ m2η − d × τð0Þ: ð55Þ

One may expect that the boundary term ∂τ introduce a
spurious dependence on the UV regularization, especially
in regard to the limit a → 0. Indeed, the product of two
distribution is not well defined in general. This is especially
the case of the product δΘ; and we have to be careful when
we take the limit before of after the computation of the
integrals. In this case however, the limit can be well defined
remembering that momenta are discrete variables, and that
all the derivatives are formal continuum limit of finite
differences. Thus, taking the limit a → 0 before the
continuum limit, we have to provide a sense for integrals
of the form −

R
dxδð1 − xÞGðΘð1 − xÞÞ; which is the limit

for ϵ ∼ 1=Λ2η → 0 of something that:Z
dx½Θð1þ ϵ − xÞ − Θð1 − xÞ�GðΘð1 − xÞÞ ð56Þ

for some regular function GðyÞ. In the interval
x ∈ ½1; 1þ ϵ�, Θð1 − xÞ must vanish. Therefore:Z

dx½Θð1þ ϵ − xÞ − Θð1 − xÞ�GðΘð1 − xÞÞ

→ ϵGð0Þ
Z

dxδð1 − xÞ: ð57Þ

Note that the result depends on the convention used to
compute the derivative. Indeed, with the convention
Θð1 − xÞ − Θð1 − ϵ − xÞ—which is identical for ordinary
functions; we get the limit:Z

dx½Θð1 − xÞ − Θð1 − ϵ − xÞ�GðΘð1 − xÞÞ

→ ϵGð1Þ
Z

dxδð1 − xÞ: ð58Þ

In this paper, we use of the first convention, because it offer
the advantage to cancel the Σ dependence of the denom-
inator of the boundary term, which simplify as:

L∂τ ¼ 1

Λ2η þm2η

X
q⃗

δq10δðΛ2η − q⃗2ηÞ: ð59Þ

In the deep UV sector on which we focus in this paper, Λ
becomes large, and the continuum limit can be considered
with variables xi ¼ qi=Λ. We get:

X
q⃗

δq10δðΛ2η − q⃗2ηÞ ≈ 2d−1
Z
Rþd−1

dxδð1 − x2ηÞ; ð60Þ

and from Appendix B,

L∂τ ≈ {ðdÞ
1þ m̄2η ; ð61Þ

where we defined the dimensionless mass m̄ ¼ m=Λ such
that:

Zeff ¼ zλ

�
1 − 2λ

{ðdÞ
1þ m̄2η

�
: ð62Þ

C. Melonic renormalization group equations

The renormalization group equations (RGE) are the
infinitesimal translation of a common feature of just-
renormalizable theories. In the deep UV, and neglecting
the contributions of inessential couplings, any change of
fundamental cutoff, Λ → Λ0 may be exactly compensated
by a change of field strength, relevant and marginal
couplings—up to corrections of order 1=Λ. The infinitesi-
mal incarnation of this feature is the so-called C-S equation,
which writes as [64–67]:� ∂
∂tþ β

∂
∂λþ βm

∂
∂m2η −

N
2
γ

�
ΓðNÞ
p⃗1;p⃗2;…;p⃗N

¼ 0; ∀ N;

ð63Þ
Where ∂=∂t ≔ Λ∂=∂Λ; β and βm are beta functions for
quartic coupling and mass, and γ is the anomalous
dimension. By considering the explicitly expression of

Γð2Þð0⃗Þ, ∂Γð2Þ=∂p2
1ð0⃗Þ and Γð4Þ

0⃗;0⃗;0⃗;0⃗
≡ γð4Þ, and taking into

account the strong relation arising from the Ward identity,
we deduce the statement:
Proposition 4: In the deep UV limit (Λ ≫ 1), and with

boundary term given by equation (61), the β-functions β,
βm for coupling and mass; and the anomalous dimension γ
are related as:

β ¼ γλ

�
1 −

2λ{ðdÞ
1þ m̄2η

�
þ 2λ2{ðdÞ
ð1þ m̄2ηÞ2 βm̄; ð64Þ

which is valid in the interior of the region connected to the
Gaussian fixed point, below the singularity line of equation:

1þ m̄2η − 2λ{ðdÞ ¼ 0; ð65Þ
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and where we introduced the β-function for dimensionless
mass m̄2η ≔ m2ηΛ−2η, i.e., Λ2ηβm̄ ≔ βm − 2ηm2η.
Proof.—From RGE for Γð2Þð0⃗Þ, ∂Γð2Þ=∂p2η

1 ð0⃗Þ and

Γð4Þ
0⃗;0⃗;0⃗;0⃗

≡ γð4Þ, and taking into account the relations

coming from Ward identities, we deduce the following
relations:� ∂
∂tþ β

∂
∂λþ βm

∂
∂m2η − γ

�
ðm2η − d × τð0ÞÞ ¼ 0 ð66Þ

� ∂
∂tþ β

∂
∂λþ βm

∂
∂m2η − γ

�
ð1 − τ0ð0ÞÞ ¼ 0 ð67Þ

� ∂
∂tþ β

∂
∂λþ βm

∂
∂m2η − 2γ

�
λZλ ¼ 0: ð68Þ

The two first equations are explicitly written as (we use the
notation τ0 for τ0ð0Þ and τ for τð0Þ):

d
∂τ
∂t þ dβ

∂τ
∂λ − βm

�
1 − d

∂τ
∂m2η

�
þ γðm2η − d × τÞ ¼ 0;

ð69Þ

∂τ0
∂t þ β

∂τ0
∂λ þ βm

∂τ0
∂m2η þ γð1 − τ0Þ ¼ 0: ð70Þ

For the third equations, we use the fact that Zλ ¼ ð1 − τ0Þ=
ð1 − 2λL∂τÞ, from which it follows:

−λγþ βþ 2λ{ðdÞ
1− 2λL∂τ

� ∂
∂tþ β

∂
∂λþ βm

∂
∂m2η

�
λ

1þ m̄2η ¼ 0:

ð71Þ

Then after few simplifications,

−γλþ β þ 2λ{ðdÞ
1þ m̄2η − 2λ{ðdÞ

�
β −

λ

1þ m̄2η βm̄

�
¼ 0;

ð72Þ
we then deduce the proposition assuming that 1þ m̄2η −
2λ{ðdÞ ≠ 0 and m̄2η ≠ −1. ▪
As direct consequences of this statement, and from

inspection of the Eq. (72), we have:
Corollary 2: In the deep UV limit, and in the melonic

sector, any fixed point β ¼ βm ¼ 0 have to satisfy (at least)
one of the two conditions:
(1) λ ¼ 0,
(2) γ ¼ 0.
The first one corresponds to the Gaussian fixed point,

and has no real interest at this stage. We then expect that
only the second one will be of relevant interest for non-
Gaussian fixed point investigations. Moreover, from
Eq. (64), substituting β and solving the resulting equations
for βm and γ, we get:
Corollary 3: The β-function for mass and the anoma-

lous dimensions be express only in terms of τ, τ0, λ,m2η and
Λ as:

βm̄ ¼ −
2ηðm2η − dτÞ − γðm2η − dðτ − λð1 − 2λ{ðdÞ

1þm̄2ηÞ ∂τ∂λÞÞ
Λ2η − dðΛ2η ∂τ

∂m2η þ 2λ2{ðdÞ
1þm̄2η

∂τ
∂λÞ

; ð73Þ

γ ¼ 2ηðm2η − dτÞΩ
1 − τ0 þ λð1 − 2λ{ðdÞ

1þm̄2ηÞ ∂τ0∂λ þ ðm2η − dðτ − λð1 − 2λ{ðdÞ
1þm̄2ηÞ ∂τ∂λÞÞΩ

; ð74Þ

with:

Ω ≔
Λ2η ∂τ0

∂m2η þ 2λ2{ðdÞ
1þm̄2η

∂τ0
∂λ

Λ2η − dðΛ2η ∂τ
∂m2η þ 2λ2{ðdÞ

1þm̄2η
∂τ
∂λÞ

ð75Þ

The set of three equations, (64), (73) and (74) shows
explicitly that the knowledge of τ and τ0 determine entirely
the behavior of the RG flow in the deep UV.

III. LARGE d BEHAVIOR OF THE
FEYNMAN AMPLITUDES

In this section we investigate the large rank behavior of
the melonic Feynman amplitudes. We start with the
heuristic computation of the relevant quantities τ and τ0,

and then extend our results to all orders of the perturbative
expansion, for two point and vacuum amplitudes. In a
second time, we build an exact renormalization group
equation and show that no fixed point may be found in this
large d-limit. The result of this section therefore solve the
closed equation of the two point correlation function at
large rank limit exploration.

A. One and two-loops investigation

1. One-loop computation

A typical leading order contribution to the one-loop 1PI
two point function has been drawn on Fig. 2—on left. Note
that there are two Wick-contractions for this configuration,
meaning that for each melonic vertex, the contribution of
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the diagram have to be counted twice. From the Feynman
rules, we then deduce the one-loop self energy as:

τð1ÞðpiÞ ¼
X

q⃗∈Zd−1

ΘðΛ2η − q⃗2η − p2η
i Þ

q⃗2η þ p2η
i þm2η

: ð76Þ

where the subscript (1) refers to the number of loops. Due
to the large Λ limit, we can simplify the computation taking
the continuum limit, and replacing the sum with an integral,
without consequences on the leading order contributions.
We introduce the continuous variables xi ≔ pi=Λ. Then
Eq. (76) becomes:

τð1ÞðΛxÞ ¼ −2λΛd−1−2η
Z

dxδΛðx1 − xÞ Θð1 − x⃗2ηÞ
x⃗2η
⊥ þ x2η þ m̄2η

;

ð77Þ

where we introduced the dimensionless mass m̄2η ¼
m2η=Λ2η, the δ-distribution of size 1=Λ: δΛðx1 − xÞ ≔
Λδpq1 , dx ≔

Q
i dxi, and x⊥ ≡ x⊥1 ¼ ðx2;…; xdÞ.

Defining the continuous function τ as τðxÞ ≔ τðΛxÞ=Λ2η,
and because d − 1 − 2η ¼ 2η, we get finally:

τð1ÞðxÞ ¼ −2λ
Z

dx⊥
Θð1 − x⃗2ηÞ

x⃗2η
⊥ þ x2η þ m̄2η

; ð78Þ

where we have formally took the Λ → ∞ limit. This
integral may be computed from the results given in
Appendix B, and we deduce the explicit formula:

τð1ÞðpiÞ ¼ −2dλðΛ2η − p2η
i Þ
�
Γ
�
dþ 1

d − 1

��
d−1

×

�
1 −

m2η þ p2η
i

Λ2η − p2η
i

ln

�
Λ2η þm2η

m2η þ p2η
i

��
;

From which we get:

Σð1Þðp⃗ ¼ 0⃗Þ ¼ −2ddλΛ2η

�
Γ
�
dþ 1

d − 1

��
d−1

×

�
1 − m̄2η ln

�
1þ m̄2η

m̄2η

��
; ð79Þ

and:

τð1Þ0ð0Þ ¼ 2dλ

�
Γ
�
dþ 1

d − 1

��
d−1

ð1þ m̄2ηÞ ln
�
1þ m̄2η

m̄2η

�
:

ð80Þ

2. Two-loops computation

We now move on to the two loops computation of the
self energy τð2ÞðpÞ. At the leading order in the deep UV,
there are only one relevant diagram, which is

ð81Þ

We recall that we need to compute only τð0Þ and τ0ð0Þ to
build the renormalization group flow in the deep UV. From
the previous diagram, it is quite natural to split the
computation as the sum of two distinct contributions:

τð2ÞðpÞ ¼ τð2ÞkðpÞ þ ðd − 1Þτð2Þ⊥ðpÞ: ð82Þ

The first term, that we denoted as τð2ÞkðpÞ corresponds to
the configuration where the two vertices are the same (same
color); and the second one corresponds to the case where
the two vertices are different (different colors). We will
compute each terms separately. From the Feynman rules, it
follows:

τð2ÞkðpÞ ¼ skλ2 ×
X

q⃗⊥;k⃗⊥∈DðpÞ

1

ðq⃗2η⊥ þ p2η þm2ηÞ2

×
1

k⃗2η⊥ þ p2η þm2η
; ð83Þ

where sk is a symmetry factor and

DðpÞ ≔ fq⃗⊥ ∈ Zd−1jq⃗2η⊥ ≤ Λ2η − p2ηg:

The symmetry factor receives two contributions. First we
have a factor 1=2! coming from the expansion of the
exponential. Second, the number of allowed contractions
leading to such a melonic diagram can be given by the
following. There are a first factor 2 coming from the choice
of the vertex on which the external edges are hooked, and a
second factor 2 coming from the orientation of the vertex.
Finally, a third factor 2 arise from the orientation of the
second vertex (there are two different ways to hook this
vertex to the first one, and a single possibility to create the
last internal line of length one). As a result:

sk ¼
1

2!
× 2 × 2 × 2 ¼ 4: ð84Þ

At this stage we use the sums S1 and S2 defined in the
Appendix B. Indeed, τð2ÞkðpÞ can be factorized in two
contributions corresponding to the two submelonic dia-
grams with two and four external points:

τð2ÞkðpÞ ¼ 4λ2
� X
q⃗⊥∈DðpÞ

1

ðq⃗2η⊥ þ p2η þm2ηÞ2
�

×

� X
k⃗⊥∈DðpÞ

1

k⃗2η⊥ þ p2η þm2η

�
;
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Then using the sums, (B7) and (B10) in the Appendix B we get

τð2ÞkðpÞ ¼ 4½{ðdÞ�2ðΛ2η − p2ηÞλ2
�
1 −

m2η þ p2η

Λ2η − p2η ln
�
Λ2η þm2η

m2η þ p2η

��

×

�
ln

�
Λ2η þm2η

m2η þ p2η

�
−

Λ2η − p2η

Λ2η þm2η

�
: ð85Þ

The computation of the quantity τð2Þ⊥ may be given easily, due to the overlapped momentum between the two loops of the
diagram. We get:

τð2Þ⊥ðpÞ ¼ s⊥λ2 ×
X

q⃗⊥∈DðpÞ;k⃗⊥∈Dðq2Þ

1

ðq⃗2η⊥ þ p2η þm2ηÞ2
1

k⃗2η⊥ þ q2η2 þm2η
: ð86Þ

By considering the Eq. (B5) and for simplicity, we will compute separately τð2Þ⊥ð0Þ and τð2Þ⊥0ðpÞ. We get, in the continuum
limit:

τð2Þ⊥ð0Þ ¼ 2s⊥λ2Λ2η

Z
dq⃗⊥dk⃗⊥Θð1 − q⃗2η⊥ ÞΘð1 − k⃗2η⊥ − q2η2 Þ

×
Z

1

0

du1du2
u1δð1 − u1 − u2Þ

ðu1q⃗2η⊥0 þ u2k⃗
2η
⊥ þ q2η2 þ m̄2ηÞ3

; ð87Þ

where we kept the notation q and k for continuous variables. Now we introduce the integral representation of the Heaviside
Θ-functions, leading to:

τð2Þ⊥ð0Þ ¼ 2s⊥λ2Λ2η

Z
dq⃗⊥dk⃗⊥

Z
1

0

dy1dy2δðy1 − q⃗2η⊥ Þδðy2 − k⃗2η⊥ − q2η2 Þ

×
Z

1

0

du1du2
u1δð1 − u1 − u2Þ

ðu1q⃗2η⊥0 þ u2k⃗
2η
⊥ þ q2η2 þ m̄2ηÞ3

: ð88Þ

Due to the properties of the δ-distribution this relation takes the simple form:

τð2Þ⊥ð0Þ ¼ 2s⊥λ2Λ2η

Z
dq⃗⊥dk⃗⊥

Z
1

0

dy1dy2δðy1 − q⃗2η⊥ Þδðy2 − k⃗2η⊥ − q2η2 Þ

×
Z

1

0

du1du2
u1δð1 − u1 − u2Þ

ðu1y1 þ u2y2 þ m̄2ηÞ3 : ð89Þ

We make the change of variables: q⃗2η⊥ → y1q⃗
2η
⊥ , and k⃗2η⊥ → ðy2 − y1q

2η
2 Þk⃗2η⊥ ; splitting τð2Þ⊥ð0Þ into two contributions:

τð2Þ⊥ð0Þ ¼ 2s⊥λ2Λ2η½L1ðdÞ − L2ðdÞ�; ð90Þ

where L1ðdÞ and L2ðdÞ are defined as:

L1ðdÞ ≔
Z

dq⃗⊥dk⃗⊥δð1 − q⃗2η⊥ Þδð1 − k⃗2η⊥ Þ ×
Z

1

0

du1du2u1δð1 − u1 − u2Þ

×
Z

1

0

dy1dy2
y1y2

ðu1y1 þ u2y2 þ m̄2ηÞ3 ; ð91Þ

L2ðdÞ ≔
Z

dq⃗⊥dk⃗⊥δð1 − q⃗2η⊥ Þδð1 − k⃗2η⊥ Þ ×
Z

1

0

du1du2u1δð1 − u1 − u2Þ

×
Z

1

0

dy1dy2
y21q

2η
2

ðu1y1 þ u2y2 þ m̄2ηÞ3 : ð92Þ
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Note that the role playing by the variable q2 is arbitrary. Then, we can sum over all choices of them, and finally dividing the
result by d − 1 we get:

L2ðdÞ ≔
1

d − 1

Z
dq⃗⊥dk⃗⊥δð1 − q⃗2η⊥ Þδð1 − k⃗2η⊥ Þ ×

Z
1

0

du1du2u1δð1 − u1 − u2Þ

×
Z

1

0

dy1dy2
y21

ðu1y1 þ u2y2 þ m̄2ηÞ3 :

Interestingly, the d-dependence of the two loops integrals L1 and L2 can be factorized, (the same phenomena can be
observed at one loop, as shown in the Appendix B). Moreover this factorization is a consequence of the role plays by our
deformation parameter η. Then we choose η such that the theory remains just-renormalizable in any dimensions, i.e., the
loop structure remains the same in any dimensions. Finally τð2Þ⊥ð0Þ takes the form:

τð2Þ⊥ð0Þ ¼ 2s⊥λ2½{ðdÞ�2Λ2η

�
R1 −

1

d − 1
R2

�
; ð93Þ

where:

R1 ¼
Z

1

0

du1du2u1δð1 − u1 − u2Þ ×
Z

1

0

dy1dy2
y1y2

ðu1y1 þ u2y2 þ m̄2ηÞ3 ; ð94Þ

and:

R2 ¼
Z

1

0

du1du2u1δð1 − u1 − u2Þ ×
Z

1

0

dy1dy2
y21

ðu1y1 þ u2y2 þ m̄2ηÞ3 : ð95Þ

The first integral may be straightforwardly computed: R1 is nothing but the same contribution in the final expression of
τð2Þkðp ¼ 0Þ given in (85):

R1 ¼
1

2

�
1 −

m2η

Λ2η ln

�
Λ2η þm2η

m2η

��
×

�
ln

�
Λ2η þm2η

m2η

�
−

Λ2η

Λ2η þm2η

�
; ð96Þ

Moreover, it is easy to check that s⊥ ¼ 4. Indeed, with respect to the previous counting for sk, we lack a factor 2 coming
from the exchange of the vertices, but we have an additional factor 2 arising from the expansion of the square of the
interaction, which concerns only the contributions with vertices of different colors. Finally, the 2-loops contribution to
τðp ¼ 0Þ writes as:

τð2Þðp ¼ 0Þ ¼ 8d½{ðdÞ�2Λ2ηλ2
�
R1 þ

1

d − 1
R2

�
: ð97Þ

The last term R2 can be interpreted as an overlapping effect, and in the large d limit this quantity disappears.
The first derivative ∂τð2Þ⊥=∂p2η for zero momentum can be derived follows the same strategy. From expression (86), we

get:

∂τð2Þ⊥
∂p2η ðp ¼ 0Þ ¼ −8λ2 ×

Z
dq⃗⊥dk⃗⊥

Θð1 − q⃗2η⊥ Þ
ðq⃗2η⊥ þ m̄2ηÞ3

Θð1 − k⃗2η⊥ − q2η2 Þ
k⃗2η⊥ þ q2η2 þ m̄2η

− 4λ2 ×
Z

dq⃗⊥dk⃗⊥
δð1 − q⃗2η⊥ Þ

ðq⃗2η⊥ þ m̄2ηÞ2
Θð1 − k⃗2η⊥ − q2η2 Þ
k⃗2η⊥ þ q2η2 þ m̄2η

¼ P1 þ P2: ð98Þ

where
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P2 ¼ −4λ2 ×
Z

dq⃗⊥dk⃗⊥
δð1 − q⃗2η⊥ Þ
ð1þ m̄2ηÞ2

Θð1 − k⃗2η⊥ − q2η2 Þ
k⃗2η⊥ þ q2η2 þ m̄2η

¼ −4λ2 ×
Z

1

0

dy
Z

dq⃗⊥dk⃗⊥
δð1 − q⃗2η⊥ Þ
ð1þ m̄2ηÞ2

δðy − k⃗2η⊥ − q2η2 Þ
k⃗2η⊥ þ q2η2 þ m̄2η

¼ −
4λ2

ð1þ m̄2ηÞ2 ×
Z

dq⃗⊥dk⃗⊥
Z

1

0

dy
y − q2η2
yþ m̄2η δð1 − q⃗2η⊥ Þδð1 − k⃗2η⊥ Þ: ð99Þ

Then by summing all the possible choices of the variable q2
and dividing by d − 1, we get:

P2 ¼ −
4λ2

ð1þ m̄2ηÞ2 ½{ðdÞ�
2

Z
1

0

dy
y − 1

d−1
yþ m̄2η : ð100Þ

This expression correspond to the computation of the
effective mass correction and in large d, and we retain:

P2 →
d≫1

−
4λ2

ð1þ m̄2ηÞ2 ½{ðdÞ�
2

�
1 − m̄2η ln

�
1þ m̄2η

m̄2η

��
:

ð101Þ

In the same manner:

P1 →
d≫1

− 8λ2½{ðdÞ�2 ×
Z

1

0

y1dy1
ðy1 þ m̄2ηÞ3

y2dy2
y2 þ m̄2η ; ð102Þ

and after integration we get

P1 →
d≫1

− 8λ2½{ðdÞ�2 ×
�

1

1þ m̄2η

�
1

2

m̄2η

1þ m̄2η − 1

�
þ 1

2

1

m̄2η

�

×

�
1− m̄2η ln

�
1þ m̄2η

m̄2η

��
: ð103Þ

Note that, as the one-loop correction, the two loops
function is not perturbative in m̄2η. To summarize, in the
large d limit, we get for two loops contributions to τ and τ0:

τð2Þ ¼ −4d½{ðdÞ�2λ2Λ2ηð1þ lnðm̄2ηÞÞ; ð104Þ

τð2Þ0 ¼ 4d½{ðdÞ�2λ2
�
1 −

1

m̄2η

�
: ð105Þ

As remark, the infrared divergences that we observe at two
loops order occur in the computation at n-loops and these
divergences are increased with the number n of loops as

Z
Λ

0

dp⃗
ðp⃗2Þn ≡ Λd−2n: ð106Þ

B. Structure of the n-loops graphs in large d limit

In this section, we extend the result of the previous
section to arbitrary large Feynman graphs in the large d
limit; providing the first hard statement of this paper.
Heuristically, if we discard the terms mixing coupling
and mass, for n–loops, the expected the following behavior
for τðpÞ:

τðnÞðpÞ ∝ dn−1ð2{ðdÞÞn × λn: ð107Þ

This behavior can be proved recursively, but have proved
for n ¼ 1 and n ¼ 2which highlight the initial origin of the
different factors in (107). For instance, a factor {ðdÞ seems
to be associated to each loops. The origin of the factor d
moreover is clear. As recalled in the Appendix A, the
leading order contributions are trees in the so called
intermediate field representation, then, the typical graphs
contributing to τðpÞ and τðpÞ0 are trees with p colored edges.
All the edges are color-free, except the color of the edge
corresponding to the single boundary vertex. As a result,
there are dp−1 different trees with the same uncolored
combinatorial structure; and the cardinality of τðpÞ and τðpÞ0

is dp−1 times a purely combinatorial number depending
only on p. In this subsection, we will prove this intuition,
and investigate the structures and properties of higher-loops
diagrams in the large d limit. More precisely, we will prove
the following statement:
Proposition 5: Let T n be a 2-points n-loops tree

contributing to τðnÞðpÞ and let r be its root loop vertex,
at which the external colored edge is hooked. In the
UV sector (Λ ≫ 1) and in the large dimension limit
(d ≫ n ≥ 1), the perturbative n-loops amplitude AT n

behaves in λ and d like:

AT n
ðpÞ ¼ ðΛ2η − p2ηÞcnðm̄2η; pÞð{ðdÞÞn; ð108Þ

where cnðm̄2η; pÞ includes a proper mass and external
momenta dependence:

cnðm̄2ηÞ ¼ ð−1Þn−1
� Y
b∈T n=r

ωðmðbÞÞðm̄2ηÞ
½ðmðbÞ − 1Þ!�

�
×ArðpÞ;

ð109Þ
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where T n ∈ Tn and Tn denotes the set of trees with n loop
vertices and different colors on their edges, mðbÞ is the
coordination number at the loop-vertex b, and ωðmðbÞÞðm̄2ηÞ
is the mðbÞth derivative of ω defined as:

ωðm̄2ηÞ ≔ 1

2
ðlnð1þ m̄2ηÞ þ m̄2η − ðm̄2ηÞ2 ln

�
1þ m̄2η

m̄2η

��

≡
Z

m̄2η

0

dx
Z

1

0

dy
y

yþ x
: ð110Þ

Finally, the root amplitude ArðpÞ sharing the external
momenta dependence writes as:

ArðpÞ ≔
1

ðmðrÞ − 1Þ!
∂mðrÞ−1

∂ðm̄2ηÞmðrÞ−1

×

"
1 −

m̄2η þ p2η

Λ2η

1 − p2η

Λ2η

ln

 
1þ m̄2η

m̄2η þ p2η

Λ2η

!#
: ð111Þ

Proof.—The statement has been proved for n ¼ 1 and
n ¼ 2. Let us then provide the general proof by recurrence,
i.e., we assume that the proposition holds for n loops, and
we will prove that the expected structure survives for nþ 1
loops. From proposition 3 (see Appendix A), the single
colored self energy τðnÞðpÞ of order n, may be written as a
sum of rooted trees with n loop-vertices in the intermediate
field representation. The root being a colored edge hooked
to one of the loop vertices, that we call external loop vertex,
for instance:

ð112Þ

is such a typical tree, with root of color red.
Now, let Tn be the set of such a trees with n loop vertices,

and F be a surjective map from Tn to Tnþ1:

F∶ Tn → Tnþ1: ð113Þ

The map F can be constructed explicitly. Indeed, for any
tree T nþ1 ∈ Tnþ1 it is not hard to check that there exist a
single tree in Tn such that T nþ1 may be obtained from T n
by adding one leaf:

ð114Þ

We can then consider F as the transformation sending any
tree T n ∈ Tn to a set F½T n� ⊂ Tnþ1 of cardinality ðd −
nÞ × n whose elements are any trees with nþ 1 loop
vertices obtained from T n by adding a leaf. Moreover,
we expect that F½T n� ∩ F½T 0

n� ≠ ∅ in general, because any
tree in Tnþ1 have more than one antecedent in Tn. As an
illustration, the tree:

ð115Þ

with n ¼ 4 has three antecedents, obtained from deletion
of one among the three leafs hooked to the loop-vertex
labeled 1:

ð116Þ

ensuring the surjectivity of the map F. We have now all the
material to build our recurrence. Let us consider a tree T n,
with n loop-vertex, to which we add a leaf Lc of color c. We
denote by T n �b Lc the resulting tree with nþ 1 loop-
vertices; b being the loop-vertex at which the leaf is
hooked. We assume that c ≠ 1, where 1 refers to the color
of the root. As we seen for the computation of the two-
loops 2-point function, this restriction does not affect the
large d limit, the color c being chosen among d − 1 colors
rather than d. From Feynman rules, the amplitude
AT n�Lc

ðpÞ for the resulting nþ 1 graph can be written
explicitly as:

AT n�bLc
ðpÞ ¼

X
q∈Z

AT 0
n
ðp; qÞALc

ðqÞ; ð117Þ

whereALc
ðqÞ is the Feynman amplitude for the leaf Lc and

T 0
n the 2-root tree obtained from the single root tree T n by

hooking an half edge of color c to the vertex b:
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ð118Þ

The relation betweenAT n
and AT 0

n
can be obtained as follow. From Feynman rules, we get the explicit expression for AT n

as:

AT n
ðpÞ ¼

Y
b0∈B

X
fp⃗b0 g

Clðb0Þðp⃗b0 Þ
Y

e∈∂fer
δpsðeÞptðeÞδpsðeÞp

Y
f∈F

Y
e∈∂f

δpsðeÞptðeÞ ; ð119Þ

where B and F are respectively the sets of loop vertices and
internal faces, and ∂f is the subset of monocolored edges
building the colored face f. Moreover sðeÞ and tðeÞ denote
respectively the source and target loop vertices bounding
the edge e, and fer is the external face running through the
root. A colored face on a tree corresponds to a colored and
unclosed path, for internal as for external ordinary faces,
passing through loop vertices at which are hooked some
connected components(see Fig. 3 below).
Let fc be the external face of color c that we created on

T 0
n, starting at the loop-vertex b, and lðcÞ the correspond-

ing colored path, having b as boundary. On T 0
n, in addition

to our external edge of color c, we have mðbÞ − 1 colored
edges hooked to b. mðbÞ is the coordination number of the
vertex b on T n; therefore mðbÞ ≤ n is a trivial bound. Each
of these colored edges are hooked to connected compo-
nents, like on Fig. 3, where mðbÞ ¼ 2. The number of
independent configurations, that is, the number of different
choices for the mðbÞ colors is nothing but the counting of
the number of different manners to choice mðbÞ colors
among d. More precisely, let mc0 ðbÞ is the number of

colored edges hooked to b with color c0. The number of
manner to choose these mðbÞ edges is then:

mðbÞ!QcðbÞ
c0 mc0 ðbÞ!

×
d!

cðbÞ!ðd − cðbÞÞ! ; ð120Þ

where cðbÞ ≤ mðbÞ is the number of different colors for
edges hooked to b. For large d, and from standard Stirling
formula, we get:

d!
cðbÞ!ðd − cðbÞÞ! ∼

1

cðbÞ!
1

ð1 − cðbÞ=dÞd−cðbÞþ1

�
d
e

�
cðbÞ

→
1

cðbÞ!
�
d
e

�
cðbÞ

:

The distribution is stitched for cðbÞ ¼ mðbÞ; and a little
deviation from this configuration receive a weight 1=d. For
instance, the first deviation: cðbÞ ¼ mðbÞ − 1 arise with
relative weight: mðbÞðd=eÞ−1 ≤ nðd=eÞ−1. Then in the
limit d ≫ n ≫ 1, this term remains small, and crushed
by the dominant configuration, ensuring that lðcÞ must
have zero length for the dominant configurations. In other
words, our added leaf on b open an internal ordinary face of
length one or more is very small. As a result, the structure
of T n that we have to consider is the following:

AT n
ðpÞ ¼

X
p⃗b

CcðbÞðp⃗bÞ
YcðbÞ
m¼1

AT pðmÞ ðpcðmÞÞ; ð121Þ

where p⃗b is the internal momenta running through the loop
vertex b, pðmÞ designates the order of the connected
component T pðmÞ and cðmÞ the color of the edge m.
Note that, because T n is a two point graph, one of the
connected components have to be a four points graphs.
Note that to simplify the notations, we only indicate the
external variables for edges hooked to the vertex b. In the
same way, the expression for AT nþ1

becomes:

FIG. 3. The colored path corresponding to an external blue-
face, and the connected components hooked to the loop vertices
along the path.
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AT nþ1
ðpÞ ¼

X
q⃗

Cðq⃗Þ
�X

p⃗b

δpcqcC
cðbÞþ1ðp⃗bÞ

YcðbÞ
m¼1

AT pðmÞ ðpcðmÞÞ
�
; ð122Þ

or, more explicitly:

AT nþ1
ðpÞ ¼

X
q⃗

ΘðΛ2η − q⃗2ηÞ
q⃗2η þm2η

�X
p⃗b

δpcqc

ΘðΛ2η − p⃗2η
b Þ

ðp⃗2η
b þm2ηÞcðbÞþ1

YcðbÞ
m¼1

AT pðmÞ ðpcðmÞÞ
�
:

In the continuum limit, this expression becomes:

AT nþ1
ðpÞ ¼ Λ2η

Z
q⃗

Θð1 − q⃗2ηÞ
q⃗2η þ m̄2η

�Z
p⃗b

δpcqc

Θð1 − p⃗2η
b Þ

ðp⃗2η
b þ m̄2ηÞcðbÞþ1

×
YcðbÞ
m¼1

ĀT pðmÞ ðpcðmÞÞ
�
;

where we recall that x̄means Λ− dimðxÞx. Using the integral parametric representation for the Heaviside Θ-functions, we get:

AT nþ1
ðpÞ ¼ Λ2η

Z
y1;y2

Z
q⃗

δðy1 − q⃗2ηÞ
q⃗2η þ m̄2η

�Z
p⃗b

δpcqc

δðy2 − p⃗2η
b Þ

ðp⃗2η
b þ m̄2ηÞcðbÞþ1

×
YcðbÞ
m¼1

ĀT pðmÞ ðpcðmÞÞ
�

¼ Λ2η

Z
y1;y2

Z
q⃗

δðy1 − q⃗2ηÞ
y1 þ m̄2η

�Z
p⃗b

δpcqc

δðy2 − p⃗2η
b Þ

ðy2 þ m̄2ηÞcðbÞþ1
×
YcðbÞ
m¼1

ĀT pðmÞ ðpcðmÞÞ
�
:

Finally, rescaling the qi variables as qi → ðy1 − q2ηc Þ1=2ηqi ∀ i ≠ c,

AT nþ1
ðpÞ ¼ Λ2η{ðdÞ

Z
y1

y1
y1 þ m̄2η

�Z
y2;p⃗b

�
1 −

q2ηc
y1

�
δðy2 − p⃗2η

b Þ
ðy2 þ m̄2ηÞcðbÞþ1

×
YcðbÞ
m¼1

ĀT pðmÞ ðpcðmÞÞ
�
:

We have d − cðbÞ different choices for the color c leaving this expression unchanged; then, we can use the same trick as for
the computation of P2 for the two-loop contribution. By summing all the possible choices, and taking into account the
properties of the corresponding delta function, we generate a factor 1=ðd − cðbÞÞ; such that the term q2ηc =y1 can be
discarded in the large d limit. As a result the amplitude becomes:

AT nþ1
ðpÞ ¼ Λ2η{ðdÞω0ðm̄2ηÞ

�
−1
mðbÞ

∂
∂m̄2η

�Z
y2;p⃗b

δðy2 − p⃗2η
b Þ

ðy2 þ m̄2ηÞmðbÞ

�YcðbÞ
m¼1

ĀT pðmÞ ðpcðmÞÞ
�
:

The procedure can be continued from external leafs to
the root vertex. In large d, we seen that all the faces have
length one with a very large probability, such that only
the root vertex shares the external momenta. Finally,

because
P

b mðbÞ ¼ 2n − 1, ð−1Þ
P

b
ðmðbÞ−1Þ ¼ ð−1Þn−1,

which ends the proof of the proposition. ▪
Definition 2: We will denote by τ⋆ðpÞ the part of two

point function expanding only in terms of the melonics two
points amplitudes, keeping only the relevant ones in the
large d limit.
Note that the strategy for nonvacuum two point diagrams

can be done for vacuum diagrams as well, allowing to
compute perturbative contribution of the free energy in the
sameway as the two point function τ⋆. The free energy with
vanish source is

fðλÞ ¼ lnZðλÞ; ð123Þ

where, in contrast to τ, f admits a Feynman expansion with
amplitudes labeled with vacuum diagrams. In contrast with
two point diagrams considered in Sec. III B, vacuum
diagrams in the intermediate field representation have no
roots:

fðλÞ ¼
X
n

ð−λÞn
X
Gn

1

sðGnÞ
AGn

; ð124Þ

where Gn are vacuum Feynman diagrams. Except the
absence of rooted loop-vertex, the proof of proposition 5
may be repeated step by step for vacuum diagrams;
therefore, we must have:
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Corollary 4: Let Gn be a melonic vacuum diagram with
n-loops and T n the corresponding tree in the intermediate
field representation. In the large-d limit (d ≫ n), the
relevant contribution may be decomposed as:

AT n
¼ vnðm̄2ηÞð{ðdÞÞnþ1; ð125Þ

where vnðm̄2ηÞ depends only on mass, and is explicitly
given by:

cnðm̄2ηÞ ¼ ð−1Þn
�Y
b∈T n

ωðmðbÞÞðm̄2ηÞ
½ðmðbÞ − 1Þ!�

�
: ð126Þ

C. Formal summation theorems

In this section we provide the last two relevant results of
this paper, i.e., the resummation theorem, leading to an
explicit expression for τ⋆ðpÞ. To make the proof clearer, we
divide it into two steps, computing τ⋆ð0Þ as a first step,
from which we will deduce τ⋆ðpÞ in a second time.

1. Resummation for τð0Þ
The perturbative expansion for τð0Þ may be written as a

sum over amplitudes indexed by 1PI Feynman diagrams
Gi, with external vertex of color i:

τ⋆ð0Þ ¼
X∞
n¼1

ð−λÞn
X
Gi;n

1

sðGi;nÞ
AGi;n

; ð127Þ

Where the symmetry factor n!=sðG1;nÞ count the number of
independent Wick contractions leading to the same graph
G1;n, and where the last sum run over Feynman diagrams
with n vertices, and external vertex of color 1. For the rest
of this section, we fix i ¼ 1. Moreover, we focus on the
melonic diagrams only, and in the large rank limit is
restricted on the melonic diagrams having vertices of
different colors and we denote byMn;d this set. As recalled
in Appendix A, melonic diagrams correspond to trees in the
HS representation. Moreover, as in the proposition 5, the
amplitudes AG1;n

depends only on the coordination vertex
numbers of the corresponding tree, and may be naturally
indexed by tree rather than melon diagram. In an abusive
notation, we must have AG1;n

≡AT 1;n
. Our final aim is then

to rewrite the previous sum overMn;d as a sum over rooted
tress, with root of color 1 and edges of different colors.
More precisely, denoting as Tn;d the corresponding set of
trees, we have to find s̃ðT 1;nÞ such that:

X
Gi;n∈Mn;d

1

sðGi;nÞ
≕

X
T 1;n∈Tn;d

1

s̃ðT 1;nÞ
: ð128Þ

To compute n!=s̃ðT 1;nÞ, we first remark that this factor
must be a product of three distinct contributions. The first

contribution 2n arise from the two possible orientations for
each original quartic vertices, building the edges of the tree.
The second factor is a purely combinatorial number
counting the number of color arrangements. More pre-
cisely, we must have a factor ðn − 1Þ! counting the number
of different permutation of the internal (original) vertices,
arising from Wick contractions. Another factor arise from
the expansion of the exponential itself. Indeed, denoting as
ai for i running from 1 to d the quartic interaction involved
in the action, we must have a combinatorial factor counting
the number N ðn; dÞ of the way to build an arrangement of
n quartic vertex of different colors (but including the color
1) among ða1 þ a2 þ � � � þ adÞn. It is not hard to check that
this number must be equal to:

N ðn; dÞ ¼ n
ðd − 1Þ!

ðd − nÞ!ðn − 1Þ! ðn − 1Þ!: ð129Þ

The first factor count the n different ways to choose the root
vertex of color 1. The central factor, on the other hand count
the number of way to choose n − 1 different colors among
the remaining d − 1, and finally the last factor ðn − 1Þ!
count the different arrangements for a given selection of
n − 1 colors. Taking into account all these contributions,
we define 1=s̃0ðT 1;nÞ such that:

n!
s̃ðT 1;nÞ

≕
2n

d
n!

d!
ðd − nÞ!

1

s̃0ðT 1;nÞ
: ð130Þ

The interest to extract this factor comes from the explicit
expression of the leading order amplitudes in large d. The
amplitude in fact, does not depends on the selected set of
colors for the n edges, so that the sum can be reduced on the
set Tn of planar rooted trees with n vertices:

X
T ∈Tn;d

1

s̃ðT ÞAT ¼ 2n

d
d!

ðd − nÞ!
X
T ∈Tn

1

s̃0ðT ÞAT ; ð131Þ

and the zero-momentum two point function τð0Þ can be
written as:

τ⋆ð0Þ ¼
X∞
n¼1

ð−2λÞn
d

d!
ðd − nÞ!

X
T ∈Tn

1

s̃0ðT ÞAT : ð132Þ

The remaining factor 1=s̃0ðT Þ depends only on the com-
binatorial structure of trees, but not on the specificities of
the model. In fact, the same factor have to be occurs for
models with trivial propagator and a single melonic
interaction. For such a model, AT ¼ 1, and the computa-
tion have be done explicitly in the melonic sector using
Schwinger-Dyson equation [63,68–71]. The result is

Σ ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8λ

p

2
¼
X∞
n¼1

ð−2λÞnCn−1; ð133Þ
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where fCng denote the Catalan numbers. Therefore, Cn−1
is precisely the number of planar rooted trees with n loop
vertices:

Cn−1 ≡
X
T ∈Tn

; ð134Þ

ensuring s̃0ðT Þ ¼ 1. The Catalan numbers Cn are defined
as:

Cn ¼
1

nþ 1
C2nn ; ð135Þ

where Cnp denotes the usual binomial coefficients Cnp ¼
n!=p!ðn − pÞ!. The amplitude AT depending only on the
coordination numbers of the tree, it could be suitable to
convert the sum over trees as a sum over modified
coordination numbers {b ≔ mðbÞ − 1, satisfying the hard
constraint: X

b

{b ¼ n − 1: ð136Þ

Moreover, it is not hard to prove that

X
i1;…;inP

b
{b¼n−1

¼ C2n−2n−1 ⇒ Cn−1 ¼
1

n

X
i1;…;inP

b
{b¼n−1

: ð137Þ

Then, Cn−1 being the sum over trees, the previous decom-
position is nothing but the desired result, a sum over the
trees rewritten as a sum over coordination numbers. With
this respect, τð0Þ becomes:

τ⋆ð0Þ ¼ −Λ2η 1

d

X∞
n¼1

ð2{ðdÞλÞn d!
ðd − nÞ!

1

n

X
i1;…;inP

b
{b¼n−1

Yn
b¼1

ðω0Þð{bÞ
{b!

ð138Þ
where we took into account the proposition 5. In the
large-d limit, we may use the standard Stirling formula
n! ∼

ffiffiffiffiffiffiffiffi
2πn

p
nne−n. Now due to the fact that

ðd − nÞd−n ¼ edð1−n=dÞðlnðdÞþlnð1−n=dÞÞ ¼ dd−ne−n þOðn=dÞ;
ð139Þ

we must have:

d!
ðd − nÞ! ¼

dne−d

ðd − nÞd−ne−dþn þOðn=dÞ ¼ dn þOðn=dÞ

ð140Þ

and the previous expression (138) becomes, introducing the
dimensionless function τ̄⋆ð0Þ ¼ τ⋆ð0Þ=Λ2η:

τ̄⋆ð0Þ ¼ −
1

d

X∞
n¼1

ð2d{ðdÞλÞn 1

n!

X
i1;…;inP

b
{b¼n−1

ðn − 1Þ!Q
b{b!

Yn
b¼1

ðω0Þð{bÞ:

ð141Þ
This expression provides a first important intermediate
statement. Indeed, we see that each term of the sum
involves increasing the power of d{ðdÞ. Therefore the
existence of an interesting large d limit imply the existence
of an appropriate rescaling of the coupling constant,
ensuring that each leading order terms in 1=d receives
the same weight. The rescaling can be read directly from
the previous expression, and we summarize this result as an
intermediate statement:
Lemma 1: In the melonic sector, the d → ∞ limit exist

for the classical action with rescaled coupling λ → g=d{ðdÞ:
S½T; T̄� ¼

X
p⃗

T̄p⃗Kðp⃗ÞTp⃗

þ g
d{ðdÞ

X
i

X
p⃗1;…;p⃗4

VðiÞ
p⃗1;p⃗2;p⃗3;p⃗4

Tp⃗1
T̄p⃗2

Tp⃗3
T̄p⃗4

:

ð142Þ
Now, we move on to the main statement of this section, the
resummation theorem, providing an explicit expression for
the large d melonic two point function. The trick to resum
the complicated expression given by (141) use the gener-
alized Leibniz formula:

dn

dxn
ðf1f2 � � � fmÞ ¼

X
k1;…;kmP

i
ki¼n

n!
k1!k2! � � � km!

Y
i

fðkiÞi ; ð143Þ

such that (141) can be rewritten as:

−dτ̄⋆ð0Þ ¼
X∞
n¼1

ð2gÞn 1

n!
dn−1

dxn−1
ðω0ðm̄2η þ xÞÞnjx¼0: ð144Þ

This expression leads to a transcendental equation thanks
to the well-known Lagrange inversion theorem, which
state that:
Theorem 1 Lagrange inversion theorem: Let f be a C∞

function and z be a function of the variables x, y and f as:

z ¼ xþ yfðzÞ: ð145Þ

Therefore, for any C∞ function h, we must have:

hðzÞ ¼ hðxÞ þ
X∞
k¼1

yk

k!
dk−1

dxk−1
ððfðxÞÞkh0ðxÞÞ: ð146Þ

Applying this result where h being the identity function,
from Eq. (144) we get straightforwardly that z ≔ −dτ̄⋆ð0Þ
must satisfy the transcendental closed equation:
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z ¼ ð2gÞω0ðm̄2η þ zÞ; ω0ðxÞ ¼ 1 − x ln
1þ x
x

: ð147Þ

It is not hard to recover the one and two loop computations,
Eqs. (79) and (97). Indeed, expanding z in power of g as
z ¼ zð1Þ þ zð2Þ þ � � �, we get:

zð1Þ ¼ 2gω0ðm̄2ηÞ; zð2Þ ¼ ð2gÞ2ω0ðm̄2ηÞω00ðm̄2ηÞ;
ð148Þ

which coincide respectively with (79) and (97). Introducing
the effective mass u ≔ m̄2η þ z, the closed equation can be
rewritten as:

u ¼ ðm̄2η þ 2gÞ − ð2gÞu ln 1þ u
u

; ð149Þ

or, defining t−1 ≔ 1þ u−1:

e−
1þm̄2ηþ2g

2g t ln ðe−1þm̄2ηþ2g
2g tÞ þ e−

1þm̄2ηþ2g
2g

�
em̄2η

2g
þ 1

�
¼ 0:

ð150Þ

This equation can be formally solved in terms of Lambert
functionsWðxÞ, defined with the following simple relation:

WðxÞeWðxÞ ¼ x; ð151Þ

and we get:

t ¼ exp

�
WðΔÞ þ 1þ m̄2η þ 2g

2g

�
;

Δ ≔ −
�
m̄2η

2g
þ 1

�
e−

1þm̄2ηþ2g
2g : ð152Þ

Strictly speaking, this formula hold in the very large d limit,
i.e., for d → þ∞. Indeed, the sum over n being for arbitrary
large n, we expect that the condition d ≫ n must be
violated for large n. Then, to sum over large n, we have
to assume the convergence of the series à priori, and then
discard the 1=d contributions as subleading order. In other
words, the formula (152) must be viewed as an asymptotic
formula, to which the exact two point function must
converge in the limit d → þ∞. To summarize, we have
then proved the following statement:
Proposition 6: In the very large d limit, the melonic

effective mass for the rescaled quartic melonic model given
by (142) goes asymptotically toward u⋆, given by:

u⋆ ≔
�
exp

�
−W

�
−
�
m̄2η

2g
þ 1

�
e−

1þm̄2ηþ2g
2g

�

−
1þ m̄2η þ 2g

2g

�
− 1

�
−1

ð153Þ

≡ −
m̄2η þ 2g

2gWð−ðm̄2η

2g þ 1Þe−1þm̄2ηþ2g
2g Þ þ m̄2η þ 2g

ð154Þ

This asymptotic formula have to completed with some
important remarks. The Lambert function WðxÞ is muti-
valued in the interval −1=e ≤ x ≤ 0. The first branch,
usually called W0ðxÞ is defined on R for x ≥ −1=e,
whereas the second branch, W−1ðxÞ is defined on
−1=e ≤ x ≤ 0. In both cases, the physical region have to
be bounded by the condition Δ ≥ −1=e, to ensure the
reality of the resummed solution. If we only consider
positive definite coupling, to ensure integrability of the
partition function, the choice of the solution must be
depends on the sign of mass. For 1þ m̄2η=2g ≥ 0, it is
not hard to check that only W−1 admits a perturbative
expansion around g → 0. Indeed, for x → 0−,
W−1ðxÞ ≈ lnð−xÞ, and u⋆ → m̄2η, which is the result we
have expected. In the opposite, for 1þ m̄2η=2g < 0, the
solution in agreement with the perturbative expansion is
W0. Indeed, for large x, W0ðxÞ ≈ lnðxÞ, and, for g → 0:

u⋆ →
jm̄2ηj

2g ln ðj m̄2η

2g þ 1jejm̄
2η

2g þ1j−1=2gÞ − 2gj m̄2η

2g þ 1j
¼ −jm̄2ηj þOðgÞ:

To summarize, in the positive region 1þ m̄2η=2g ≥ 0,
Δ ≥ −1=e, the two solutions W0 and W−1 coexist, but
only the second one admits the good limit for g → 0. In the
negative region 1þ m̄2η=2g < 0, Δ ≥ −1=e however,
only the solution W0 exist, and admits the expected limit
for vanishing coupling. We have then two branches of
solutions, and a strong discontinuity along the line
2gþ m̄2η ¼ 0. Note that, however, the two solutions are
continuous at the point g ¼ 0, as the previous computation
has showed explicitly. We will continue this discussion in
the last section on which we will extend our solution to
arbitrary momenta.

2. Solution for arbitrary momentum

For τ⋆ðpÞ, from proposition (5), the expression (141)
must be replaced by:

−
d

1 − x
τ̄⋆ðxÞ ¼

X∞
n¼1

ð2gÞn 1

n!

X
i1 ;…;inP
b
{b¼n−1

�ðn − 1Þ!Q
b≠r{b!

Y
b≠r

ðω0Þð{bÞ
�

×ArðxÞ; ð155Þ

where we took implicitly into account that τ⋆ðpÞ depends
only on p2η, and introduce the dimensionless variable
x ≔ p2η=Λ2η. Moreover, it is easy to check that:
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ArðxÞ ¼
1

{r!
∂ {r

∂ðm̄2ηÞ{r
∂

∂m̄2η ω̃ðm̄2η; xÞ; ð156Þ

with:

∂
∂m̄2η ω̃ðm̄2η; xÞ ¼

Z
1

0

dy
y

yþ m̄2ηþx
1−x

: ð157Þ

As a result, the expansion (155) can be rewritten is a more
suggesting form as:

−
d

1 − x
τ̄⋆ðxÞ ¼ −

1

d
ð1 − xÞ

X∞
n¼1

ð2gÞn 1

n!

×
X
i1 ;…;inP
b
{b¼n−1

�ðn − 1Þ!Q
b{b!

ðω̃0Þð{rÞ
Y
b≠r

ðω0Þð{bÞ
�
:

ð158Þ

where the “prime” designates derivative with respect to
m̄2η. Once again, from the generalized Leibniz formula,
each term may be rewritten as a single derivative of order
n − 1 acting on a product of functions:

−
d

1 − x
τ̄⋆ðxÞ ¼

X∞
n¼1

ð2gÞn 1

n!
∂n−1

∂ðm̄2ηÞn−1 ððω
0ÞnΞ0Þ; ð159Þ

where we introduced Ξ0 defined as Ξ0 ≔ ω̃0=ω0. Therefore,
fixing the arbitrary integration constant such that Ξ0ðm̄2η þ
y; xÞ vanish for y ¼ 0; the Lagrange inversion theorem 1
must be applied, leading to:

−
d

1 − x
τ̄⋆ðxÞ ¼ Ξðm̄2η þ z; xÞ; ð160Þ

where z must be defined as z ¼ ð2gÞω0ðm̄2η þ zÞ, which is
nothing but −dτð0Þ given in the last section. Therefore, the
full asymptotic function τ̄⋆ðxÞ is essentially the one loop
function, where the bare mass is replaced by the effec-
tive mass:
Proposition 7: In the large d limit, and in the melonic

sector, the momentum depends two point function τðpÞ
goes toward the asymptotic behavior:

τ̄⋆ðxÞ ¼ −
1 − x
d

Ξðm̄2η − dτð0Þ; xÞ; ð161Þ

where the function Ξ is defined as:

Ξðy; xÞ ≔
Z

y

0

dt
ω̃0ðm̄2η þ t; xÞ
ω0ðm̄2η þ tÞ : ð162Þ

D. Solving C-S equations in the large d limit

We now move on two the last topic of this section. What
we can learn from the previous formula about the global
renormalization group flow? The explicit expression for all
the beta functions can be obtained directly from proposi-
tions 6 and 7, merged with corollary 2 and Eq. (72).
However, due to the complicated structure of the previous
expression, we keep the deep analysis for another work. To
conclude this part we focus on the existence of non-
Gaussian fixed points. In Sec. II, we showed that, in the
melonic sector, all non-Gaussian fixed points have to verify
the strong condition γ ¼ 0, γ being the anomalous dimen-
sion. From this condition, we can investigate the possibility
that the β-functions β and βm̄ both vanish when γ ¼ 0. To
this end, let us consider the C-S equation for effective mass,
(73), replacing the effective mass m̄2η − dτð0Þ by the
asymptotic solution for large d, Λ2ηu⋆ðg; m̄2ηÞ:
�
Λ

∂
∂Λþ βðgÞ ∂

∂gþ ð2ηþ βm̄Þ
∂

∂m̄2η

�
Λ2ηu⋆ðg; m̄2ηÞ ¼ 0:

ð163Þ

Then, computing each derivative, we get straightforwardly:

2ηu⋆ðg; m̄2ηÞ þ βðgÞ ∂u
⋆

∂g þ βm̄
∂u⋆
∂m̄2η ¼ 0: ð164Þ

Now, let us consider the relation (72) between β-functions.
This relation is a consequence of the Ward identities, and
hold for any dimension. Setting γ ¼ 0, and up to the
replacement βðλÞ → βðgÞ and λ → g=d{ðdÞ, we get:

1

d{ðdÞ βðgÞ þ
1

d2{ðdÞ
2g

1þ m̄2η − 2g=d

�
βðgÞ − g

1þ m̄2η βm̄

�
¼ 0: ð165Þ

It is not hard to check that β must be of order 1 whereas βm̄
must be of order d. Indeed, in contrast with the mass, the
radiative corrections for couplings require to fix one color.
The same conclusion may be deduced directly from the
previous expression. Note that, due to the mass dimension,
the expansion of βm̄ have to start with −2ηm̄2η ≈ −dm̄2η=2.
Setting d arbitrary large, we get:

βðgÞ ¼ 1

d
2g2

ð1þ m̄2ηÞ2 βm̄: ð166Þ

Then, from Eq. (164), we deduce straightforwardly:

βm̄ ¼ −
2ηu⋆ðg; m̄2ηÞ

1
d

2g2

ð1þm̄2ηÞ2
∂u⋆
∂g þ ∂u⋆

∂m̄2η

¼ −2η
∂m̄2η lnðu⋆Þ þOð1=dÞ:

ð167Þ
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Therefore, to get a nontrivial fixed point, we must have
βm̄ ¼ 0. Investigating this condition requires some alge-
braic manipulations. Computing the derivative of the
logarithm using proposition 6, we get:

∂m̄2η lnðu⋆Þ ¼ ∂m̄2ηWðΔÞ þ ∂m̄2ηa

e−WðΔÞ−a − 1
;

where a ≔ ð1þ m̄2η þ 2gÞ=2g. From proposition 6, we
then deduce that:

∂m̄2η lnðu⋆Þ ¼ u⋆ðW0ðΔÞ∂m̄2ηΔþ 1=2gÞ ¼
∂m̄2ηΔþ ΔþeWðΔÞ

2g

Δþ eWðΔÞ ;

ð168Þ

where we used the well-known formula for the derivative of
the Lambert function:

W0ðxÞ ¼ 1

xþ eWðxÞ : ð169Þ

Therefore, the expression for βm̄ becomes:

βm̄ ¼ −
2η

u⋆
Δþ eWðΔÞ

∂m̄2ηΔþ ΔþeWðΔÞ
2g

: ð170Þ

The derivative of Δ can be easily computed, leading to:

∂m̄2ηΔ ¼
�
−

1

2g
þ
�
m̄2η

2g
þ 1

�
1

2g

�
e−a ¼ 1

2g

�
m̄2η

2g

�
e−a;

ð171Þ

and Eq. (170) becomes:

βm̄ ¼ −
4ηg
u⋆

Δþ eWðΔÞ

−e−a þ eWðΔÞ ¼
4ηg
u⋆

Δþ eWðΔÞ

e−WðΔÞ−a − 1
e−WðΔÞ:

ð172Þ

Now, from proposition (6), the denominator e−WðΔÞ−a − 1 is
nothing but 1=u⋆. Then, we finally deduce the following
corollary:
Corollary 5: To any fixed point in the deep UV region

(Λ ≫ 1), the melonic beta functions βðgÞ and βm̄ have to
satisfy asymptotically, for very large d:

βm̄ ¼ 4ηgð1þ Δe−WðΔÞÞ ¼ 4ηgð1þWðΔÞÞ; ð173Þ

and

βðgÞ ¼ 2g3

ð1þ m̄2ηÞ2 ð1þWðΔÞÞ: ð174Þ

where Δ given by Eq. (152).

We are now in position to investigate the existence of
non-Gaussian fixed point. From the elementary properties
of the Lambert-W function,ΔþWðΔÞ vanish only forΔ ¼
−1=e (see Fig. 4 below). This point, however as been
pointed out to be the boundary of the analytically region,
beyond it the Lambert function takes complex values and
the resummation break down. Moreover, the conditionΔ ¼
−1=e is a global condition on the boundary and not an
isolated point. Therefore:
Claim 1: In the large d limit, and in the melonic sector,

there are no isolated fixed point in the interior of the
perturbative region Δ > −1=e.

IV. DISCUSSION AND CONCLUSION

In this paper we investigated a new family of tensorial
group field theories, just renormalizable for arbitrary ranks
d. FromWard Takahashi identities, we showed that, for any
d, a strong relation exists between β-functions in the deep
UV limit, using C-S equation, from which we deduce that
any melonic non-Gaussian fixed point must have vanishing
anomalous dimension (the C-S equation is used here
because of its flexibility without a choice of a certain
regulator, but the same result may be obtained by using the
Wetterich flow equation or other RG methods [72,73]
which is deserved to forthcoming investigation). Similar
relations have been deduced recently in the functional
renormalization framework, and all tentative to merge
together this constraint with approximate melonic solutions
of the exact renormalization group flow equations lead to
the same conclusions: the disappearance of the non-
Gaussian melonic fixed point [46–51]. This result was
remains a claim, due to the necessary to use approximations
to solve the renormalization group equations. In all cited
papers, the principal approximation are given by the
necessity to use the derivative expansion to obtain a
tractable parametrization of the theory space. The difficulty,
as mentioned in [47] comes essentially, in the melonic
sector and may be translated as the difficulty to solve the
closed equation satisfied by the two point function. In this
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FIG. 4. Numerical plot of the function fðxÞ ¼ xe−WðxÞ þ 1.
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paper, considering the large d limit, we were able to obtain
an asymptotic formula for the bare two point function,
solving the closed equation in the same limit by construc-
tion. Then, using the C-S formalism, we deduced the
explicit expressions of the β functions, to all orders of
the perturbation theory at the points where the anomalous
dimension vanish. From an analytic expression, it is clear
that in the considered limit, no isolated fixed points occurs
in the analytic region where the perturbative expansion can
be resummed as a real function.
Obviously, the results discussed in this introductory

paper do not exhaust this novel topic. First of all, we do
not investigate the behavior of the full RG flow, we focused
only on the regions with vanishing anomalous dimension.
Indeed, the disappearance of isolated fixed points is not the
end of the history; and a rigorous analysis of the RG
behavior have to be done in the future. Related to this point,
the method used to obtain the β-function, using the Callan-
Symanzik equation is crudely rudimentary, and a more
sophisticated approach exist to build the RG flow. The
solution for the two point function, for instance, can be
used to improve the truncations abundantly used to solve
the functional RG equations. Other approaches, using
discrete slicing in the momentum space have to be
considered for TGFT these last years, and could be
investigated beyond the one-loop order using the large-d
limit. The nature of the limit in itself should be studied
carefully. Indeed, our resummed formula provide only the
asymptotic behavior of the correlation function in the large
rank limit; but we have no control over the neglected
contributions of order 1=d, which can become relevant
when n, the order of the perturbative expansion, and d are
commensurable. This situation is reminiscent to what
occurs for large N expansions for matrix and tensor models
around the critical point, leading to the double scaling limit
investigations. Then, this question, and more generally the
existence of a true 1=d expansion have to be addressed for
an incoming work. Finally, the existence of two branches of
solution for the resummed two point function has to be
investigated as well. In fact, as we will see in Sec. III, the
two branches are continuous at the Gaussian fixed point,
but a finite gap exist for finite jm̄2ηj. Moreover, the fact that
the two solutions coexist in the region Δ ≤ 0 seems two
indicate that along a certain curve passing through the
origin, we pass continuously from a picture with two
vacuum to a picture with one vacuum state, but with a
strong discontinuity for other points along the line g ¼ 0.
This qualitative picture is reminiscent to a first order phase
transition, the Gaussian fixed point playing the role of a
critical point. The possible existence of such a transition
have been discussed in some recent papers [48], using
approximates solutions for the RG flow. However at this
stage, it is too early to view our result as a definitive
statement, which needs to be confirmed by exten-
sive works.

APPENDIX A: POWER COUNTING AND
RENORMALIZABILITY

In this section we provide the power counting for our
deformed family of model, and we will recall some
basic properties of the leading order graphs, the so called
melons. The proofs are standard, and we will give only the
relevant details for the unfamiliar reader. For more details
see [26,32].

1. Multiscale analysis

We start by fixing our notations. First, we introduce an
integer ρ and a positive real number M so that Λ ¼ Mρ.
Then we define the sharp momentum cutoff χ≤ρðp⃗Þ, equal
to 1 if p⃗2η ≤ M2ηρ and zero otherwise which is nothing but
the Heaviside step function. The theory with sharp “cutoff
ρ” is defined using the covariance

Cρðp⃗Þ ¼ Cðp⃗Þχ≤ρðp⃗Þ: ðA1Þ

Then, the key strategy of the multiscale analysis is to slice
the theory according to:

Cρðp⃗Þ ¼
Xρ
i¼1

Ciðp⃗Þ; Ciðp⃗Þ ¼ Cðp⃗Þχiðp⃗2ηÞ ðA2Þ

where χ1 is 1 if p⃗2η ≤ M2η and zero otherwise and for i ≥ 2

χi is 1 if M2ηði−1Þ < p⃗2η ≤ M2ηi and zero otherwise.
Now, we need to define the notion of subgraph. A subgraph
S ⊂ G in an initial Feynman graph is a certain subset of
dotted edges (propagators C) with the vertices hooked to
them; the half-edges attached to the vertices of S (whether
external lines of G or half-internal lines of G which do not
belong to S) form the external edges of G.
Decomposing each propagator into slices, multiscale

decomposition attributes a scale to each line l ∈ LðGÞ of
any amplitude AG associated to the Feynman graph G. Let
us start by establishing multiscale power counting.
The amplitude of a graph G, AG, with fixed external

momenta, is thus divided into the sum of all the scale
attributions μ ¼ fil;l ∈ LðGÞg, where il is the scale of the
momentum p of line l:

AðGÞ ¼
X
μ

AμðGÞ: ðA3Þ

At fixed scale attribution μ, we can identify the power
counting as the powers ofM. The essential role is played by
the subgraph Gi built as the subset of dotted edges of G with
scales higher than i. From the momentum conservation rule
along any loop vertex, this subgraph is automatically a PI
subgraph which decomposes into kðiÞ connected PI com-

ponents: Gi ¼∪kðiÞ
k¼1 G

ðkÞ
i . Note that the inclusion relations

between these connected components indexed by the pair
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ði; kÞ build the tree which is called Gallavotti-Nicolò tree.
We have:
Theorem 2: The amplitude AμðGÞ is bounded by:

jAμðGÞj ≤ KLðGÞY
i

YkðiÞ
k¼1

MωðGk
i Þ; K > 0; ðA4Þ

and the divergence degree ωðHÞ of a connected subgraph
H is given by:

ωðHÞ ¼ −2ηLðHÞ þ FðHÞ; ðA5Þ

where LðHÞ and FðHÞ are respectively the number of lines
and internal faces of the subgraph H.
Proof.—First we have the trivial bounds (for K ¼ M2η):

jCiðp⃗Þj ≤ KM−2ηiχ≤iðp⃗Þ: ðA6Þ

Then, fixing the external momenta for all external faces, the
Feynman amplitude (in this momentum representation) is
bounded by

jAμðGÞj ≤
� Y
l∈LðGÞ

KM−2ηil

� Y
f∈FintðGÞ

X
pf∈Z

Y
l∈∂f

χ≤ilðp⃗Þ;

ðA7Þ

which is deduced straightforwardly from the standard
Feynman rules. Then, as a first step, we distribute the

powers of M to all the GðkÞ
i connected components. To

this end, we note that: Mi ¼ M−1Qi
j¼0M, implying:Q

l∈LðGÞM−2ηil ¼M2η
Q

l∈LðGÞ
Qil

i¼0M
−2η. Then, inverting

the order of the double product leads to

Y
l∈LðGÞ

M−2ηil ¼
Y
i

Y
l∈Lð∪kðiÞ

k¼1
Gk
i Þ
M−2η ¼

Y
i

YkðiÞ
k¼1

Y
l∈LðGk

i Þ
M−2η

¼
Y
i;k

M−2ηLðGk
i Þ: ðA8Þ

The final step is to optimize the weight of the sum over the
momenta pf of the internal faces. Summing over pf with a
factor χ≤iðp⃗Þ leads to a factor KMi, hence we should sum
with the smallest values iðfÞ of slices i for the lines l ∈ ∂f
along the face f. This is exactly the value at which, starting
from i large and going down toward i ¼ 0 the face becomes
first internal for some Gk

i . Hence in this way we could
bound the sums

Q
f∈FintðGÞ

P
pf∈Z by

Y
i

YkðiÞ
k¼1

MFðGk
i Þ: ðA9Þ

Identifying the exponent with ωðGk
i Þ for each connected

components Gk
i , we conclude the proof. ▪

2. Leading order graphs

In order to discuss the leading order sector, we introduce
an alternative representation of the theory, called inter-
mediate field representation, in which the properties of the
leading sector become very nice. Usually, intermediate field
representation is introduced as a “trick” coming from the
properties of the Gaussian integration, and allowing to
break a quartic interaction for a single field as a three body
interaction for two fields. To simplify the presentation, we
introduce the intermediate field decomposition as a one-to-
one correspondence between Feynman graphs [74–77] see
also [78–80] and references therein. In this section more-
over, we only focus our discussion to the vacuum graphs.
First, to each vertex of type i, we associate an edge of the
same color. Second, to each loop made with a cycle of
doted edges, we associate a black node, whose the number
of corners corresponds to the length of the loop (Fig. 5
provides some illustrations). To distinguish this represen-
tation with the standard Feynman one, we call colored
edges the edges of the Feynman graphs in the intermediate
field representation, and loop-vertices their nodes.
The main statement is then the following:
Theorem 3: The 1PI leading order vacuum graphs are

trees in the intermediate field representation. Moreover, 4η
must be equal to d − 1 for a just renormalizable theory. We
call melonic diagrams these trees.
Proof.—First of all, consider the case of a 1PI vacuum

graph. If it is a tree made with n loop vertices, it must have
c ¼ 2ðn − 1Þ corners, and F ¼ ðd − 1Þnþ 1 faces, since
each colored edge glues two faces. As a result, ω ¼
−4ηðn − 1Þ þ ðd − 1Þnþ 1 ¼
½d − 1 − 4η�nþ ð1þ 4ηÞ.
Then consider a graph with q colored edges, which is not

necessarily a tree. For q ¼ 1 there are two typical con-
figurations:

FIG. 5. Correspondence between original representation (on
left) and intermediate field representation (on right).
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ðA10Þ

and so one for each choices of colors for the intermediate
field edges. From direct computation, the divergent degrees
are respectively, from left to right: ωL ¼ 2½d − 1 − 4η� þ
ð1þ 4ηÞ and ωR ¼ ωL − ðd − 2Þ; then the leading order
graph is the one on the left, which is a tree. Now, starting
with a tree for arbitrary q, we have to investigate all the

different ways to build a graph with qþ 1 colored edges.
From the typical tree

ðA11Þ

we have four possible moves:

ðA12Þ

where the moves are pictured with dotted edges. The two
moves one the right preserve the tree structure, then, the
power counting is the expected one for such a tree: ωT ¼
−4ηðn−1Þþðd−1Þnþ1¼ ½d−1−4η�ðnþ1Þþð1þ4ηÞ.
The two moves on left however both introduce a loop. For
the first one, we create at least a single face and two
corners. The variation for power counting is then optimally
:δω ¼ −4ηþ 2. Obviously this bounds hold for the second
move on the left which creates a tadpole edge. Then for
these two moves, we have the bound:

ω ≤ ½d − 1 − 4η�ðnþ 1Þ þ ð1þ 4ηÞ − ðd − 1 − 4ηÞ þ δω

¼ ωT − ðd − 3Þ: ðA13Þ

As a result, the power counting is bounded by trees for
d > 3. Finally, if we need to have a just-renormalizable
leading sector, the divergent degrees does not increase
with the number of loop vertices. We then require
d − 1 − 4η ¼ 0, implying η > 1=2. ▪
The leading order nonvacuum graphs can be obtained

following a recursive procedure. To this end, we have to
keep in mind the definitions 1 of Sec. II B, that we complete
with the following:
Definition 3: The heart graph of a melonic 1PI

Feynman graph G is the subset of vertices and lines
obtained from deletion of the external vertices.
Now, consider a vacuum melonic diagram. We obtain a

two point graph cutting one of the dotted edges. Due to the
structure of melonic diagrams, it is clear that if we cut an
edge which is not a tadpole (i.e., an edge in a loop of length
upper than one), we obtain a 1PR diagram. Cutting a first
tadpole edge, we delete d faces. d − 1 of them become
boundary external faces while the other one becomes an
heart external face. We have then obtained a 1PI two points
melonic diagram. Then to obtain a four points melonic
diagram, we have to cut another tadpole edge on this

diagram. However, it is clear that such a cutting delete d
internal faces, except if the chosen tadpole is on the path of
the opened heart external face. Indeed, in this case, the
cutting d − 1 faces (which become boundary external
faces) for the same in dotted lines, and the power counting
is clearly optimal. Moreover, due to the deletion, we created
another heart external face, obviously of the same color as
the one for the original two point diagram. Recursively, we
deduce the following proposition:
Proposition 8: A 1PI melonic diagram with 2N external

lines has Nðd − 1Þ external faces of length 1 shared by
external vertices and N heart external faces of the same
color running through the internal vertices and/or internal
lines (i.e., through the heart graph).
To complete these definitions, and of interest for our

incoming results, we have the following proposition:
Proposition 9: All the divergences are contained in the

melonic sector.
Pointing out that all the counterterms in the perturbative

renormalization are fixed from the melonic diagrams only.
A proof may be found in [27]. Finally, we can add an
important remark about melonic diagrams: Their divergent
degrees depend only on the number of external edges, as
expected for a just-renormalizable theory. To be more
precise, note that the number of dotted edges is related
to the number of vertices as 2L ¼ 4V − Next, where Next
denotes the number of external dotted edges. Moreover, it is
easy to see, from the recursive definition of melons that
F ¼ ðd − 1ÞðL − V þ 1Þ. Indeed, starting from a Feynman
graph in the original representation, it is obvious that
contracting a tree (dotted) edge does not change the
divergent degree and the number of faces. Then, con-
tracting all the edges over such a spanning tree, we get
L − V þ 1 remaining edges, hooked on a single vertex,
building a rosette. Now, we delete the edges optimally,
following successive (d − 1)-dipole contractions. We recall
that a k-dipole is made with two black and white nodes (in
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the original representation), wished together with one
dotted edge and k colored edges. In the intermediate field
representation, we can then start from a vacuum diagram,
and proceed both with the dipole and tree contractions.
Starting from a leaf, hooked to an effective vertex b with
p external edges hooked to him, we can contract the leaf,
discarding (d − 1) faces and 1 dotted edge. We may
assume that only leafs are hooked to b, except for one
colored edge. Using the same procedure for all the leafs,

we get an effective loop of length p, on which we can
contract p − 1 edges to get a new tadpole, that we can
contract, and so one. Repeating the same procedure for
all loop-vertex, we get F ¼ ðd − 1ÞðL − V þ 1Þ þ 1. For
a nonvacuum graph with 2N external edges, creating
them cost d − 1 faces per deleted tadpole, except for the
first one, which cost d faces, and the desired result
follows. From this counting for faces the divergence
degree becomes

ω ¼ −2ηLþ F ¼ −2ηð2V − Next=2Þ þ ðd − 1ÞðV − Next=2þ 1Þ

¼ ½ðd − 1Þ − 4η�V þ
�
ðd − 1Þ −

�
d − 1

2
− η

�
Next

�
: ðA14Þ

which is nothing but the relation (12).

APPENDIX B: THE KEY SUMS WITH SHARP REGULATOR

In this section we derive the important sums that arises in the computation of the loop expansion of the two point
correlation function. Consider the following sum:

S1ðp; a; bÞ ¼
X

q⃗∈Zd−1

ΘðΛ2η − jq⃗2ηjÞ
ajq⃗2ηj þ b

: ðB1Þ

In the large Λ limit and by introducing the continuous variable x ¼ q=Λ we get the following integral representation

S1ðp; a; bÞ ≈ I1ðp; a; bÞ ¼ 2d−1Λ2η

Z
Rþd−1

dd−1x
Θð1 − x⃗2ηÞ
ax⃗2η þ b0

¼ 2d−1Λ2η

Z
1

0

dy
Z
Rþd−1

dd−1x
δðy − x⃗2ηÞ
ax⃗2η þ b0

; ðB2Þ

with b0 ¼ b=Λ2η. Using the properties of the delta distribution, we find:

I1ðp; a; bÞ ¼ 2d−1Λ2η

�Z
1

0

ydy
ayþ b0

�Z
Rþd−1

dd−1xδð1 − x⃗2ηÞ

¼ Λ2η{ðdÞ 1
a

�
1 −

b0

a
ln

�
aþ b0

b0

��
ðB3Þ

with:

{ðdÞ ≔ 2d−1
Z
R�d−1

dd−1xδð1 − x⃗2ηÞ ¼ 2d−1
Z

1

0

dx1 � � �
Z

1

0

dxd−1δð1 − x⃗2ηÞ: ðB4Þ

This integral can be computed using Feynman parameters formula (ℜðαÞ > 0):

1

Aα
1 � � �Aα

d−1
¼ Γððd − 1ÞαÞ

½ΓðαÞ�d−1
Z

1

0

du1 � � � dud−1δ
�
1 −

X
i

ui

� Q
iu

α−1
i

ðPd−1
i¼1 AiuiÞðd−1Þ

; ðB5Þ

with Ai ¼ 1 ∀ i:

{ðdÞ ¼ 2d−1
�
Γ
�
dþ 1

d − 1

��
d−1

: ðB6Þ
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Then:

I1ðp; a; bÞ ¼ 2d−1Λ2η

�
Γ
�
dþ 1

d − 1

��
d−1 1

a

×
�
1 −

b0

a
ln
�
aþ b0

b0

��
: ðB7Þ

In the same way we define:

S2ðp; a; bÞ ¼
X

q⃗∈Zd−1

ΘðΛ2η − jq⃗2ηjÞ
½ajq⃗2ηj þ b�2 ; ðB8Þ

and

S2ðp; a; bÞ ¼ −
d
db

S1ðp; a; bÞ; ðB9Þ

providing the integral approximation:

I2ðp; a; bÞ ¼ 2d−1
�
Γ
�
dþ 1

d − 1

��
d−1 1

a2

×

�
ln

�
aþ b0

b0

�
−

a
aþ b0

�
: ðB10Þ
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