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Based on the standard model (SM) of particle physics, we study the decays Λb → Λlþl− in light of the
available inputs from lattice simulations and data from LHCb. We fit the form factors of this decay mode
using the available theoretical and experimental inputs after defining different fit scenarios and checking for
consistency. The theory inputs include the relations between the form factors in heavy quark effective
theory and soft collinear effective theory at the end points of the dilepton invariant mass squared q2.
Utilizing the fit results, we predict a few observables related to this mode. We also predict the observable
RΛ ¼ BrðΛb → Λlþ

i l
−
i Þ=BrðΛb → Λlþ

j l
−
j Þ, where li and lj are charged leptons of different generations

(i ≠ j). At the moment, we do not observe noticeable differences in the extracted values of the observables
in fully data-driven and SM-like fit scenarios.

DOI: 10.1103/PhysRevD.101.073006

I. INTRODUCTION

The flavor-changing neutral current (FCNC) b → s
transitions play an important role in indirect searches for
new physics (NP). In recent years, special attention has
been given to the semileptonic b → slþl− decays, such as
B → Kð�Þμþμ− and Bs → ϕμþμ−. Precise measurements of
various angular observables are now available. On top

of this, measurements are done on ratios like Rð�Þ
K ¼

ðB → Kð�Þμþμ−Þ=ðB → Kð�Þeþe−Þ. The results show some
degree of discrepancy with their respective standard model
(SM) predictions [1,2]. For an update, see the most recent
analysis [3] and references therein.
The observed differences could be due to either some

new interactions beyond the SM (BSM), our poor under-
standing of the hadronic uncertainties, or our inability to
correctly analyze the experimental data. In spite of the
obvious lure and consequent multitude of possible explan-
ations of these deviations from BSM effects, it is crucial to
investigate and refine the existing theoretical description of
the large hadronic effects in the rare b → s transitions. The
study of various other similar decay modes can provide
complementary phenomenological information compared

to the above-mentioned well-analyzed mesonic decays,
which can be useful to improve our understanding of the
nature of the anomalies seen in the B-meson decays.
Moreover, any BSM physics altering the results for these
modes should affect and be constrained by other b → s
transitions.
Among all such processes, the baryonic decay mode

Λb → Λlþl− is of considerable interest for several
reasons:
(1) In the ground state, Λb is the combination of a heavy

quark and a light diquark system. The light quarks
are in a spin-zero state, which leads to a simpler
theoretical description of the semileptonic decays of
Λb baryons compared to the corresponding meson
decays.

(2) As the Λb baryon has nonzero spin, this process
(unlike the mesonic decays) has the potential to
improve our limited understanding of the helicity
structure of the underlying Hamiltonian [4].

(3) Just like the B → Kð�Þlþl− processes, the polari-
zation of the Λ baryon, preserved in the Λ → pπ−

decay, provides a plethora of angular observables,
with the potential to disentangle the contributions
from individual operators in the b → slþl− effec-
tive Hamiltonian [5–11].

(4) If we consider an unpolarized Λb baryon, then the
number of angular observables is restricted to ten.
However, if we produce a polarized Λb then the
number of angular observables will increase from
10 → 34 [12]. Thus, there will be even more
opportunities for testing NP.

In the factorization limit, ten independent form factors
are needed to describe the Λb → Λlþl− decays. There are

*bhattacharyasrimoy@gmail.com
†soumitra.nandi@iitg.ac.in
‡sunando.patra@gmail.com
§riasain@imsc.res.in

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 101, 073006 (2020)

2470-0010=2020=101(7)=073006(22) 073006-1 Published by the American Physical Society

https://orcid.org/0000-0001-5714-9912
https://orcid.org/0000-0002-5461-2091
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.073006&domain=pdf&date_stamp=2020-04-30
https://doi.org/10.1103/PhysRevD.101.073006
https://doi.org/10.1103/PhysRevD.101.073006
https://doi.org/10.1103/PhysRevD.101.073006
https://doi.org/10.1103/PhysRevD.101.073006
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


“nonfactorizable” effects too, which cannot be described in
terms ofΛb → Λ form factors. These corrections are not yet
available in the literature, and hence we ignore these effects
in our analysis. The above-mentioned ten form factors are
the major sources of uncertainties in the description of
various observables in these decays. Different QCD-based
approaches are available in the literature to describe the q2

distributions of these form factors (see Refs. [13–16] and
references therein for details). The SM predictions, based
on the lattice-based analysis given in Ref. [17], have large
errors. In addition to the uncertainty in the form factors,
some angular observables of Λb decays are plagued by the
dependence of the detection efficiencies on the production
polarization (PΛb

). The most recent measurement of PΛb
by

LHCb [18] is quite imprecise (PΛb
¼ 0.06� 0.07� 0.02),

and the effect of nonzero polarization has been taken into
account as a systematic uncertainty in Ref. [19]. The
availability of these measurements, though imprecise for
now, gives us a way to make a data-driven estimation of the
correlation between PΛb

and the form-factor parameters.
Experimental data are available on the decay rate

distributions in different q2 (the momentum transfer to
leptons) bins [19–21]. Moreover, LHCb has very recently
measured various angular observables associated with the
above decay [22]. Most of the available data have large
errors, and it would be premature to assume the presence of
new physics and constrain them using this data. Before
jumping the gun, it is important and useful to understand
the trend of the available data/inputs.
Our main objective in this analysis is to test whether or

not all of the available inputs (for example, experimental
data, lattice data, and other theory inputs from the QCD
modeling of the form factors) for the form factors in Λb →
Λlþl− decays are consistent with each other. Looking for
inconsistencies will help us to improve our understanding
of the underlying physics. There exists a number of
relations between the form factors of the above-mentioned
decay modes in the heavy quark effective theory (HQET)
and soft collinear effective theory (SCET), at the end points
of their q2 distributions [15,23]. It will be interesting to
see whether the available data and inputs from lattice
simulations support these expectations. On the other hand,
using these HQET and SCET relations as inputs while
extracting the q2 distributions of the form factors may help
to reduce the uncertainties of the extracted values of the
Λb → Λlþl− observables.
We analyze the available inputs after creating different fit

scenarios with variable inputs (as discussed above) extract
the form factors in all of the scenarios, and compare them
for consistency. We also predict the branching fraction
BrðΛb → ΛllÞ, the q2 distributions of the branching
fractions, the forward-backward asymmetry AFBðq2Þ, and
the longitudinal polarization asymmetry fLðq2Þ using these
form factors. Similar to the observables RKð�Þ , we define the
observables

R
li=lj

Λ ¼ ðBrðΛb → Λlþ
i l

−
i ÞÞ=ðBrðΛb → Λlþ

j l
−
j ÞÞ, where

li and lj are charged leptons of different generations
(i ≠ j), and give predictions for these observables using
our fit results.

II. FORMALISM

A. Angular distribution

The differential decay rate for the Λb → Λlþl− decay
can be expressed in terms of generalized helicity ampli-
tudes and five variables: the angle θ between the direction
of the Λ baryon and the normal vector n̂ in the Λb rest
frame, two sets of helicity angles describing the decays of
the Λ baryon ðθb;ϕbÞ and the dilepton system ðθl;ϕlÞ, and
the invariant mass squared of dilepton q2, as given in
Eq. (1). For transverse production, the polarization n̂ is
chosen to be p̂Λb

× p̂beam. The helicity angles are then
defined with respect to this normal vector through the
coordinate systems ðx̂Λ; ŷΛ; ẑΛÞ and ðx̂ll̄; ŷll̄; ẑll̄Þ. The ẑ
axis points in the direction of the Λ/dilepton system in the
Λb rest frame. The angle between the two decay planes in
the Λb rest frame is χ ¼ ϕl þ ϕb. The angles θl, θb, and χ
are sufficient to parametrize the angular distribution of the
decay in the case of zero production polarization [12]:

d6Γ
dq2dΩ⃗

∝
X

λ1 ;λ2 ;λp;λll ;λ
0
ll

;

J;J0 ;m;m0 ;λΛ ;λ0Λ ;

ðð−1ÞJþJ0ρλΛ−λll;λ0Λ−λ0llðθÞ

×Hm;J
λΛ;λll

ðq2ÞH†m0;J0
λ0Λ;λ

0
ll
ðq2Þhm;J

λ1;λ2
ðq2Þh†m0;J0

λ1;λ2
ðq2Þ

×DJ
λll;λ1−λ2ðϕl; θl;−ϕlÞ

×DJ0
λ0ll;λ1−λ2

ðϕl; θl;−ϕlÞhΛλp;0h
†Λ
λp0

×D1=2
λΛ;λp

ðϕb; θb;−ϕbÞD1=2
λ0Λ;λp

ðϕb; θb;−ϕbÞÞ; ð1Þ

where Ω⃗ depends on five angles, Ω⃗≡ Ω⃗ðθl;ϕl; θb;ϕb; θÞ.
The Dj functions are the Wigner D matrices, which are

unitary square matrices of (2jþ 1) dimensions. The factor
ð−1ÞJþJ0 comes from the structure of the Minkowski metric
tensor. The decay distribution contains three sets of helicity
amplitudes:
(1) Hm;J

λΛ;λll
ðq2Þ defines the decay of the Λb baryon into a

Λ baryon with helicity λΛ and a dilepton pair with
helicity λll.

(2) hm;J
λ1;λ2

describes the decay of the dilepton system to
leptons with helicities λ1 and λ2.

(3) hΛλp;0 denotes the decay Λ → pπ to a proton with
helicity λp.

The index J, which stands for the spin of the dilepton
system, can be either zero or one. When J ¼ 0, λll ¼ 0,
and when J ¼ 1, λll can be −1; 0;þ1. The helicity labels
λp, λΛ, λ1, and λ2 can take the values �1=2. From the
angular momentum conservation in the Λb decay we get

BHATTACHARYA, NANDI, PATRA, and SAIN PHYS. REV. D 101, 073006 (2020)

073006-2



jλΛ − λllj ¼ 1=2. The remaining index, mð¼ V; AÞ, indi-
cates the decay of the dilepton system by either a vector or
axial-vector current. The polarization of the parent baryon
is described by the density matrix ρλΛ−λll;λ0Λ−λ0ll , which is
defined as

ρλ;λ0 ¼
1

2

�
1þ PΛb

cos θ PΛb
sin θ

PΛb
sin θ 1 − PΛb

cos θ

�
; ð2Þ

where PΛb
is the polarization of the parent baryonΛb which

we fit along with the other parameters in our analysis.
For more details on the angular distributions, please see
Refs. [24,25].

B. Form factors

The helicity amplitudes Hm;J
λΛ;λll

ðq2Þ can be expressed in
terms of ten form factors. In this paper, we use the helicity-
based definition of the form factors from Ref. [15], given in
the Appendix A.
Following the parametrization of Ref. [17], each one of

these ten form factors can be parametrized in terms of
independent parameters afik as follows:

fiðq2Þ ¼
1

1 − q2=ðmfi
poleÞ2

XN
k¼0

afik ½zðq2Þ�k: ð3Þ

Here, zðq2Þ is defined as

zðq2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ − t0
p ; ð4Þ

where t0 ¼ ðmΛb
−mΛÞ2 and tþ ¼ ðmB þmKÞ2. The

choice of the truncation order N of the z expansion in
Eq. (3) determines the number of independent parameters
in our fit. The series in Eq. (3) can be truncated at different
values of N, and in this paper we present our analysis for
both N ¼ 1 and N ¼ 2. At the present accuracy level, it is
hard to do the analysis with N > 2.
The helicity form factors satisfy the kinematic con-

straints at the end point:1

f0ð0Þ ¼ fþð0Þ; ð5aÞ

g0ð0Þ ¼ gþð0Þ; ð5bÞ

g⊥ðq2maxÞ ¼ gþðq2maxÞ; ð5cÞ

h̃⊥ðq2maxÞ ¼ h̃þðq2maxÞ: ð5dÞ

Implementing the constraints (5c) and (5d) is tantamount

to setting ag⊥0 ¼ agþ0 and ah̃⊥0 ¼ ah̃þ0 , respectively, in our
analysis. On the other hand, using Eqs. (5a) and (5b), we
write afþ1 and agþ1 in terms of the other form factor
parameters. Throughout our analysis we use these relations.
In the HQET and SCET, there are additional relations

between the form factors at the end points of the q2

distributions. In HQET, we have the following approximate
relations between the form factors for small recoil:

f0ðq2maxÞ ≃ gþðq2maxÞ ≃ g⊥ðq2maxÞ
≃ h̃þðq2maxÞ ≃ h̃⊥ðq2maxÞ; ð6Þ

and

fþðq2maxÞ ≃ g0ðq2maxÞ ≃ f⊥ðq2maxÞ
≃ hþðq2maxÞ ≃ h⊥ðq2maxÞ: ð7Þ

All of the form factors can bewritten as linear combinations
of two Isgur-Wise (IW) functions [26]. These relations are
valid in the limit of heavy b-quark mass (Mb → ∞). In
principle, there could be non-negligible perturbative and
nonperturbative corrections to these relations. As will be
discussed later, we have added a correction factor (≈20%)
to all of these relations.
In the SCET, all of the form factors are approximately

equal to a single IW function on the other corner of the
phase space, i.e., in the large-recoil limit (q2 ¼ 0) [15]:

f0ð0Þ ≃ gþð0Þ ≃ g⊥ð0Þ ≃ h̃þð0Þ ≃ h̃⊥ð0Þ ≃ fþð0Þ
≃ g0ð0Þ ≃ f⊥ð0Þ ≃ hþð0Þ ≃ h⊥ð0Þ: ð8Þ

These relations are exact only in the limit of large recoil
energy, and they receive corrections from perturbative and
nonperturbative dynamics. One type of such corrections
was estimated in Ref. [15], which is of order ≈1%.
However, we have been conservative and assumed a
correction of ≈10% in all of these relations. More details
are discussed later.
We first fit the parameters of the form factors described

by Eq. (3), while considering the inputs from lattice QCD
and the available experimental data. We do not consider the
limits from HQET and SCET as inputs in this part of the
analysis. Rather, we check whether or not the extracted q2

distributions of form factors satisfy the approximate rela-
tions given in HQET and SCET at both of the end points.
Finally, we repeat the fit with these inputs as additional
constraints, and compare the results from both fits. As will
be described later, we add parameters to quantify the
discrepancies in the approximate relations between the
form factors in HQET and SCET in our analysis. This is to
take care of the possible large contributions coming from
the missing higher-order pieces in those relations.

1In the presence of nonfactorizable corrections these relations
may not be exact, and there will be additional corrections.
Keeping in mind the present level of accuracy, in this analysis
we ignore those corrections.
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C. Angular observables

Expanding the sum in Eq. (1), the decay distribution can be expressed in terms of 34 angular observables as
follows [12]:

d6Γ
dq2dΩ⃗

¼ 3

32π2

�X34
i¼0

Kiðq2ÞfiðΩ⃗Þ
�

d6Γ
dq2dΩ⃗

¼ 3

32π2
ððK1 sin2 θlþK2 cos2 θlþK3 cosθlÞþ ðK4 sin2 θlþK5 cos2 θlþK6 cosθlÞcosθb

þðK7 sinθl cosθlþK8 sinθlÞ sinθb cos ðϕbþϕlÞþ ðK9 sinθl cosθlþK10 sinθlÞ sinθb sinðϕbþϕlÞ
þ ðK11 sin2 θlþK12 cos2 θlþK13 cosθlÞcosθþðK14 sin2 θlþK15 cos2 θlþK16 cosθlÞcosθb cosθ
þðK17 sinθl cosθlþK18 sinθlÞ sinθb cos ðϕbþϕlÞcosθþðK19 sinθl cosθlþK20 sinθlÞ sinθb sinðϕbþϕlÞcosθ
þðK21 cosθl sinθlþK22 sinθlÞ sinϕl sinθþðK23 cosθl sinθlþK24 sinθlÞcosϕl sinθ

þðK25 cosθl sinθlþK26 sinθlÞ sinϕl cosθb sinθþðK27 cosθl sinθlþK28 sinθlÞcosϕl cosθb sinθ

þðK29 cos2 θlþK30 sin2 θlÞ sinθb sinϕb sinθþðK31 cos2 θlþK32 sin2 θlÞ sinθb cosϕb sinθ

þðK33 sin2 θlÞ sinθb cosð2ϕlþϕbÞ sinθþðK34 sin2 θlÞ sinθb sinð2ϕlþϕbÞ sinθÞ: ð9Þ

Integrating Eq. (9) over Ω⃗ yields the differential decay
rate as a function of q2,

dΓ
dq2

¼ 2K1 þ K2: ð10Þ

This can be used to define a set of normalized angular
observables

K̂i ¼
Ki

2K1 þ K2

: ð11Þ

The first ten angular observables defined in Eq. (9) will
survive even if the Λb baryon is unpolarized ðPΛb

¼ 0Þ.
These are listed in Eq. (B1) in Appendix B. The remaining
24 observables are only nonvanishing if PΛb

is nonzero
[listed in Eqs. (B1) and (B2)]. Of these, the observables
K17 through K34 also involve new combinations of
amplitudes that are not accessible if the Λb baryon is
unpolarized. In the massless-lepton limit, K29 and K31

are zero. As the imaginary parts of the transversity
amplitudes are essentially zero in the SM, the observables
K19; K20; K21; K22; K25; K26; K30, and K34 are consistent
with zero in the SM. The observables K29 and K31 have the

prefactor ð1 − β2l Þ, where βl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð4m2

l Þ=ðq2Þ
q

andml is

the mass of the leptons in the final state. For l ¼ μ and e,
these prefactors are negligibly small and K29 and K31 will
be insensitive to the fit in such cases.
With the combination of the above-mentioned normal-

ized observables [Eq. (11)], the fraction of longitudinally
polarized dileptons ðfLÞ and the hadron-side forward-
backward asymmetry ðAh

FBÞ are defined as

fL ¼ 2K̂1 − K̂2; ð12Þ

Ah
FB ¼ K̂4 þ

1

2
K̂5: ð13Þ

In Fig. 1 we show the sensitivity of different angular
observables to PΛb

. Using the lattice result [17] of the form-
factor parameters up to first order in the polynomial
expansion (N ¼ 1), we plot the theoretical predictions
alongside the experimental results for the angular observ-
ables Ki (i ¼ 11 to 34) and we vary PΛb

from −1 to 1. This
shows that, except for observables proportional to imagi-
nary parts of combinations of transversity amplitudes (as
explained in the previous paragraph), these vary over a
considerably large range with varying PΛb

. This clearly
indicates the importance of a data-driven simultaneous
estimation of PΛb

along with the form-factor parameters.
As the uncertainty in PΛb

already affects the systematic
uncertainties of the observables, we do not expect a precise
determination of PΛb

, but it is interesting to study the effect
of the correlations on the other form-factor parameters.

III. EXPERIMENTAL INPUTS

After the first observation of Λb → Λμþμ− by the CDF
Collaboration [20], the differential branching fraction of the
decay was studied by the LHCb Collaboration with both 1
[21] and 3 fb−1 of integrated luminosity [19]. In the latter
study, along with the low-q2 (0.1–8.0 GeV2) and high-q2

(15–20GeV2) regions, evidence of the signal was found
between the charmonium resonances (11–12.5 GeV2).
Though the data in the lowest bin (0.1–2.0 GeV2) is
expected to be large due to the proximity to a photon
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pole, in reality all low-q2 data lie lower than the theoretical
prediction. We use the differential branching fraction
results of these bins in our analysis, and they are listed
in Table I.
In addition to these results, Ref. [19] also measured the

hadronic angular observables fL and Ah
FB in different q2

bins, which are listed in Table II and are used in our
analysis. Though another set of observables were identified
as leptonic forward-backward asymmetries in that paper, an
erratum published later showed that these are not the actual
Al
FB and we refrain from using these in our analysis.

The latest LHCb measurement [22] with 5 fb−1 of
integrated luminosity measures all 34 of the angular
observables defined in Eq. (9). These are used in our
analysis and are listed in Table III. As shown earlier, a
couple of other angular observables can be obtained as
combinations of these. Of the first ten polarization-inde-
pendent observables, it has been observed that only K6 has
a considerable deviation from the SM prediction.
In summary, we start our analysis with a total of 52

observables, some of which may be omitted according to
the requirements of the fit, as explained in Sec. IV.

IV. ANALYSIS AND RESULTS

With the observables listed in Sec. III, we fit the
independent form-factor parameters defined in Eq. (3) of
Sec. II B, along with the polarization PΛb

, in a hybrid of
frequentist and Bayesian statistical analyses.2

First, we try to fit all 52 of the observables with form-
factor parameters up to first order (N ¼ 1). These and PΛb

constitute a set of 19 parameters. Without any lattice inputs
as constraints on the form-factor parameters, i.e., with
uniform priors for the parameters between −3 and 3, the
best-fit values are obtained far away from the lattice, but the
p-value of the resulting fit (∼0.3%) makes the fit infeasible.
Next, we use the N ¼ 1 fit results from Ref. [17] as lattice
inputs and as a multinormal prior. Though the fit results
are naturally similar to the lattice ones, no considerable
improvement of the fit quality is observed (p-value
∼0.5%). In the following subsection we describe how to
identify influential data, as well as outliers.

TABLE I. Measured differential branching fraction of
Λb → Λμþμ−, where the uncertainties are statistical, systematic,
and due to the uncertainty on the normalization mode,
Λb → J=ψΛ, respectively.

q2 interval [GeV2] dB
dq2 × 10−7 [GeV−2]

0.1–2.0 0.36þ0.12
−0.11

þ0.02
−0.02 � 0.07

2.0–4.0 0.11þ0.12
−0.09

þ0.01
−0.01 � 0.02

4.0–6.0 0.02þ0.09
−0.00

þ0.01
−0.01 � 0.01

6.0–8.0 0.25þ0.12
−0.11

þ0.01
−0.01 � 0.05

11.0–12.5 0.75þ0.15
−0.14

þ0.03
−0.05 � 0.15

15.0–16.0 1.12þ0.19
−0.18

þ0.05
−0.05 � 0.23

16.0–18.0 1.22þ0.14
−0.14

þ0.03
−0.06 � 0.25

18.0–20.0 1.24þ0.14
−0.14

þ0.06
−0.05 � 0.26

TABLE II. Measured values of hadronic angular observables,
where the first uncertainties are statistical and the second are
systematic.

q2 interval [GeV2] fL Ah
FB

0.1–2.0 0.56þ0.23
−0.56 � 0.08 −0.12þ0.31

−0.28 � 0.15
11.0–12.5 0.40þ0.37

−0.36 � 0.06 −0.50þ0.10
−0.00 � 0.04

15.0–16.0 0.49þ0.30
−0.30 � 0.05 −0.19þ0.14

−0.16 � 0.03
16.0–18.0 0.68þ0.15

−0.21 � 0.05 −0.44þ0.10
−0.05 � 0.03

18.0–20.0 0.62þ0.24
−0.27 � 0.04 −0.13þ0.09

−0.12 � 0.03

FIG. 1. PΛb
dependence of the angular observables. Form-factor parameters are taken from the N ¼ 1 lattice fit result [17]. The

thicknesses of the bands correspond to the respective theoretical uncertainties.

2Parameter estimation is done by populating the posterior
parameter space with either uniform or multinormal prior, as the
case may be, but the best-fit results (mean) are used to obtain a
goodness-of-fit estimate from a χ2 obtained from the correspond-
ing experimental data, the details of which can be found in
Appendix C 1.
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A. “Influential” data

The above-mentioned result does not come as a surprise
if one checks the relative deviations between the exper-
imental and theoretical estimates of some of the observ-
ables. As an example, we can see from Fig. 2 that the LHCb
measurement of K6 is quite different from its SM estimate.
Observables like this are bound to affect and (as a result)
worsen the quality of our fits. To illustrate this point and to
identify the data points that are outliers as well as
influential points, we first define a pull [27,28],

pullðOiÞ ¼
����O

exp
i −Ofit

i

σexpi

����; ð14Þ

where Oi is the observable in question, Oexp
i is its

experimentally measured value, Ofit
i is its value with the

best-fit results of the parameters, and σexp is the exper-
imental uncertainty of that observable.
Figure 3 shows the distribution of the pull’s. It is clear

from the figure that the dB=dq2 in the third low-q2 bin is
the biggest outlier, with a pull > 3. As being an outlier
is not the only criterion to quantify the influence of a
datum on a fit, we calculate the Cook’s distances of these
observables as well3 [30,31]. By “influential observation”
we mean one or several observations whose removal results
in a different conclusion in the analysis. Cook’s distance is
one of many “deletion statistics” used to understand the

effect/influence a specific observable has on a fit. It will
help us to understand the impact of omitting a case on the
estimated regression coefficients. The Cook’s distance of
the ith observable is

CDi ¼
P

data
j¼1ðŷ − ŷjðiÞÞ2
pMSE

; ð15Þ

where ŷ is the fitted value of the jth observable, ŷjðiÞ is the
samewhen the ith observable is excluded from the fit,MSE
is the mean squared error for the fitted model, and p is the
number of regression coefficients. Figure 4 shows the
relative sizes of the Cook’s distances of the observables.
With a Cook cutoff ∼0.46 [32] for the fit, dB=dq2(4–6) is
clearly the most influential point in this fit.
Following the above discussion, we drop dB=dq2(4–6)

from the fit. As expected, the resulting p-value increases by
one order (from 0.5 to 5%). Still, this is not an acceptable fit
and we thus proceed to drop all four outliers [K̂6, K̂20,
dB=dq2(4–6), and Abin

FB(11.0–12.5)] from the fit, as shown
in Fig. 3. Indeed, this gives a rather good fit (p-value
∼68%). From hereon, we refer to this fit as N1-Drop1.
Recalling the fact that the angular observables only
dependent on the imaginary parts of Wilson coefficients
are essentially zero in the SM and are insensitive to the
parameters (see Appendix B), we also perform a fit by
dropping these observables. We refer to this fit as N1-
Drop2.4 Similar fits are done considering the next higher-
order term (N ¼ 2) in the zðq2Þ expansion of the form
factors in Eq. (3). We refer to these fits as N2-Drop1 and
N2-Drop2, respectively.

TABLE III. Angular observables, combining the results of the
moments obtained from Run 1 and Run 2 data. The first and
second uncertainties are statistical and systematic, respectively.

Obs. Value Obs. Value

K1 0.346� 0.020� 0.004 K18 −0.108� 0.058� 0.008
K2 0.308� 0.040� 0.008 K19 −0.151� 0.122� 0.022
K3 −0.261� 0.029� 0.006 K20 −0.116� 0.056� 0.008
K4 −0.176� 0.046� 0.016 K21 −0.041� 0.105� 0.020
K5 −0.251� 0.081� 0.016 K22 −0.014� 0.045� 0.007
K6 0.329� 0.055� 0.012 K23 −0.024� 0.077� 0.012
K7 −0.015� 0.084� 0.013 K24 0.005� 0.033� 0.005
K8 −0.099� 0.037� 0.012 K25 −0.226� 0.176� 0.030
K9 0.005� 0.084� 0.012 K26 0.140� 0.074� 0.014
K10 −0.045� 0.037� 0.006 K27 0.016� 0.140� 0.025
K11 −0.007� 0.043� 0.009 K28 0.032� 0.058� 0.009
K12 −0.009� 0.063� 0.014 K29 −0.127� 0.097� 0.016
K13 0.024� 0.045� 0.010 K30 0.011� 0.061� 0.011
K14 0.010� 0.082� 0.013 K31 0.180� 0.094� 0.015
K15 0.158� 0.117� 0.027 K32 −0.009� 0.055� 0.008
K16 0.050� 0.084� 0.023 K33 0.022� 0.060� 0.009
K17 −0.000� 0.120� 0.022 K34 0.060� 0.058� 0.009

FIG. 2. Comparison of the latest SM estimate (with the N ¼ 2
result from Ref. [17]) and the experimental result from LHCb
[22] of the polarization-independent angular observables. The
thicknesses of the SM bands correspond to the respective
theoretical uncertainties.

3For a discussion of Cook’s distance and its use in analyses,
see Ref. [29].

4In general, after dropping the outliers we call these two
different types of fits Drop1 and Drop2 scenarios, respectively.
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B. Different fits

In this subsection we discuss our different fit procedures,
obtained by combining the available inputs in various ways.
As mentioned above, the influential data points are dropped
in all of these fits. We note from Eq. (3) that the form
factors are expanded in different powers of zðq2Þ. As the
variable z is very small, it is natural to expect the terms with
higher powers to be insensitive to the fits in general. We
perform separate analyses by truncating the series at N ¼ 1

and N ¼ 2, respectively. At the moment, it is difficult to
analyze the data with higher powers of Nð> 2Þ.
We have prepared four different data sets in total to

understand the trend of the data, the details of which are as
follows:
(1) All observables: In this fit we include all of the

available experimental inputs. The available lattice
inputs from Ref. [17] on the parameters of the form
factors for N ¼ 1 are used as priors in our analysis.
Similar sets of fits are repeated for N ¼ 2, i.e.,
keeping terms up to ½zðq2Þ�2 in Eq. (3) [and
modifying the constraint equations coming from
Eqs. (5c) and (5d) accordingly]. We treat the addi-
tional coefficients/parameters at order N ¼ 2 in the
½zðq2Þ� expansion of the form factors as free param-
eters. We do not use any lattice constraints on these.

(2) Only angular observables: To understand the
effects of the angular observables on the parameters
of the form factors, we perform another set of fits
with only the angular observables. We take the
binned data of AΛ

FB, fL [19], and the 34 angular
observable from the latest data [22]. In this fit, we
do not consider the data on dB=dq2 in different bins
as inputs. The methodology of the fits is similar to
that in the previous subsection and these too are
done for both sets of form-factor parameters, i.e.,
for N ¼ 1 and N ¼ 2. We use a multinormal prior
from lattice inputs of the N ¼ 1 fit in Ref. [17] for
all parameters except PΛb

. We find that this again
gives a bad fit (p-value ∼9%), evidently due to the
presence of the observables K̂6 and K̂20. Dropping
those two data points provides a good fit again
(p-value ∼70%). As before, we call these fits as
N1-AngDrop1 and N2-AngDrop1, respectively.
Here, too, we do not use any lattice inputs for
the coefficients at order N ¼ 2.

FIG. 3. pull’s for all of the observables given with the color code in the index.

FIG. 4. Cook’s distances for all of the observables given with
the color code in the index.
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(3) Data-driven fits: We also perform a fit using all of
the available experimental data, but without using
the lattice inputs as priors. The fit results can be
compared with those obtained in the other fits, which
might help us to check for any possible tension
between the data and the lattice predictions. How-
ever, we would like to mention that due to the
presence of large inconsistencies between various
data points, such fits yield abysmal p-values. Also,
at the present level of precision, it is hard to analyze
these with N ¼ 2, as in some of the form factors
the coefficients of the ½zðq2Þ�2 term in Eq. (3) are
insensitive to the fit. For this reason, we refrain from
adding the results of this fit in this paper.

(4) Fits with inputs from SCET and HQET: We repeat
all of the above-mentioned fits in the previous three
subsections after incorporating the HQET and SCET
relations between the form factors at zero and maxi-
mum recoil, which are given in Eqs. (6), (7), and (8),
respectively. We notice considerable improvements in
our data-driven fits because of these inputs. The details
of the outcome of this fit are discussed in the next
section. The fits with these additional inputs are called
NI-Drop1-HS, NI-Drop2-HS, NI-AngDrop1-HS, NI-
AngDrop2-HS, NI-WOLDrop1-HS, and NI-WOL-
Drop2-HS, respectively (with I ¼ 1 or 2).

We also check the effect of the nonvanishing lepton mass
(ml) in our study. In the limiting case of ml → 0, the two
observables K29 and K31 vanish identically. In addition, a
few of the form factors (such as f0 and g0) do not appear in
any of the theoretical expressions of the considered observ-
ables. While these fits give better p-values than N1-Drop1,
the parameter spaces are almost identical. Moreover, we
choose not to drop estimations of f0 and g0 for the sake of
completeness andwewill not discuss the results of these fits.

C. Outcome of the fits

The outcome of the fits with all observables and only
angular observables are shown in Tables IV and V,
respectively. Though the fit results are obtained from a
Bayesian analysis, we perform a goodness-of-fit test of the
fit using the mean (best-fit) results, and those results are
listed in the second and third columns of these tables. The
fit results are almost unchanged in the scenarios NI-Drop1
and NI-Drop2 (with I ¼ 1 or 2), respectively. However, the
fit quality increases considerably in Drop2 scenarios.5

Similar to the all-observables scenario, the fit qualities
improve after dropping the same set of observables in the
fits with only angular observables. Comparing the fits with
all observables with those with only angular observables,
we notice an overall slight improvement in the p-values.
Across all of the scenarios, the best-fit values of the
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5Later in our analysis, most of our important results will be
presented in Drop2 scenarios.
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respective parameters are consistent with each other within
their respective uncertainties as well. This is due to the
dominance of the lattice results (with relatively small
uncertainties) in the fits. This is also reflected by the
relative invariance of the observable-estimates from two
representative scenarios, as shown in Fig. 5.
In Fig. 6 the posterior distributions of the form-factor

parameters (up toN ¼ 1) are comparedwith their respective
prior distributions (from Ref. [17]). We do not see any
noticeable discrepancies. As the priors are informative here
and the data is not precise enough to dominate posterior
distributions at the moment, the prior distributions essen-
tially determine the nature of the posteriors (mixtures of
prior and likelihood of data). With more precise data, the
comparison will be useful to pinpoint any discrepancies
between the data and lattice results. We also face our first
hurdle in the N ¼ 2 case for the fits with or without partial
lattice constraints. We get completely flat and highly
uncertain posteriors for most of the newly introduced
higher-order parameters, and consequently the fits do not
converge. We surmise that the N ¼ 2 fits are insensitive to
the data and must have lattice constraints, at least at the
present experimental precision.
As shown in Eqs. (6), (7), and (8), there are specific

relations between the form factors at the zero and maximum
recoil angle of the final-state baryon. It is important to
check whether the form factors obtained from our fit results
satisfy all of these relations. Using different fit results of all-
observables fits, we compare the numerical values of the
form factors at zero recoil and maximum recoil in Fig. 7.
We note that all of the form factors satisfy the relations
given in Eqs. (6), (7), and (8), respectively, within their 2σ
credible intervals (CI). However, there are some discrep-
ancies in some of the relations at their 1σ CIs, especially
for the fit results with N ¼ 1. Consequently, the lattice-
predicted results have some degree of disagreement with
the respective SCET and HQET expectations at the end
points of q2 distributions of the form factors, which are
more prominent in the case of HQET (zero recoil).
For all of the cases listed in Tables IV and V, the fits are

repeated after incorporating the relations between the form
factors in SCET and HQET. We have added 20% uncer-
tainty in the HQET relations of the form factors at zero
recoil, and about 10% in the case of the SCET relations.
The results are summarized in the first and second rows of
Table VI, where we present the results only for the cases
with N ¼ 2 (similar results can be obtained for N ¼ 1).
While the quality of the fit has diminished in these cases,
it still has considerable statistical significance, the reason
for which is clear from the discussion in the previous
paragraph. The fit results can be compared with the
respective results in Tables IV and III. Though we note a
slight shift in the best-fit values in some cases, they are
consistent with each other within the 1σ CIs, which is
also evident from Figs. 6 and 8, respectively. In Fig. 6TA
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we compare the posterior distributions of the zeroth- and
first-order form-factor parameters, with and without the
inputs from SCET and HQET. Figure 8 summarizes those
for the second-order coefficients.
For our data-driven fits, the form factors are truncated

at N ¼ 1. As mentioned earlier, our data does not have
enough precision and data alone is not sufficient to extract
the coefficients of the form factors for N ¼ 2 yet. The
results of the fit are shown in the third row of Table VI. The
best-fit values of the parameters largely deviate from those
obtained in the fit with the lattice results as priors. However,
the fit values have significant uncertainties. They are
consistent with each other within their 3σ CIs, which are
also shown in Fig. 6 where the posteriors of the relevant
parameters are compared. All in all, though the data-driven
results are not entirely consistent with the previous ones
including lattice inputs, the data does not show any notice-
able discrepancy with the lattice results at the moment.
Results of the extracted q2 distributions of the form

factors for a few fit scenarios, using the different fit results
discussed above, are shown in Fig. 9. Note that the q2

distributions are fully consistent with each other in the
scenarios N1-Drop2, N2-Drop2, and N2-Drop2-HS. All of
these scenarios, which we can refer to as our SM-like
scenarios, have lattice inputs as priors and the results are
similar in all other such fits. However, the q2 distributions
obtained using the results of the data-driven fit are not fully
consistent with each other. For some of the form factors
there are discrepancies in the high-q2 regions. In particular,
there are noticeable discrepancies in fþ, g0, and h⊥ at 1σ
CI. As we will see below, this could be due to the observed
deviations in the measured values of dB=dq2 from their
respective SM predictions in the high-q2 bins.
Using the form factors extracted in different fits, we

predict various related observables and the results are
shown in Fig. 10. We note improvements in the uncertainty

estimates of the observables after the use of SCET and
HQET relations in the fits. The top row shows the predicted
values of dB=dq2 in separate bins (top-left panel) and the
corresponding q2 distributions (top-right panel), compared
with their respective measured values. We summarize the
important observations below:
(1) The predictions, obtained from the fits in SM-like

scenarios, are consistent with each other within
uncertainties, which demonstrates the dominance
of lattice results over those of the measured values
with larger uncertainties.

(2) Apart from the very low bin [0.1 ≤ q2 (GeV2) ≤ 2]
and the bins at high q2 (15 ≤ q2 [GeV2) ≤ 20], the
predictions using the results of the data-driven fit are
consistent with those from other fits.6

(3) As expected, thedata-driven results are consistentwith
the respective measured values. However, we note
some degree of disagreement in the very low-q2 bin.

In the middle panels we show the predictions for fLðq2Þ in
different bins (middle-left panel) and the q2 distributions
(middle-right panel) for different fit scenarios. Note that the
predicted results are consistent with each other in all of the
scenarios, as well as the respective measurements in all of
the q2 regions, though the data-driven results have large
errors. Similar plots for the forward-backward asymmetry
[AFBðq2Þ] are shown in the bottom panels. Note that, apart
from the bin in between 16 ≤ q2 (GeV2)≤ 18, the extracted
values of forward-backward asymmetries in SM-like sce-
narios and the data-driven fit are consistent with each other.
Also, they are consistent with the measured values in the
respective bins.
In Table VII we show the predictions for Rμ=e

Λ , Rτ=e
Λ , and

Rτ=μ
Λ in different fit scenarios. Compared to Rτ=e

Λ or Rτ=μ
Λ , the

FIG. 5. Comparison of the SM estimate (with the N ¼ 2 result from the fit dropping the required observables) and the experimental
result from LHCb [22] polarisation dependent angular observables taking PΛb

¼ 1. The thicknesses of the SM bands correspond to the
respective theoretical uncertainties.

6Note that we have dropped dB=dq2(4–6) from the fit.
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FIG. 6. Comparison of marginal one-dimensional prior and posterior distributions of the “N ¼ 1” form-factor parameters with and
without lattice inputs.
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FIG. 7. Form-factor values at zero and max recoil for different fits.

FIG. 8. Marginal one-dimensional posteriors of the coefficients of “N ¼ 2” terms of the form factors with (blue) and without (red) the
use of HQET and SCET relations [Eqs. (6), (7), and (8)].
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predictions for Rμ=e
Λ have much smaller uncertainties,

which is due to the dominance of some of the form factors
in the cases with τ’s in the final state, compared to those
with lighter lepton final states. In the respective bins, the
extracted values in different fit scenarios are consistent
with each other. The data-driven fit results have relatively
large uncertainties, but those are compatible with results
where lattice inputs play a dominant role. Hence, at the
moment, there is no sign of significant discrepancy in
the data.
To obtain the values and uncertainties for Fig. 10 and

Table VII we populate distributions of the fitted results with
> 5000 points and calculate the value for the desired
observable at all points. We then obtain the most probable
value and 1σ uncertainties from the resultant distributions
in the observable space.

V. FITS WITH LIGHT-CONE SUM RULES
INPUTS AT MAX RECOIL

We present a couple of fits in this section, after
incorporating the available inputs on the form factors at
max recoil from QCD light-cone sum rules (LCSR) at next-
to-leading logarithmic accuracy [16]. As before, we take
into account the HQET relations between the form factors
at zero recoil [Eqs. (6)–(7)]. Here we consider only the
scenarios N2-Drop2 and N1-WOLDrop2 and call them
(after incorporating the LCSR inputs) N2 [Data(Drop2)
+Lattice+HL] and N1 [Data(Drop2)+HL], respectively.
The results for these are shown in Table VIII, which can
be compared with the corresponding cases in Tables IV
and VI, respectively. In addition, we perform a fit with only
lattice and LCSR inputs and HQET relations between the
form factors and consider the parameters up to N ¼ 2,
which we call N2 [Lattice+HL]. As this fit is free from any
experimental bias, the results can safely be considered as
the SM predictions. The results are listed in the third row of
Table VIII. Figure 11 shows the comparison between the
one-dimensional marginal posteriors of the form-factor
parameters up to N ¼ 1. We have also extracted the q2

distributions of the form factors using these fit results and
they are shown in Fig. 12. Here are a few observations:
(1) The quality of the fit in N2 [Lattice+HL] is much

better than that in the other two scenarios given in
Table VIII. Hence, including the experimental data
reduces the quality of the fits; this might mean that at
the moment, a few data points are not well repre-
sented by the lattice inputs and LCSR.

(2) The form-factor parameter spaces from different fit
results, as given in Table VIII, are consistent with
each other within the error bars. This is also clear
from the one-dimensional marginal posteriors
in Fig. 11.

(3) For a couple of fit parameters, there is a reduction in
the estimated uncertainties after incorporating inputsTA
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from LCSR. A comparison of the scenario N2-
Drop2 in Table IV with N2 [Data(Drop2)+Lattice
+HL] in Table VIII shows that the uncertainties of
the coefficients at order N ¼ 0 and N ¼ 1 have
decreased by 1–2%. However, for some coefficients
at order N ¼ 2, the decrease is as much as 10%. A
similar trend is also evident in the scenario N1 [Data
(Drop2)+HL] when compared with N1-WOLDrop2
in Table VI. Here, too, we note an improvement of
around 10%.

(4) From the q2 distributions in Fig. 12, we note that the
form factors extracted from N2 [Data(Drop2)+Lat-
tice+HL] and N2 [Lattice+HL] are in good agree-
ment with each other throughout the allowed q2

region. However, similar to earlier fits (Fig. 9), the
form factors extracted from N1 [Data(Drop2)+HL]
have large errors. In some cases, e.g., for fþ, g0, and

h⊥ there are deviations of > 1σ in the high-q2

regions between the results extracted from N2
[Data(Drop2)+Lattice+HL] and N2 [Lattice+HL].

(5) In scenarios like N2 [Data(Drop2)+Lattice+HL] or
N2 [Lattice+HL], the value of the form factors at
q2max remain the same as those obtained earlier in the
scenarios N2-Drop2 and N2-Drop2-HS (Fig. 9); this
could be due to the dominance of the lattice inputs in
the fit. On the contrary, the values of the form factors
in the high-q2 regions decrease in the fit N1 [Data
(Drop2)+HL] compared to those obtained in the fit
N1-WOLDrop2-HS] [Eq. (9)]. As a result, the
differences between the numerical values of the
form factors at high-q2 decrease.

All of these observations suggest that the lattice results can
reproduce LCSR inputs at q2max. However, at the moment,
there is a possibility that neither the lattice inputs nor LCSR

FIG. 9. Form factor distributions in the full q2 range with both the data-driven (N1-WOLDrop1) and lattice-constrained (N1-Drop1
and N1-Drop2) fits.
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FIG. 10. Comparison of the SM estimate from the fit results (the notations used in the legends are explained in the text) and the lattice
results from Ref. [17] with the experimental result from LHCb [22] of the polarization-independent angular observables. The
thicknesses of the bands correspond to the respective theoretical uncertainties.

TABLE VII. Rμ=e
Λ and Rτ=μ

Λ predictions in different bins.

Rμ=e
Λ Rτ=e

Λ Rτ=μ
Λ

q2 (GeV2)

Fit 0.1–2 2–8 11–12.5 15–20 15–20 15–20
N2-Drop2 0.976(2) 0.9948(4) 0.99779(8) 0.99838(3) 0.468(5) 0.468(5)
N2-Drop2-HS 0.9743(2) 0.9949(1) 0.99781(6) 0.99837(3) 0.466(5) 0.466(4)
N1-WOLDrop2-HS 0.974(6) 0.9953(8) 0.99779(9) 0.99835(6) 0.463(10) 0.464(9)
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FIG. 11. Comparison of one-dimensional marginal posteriors of the form-factor parameters up to N ¼ 1, with constraints from HQET
and LCSR inputs.
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can accurately represent the experimental data. We need to
wait for more precise data to make a conclusion.
In Table IX we show the extracted values of the lepton-

flavor-universality-violating (LFUV) observable Rμ=e
Λ in

different fit scenarios (as discussed above). In the individ-
ual bins, the predicted values are consistent with each other
as well as with the predictions obtained earlier in Table VII
in the respective bins. The predicted values for Rτ=e

Λ and

Rτ=μ
Λ are similar to the one obtained in Table VII, and hence

we do not show them explicitly. We have also obtained
results similar to Fig. 10 but do not explicitly show them as
the results do not change considerably.

VI. SUMMARY

We have analyzed Λb → Λlþl− decays in the frame-
work of the SM with the available data and lattice inputs on
the form factors. With the available information, we have

defined different fit scenarios. We have tested and utilized
the SCET and HQET relations between the form factors at
the end points of the q2 distributions. From the fit results,
we have obtained the q2 distributions of the form factors
and checked their consistency in different fit scenarios.
These form factors were used to predict some observables

like dB=dq2, fLðq2Þ, AFBðq2Þ, and Rli=lj
Λ . We have pointed

out a few influential or problematic data points in a few of
the bins, which we have dropped from the fits. A careful
examination of these data points is needed from the
experimental collaborations.
At the moment, the data has large uncertainties. On the

other hand, the lattice results for the form-factor parame-
ters, especially those up to the coefficients of N ¼ 1 terms
in the expansion, have relatively smaller uncertainties. In
some of our fits, where we have used the lattice results as
priors, the fit results are driven by the lattice inputs and
we have identified them as our SM-like results. We have

FIG. 12. Form-factor distributions in the full q2 range obtained from fits with LCSR constraints.

BHATTACHARYA, NANDI, PATRA, and SAIN PHYS. REV. D 101, 073006 (2020)

073006-18



noticed that the form factors extracted using these fit results
are consistent with the SCETand HQET relations at the end
points of the q2 distributions. We have also extracted the
form factors without any lattice inputs (data-driven fit). If
we consider the results at their 1σ CIs, a few of them are not
consistent with the respective SM-like results in the high-q2

regions. However, they are all consistent with the SM-like
results at 3σ CI. Though a similar conclusion holds for the
predictions of dB=dq2, for the cases of fLðq2Þ and AFBðq2Þ
the respective q2 distributions are consistent with each
other across all of the fits. The extracted values deviate
from their respective measured values in only a few of the
bins, which is probably an issue related to the measure-
ment. Finally, our predictions for Rμ=e

Λ , Rτ=e
Λ , and Rτ=μ

Λ from
the data-driven fit and the corresponding SM-like predic-
tions are consistent with each other at 1σ CI. However, the
data-driven results have larger uncertainties compared to
their SM-like results.
We have repeated a few of the fits after incorporating the

inputs on the form factors at maximum recoil from LCSR at

next-to-leading-order accuracy. These fits also include
information from lattice and/or experimental data. The
additional inputs from LCSR improve the earlier fits of
similar type. We noticed a reduction in the estimated
uncertainty in some of the fit parameters, which could
be as much as 10%. We have also extracted the q2

distributions of the form factors and the LFUVobservables
for all of these scenarios, as defined above. The conclusions
are similar, as mentioned above. Among these scenarios,
we noted one situation where the inputs from the exper-
imental data were not used, which we called our SM fit. In
that fit the predicted values of Rμ=e

Λ in different bins are
consistent with the estimates in other fits in the respec-
tive bins.
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APPENDIX A: FORM FACTORS

Here we define the form factors used throughout the paper [15]:

hΛðp0; s0Þjs̄γμbjΛbðp; sÞi ¼ ūΛðp0; s0Þ
�
f0ðq2ÞðmΛb

−mΛÞ
qμ

q2
þ fþðq2Þ

mΛb
þmΛ

sþ

�
pμ þ p0μ − ðm2

Λb
−m2

ΛÞ
qμ

q2

�

þ f⊥ðq2Þ
�
γμ −

2mΛ

sþ
pμ −

2mΛb

sþ
p0μ

��
uΛb

ðp; sÞ; ðA1Þ

hΛðp0; s0Þjs̄γμγ5bjΛbðp; sÞi ¼ −ūΛðp0; s0Þγ5
�
g0ðq2ÞðmΛb

þmΛÞ
qμ

q2
þ gþðq2Þ

mΛb
−mΛ

s−

�
pμ þ p0μ − ðm2

Λb
−m2

ΛÞ
qμ

q2

�

þ g⊥ðq2Þ
�
γμ þ 2mΛ

s−
pμ −

2mΛb

s−
p0μ

��
uΛb

ðp; sÞ; ðA2Þ

hΛðp0; s0Þjs̄iσμνqνbjΛbðp; sÞi ¼ −ūΛðp0; s0Þ½hþðq2Þ
q2

sþ

�
pμ þ p0μ − ðm2

Λb
−m2

ΛÞ
qμ

q2

�

þ h⊥ðq2ÞðmΛb
þmΛÞ

�
γμ −

2mΛ

sþ
pμ −

2mΛb

sþ
p0μ

��
uΛb

ðp; sÞ;

hΛðp0; s0Þjs̄iσμνqνγ5bjΛbðp; sÞi ¼ −ūΛðp0; s0Þγ5½h̃þðq2Þ
q2

s−

�
pμ þ p0μ − ðm2

Λb
−m2

ΛÞ
qμ

q2

�

þ h̃⊥ðq2ÞðmΛb
−mΛÞ

�
γμ þ 2mΛ

s−
pμ −

2mΛb

s−
p0μ

��
uΛb

ðp; sÞ; ðA3Þ

with q ¼ p − p0, σμν ¼ i
2
ðγμγν − γνγμÞ and s� ¼ ðmΛb

�mΛÞ2 − q2.

APPENDIX B: ANGULAR OBSERVABLES

Here we give the full expressions of the angular observables given in Eq. (9) in terms of transversity amplitudes,
as in Ref. [12]. Here αΛ is the asymmetry parameter of the subsequent decay Λ → pπ and its value is
0.642� 0.013 [33]:
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1

4
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APPENDIX C: FIT METHODOLOGY

1. χ 2 definition

Here we consider two different ways to fit the param-
eters. First, a χ2 statistic is defined by considering each of
the form-factor parameters as a free parameter in the
following way:

χ2 ¼
Xdata
i;j¼1

ðOexp
i −Oth

i ÞðVstat þ VsystÞ−1ij ðOexp
j −Oth

j Þ:

ðC1Þ

Here Oth
p is the theoretical expression and Oexp

p is the
central value of the experimental result of the pth observ-
able used in the analysis. V type is the covariance matrix,
where “type” is either statistical or systematic. Oth

p are
functions of the form-factor parameters.

For the second scenario, all of the form-factor parameters
are considered as nuisance parameters and the definition of
χ2 [Eq. (C1)] is modified as

χ2¼
Xdata
i;j¼1

ðOexp
i −Oth

i ÞðVstatþVsystÞ−1ij ðOexp
j −Oth

j Þþχ2Nuis:

ðC2Þ

Here χ2Nuis is defined as

χ2Nuis ¼
Xparams

i;j¼1

ðIPi − vpi ÞðVNuisÞ−1ij ðIpj − vpj Þ: ðC3Þ

In Eq. (C3), IPk and vPk are the kth input parameters and
their values, respectively. In our case, their values are
constrained by means of the previous lattice fit results.
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