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Uniform-acceptance force-bias Monte Carlo method with time scale to study solid-state diffusion
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Monte Carlo (MC) methods have a long-standing history as partners of molecular dynamics (MD) to simulate
the evolution of materials at the atomic scale. Among these techniques, the uniform-acceptance force-bias Monte
Carlo (UFMC) method [G. Dereli, Mol. Simul. 8, 351 (1992)] has recently attracted attention [M. Timonova et al.,
Phys. Rev. B 81, 144107 (2010)] thanks to its apparent capacity of being able to simulate physical processes in a
reduced number of iterations compared to classical MD methods. The origin of this efficiency remains, however,
unclear. In this work we derive a UFMC method starting from basic thermodynamic principles, which leads to an
intuitive and unambiguous formalism. The approach includes a statistically relevant time step per Monte Carlo
iteration, showing a significant speed-up compared to MD simulations. This time-stamped force-bias Monte Carlo
(tfMC) formalism is tested on both simple one-dimensional and three-dimensional systems. Both test-cases give
excellent results in agreement with analytical solutions and literature reports. The inclusion of a time scale, the
simplicity of the method, and the enhancement of the time step compared to classical MD methods make this
method very appealing for studying the dynamics of many-particle systems.
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I. INTRODUCTION

The development of fundamental understanding in material
science starts at the atomic level, where concerted movements
set the properties of a material and its reaction upon the
application of external factors. With the current development
of nanostructured materials, gaining insights into the dynamics
that drive the evolution of a system along physically rep-
resentative time windows is becoming a problem of prime
importance.

In that respect, molecular dynamics (MD) has long proved
to be a very robust and useful technique that offers unique
insights into the dynamical behavior of a system. However,
a large gap is often observed between the events captured
by the MD simulations and the experimental ones, mainly
due to the fact that monitoring the evolution of a material
between different equilibrium states is a computationally very
demanding task. Aside from the limitations bound to the
physical dimensions of the system, the time window of the
events that can be assessed is relatively limited and typically
evolves in the range of picoseconds (ps) to nanoseconds (ns).
Extending the limits of the simulated time window to reach
different equilibrium states, while keeping access to the
dynamics of the evolution, is hence becoming a very intensive
field of research.1,2 Much pioneering work has already been

done to bridge the gap,3–10 in which long-time atomic events
are accessed through MD simulations. Among the different
approaches proposed in literature, a very popular one consists
of modifying the potential-energy surface with a bias potential
that goes to zero near transition states.3,4 This enhances all
transition rates of reactions, while preserving the relative
rates. Although these techniques offer very interesting insights,
further improvements are still (highly) desirable.1,2

Alternatively, a set of techniques derived from stochastic
approaches and based on atomic forces11–15 might open the
way toward further developments. Although these force-bias
Monte-Carlo (fbMC) methods have been little used in the
past (see for instance Refs. 16 and 17) they recently regained
attention through the works of Timonova18 and Neyts et al.19,20

Contrary to MD algorithms, fbMC relies on a force-bias
probabilistic description of the atomic motion. This approach
recently has been shown to be successfully able to reproduce
long-term events that take place in materials upon phase
transition, surface diffusion, and growth.17–20 The simplicity
of the fbMC approach is not its only attractiveness, since,
compared to a classical MD approach, it has been reported
to require a reduced number of numerical iterations to access
physical meaningful results.18 Aside from this apparent gain
in efficiency, a clear quantitative comparison between the MD
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and fbMC approaches turns out to be a difficult task due to
the stochastic roots of fbMC and its lack of a time scale. As a
consequence, the possible origin of the apparent efficiency
of fbMC with respect to classical MD technique remains
incompletely understood.

Through this article, we aim to fill this gap by building
a rigorous derivation, starting from the canonical ensem-
ble, of a force-bias Monte Carlo formalism. Although the
obtained formalism differs slightly from the original one
proposed by Dereli (uniform-acceptance force-bias Monte
Carlo, UFMC),15,18 it offers the advantage of providing an in-
tuitive and solid derivation for the technique. The comparison
between our time-stamped force-bias Monte Carlo (tfMC) and
the MD formalism is carried out through the formulation of a
statistically relevant time bound to the atomic displacement. It
is found that the effective gain in time per tfMC iteration is in
many cases larger than the “standard” 1 fs time step used in
classical MD calculations.

The paper is organized as follows. First, we provide a
detailed derivation of the tfMC approach and illustrate its
working principles using a simple one-dimensional idealized
system (Sec. II). We then demonstrate the relation between
the atomic motion and a statistically relevant time definition
(Sec. III). Note that, for the convenience of the reader, we
remained consistent with the notation used in the prior paper
of Timonova et al.18

II. DERIVATION OF THE METHOD

This section is structured as follows: starting from the
principles of a canonical ensemble, Sec. II A derives the tfMC
method. A more intuitive idea of the algorithm is sketched in
Sec. II B, followed by a proof of these ideas in Sec. II C.
Eventually, Sec. II D discusses time evolution in the MC
algorithm, allowing for a quantitative comparison with MD.

A. The time-stamped force-bias MC algorithm

As pointed-out by Timonova et al.,18 the essence of the
force-bias Monte Carlo approach relies on an iterative modifi-
cation of the atomic positions in which only their atomic forces
are accounted for. To be valid, such a stochastic displacement
of the particles has to remain statistically consistent with the
evolution of the system. In a canonical ensemble at temperature
T , containing N particles and with a Hamiltonian H , the
probability density function ρ that describes the system is
given by

ρ = exp (−βH )∫
exp (−βH )d�

, (1)

with � representing the phase space in which all the possible
states of the particles are described and β = (kBT )−1. The
Hamiltonian of the N interacting particles associated with
masses mi can take the form

H =
N∑

i=1

p2
i

2mi

+ U (x1,x2, . . . ,xN ), (2)

where pi is the momentum vector of the particle i and the
potential U accounts for both the particle’s interaction and
the presence of a possible external applied potential. During

its evolution, the system can adopt a state associated with
a different set of coordinates such as x∗ = (x∗

1,x
∗
2, . . . ,x

∗
N ),

where a reformulation of U based on a Taylor expansion in
the neighborhood of this state leads to

U (x) = U (x∗) + (dU )(x∗) ◦ (x − x∗)T + O(x2)

= U (x∗) −
N∑

i=1

Fi · (xi − x∗
i ) + O(x2), (3)

with Fi being the force acting on particle i. If the Taylor
expansion is truncated to its first-order term, meaning that
O(x2) is negligible for all xi,j ∈ [x∗

i,j − �/2,x∗
i,j + �/2],

with � being the range of atomic displacement for which
the expansion is valid and j being the x, y, and z directions,
then the Hamiltonian in the neighborhood of x∗ takes the form

H̃ = U (x∗) +
N∑

i=1

3∑
j=1

(
p2

i,j

2mi

− Fi,j (xi,j − x∗
i,j )

)
. (4)

By combining Eqs. (1) and (4), the probability density function
ρ̃ in coordination space in the neighborhood of x∗ takes the
form

ρ̃ = exp [−βU (x∗)]

∏
i,j exp [βFi,j (xi,j − x∗

i,j )]∫
V exp [−βU (x)]dx

. (5)

Equation (5) will be used to derive the necessary probability
function used to drive the tfMC algorithm.

Before going into the details of this derivation, it is useful
to gain some insights about the MC-algorithm mechanics.
We assume that at a given time the particles are located
in the (small) coordinate space intervals ([x∗

i,j − �/2,x∗
i,j +

�/2])i,j which we label as a volume Vi given by

Vi =
⋃
i,j

[x∗
i,j − �/2,x∗

i,j + �/2]. (6)

Note that this volume corresponds to the one described by
ρ̃. Suppose now that, during a short but unspecified time, the
particles are allowed to move in this volume Vi . The question
arises of being able to identify the probability that, during this
time interval, the particles move to another volume Vf which
has the same form as Vi , but which is shifted with respect to
x∗. Assuming that this probability can be quantified, all the
necessary ingredients to use a MC algorithm would be present
to choose the next volume Vf . The latter will then become the
new initial volume Vi bound to a new coordinate x∗. Upon the
repetition of the procedure, successive volumes are generated
in which all particles are captured and the dynamics of the
system is described (see Sec. II B).

For such an approach to be operational, one naturally needs
to develop an explicit formulation for the probability of going
from Vi to Vf . It turns out that the concept of a conditional
probability is perfectly suited for this task. The conditional
probability of going from Vi to Vf is defined as

P (state Vf | state Vi) = P ((x ∈ Vi) ∩ (x ∈ Vf ))
P (x ∈ Vi)

. (7)

Using to our advantage the fact that P (x ∈ A) = ∫
A ρ(x)dx

and that ρ = ρ̃ on Vi , the conditional probability can be
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reformulated as

P (state Vf | state Vi) =
∫
Vi∩Vf

ρ(x)dx∫
Vi

ρ(x)dx

=
∫
Vi∩Vf

ρ̃(x)dx∫
Vi

ρ̃(x)dx

=
∏

i,j

∫
Vi∩Vf

eβFi,j (xi,j −x∗
i,j )dx∏

i,j

∫
Vi

eβFi,j (xi,j −x∗
i,j )dx

. (8)

For notational reasons we define γi,j as

γi,j = Fi,j�

2kBT
(9)

and write the coordinate x∗
f of the final volume on the basis of

its initial coordinate x∗
i through a translation vector �ξ as

x∗
f = x∗

i + �ξ , (10)

with ξ being a vector defined as ξ = (ξ1,1,ξ1,2, . . . ,ξN,3),
where each component ξi,j takes values in [−1,1] and with
� corresponding to the maximal displacement of a particle
[see Eq. (6)]. Equations (9) and (10) allow us to rewrite Eq. (8)
as P (state Vf | state Vi) = ∏

i,j Pi,j (ξi,j ) with Pi,j (ξi,j ) given
by

Pi,j (ξi,j ) =

⎧⎪⎨⎪⎩
e
γi,j (2ξi,j +1)−e

−γi,j

e
γi,j −e

−γi,j
, ξi,j ∈ [−1,0[ ,

e
γi,j −e

γi,j (2ξi,j −1)

e
γi,j −e

−γi,j
, ξi,j ∈ ]0,1] .

(11)

Equation (11) constitutes the basic ingredient of our tfMC al-
gorithm and defines the location of the particles in coordination
space throughout the iterations.

In practice, for each step, a different random coordinate pair
(ξ0,P0) is chosen with ξ0 ∈ [−1,1] and P0 ∈ [0,1] for all the
particles in all the directions. The next interval of particle i in
the direction j will be around x∗

i,j + ξ0� when Pi,j (ξ0) > P0.
If Pi,j (ξ0) < P0, a new random pair (ξ0,P0) is generated for
that degree of freedom and the acceptance is checked again.
This process consists of examining where the sampled pair
(ξ0,P0) is located with respect to the curve of the conditional
probability Pi,j (see Fig. 1). When it falls below the conditional
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FIG. 1. The function Pi,j for different γ values [see Eq. (9)].

curve, the new position of the interval, defined as x∗
i,j + ξ0�, is

accepted. In contrast, when (ξ0,P0) falls above the curve, a new
random coordinate is generated and the evaluation is redone.
Note that the generation of random coordinates (intrinsic to
MC algorithms) only requires a negligible amount of time
compared with the one needed to evaluate the atomic force.

The evolution of the conditional probability with respect
to ξ is illustrated in Fig. 1, in which the dimensionless factor
γ corresponds to Eq. (9). From this equation it follows that
the sign of γ is equal to the sign of the force F . Because
ξ� is the displacement of the particle, it follows that for a
positive value of the product γ times ξ , the particle goes
downhill (the displacement and force point in the same
direction), while for negative one, the particle goes uphill
(the displacement and force point in opposite directions). The
combination of these considerations together with the shape
of the conditional probability (Fig. 1) show that the particle
has a lower probability of going uphill than downhill.

B. An interpretation of the tfMC algorithm

An important postulate of the previous section relies on the
fact that the tfMC approach is able to describe the evolution
of the system dynamics based on a simple probabilistic
description of a transition from a given volume Vi to another
one Vf , independently of the velocity of the particles. This
interpretation is counterintuitive and at odds with the classical
MD formalism. Indeed, in MD the generated atomic positions
xi,j (tn + τ ) are determined based on the velocity of the
particles vi,j (tn) at a previous time tn as

xi,j (tn + τ ) = xi,j (tn) + vi,j (tn)τ + Fi,j

mi

τ 2

2
, (12)

where τ is the MD time step chosen. Because there is no direct
inclusion of the particle velocity in tfMC, successive steps in
this method may appear to be highly unphysical. Note however
that a single step in tfMC does correspond to a physical event
(see Sec. II A). In this and in the following section (Sec. II C),
we show that after a sufficient number of iterations, tfMC
allows us to gain a lot of insight into the physics of the
system due to the proper description of the density probability
function. This implies that the system simulated by tfMC
is mainly located in an equilibrium state and that it leaves
every now and then to evolve toward another equilibrium
configuration. Indeed, the probability density function dictates
that the probability of finding a particle in a potential well of
the potential energy surface is in general much higher than the
one of finding it on a hypersurface dividing two equilibrium
states.

The basic ingredients of the tfMC algorithm are the
coordinates of the particles, the forces acting on them (when
they are in the volume Vi), the temperature T , and the
maximum atomic displacement �. � may not be chosen to be
too large, such that the first-order Taylor expansion formulated
in Eq. (3) is not violated. In order to provide some insights
on the impact of the size of � on the correctness of the
simulations, we performed a one-dimensional test as illustrated
in Fig. 2 (see Sec. III A for further details).
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FIG. 2. The potential energy surfaces
U (x) = 2.5x2Q[1 − cos(2πx)] (dashed
line) with Q = 0.25 eV and the corre-
sponding density function f (x) (solid line)
at T = 1200 K. The density probability
function computed using the tfMC ap-
proaches (for � going from 0.1 to 0.3 Å)
is compared to the analytical solution.

Figure 2 illustrates a simple one-particle one-dimensional
potential energy surface U (x) defined as U (x) = 2.5x2Q[1 −
cos(2πx)] with Q = 0.25 eV, and its corresponding prob-
ability density function f (x) ∝ exp [−βU (x)] at T =
1200 K. As expected, the probability of being in a minimum
of the potential surface is higher than the one of being on a
maximum, and depends on the temperature of the system. The
simulated probability density function obtained for different
�’s in Fig. 2 has been computed by accounting for the number
of occurrences of the particle in a given interval divided by the
number of times the particle was found to be around the origin.
For � values larger than 0.10 Å, the tfMC simulation starts
deviating from the analytical solution. This corresponds to the
point where the potential curve requires a Taylor expansion
with higher-order terms than the first-order one of Eq. (3).
The results for � = 0.10 Å suggest that the requirement of
detailed balance is respected for sufficiently small �’s. In the
next section, we prove that this is indeed the case.

C. Detailed balance in the tfMC algorithm

tfMC simulates the correct probability density function of
a canonical ensemble if it meets the requirement of detailed
balance, i.e.,

P (state V ′|state V) exp (−βU )

= P (state V|state V ′) exp (−βU ′). (13)

In Eq. (13), U and U ′ are the potential energies of the states V
and V ′, respectively. If � is sufficiently small, U ′ − U can be
written as

U ′ − U ≈ −
∑
i,j

Fi,j ξi,j� =
∑
i,j

(U ′
i,j − Ui,j ). (14)

Substituting Eq. (14) into Eq. (13) and using the fact that
P (state V ′|state V) = ∏

i,j Pi,j (ξi,j ) lead us to the situation
that if

Pi,j (ξi,j )

P ′
i,j (ξ ′

i,j )
= exp [−β(U ′

i,j − Ui,j )] (15)

is true for all particles i in all directions j , the requirement of
detailed balance as formulated in Eq. (13) is satisfied. Proving
Eq. (15) for a particle i in a direction j hence ensures the
detailed balance condition of Eq. (13).

For the purposes of clarity, the indices i and j are dropped
in what follows. Note that the first-order Taylor expansion
of Eq. (14) yields F = F ′ and hence P = P ′ [see Eq. (11)].
Further, it is clear that because ξ� represents the particles

displacement, ξ = −ξ ′. These considerations combined with
Eq. (11) prove that tfMC complies with Eq. (15) when ξ > 0,
as

P (ξ )

P ′(ξ ′)
= eγ − eγ (2ξ−1)

eγ (2ξ ′+1) − e−γ
= eγ − e−(β�U+γ )

e(β�U+γ ) − e−γ

= e−β�U/2(e(β�U/2+γ ) − e−(β�U/2+γ ))

eβ�U/2(e(β�U/2+γ ) − e−(β�U/2+γ ))

= e−β�U . (16)

When ξ < 0, the result is analogous, which confirms that the
tfMC method obeys the requirement of a detailed balance for
a canonical ensemble.

The intuitive approach used in this article to derive the
tfMC distinguishes it from other fbMC methods inasmuch as
all input parameters have an unambiguous physical meaning.
Although the work of Timonova et al.18 properly defined the
potential and the limitations of fbMC techniques, we here
extend the method by including the concept of time in tfMC
in the following section.

D. Time in the tfMC algorithm

In order to quantitatively compare the tfMC with classical
MD, the notion of time should be quantified. We consider a
particle i moving along the j direction in the interval [x∗

i,j −
�/2,x∗

i,j + �/2]. The force exerted on this particle in this
direction in the tfMC method is given by the constant Fi,j . For
a given iteration n, the particle i moves then in the direction j

by a distance

xi,j (tn + �tn) − xi,j (tn) = vi,j (tn + �tn/2)�tn. (17)

Interestingly, the time step �tn should be the same for all
particles, but �tn and �tm do not need to be identical when
n 	= m. This implies that, unlike MD, the notion of a constant
time step along the simulation cannot be used. However, one
can use the notion of an average time step 〈�t〉 through the
simulation as illustrated below.

Using Eq. (17) and exploiting the fact that velocities and
coordinates are independent variables due to the form of the
Hamiltonian used in Eq. (2), 〈�t〉 can be expressed as

〈�t〉 = 〈|�xi,j |〉
〈|vi,j |〉 , (18)
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with 〈 〉 being the expectation value. The averaged speed in
Eq. (18) is easily found as

〈|vi,j |〉7 =
∫ ∞
−∞ |pij /mi |e−βp2

ij /(2mi )dpij∫ ∞
−∞ e−βp2

ij /(2mi )dpij

= (2/mi)
∫ ∞

0 pij e
−βp2

ij /(2mi )dpij∫ ∞
−∞ e−βp2

ij /(2mi )dpij

=
√

2kBT

πmi

. (19)

Note that the averaged speed of the particle depends on both
its mass and the temperature T of the system. From Eq. (18)
it follows that 〈|�xi,j |〉 has to show the same dependence
to prevent generating the unphysical situation that 〈�t〉 is
different for particles with different masses. However, Eq. (11)
shows that in its current formulation ξi,j and hence �xi,j [due
to Eq. (10)], is independent of the particles mass. This problem
is solved by deriving an expression for the expectation value
of |ξi,j | from which a constraint for 〈|�xi,j |〉 follows.

Using γ again as defined in Eq. (9), the expectation value
of |ξi,j | can be rewritten as

〈|ξi,j |〉 =
∫ 1

−1
|ξi,j |pi,j (ξi,j )dξi,j

= −
∫ 0

−1
ξi,j

eγ (2ξi,j +1) − e−γ

eγ − e−γ
dξi,j

+
∫ 1

0
ξi,j

eγ − eγ (2ξi,j −1)

eγ − e−γ
dξi,j

= 1

2

(
1 − γ cosh (γ ) − sinh (γ )

γ 2 sinh (γ )

)
. (20)

In the limit γ → 0, 〈|ξi,j |〉 is equal to 1/3 and monotonically
increases to the value 1/2 for the limit |γ | → +∞. As a result,
Eq. (20) can be rewritten in a first-order approximation as

〈|ξi,j |〉 ≈ 1
3 , (21)

from which follows together with Eq. (10) that

〈|�xi,j |〉 ≈ �

3
. (22)

The approximation of Eq. (21) turns out to be relatively robust;
during the numerical tests performed in Sec. III, |γ | has never
been observed to be larger than 2. Assuming the border case
in which Eq. (20) is evaluated for γ = 2 or γ = −2, 〈|ξi,j |〉
adopts a numerical value of ±(1/3 + 0.035), which lies within
a reasonable numerical accuracy.

Equations (18) and (19) set the constraint that 〈|�xi,j |〉 has
to have a mass dependence to obtain a relevant 〈�t〉 definition.

This can be achieved by normalizing the maximum atomic
displacement �i for particle i such as

�i = �

√
mmin

mi

, (23)

with mmin = min {mi | i = 1, . . . ,N}. This implies that the
lightest element in the system considered will have the largest
average displacement, and that the other elements will be
associated with a smaller average perturbation than �. Since
〈|�xi,j |〉 now shows a dependence on the mass, Eq. (9) is
reformulated as

γi,j = Fi,j�i

2kBT
(24)

and the relation between x∗
i and x∗

f in Eq. (10) takes the form

x∗
f = x∗

i + � · ξ , (25)

with � = (�1,�1,�1,�2, . . . ,�N ). The averaged time step
per simulation is now given by

〈�t〉 ≈ �

3

√
πmmin

2kBT
. (26)

For illustration purposes, we summarized the evolution of
the averaged time step per iteration for a set of different
temperatures and atomic masses in Table I, for a fixed value
of �. As expected from Eq. (26), the time step increases with
mass mmin and decreases with T . The time step in tfMC is in
most situations larger than the “standard” 1 fs time-step used
in classical MD simulations. Although this is a promising
result, it should be noted that the time-steps mentioned in
Table I are still too small to allow accessing most of the
long-time atomic events. However, tfMC combined with other
acceleration techniques1,2 could potentially solve this problem.

As already pointed out in the introduction, the elegance
of this approach lies in its simplicity: The proposed tfMC
algorithm basically consists of five simple equations, namely
Eqs. (11) and (23)–(26), that are fed by the initial positions
and masses of the particles, their associated atomic forces,
the temperature of the system, and a small-enough maximum
displacement �. While the positions, masses, and temperature
are fixed input parameters, the atomic forces can be easily
generated using either first-principles simulations or inter-
atomic potentials. The definition of a boundary for a proper
conservative atomic displacement is tackled in Sec. III A,
where we will show that a � = 0.10 Å seems to be a
conservative choice for many, if not most situations.

TABLE I. The time steps for different combinations of temperature and minimum mass (with � = 0.12 Å).

T = 200 K T = 300 K T = 400 K T = 500 K T = 600 K T = 700 K
mmin = 1 u 〈�t〉 = 3.89 fs 〈�t〉 = 3.17 fs 〈�t〉 = 2.75 fs 〈�t〉 = 2.46 fs 〈�t〉 = 2.24 fs 〈�t〉 = 2.08 fs
mmin = 50 u 〈�t〉 = 27.5 fs 〈�t〉 = 22.4 fs 〈�t〉 = 19.4 fs 〈�t〉 = 17.4 fs 〈�t〉 = 15.9 fs 〈�t〉 = 14.7 fs
mmin = 100 u 〈�t〉 = 38.9 fs 〈�t〉 = 31.7 fs 〈�t〉 = 27.5 fs 〈�t〉 = 24.6 fs 〈�t〉 = 22.4 fs 〈�t〉 = 20.8 fs
mmin = 150 u 〈�t〉 = 47.6 fs 〈�t〉 = 38.9 fs 〈�t〉 = 33.7 fs 〈�t〉 = 30.1 fs 〈�t〉 = 27.5 fs 〈�t〉 = 25.4 fs
mmin = 200 u 〈�t〉 = 55.0 fs 〈�t〉 = 44.9 fs 〈�t〉 = 38.9 fs 〈�t〉 = 34.8 fs 〈�t〉 = 31.7 fs 〈�t〉 = 29.4 fs
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III. RESULTS AND DISCUSSION

To test the tfMC method, and in particular the concept of
time associated with this method, two cases have been studied.
The first case in Sec. III A is a simple one-dimensional system.
The main goal of this section is to acquire more insights in the
approach. The second case in Sec. III B is more realistic and
intends to illustrate the accuracy of the description obtained.

A. Simple one-dimensional test case

To gain some insights into the performance of the
tfMC algorithms, we inspired ourselves with the work of
Timonova et al.18 and considered the problem of diffusion in
a simple one-dimensional sinusoidal potential surface U (x),

U (x) = Q

2

[
1 − cos

(
2πx

R

)]
, (27)

in which Q and R are the energy barrier and the period of the
potential, respectively. In this potential the particle will mainly
move in the valleys of the potential surface and irregularly
cross a peak of the sinusoidal barrier to move to a neighboring
valley. For this case, the rate k at which these events happen
can be calculated analytically using the transition state theory
(TST)21,22 and is equal to

k =
√

2kBT

πm

〈
δ

(
|x| − R

2

)〉
=

√
2kBT

πm

exp [−Q/ (kBT )]∫ R/2
−R/2 exp [−U (x)/ (kBT )]dx

, (28)

in which δ(x) is the Dirac delta function. The analytical
formulation of the rate constant offers the possibility of
rigorously comparing the simulated data to the theoretical
ones.

We calculated the rate constant using two different methods.
In the first one, the number of occurrences for which the
particle crosses a peak of the sinusoidal potential is counted
and divided by the total time The latter is simply defined
as N〈�t〉 where N is the number of MC steps and 〈�t〉 is
the averaged simulation time defined in Eq. (26). The other
approach consists of calculating the diffusion coefficient via
the Einstein relation

D = lim
�t→+∞

〈[x(t0 + �t) − x(t0)]2〉
2d�t

, (29)

with d being the dimensionality of the system, equal to 1 in
this case. The link with the rate constant k is built using the
relation

k = 2dD

(R/2)2
. (30)

Note that Eq. (30) contains a factor 2 in the denominator,
which is not present in the original form of this equation.23 This
additional factor is bound to the definition of the occurrence of
a crossing event that has been used to describe the simulated
particle. In a classical approach, when a particle crosses the
top of the sinusoidal potential, it is accelerated downhill until it
reaches the minimum of the potential basin. This is somewhat
different from the behavior of the particle simulated by tfMC.

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 0.0005  0.001  0.0015  0.002  0.0025  0.003  0.0035

ln
(k

) 
[ln

(H
z)

]

1/T [1/K]

FIG. 3. The Arrhenius plot for the sinusoidal potential with R =
1 Å and Q = 0.25 eV. The dotted line represents the theoretical
line obtained using Eq. (28) (TST). The diamonds are obtained by
counting the number of jumps divided by time, while the circles
are obtained by using Eqs. (29) and (30). The error bars around the
diamonds are 1.96 times the obtained standard deviation.

Indeed, due to the probabilistic description, there is a nonzero
probability that, although the simulated particle has crossed
the maximum of the potential curve, it returns to its initial
valley. If we define a jump as the occurrence of the particle
crossing a maximum (consistent with the first method used),
then the numbers of jumps of the real and simulated particles
are in excellent agreement (see Fig. 3). The factor 2 present in
the denominator of Eq. (30) accounts for a proper description
of the jump length of the particle. Note that the agreement
between the two techniques is of prime importance. In practice,
the rate constant of atomic diffusion cannot be easily computed
via the first approach, since it requires knowing the position
of the transition state.

The tfMC algorithm has been tested for a sinusoidal
potential with aa period R = 1 Å and a barrier height Q =
0.25 eV. � is chosen to be equal to 0.10 Å, the mass of the
particle was taken equal to 60.0 u, and a temperature range
from 300 to 1200 K has been considered. Each diamond
point in Fig. 3 was obtained by averaging the results of
15 independent tfMC runs per temperature, each consisting
of 107 steps. The error bars where obtained by multiplying
the standard deviation calculated for these 15 MC runs by
a factor of 1.96. When the 15 obtained data points have
a normal distribution, these error bars stand for the 95%
confidence interval. The circles were obtained via a single
tfMC run consisting of 7.5 × 107 steps at each temperature.
The diffusion coefficient in each of these runs is found by a
linear fit of the average displacement squared as a function
of �t . The slope of this linear fit is taken equal to 2D [see
Eq. (29)]. The linear fit was carried out in the interval �t ∈
[0.5 × 103, 1.0 × 103] fs; for smaller �t’s a parabolic line is
observed, which reflects the ballistic transport. At higher �t’s,
a deviation from the linear regime is obtained due to the finite
simulation time. Figure 3 clearly illustrates that the results
generated by the tfMC approach are in excellent agreement
with the analytical ones, independent of the technique used.
This suggests that our approach is valid for sufficient small �.

In Sec. II B, we mentioned that the size of � and the
curvature of the potential surface go hand in hand with the

134301-6



UNIFORM-ACCEPTANCE FORCE-BIAS MONTE CARLO . . . PHYSICAL REVIEW B 85, 134301 (2012)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.2  0.4  0.6  0.8  1

Q
 [e

V
]

R [Ang.]

FIG. 4. Evolution of the computed Q values with respect to the
period R. The dashed line corresponds to the set-point chosen for Q.

accuracy of the description obtained by the ifMC approach.
A potential surface having areas of large curvatures requires
small �, while in a rather smooth potential surface larger
values of � are allowed. In order to gauge the impact of the
curvature of the potential surface on �, we have computed (see
Fig. 4) the evolution of the computed Q values with respect to
the period R as generated, by increasing both R and Q values
with 0.1 per step in Eq. (27). At low values of R, the simulated
value for Q is significantly different from the set-point chosen
for Q. From R equal to 0.5 Å onward, the match improves,
reaching the 95% confidence interval for even the most varying
surface (R = 0.5 Å and Q = 0.5 eV). From this it seems that
� = 0.10 Å is a rather robust tfMC step that is able to cope
with strongly varying potential surfaces.

B. Cu-adatom diffusion

We benchmarked the results generated with the tfMC
algorithm against the ones obtained with a classical MD
approach in a three-dimensional system. Given the fact that
the mechanisms that take place during the diffusion of Cu
on a fcc copper (001) surface are well documented,24–26 they
constitute as an ideal reference system. The model we used
consists of a diffusing adatom on top of a copper (001) surface
made of six consecutive layers of atoms (each layer contains
32 atoms) for a surface area of 14.5 × 14.5 Å. The bottom layer
is kept fixed during the simulation. The Cu-Cu interaction is
described by an embedded atom method (EAM) potential.27,28

The diffusion coefficients have been computed using
Eq. (29) and have been converted to a rate constant via Eq. (30).
Following TST, the rate constant takes the form

k = ν0 exp

(
− Ea

kBT

)
, (31)

with ν0 the frequency factor and Ea the activation energy. Note
that, for the MD simulations, the factor two in the denominator
of Eq. (30) has been excluded. The tfMC simulations were per-
formed using � = 0.10 Å, which corresponds to an averaged
time step ranging from 7.8 to 10 fs per iteration for isothermal
simulations, with a temperature evolving from 550 to 900 K.
In the low-temperature regime (500–700 K), 20 × 106 tfMC

FIG. 5. (Color online) Illustration of the atomic movement of
the Cu adatom on top of the Cu(001) surface with respect to time at
T = 575 K with tfMC. The different colors represent the time course.
The numbering illustrates the number of jumps undertaken by the Cu
adatom.

steps were performed with a temperature interval of 25 K
per simulation. At higher temperatures (750–900 K), 5 × 106

tfMC steps were carried out with a temperature increment
of 50 K. The MD simulations (using a Verlet algorithm29

and the Nosé thermostat30) use a time step of 1 fs and took
place in a temperature range of 650–900 K with a temperature
increment of 50 K. At each temperature 5 × 106 iterations
where performed.

Figure 5 illustrates the dynamics of the adatom on the
Cu(001) surface with tfMC. Interestingly, tfMC reproduces
correctly the different mechanisms that occur during the diffu-
sion process as observed in molecular dynamic simulations.26

Up to ±630 K the adatom remains mainly trapped in a local
potential well, and irregular jumps occur toward a neighboring
potential well. At higher temperatures, an additional process
takes place, i.e., an exchange mechanism occurs between the
adatom and the underlying layer. The atom of the underlying
layer that is expulsed through the exchange mechanism
typically occupies a potential well close to the former adatom
position. We also observe a concerted mechanism in which a
new adatom pops out of the surface several angstroms away
from the original potential well. This effect occurs when the
original adatom inserts itself in the underlying surface layer

TABLE II. The activation barrier Ea and frequency factor ν0

calculated in the present work and as reported in literature (Refs. 26
and 31–35).

Source Ea (eV) ν0 (THz)
Present work (MD) 0.52 52.5
Present work (tfMC) 0.48 14.7
Kong (2008)31 0.51 35.8
Yildirim (2007)32 0.50 13.0
Yildirim (2006)33 0.51 7.5
Kurpick (2001)34 0.44 15.4
Boisvert (1997)35 0.49 20.0
Evangelakis (1996)26 0.43 20.9
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FIG. 6. Logarithm of the rate constant k

plotted versus inverse temperature for the MD
(circles) and tfMC (diamonds) simulations. Lit-
erature values (Refs. 26 and 31–35) are shown
as straight lines in different formats according
to the research work.

and pushes the neighborhood atoms sideways. As a result,
the atoms in the layer exchange their positions until one
of them is ejected toward the surface.26 Note that, because
this chain process is fast, it contaminates the statistics used
for the diffusion calculation of the adatom hopping. As a
result, we eliminated these events from both the tfMC and
the MD such that only the surface hopping mechanism is
considered.

Figure 6 and Table II summarize the results obtained with
the MD and tfMC methods together with recent literature
results.26,31–35 Note that the latter are obtained with a set of
different Cu-Cu interaction potentials and diffusion-coefficient
calculation approaches. However, the work reported in
Refs. 31– 33, and 35 use the same formulation for the potential
as the one used in this work. Further, it should be noted that
the frequency-factor calculations are more sensitive to errors
than the activation-energy ones, explaining the large spread in
values reported in the literature.

The error bars of our results in Fig. 6 were obtained by
calculating the 95% confidence interval, using a bootstrap
technique36 (no biasing or lack of symmetry was present
in our data), for the mean-square displacement in Eq. (29).
A relatively small difference is observed between the MD
and tfMC computed data. Both lie within the distribution
of the values reported in literature. The best possible fit
for the MD Arrhenius plot leads to an energy barrier of
0.52 eV and a frequency factor of 52.5 THz, with confidence
intervals of [0.49, 0.56] eV and [45.9, 126] THz, respectively.
The energy barrier and frequency factor obtained using the
tfMC simulations are 0.48 eV and 14.7 THz with confidence
intervals of [0.44, 0.51] eV and [7.80, 23.0] THz, respectively.
The confidence intervals were obtained as the limiting values
for a fitted line falling inside the intervals plotted in Fig. 6.
Note that the calculated energy barriers of both simulations
agree very well with each other and are in line with literature
reports (see Table II). The computed frequency factor is
significantly different for the MD and tfMC techniques, where
the tfMC approaches provide values closer to the literature (see
Table II).

IV. CONCLUSIONS

A new uniform-acceptance force-bias Monte Carlo method
is developed based on the fundamental principles of a canon-
ical ensemble. This approach leads to a further understanding
of the fbMC methods without compromising the simplicity,
inherent in this technique. The proposed method offers access
to a statistically relevant time scale, allowing for a quantitative
comparison with classical MD. As observed before,18 force-
bias MC techniques are able to accelerate atomic events in
comparison to classical MD simulations. In this work, we
report that the time step taken per MC iteration is, in many
cases, indeed larger than the “standard” 1 fs used for classical
MD simulations, and mainly depends on the temperature of
the system and on the mass of the lightest element.

The method has been successfully tested in a simple one-
dimensional sinusoidal potential. The simulated rate constant k
and diffusion coefficient D gave excellent agreement with the
analytical solution for sufficiently small atomic perturbation
steps (�). � = 0.10 Å seems to be a relatively conservative
perturbation step that could be used in most situations with
atomic-size periodicity of the potential. A second reference
system has been considered, in which the hopping of a copper
adatom on top of a (100) copper surface has been studied using
both MD and tfMC. The results of both simulations are in good
agreement with each other and with values reported in liter-
ature. Only a small but significant difference is observed be-
tween the frequency factors of the MD and tfMC simulations.

The inclusion of a time scale, together with the appealing
simplicity of the method and the enhancement of the time step
compared to the classical MD approach, make this method
very promising for materials-science simulations.
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