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Abstract  

Highly optimized embedded-atom-method (EAM) potentials have been developed for 14 

face-centered cubic (fcc) elements across the periodic table. The potentials were 

developed by fitting the potential energy surface (PES) of each element derived from 

high-precision first-principle calculations. The as-derived potential energy surfaces were 

shifted and scaled to match experimental reference data. In constructing the PES, a 

variety of properties of the elements were considered, including lattice dynamics, 

mechanical properties, thermal behavior, energetics of competing crystal structures, 

defects, deformation paths, liquid structures, and so forth.  For each element, the 

constructed EAM potentials were tested against the experiment data pertaining to thermal 

expansion, melting, and liquid dynamics via molecular dynamics (MD) computer 

simulation. The as-developed potentials demonstrate high fidelity and robustness. Owing 

to their improved accuracy and wide applicability, the potentials are suitable for high-

quality atomistic computer simulation of practical applications. 
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I. Introduction  

The thermodynamics and kinetics of materials are dictated by their potential energy 

surfaces (PES), [1] which can be seen as a function of atomic positions. Hence, to 

investigate material behavior under various thermodynamic conditions, proper 

descriptions of the interactions between atoms are necessary. Quantum mechanics 

provides the basis for accurate derivation of the total energy of any given system,[2,3] but 

unfortunately, at the current time, approaches based on quantum mechanics are still 

limited to small systems, which renders them intractable for large-scale computer 

simulation,[4] especially for metals. Therefore, for large-scale computer simulation (both 

spatially and temporally), computationally less intensive approaches toward atomic 

interactions, without compromising too much of the accuracy of quantum mechanics, are 

routinely in demand. To that end, the objective of this paper is to develop high-quality, 

semi-empirical interatomic potentials for fcc elements.   

For metals, a widely used semi-empirical potential formalism is the embedded-atom 

method (EAM), [5-8] which is rooted in the density functional theory (DFT).[9] Over the 

last twenty years, a number of other many-body potential models have been proposed, 

many of which also originated from quantum mechanics and share similar mathematical 

forms with the EAM , such as the Finish-Sinclair model,[10-12] second-order moment 

approximation of tight-binding,[13] and the effective-medium-theory model,[14,15] to name  

a few. The EAM potential model overcomes several problems encountered with two-

body potentials, for instance, the coordination independence of bond-strength and the 

zero value for the Cauchy pressure for metals ( 04412 =− CC ).  Currently, EAM potentials 

have been applied to study many aspects of materials behavior, mostly semi-

quantitatively.  

The popularity of the EAM model (and similar models) results from its underpinnings in 

quantum mechanics, as well as its mathematic simplicity, which makes it conducive to 

large-scale computer modeling. Parameterization of different EAM models aimed at 

developing new EAM potentials with better accuracy and applicability has been a 

recurring theme in literature.  A recent popular practice for developing interatomic 

potentials is to fit the PES of small systems derived by first-principles calculations, [16, 17] 
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with or without experimental data; the well-known "force-matching" method, originally 

proposed by Ercolessi and Adams [18] belongs in this category. In the force-matching 

method, the forces of each atom calculated from semi-empirical potentials are optimized 

to match first-principles data (i.e., the slopes of the PES). So far, the PES-fitting method 

has been used to construct potentials for various materials such as metallic elements, 

alloys, semiconductors, and molecules.[16-22] However, due to the tedious nature of this 

fitting process, the number of interatomic potentials derived from PES-fitting is still 

limited in literature.  

While a plethora of EAM potentials have been developed for metals over the decades, 

especially for pure elements, most of them were fitted to a limited number of 

experimental data, and may not be adequate to describe phase spaces where the potentials 

were not “trained”, thus exhibiting inevitable shortcomings. In this work, we were 

motivated to develop EAM potentials with better overall performances (i.e., improved 

accuracy and wider applicability) by using the PES-fitting method. Different from 

previous models, we laid special emphases on lattice dynamics as well as liquid 

structures and dynamics, which have not received enough attention in previous works. In 

this paper, details of the fitting procedure and their results will be presented using Au as 

an example.  Au was chosen for the following two reasons: firstly, among the late 

transition metals, Au is believed to be difficult for high-level EAM parameterization. [24-

26] Secondly, there already exists in literature several many-body potentials developed for 

Au over the years,[6,23-27] which in turn can be exploited here to  evaluate the accuracy or 

deficiency of the current potential model.  Such potential fitting efforts have been 

extended systematically to 14 fcc metals across the periodic table, including 8 transition 

metals (Ni, Cu, Rh, Pd, Ag, Ir, Pt, Au), two simple metals (Al, Pb), two alkaline earth 

metals (Ca, Sr) and two rare earth metals (Ce, Yb).  For all the elements studied, key 

fitting results will be tabulated and compared with experimental data whenever available. 

The EAM potentials developed for these metals have been made available through the 

World Wide Web[28] with formats compatible to several atomistic simulation packages, 

such as LAMPS,[29] IMD,[30] DL_POLY,[31] and XMD.[32]  
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II. Computational Methodology 

A. Selection of atomic configurations  

To obtain the PES of each element, a few hundred atomic configurations were selected 

and subjected to high-precision DFT calculations (see below), with each configuration 

typically containing approximately 100 atoms. The DFT data were then used to represent 

the PES of each element for potential fitting described in section II.C.  The selected 

configurations span a wide range of the phase space and encompass phases encountered 

in typical materials research. The atomic configurations can be categorized into the 

following groups:  

(1) Equations-of-state of different crystal structures. In the present work, equations-of-

state (EOS) of six crystal structures with distinct space-group numbers were considered: 

face-centered cubic (fcc), body-centered cubic (bcc), hexagonal close packing (hcp), 9R, 

simple cubic (sc), and diamond cubic (dc) structures. For each crystal structure, we 

calculated at least 12 atomic volumes spanning from ~ 05.0 V  to ~ 05.3 V ( 0V stands for the 

equilibrium atomic volume of the element). 

(2) Defects in fcc crystals. For each element, a large collection of crystal defects were 

included: point defects (vacancies, interstitials), planar defects (surfaces and stacking 

faults), and clusters (less than 25 atoms). The defects were relaxed using ab initio 

geometric optimization techniques.  

(3) Deformation paths. Two archetypal deformation paths were studied: the fcc-bcc Bain 

deformation path and the trigonal Bain deformation path. Along each deformation path, 

more than 20 configurations were selected.  

(4) Trajectories along the melting process of fcc crystals. Using NVT (constant number 

of particles, volume, and temperature) ensembles, ab initio MD simulations were 

performed to simulate the melting process of the fcc structure of each element at different 

number densities. To simulate melting, each ab initio MD run typically lasts 1200 steps 

with a 2 fs time-step.  Along each melting trajectory, 10 configurations were selected at 

different temperatures, which are important in capturing the thermal behavior of crystals 

upon heating.  
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(5) Equations-of-state of liquids at different temperatures. Well-equilibrated liquids were 

compressed and dilated uniformly to different volumes at high temperatures. Ten 

configurations were selected to represent the EOS of the liquid, which are deemed 

essential to simulate the liquid dynamics of the elements. 

(6) Trajectories along the cooling process of liquids. The liquids equilibrated at high 

temperatures were quenched at a fast rate to room temperature to obtain the glass 

structures employing ab initio MD. Ten configurations were obtained along each quench 

trajectory.  

(7) MD-important configurations. Configurations along classical MD trajectories 

employing ad hoc EAM potentials were added to the first-principles database during 

subsequent iterative runs to improve the pre-existing EAM potentials. Classical MD was 

typically performed with NPT ensembles (constant number of particles, pressure and 

temperature) to simulate the melting process of each metal. 

B. DFT calculation  

Ab initio calculations were performed using the pseudopotential and planewave method 

implemented in the Vienna Ab-initio Simulation Package (VASP).[33] In all the VASP 

calculations, the projected augmented waves (PAW)[34] method and the generalized-

gradient approximation (GGA) were used.  The spin polarization effect was not 

considered in the current work. The PAW-based pseudopotentials were generated by 

Kress[35] and provided with the commercial VASP package. The valence electrons of 

each element during ab initio calculations are specified in Table I.  For high-precision 

single-point electronic structure calculation, we typically used 3x3x3 Monkhorst-Pack k-

point grids,[36] which ensure that the total energy is converged within 2~5 meV/atom. For 

ab initio molecular dynamics and geometry optimization, only the Γ point was used, 

which was found to be adequate for the large unit-cells involved.  

 

C. Potential fitting procedure 

The embedded atom method was used to fit the PES of the systems, which is written as:[4]  

∑ ∑+=
ji i

iijtot nFrE
,

)()(φ  and ∑=
j

iji rn )(ρ        (1) 
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where )(rφ , )(rρ and )( inF are the pair, density, and embedded functions. For the 

meanings of the three functions, the reader is referred to Ref. [4]. Analog to this analytic 

form is the glue model. [15] Here, we express the three functions with quintic spline 

functions for each element. The choice of high-order spline functions (quartic or quintic 

splines) over cubic splines is to ensure smooth interpolations of the second derivatives of 

the total energy of the system. We opted for quintic splines because they are 

mathematically convenient to implement in computational codes. To this end, we adopted 

the algorithm proposed by Herriot and Reinsch[37] for natural quintic spline interpolations. 

We typically used 15 equidistant spline knots for both the density and the pair functions, 

and 6 spline knots for the embedding function. Both the density and pair functions, as 

well as their first and second derivatives with respect to r are forced to be 0 at a cutoff 

distance, which is set to be slightly larger than the fifth atomic shell in their equilibrium 

fcc lattices. Potentials with shorter cutoff distances have also been developed and are 

available upon request, but their results will not be discussed in the current paper.  Since 

ab initio data are difficult to come by at very short interatomic distances, we limit our 

fitting range of the EAM potentials to a minimum distance of 1.5 Å. Smooth spline 

functions can be used to extrapolate the functions to smaller interatomic distances.  

For PES potential fitting, the forces on the atoms, total energies, and stress tensors of all 

configurations obtained from first-principles calculations were gathered in the fitting 

database. However, due to several approximations, DFT calculations do not always 

generate results that match experimental data (e.g., DFT with GGA approximations often 

overestimates the lattice constants of transition metals). To eliminate the discrepancies 

between DFT calculations and experimental data, we set out to deform the PES using 

linear scaling. The following two transforms were applied to the PES:  

RR ⋅→ A  and CEBE +⋅→ ,        (2) 

where R and E are the atomic coordinates and potential energy of the system, and 

A , B ,C are transformation parameters, determined based on the following rules:  The 

PES was scaled and shifted such that the new PES described by EAM potentials yields 

the lattice constants and cohesive energy at room temperature, and the liquid density at 

the melting temperature to be consistent with experimental values. In other words, for the 

two transformations, A sets the length scale; B controls the liquid density; and C adjusts 
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the cohesive energy. The three transformation parameters were obtained through a 

recursive scheme with the following steps.  

(1) Obtain A by matching the lattice constant using the pre-parameterized EAM potential, 

and transform the PES according to Eq. (2). 

(2) Re-parameterize the EAM potential. 

(3) Obtain B by matching the liquid density using the pre-parameterized EAM potential, 

and transform the PES according to Eq. (2). 

(4) Re-parameterize the EAM potential. 

(5) Obtain C by matching the cohesive energy using the pre-parameterized EAM 

potential, and transform the PES according to Eq. (2). 

(6) Re-parameterize the EAM potential.  

(7) Repeat step (1) until A, B and C converge.   

 

While the energy shift C can be determined with relative ease, the determination of A and 

B needs more fine-tuning, as the two quantities are weakly coupled: the scaling of the 

coordinates will have an effect on the liquid density of the system, and vice versa. 

Through a few iterations, we found that in the best values A typically lies in the range of 

0.975~1.015 and B lies in the range of 1.0 ~ 1.5, depending on the element (listed in 

Table I). Next, forces on all atoms and stress tensors of each configuration were rescaled 

accordingly. Although different in details, a similar practice was performed by Grochola 

et al., [26] in fitting an Au EAM potential. It is worth noting that the rescaling scheme 

presented here is only an empirical workaround to overcome accuracy issues encountered 

in DFT calculations. This way, the deformed first-principles PES has better agreement 

with the experiments. In the following sections, we refer to all ab initio data as the 

transformed data.   

 

We further augmented the database by including other reliable experimental data, such as 

phonon frequencies and elastic constants, at different temperatures. We typically fit the 

phonon frequencies iν  (both longitudinal and transverse modes) of equilibrium fcc 

structures at the X point, and three elastic constants ( 11C , 12C and )44C  of equilibrium fcc 
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structures.  Altogether, they comprise the fitting database for the potential development 

explained below.  

The simulation package POTFIT[17], after non-trivial modifications (e.g., implementation 

of quintic spline interpolation, phonon and elastic constants calculation, and optimization 

techniques, etc), has been employed for potential fitting. Details of the POTFIT protocols 

can be found in Ref. [17]. In short, the potential fitting is essentially a nonlinear 

optimization process, with the fitting error defined through a least-squares function 

formed from the differences of the EAM and DFT (and experiment) values:  

BPESF ZZZZZZ ++++= ,        (3) 

where  
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are contributions from forces, stress tensors, total energies, phonons, and elastic constants, 

respectively. In the above definitions, iW denotes the fitting weights of different 

components, AN the number of atoms in the database, 
jxiF ,  the atomic force along 

the jx direction, cN the number of atomic configurations, ji ,σ the j the component of the 

stress tensor, iE  the cohesive energy of ith atomic configuration, Np the number of 

phonon frequencies, NB the number of elastic constants, and iv  and B represent phonon 
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frequency and elastic constant, respectively. The fitting weights, iW , were introduced by 

an trial-and-error approach with special attention paid to the properties of defects. In fact, 

we also included an additional penalty function in the cost function Z  of Eq. (3) to 

impose constraints on a few terms. Specifically, we wanted the density function to be 

everywhere positive, and the second derivative of the embedding function to be positive, 

i.e., 0)( >rρ  and 0)(" >ρF . In the present work, we adopted the simulated annealing 

technique [38] to minimize the target function Z , namely the difference between the 

transformed PES and the one evaluated from ad hoc EAM potentials.  Optimized 

potentials were finally obtained once the target function showed no sign of decrease after 

prolonged simulation time.  

 

III. Results and Discussion 

In the present work, since a total of 36 fitting parameters were used in quintic spline 

interpolations to represent the three functions )(rφ , )(rρ and )( inF  in the EAM 

formalism, which introduces flexibility in potential fitting, it is essential to examine the 

profiles of the three functions to show they are not ill-behaving, wavy curves. Fig. 1 

shows the profiles of the three functions for Au, and demonstrates that the profiles are 

slowly varying, suggesting that the fitting results are not from non-physical mathematical 

entities.  

To demonstrate the overall performance of the as-developed EAM potential, we first 

compare the present EAM model with previous models for Au in terms of the accuracy of 

predicting a set of materials properties, as shown in Table II.  It can be seen that the 

present EAM potential is able to produce better matches with experiments, such as elastic 

constants, vacancy formation energy, stacking fault energy, melting temperature, liquid 

density and energy differences between fcc, hcp, and bcc structures, etc. In the following, 

we further analyze materials properties predicted by the as-developed EAM potentials. 

Through comparisons with DFT data (which were used in potential fitting), we 

demonstrate the applicability of the optimized EAM potentials. 

A. Lattice dynamics 
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In this section we demonstrate that the optimized EAM potentials can adequately address 

the issue of lattice dynamics. All lattices have thermal vibrations at finite temperatures, 

and consequently, the equilibrium lattice parameters of the lattices change with 

temperature. At a given temperature, correct derivation of the equilibrium lattice 

parameter )(Tae should be preceded by minimizing the Helmholtz free energy ),( TaF of 

the crystal at ambient pressure. Unfortunately, in a majority of previous EAM treatments, 

the temperature effect was explicitly neglected. The equilibrium lattice constants were 

often taken as the values corresponding to the minimum of the total energy )(aEtot .  

 

In computer simulations, there are several distinct approaches to treating the temperature 

effect, such as the quasi-harmonic approximation (QHA) [39,40]  and the molecular 

dynamics (or Monte Carlo) method. [3]  Both treatments are approximate methods 

complimentary in different temperature regimes. Atomic vibrations, in the limit of 

absolute zero temperature, are purely harmonic, and therefore, in the low temperature 

regime, one can use the quasi-harmonic approximation (QHA) to treat vibrating lattices 

and ignore the anharmonic lattice vibration effect. As temperature increases, phonon-

phonon coupling becomes significant and even atomic diffusion becomes possible. In this 

temperature regime, one has to switch to alternative approaches, such as molecular 

dynamics (MD) or Monte Carlo (MC) to treat lattice dynamics. MD or MC methods, 

however, are not suitable for low-temperature lattice dynamics because the quantum 

effect (i.e., zero-point vibration[41]) is not considered in these two approaches.  

In the present work, in order to obtain the equilibrium lattice parameter, we performed 

both the QHA and MD methods to evaluate the temperature effect of the systems. In the 

QHA, the total Helmholtz free energy of the crystal at temperature T and lattice constant 

a is given by:  

∑
⎭
⎬
⎫

⎩
⎨
⎧

++=
s B

s
BZPTtot Tk

ahvkaEaETaF
, 2

),(sinh2ln)()(),(
q

q     (4) 

where )(aEtot  is the static energy given by Eq.(1) at a given volume V , or lattice constant 

a. ),( as qν is the phonon frequency of sth mode for a given wave vector q and lattice 

constant a; Bk is the Boltzmann constant, and h Plank’s constant. )(aEZPT is the zero-
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point energy defined as ∑=
s

sZPT ahaE
,

),(
2
1)(

q
qν .  

Thus, the evaluation of the total Helmholtz free energy ),( TaF  in the QHA pertains to 

the assessment of the vibrational properties of the system. For any given lattice parameter 

and wave vector, the phonons can be computed by diagonalizing the dynamical matrix 

derived from the EAM potential according to:[41]  

[ ])(exp1)(
2

Rrqq
R

+⋅
∂∂

∂=∑ ij
tot

ji

iE
mm

D
βαλμ        (5) 

where i and j are particle indices; im and jm are masses of particle i and j; α and β are 

force components (x, y, or z); αλ += i3 and βμ += j3 ; ijr is the displacement vector 

between particle i and j. The summation over R represents the sum over lattice vectors 

within the cutoff radius. 

The phonon dispersion curves of Au are computed using the optimized EAM potential, as 

shown in Figure 2. The lattice parameter for phonon calculations of fcc Au in Fig. 2 is set 

to 4.078 Å, which corresponds to the experimental value at room temperature. 

Experimental measurements of the phonon dispersion curves at this temperature are 

provided (red symbols in Fig.2).[42] For comparison, ab initio phonon dispersion curves 

using the plane-wave self-consistent field (PWSCF) simulation package[43] are also 

shown. All branches of the phonon-dispersion curves evaluated from Eq. (5) are in 

reasonable agreement with the experiment, indicating that the EAM can adequately 

describe the lattice vibrations of Au at room temperature. The phonon dispersion curves 

for all other fcc metals have been evaluated using their optimized EAM potentials. Table 

IV lists selected phonon frequencies at the following k-points: X, L, and K; only the 

phonon frequencies at the X point were fitted. The overall agreement between experiment 

and EAM calculation is equally satisfactory, except for Pb where the electronic spin-orbit 

effect was found important but not considered in this work. The average discrepancy 

between experimental and calculated phonon frequencies at those special points is less 

than 5 percent. 

Having established the validity of phonon calculation, in obtaining the wave vector sum 

in Eq. (4), we integrated over 85 pre-defined k-points in the irreducible Brillouin zone 
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(IBZ). The k-point vectors, as well as their weights, were adopted form the NRL tight-

binding calculation package.[44] Temperature variation of thermodynamic properties is 

studied from 0 to 800 K in steps of 2 K. At each given temperature T, the equilibrium 

lattice parameter is obtained by minimizing ),( TaF , with respect to a. The variations of 

the lattice constant in the QHA are shown in Fig.3 as a function of temperature, with and 

without the zero-point energy ZPTE included in ),( TaF .  It is evident that the zero-point 

energy plays a role in determining the equilibrium lattice parameter. For example, at zero 

temperature, the lattice parameter changes from 4.061 Å to 4.066 Å after taking into 

account the zero point energy.  

Employing the same EAM potential, MD simulation of fcc Au shows its thermal 

behavior upon heating up to the melting temperature. Compared with experimental 

observations, it is found that MD simulation predicts correct thermal expansion behavior 

of Au at temperatures higher than 250 K. By contrast, at low temperatures the QHA is 

more appropriate to describe the lattice dynamics of Au.  

During potential fitting, the equilibrium lattice constants were evaluated using either the 

QHA or MD techniques, depending on the nature of the system. For transition metals, 

whose melting temperatures are normally high, we used the QHA to calculate their 

equilibrium lattice parameters at room temperature, whereas for other elements, such as 

Ca, Sr, Pb, Ce and Yb, which seem to exhibit non-negligible anharmonic behavior at 

room temperature, we used MD to calculate their lattice parameters for potential 

optimization. EAM potentials of the elements were optimized so that they produce 

equilibrium lattice parameters equal to experimental values at room temperature. Table 

III lists the lattice parameters of different elements derived from their optimized EAM 

potentials under different conditions.  

The thermal behavior of the elements can be further explored by studying the coefficient 

of linear thermal expansion (CTE), which is given by:  

P

e

e dT
Tda

Ta
T ⎟

⎠
⎞

⎜
⎝
⎛= )(

)(
1)(α         (6) 

Often in experimental works, )(Tae is replaced by 0a at a reference temperature (usually 

taken to be room temperature). To be consistent with experiments, we calculated the 



 13

linear thermal expansion coefficient using
P

e

e dT
Tda

Ka
T ⎟

⎠
⎞

⎜
⎝
⎛= )(

)298(
1)(α , based on both 

the QHA and MD calculations. The variation of the CTE with temperature is shown in 

Fig.4 for Au. For other fcc metals, the calculated and experimental CTE at room 

temperature can be found in Table III. The average discrepancy between the EAM 

calculation and experiment is found to be less than 10 percent, indicating that the as-

developed EAM potentials are appropriate for the thermal expansion behavior of the 

metals near room temperature.  

 

B. Mechanical properties 

Adiabatic elastic constants 11C , 12C , and 44C  of cubic metals can be evaluated from the 

second derivatives of the total Gibbs free energy with respect to strain,[63] and have the 

following form:  

)(1 2

corr
ji

tot
ij PE

V
C +⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂∂
∂=

εε
         (7) 

where the pressure correction term corrP can be obtained using the equations derived by 

Barron and Klein:64 For cubic systems under an applied pressure p , 0=corrP for 11C , 

pPcorr =  for 12C  and 2/pPcorr −= for 44C .  

The adiabatic elastic constants 11C , 12C , and 44C of Au were computed using the EAM 

potentials, as shown in Fig. 5. The three elastic constants increase rapidly as the lattice 

parameter (or volume) decreases. Under the adiabatic assumption, this phenomenon is 

consistent with the experimental observation that the elastic constants at 0 K (smaller 

lattice constant) are higher than those at room temperature for Au. The experimental 

elastic constants [65] corresponding to the two temperatures are also plotted in Fig.5 for 

comparison with EAM results.    

 

Like the elastic constant tensor, other elastic moduli, such as the bulk modulus K and 

Young’s modulus Y, contain information regarding the mechanical properties with 

respect to different modes of deformation. The bulk modulus K can be calculated from 



 14

the pressure-volume equation of state, as K is one of the curve parameters to describe the 

EOS. Under the condition of isotropic pressure, the fcc Au structure was compressed to 

different volumes at zero temperature employing the EAM model. The pressure-volume 

EOS plot is shown in Fig. 6. When the external pressure is less than ~100 GPa 

( 8.0/ 0 >VV ), the EOS curve derived from the EAM potential matched experimental data 
[66-68] very well, but when the applied pressure further increases, a noticeable deviation of 

the P-V curve from the shock-wave experimental data was identified.  While more 

experimental data in the ultra-high pressure regime are desirable to validate the EAM 

model, the curvature of the EOS curve is, in principle, adjustable by decreasing the 

energy scale factor B in Eq. (2). In practice, however, this would have an unwanted effect 

on the melting temperature and the liquid density of Au, and therefore we decided not to 

pursue a perfect match between the calculated EOS and the high pressure experiments.  

For cubic systems, the bulk and shear modulus, among other elastic moduli, can be 

conveniently derived from the three elastic constants 11C , 12C , and 44C based on the 

following relationships[69]:  

3/)2( 1211 CCK +=                   (8) 

)3( 124411 CCCG −+=          (9) 

)3/(9 GKKGY +=           (10) 

1)2/( −= GYν           (11) 

where G ,ν are the shear modulus and Poisson’s ratio, respectively. Using the above 

relationships, the variations of different elastic moduli as a function of lattice constant 

were computed, and the results are shown in Fig.5. One should be cautioned that the 

definitions for the moduli are not unique[70] and if different definitions/equations are 

assumed, the values of these moduli might be slightly different. Discretion should also be 

exercised if mechanical deformation is carried out under different conditions (e.g., an 

isothermal condition in lieu of the adiabatic condition). 

Similar to Au, the elastic constants together with other elastic moduli have been derived 

for the fcc metals using the optimized EAM potentials. Those data are juxtaposed with 

experimental data in Table V for scrutiny. For softer materials such as Ca, Sr, Pb, Ce, and 
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Yb, the errors are found to be relatively large, but for transition metals and Al, the match 

between experiment and EAM is generally satisfactory. The average discrepancy 

between EAM calculations and experiments are found to be less than 5 percent for 

transition metals and Al, except for Pd, Ir.  Pd exhibits a low-temperature anomaly 

discussed elsewhere,[75] and Ir shows a negative Cauchy pressure ( 1244 CC > ) in 

experiment, which presumably goes against the penalty paid for  0)(" >ρF  during 

potential fitting. 

C. Equations of state of six crystal structures 

Employing the EAM, we evaluated the EOS (energy vs. volume) for 6 distinct crystal 

structures, which are fcc, hcp, 9R, bcc, sc, and dc structures, respectively.  Fig. 7 shows 

the EOS of the 6 structures as a function of volume for Au. Also shown in Fig. 7 are ab 

initio calculations of those structures at selected volumes.  For other metals, similar plots 

have also been derived. [28]  Compared with ab initio data, the EAM potentials provide 

very good EOS results for close-packed structures, such as fcc, hcp and 9R, but slightly 

worse fitting results for open structures such as sc and dc. For each metal, we compared 

the formation energies of different structures relative to the fcc structure, calculated with 

the EAM potentials (the results can be found in Table VI). For all the metals studied in 

the current work, the EAM potentials correctly predict the fcc structure as the ground 

state. Both the ab initio and EAM calculations yield the relative stability of the different 

crystal structures in the following order: fcc, hcp or 9R, bcc, sc and dc.  It should be 

mentioned that all the EAM potentials developed for the metals can correctly differentiate 

the fcc and hcp atomic environments at the ground states, despite the fact that the two 

structures have the same coordination number. The formation energy differences between 

fcc, hcp, and bcc lattices are comparable with experimental calculations, suggesting that 

the as-developed EAM potentials are sufficient in predicting crystal stability. For Au, the 

energy difference between fcc and bcc crystals, or, the relative stability of the two crystal 

structures, can be further reflected from the deformation path studies as shown in Fig. 9 

and Fig. 10.  

 

D. Crystal defects 
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a. Point defects 

The formation energy of vacancies was calculated by minimizing the total energy of an 

fcc configuration containing a single vacancy using both the ab initio and EAM methods. 

The finite size effect was minimized by increasing the size of the simulation system. 

EAM calculation yields the formation energy of 0.98 eV for a single Au vacancy, which 

agrees very well with other cited values of 0.89-1.00 eV. [90] The migration energy of the 

vacancy, which is the energy barrier for vacancies to diffuse and is deemed important for 

deformation and melting, was calculated using the nudged elastic band method.[83] The 

vacancy migration energy is found to be 0.79 eV, consistent with the experimental 

vacancy migration value for Au (0.78~0.88 eV). Using the same method, vacancy 

formation energies and migration energies were evaluated for other fcc metals employing 

the optimized EAM potentials, as listed in Table VII. The values estimated by the EAM 

potentials yield reasonable agreement with the experiment. In addition to vacancies, we 

also considered numerous interstitial point defects during potential fitting: tetrahedral 

interstitials, octahedral interstitials, and dumbbell interstitial defects along the [100], 

[110], [111] directions. Experimental data on those defects are not available; nonetheless, 

formation energies of these defects are still listed in Table VII for future reference, which 

are comparable with ab initio calculations in the current work, within errors of about 0.05 

eV.  

 

 

b. Surface energies 

One common problem with the EAM is that this method often underestimates the surface 

energies. In the current work, we have seen improvement of the newly developed 

potentials over previous EAM models in describing surface energies. Formation energy 

of three low-index crystal surfaces was evaluated for all the metals, and in each case the 

surface structures were fully relaxed with MD, but without surface reconstruction. Our 

EAM calculations yield the correct order of the formation energy of the three surfaces: 

(111) < (100) < (110). The three surface energies 111γ , 100γ , 110γ  for Au is found to be 

1151 mJ/m2 , 1222 mJ/m2 and 1301 mJ/m2, respectively.  The average surface energy of 

Au is around 1500 mJ/m2 from the experiment. Surface energy values, as predicted by the 
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current EAM models, are listed in Table VIII. While accurate measurements of the 

surface energy values are needed, the potentials may still slightly underestimate the 

surface energies as they stand, as seen from Table VIII.  

As is well known, late transition metals, notably Ir, Pt, and Au, exhibit surface 

reconstructions;[104-106]  for these metals, the surface reconstruction phenomena are 

typified by the missing-row (1x2) surface reconstruction of (100), and the quasi-

hexagonal surface reconstruction of (100). In the current work, our preliminary results on 

Au demonstrate that the EAM model is able to predict both the Au (110) missing-row 

and Au (100) quasi-hexagonal surface reconstructions. Further in-depth research work 

along this direction is current under way.  

c. Planar defects  

It is understood that stacking fault energy and unstable stacking fault energy are 

important quantities determining the mechanical behavior of metals, and the γ surface 107 

technique can help to assess these types of stacking faults. The γ surface, or the 

generalized-stacking-fault energy surface, can be formed by rigidly shifting (111) atomic 

planes along directions composed of perpendicular ]010[  and ]112[ directions, as 

schematically illustrated in Fig.8a. Employing the EAM model, theγ  surface of fcc-Au 

(4.078 Å) was calculated, as shown in Fig. 8b. To validate the EAM results, we compared 

them with ab initio calculations of the GSF along ]010[ and ]112[  directions.  For ab 

initio calculations, 12 layers of (111) planes were stacked together forming a fcc lattice 

with periodic conditions.  The upper part of the fcc lattice was gradually shifted along the 

]112[  direction, creating two stacking faults with opposite directions: >< 121}111{ and 

>< 112}111{ . The total formation energy of the stacking faults was plotted along the 

displacement of the (111) plane. Similarly, GSF along the ]010[ direction was also 

created. The GSF energy was calculated and plotted against the displacement of the (111) 

atomic planes. At the maxima of the curves, it was found that the average difference 

between ab initio and EAM calculations is less than 5 percent. 

In addition to the GSF, we also studied the Au intrinsic stacking fault and Au(111) 

twinning defects, as both are found important in governing the mechanical properties and 
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deformation mechanisms of metals. For both defect types, the coordination number of the 

atoms on the defective planes is the same as those in perfect fcc lattices, which poses a 

challenge for EAM potentials to correctly produce the formation energies of the defects. 

Using the newly developed EAM potentials, we found that the predicted formation 

energies of the relaxed stacking faults are generally in agreement with experiments. For 

Au, the intrinsic stacking fault energy and the twinning fault energy are calculated to be 

30 mJ/m2 and 15 mJ/m2, respectively, in comparison with the experimental values of 32 

mJ/m2 [26] for the intrinsic stacking fault energy. For other metals, the intrinsic stacking 

fault and twinning fault energies are tabulated in Table VIII. Generally speaking, the 

predicted intrinsic stacking fault energy and twinning energy are comparable with 

experimental values available in literature.  

 

E. Deformation paths 

Displacive transformations, referred to as lattice transformations connecting different 

metastable structures, are of particular interest in terms of understanding the mechanism 

of phase transformation, configurations of extended defects, the structure of epitaxial 

films, and so forth.[108] In this work, we considered two transformation paths in cubic 

structures of  metals: a) the fcc-bcc tetragonal deformation path (i.e., the usual Bain 

deformation path); and b) the trigonal deformation paths.   

 

a. Deformation along the bcc-fcc Bain path 

The tetragonally deformed structures may be parameterized in terms of c/a ratio. Along 

the deformation paths, the initial fcc lattice 1/ =ac  is compressed along a [001] direction 

and simultaneously expanded to an equal extent in [010] and [001] directions so as to 

preserve the atomic volume. The cohesive energy along the bcc-fcc path (shown in Fig. 9) 

was plotted against the c/a ratio for Au.  The lattice becomes bcc when 2/2/ =ac . 

Two configurations corresponding to the fcc and bcc structures along the deformation 

path are shown in the inset of Fig. 9. Both calculations employing the EAM and DFT 

methods predicate a local maximum of the energy at 2/2/ =ac , thus indicating that 

the bcc structure is unstable against tetragonal deformation. This instability is consistent 
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with the negative shear modulus found for the bcc structure. The shallow minimum 

observed at 6.0~/ =ac corresponds to a body-centered tetragonal (bct) structure which is 

meta-stable against tetragonal distortions but is unstable against other modes of 

deformation [88] (see below). All other metals studied in the current work exhibit the same 

behavior. In fact, for all metals studied, the energy surfaces of fcc metals for the 

tetragonal deformation mode exhibit two energy minima, corresponding to the 

aforementioned fcc and sc structures connected by a saddle point, where the energy is the 

maximum (bcc). Energy contours of the energy surface corresponding to different 

volume and c/a ration are shown in Fig.9 b for Au.   

b. Deformation along the trigonal Bain path 

In the trigonal Bain deformation path, one changes the interplanar distance between the 

(111) planes, while maintaining the tri-fold symmetry around the [111] axis. To study 

this deformation, the atomic volume of the lattice was preserved, and consequently, the 

angle between the three primitive basis vectors, θ, changed with the degree of trigonal 

deformation. In the case of Au, the energy of the lattice was evaluated using the EAM 

and DFT methods, and plotted against θ.  Along the trigonal deformation path, one can 

easily identify three lattice structures: fcc ( o60=θ ), sc ( o90=θ ), and bcc ( o45.109=θ ). 

The evolution of the lattice along the trigonal deformation path was depicted in the inset 

of Fig.10. Indeed, the energy profile evaluated using the EAM model exhibits three 

extrema at the three angles. This is consistent with the ab initio calculations.  

Corresponding to the minima on the energy profile are two metastable crystal structures: 

fcc and bcc, connected by a saddle point corresponding to the sc structure. The maximum 

energy of the sc structure indicates that this structure is unstable against trigonal 

deformation. Therefore, the relative meta-stability of the three phases can be captured by 

the EAM models developed here.  

 

F. Liquid structures  

In the current work, special attention has been given to the capability of EAM potentials 

to describe liquid metals by enforcing a fit to a large amount of liquid data on the PES.  

We started by analyzing the melting temperature of the crystals. The melting temperature 
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of the metals was calculated using the two-phase coexisting method with MD computer 

simulation.[110] We obtained the melting temperature for Au to be 1320±15 K employing 

the current EAM potential model, which is close to the experimental melting point of Au, 

1337K. It should be noted that the melting temperature was not explicitly included in 

potential fitting in the present work. The EAM-predicted melting temperature is highly 

correlated to the EOS of the crystal. Incidentally, in a recent work a non-linear scaling 

method was applied to the Rose type of EOS for gold, and was found successful in 

improving the Tm of Au [27]. Compared to the experimental melting enthalpy of Au (12.6 

kJ/mol) and volume change upon melting ( %1.5/ =Δ cm VV ), theoretic work yields the 

melting enthalpy (11.1 kJ/mol) and melting volume change (4.9%) for Au. It is thus 

evident that the capability of the current EAM model to predict melting behavior is on 

par with the second NN-MEAM potentials for Au. [26,27] Likewise, the melting 

temperatures for other metals, together with their evaluated melting enthalpies and 

volume changes upon melting, have also been calculated and tabulated in Table IX for 

comparison with experimental data.  

In the current work, the PES was rescaled to match the experimental liquid density within 

an error of ~1.0%, which is about the uncertainty of most liquid density measurements in 

a given experiment. Fig. 11 shows the density change of Au during the melting and 

cooling process in an MD computer simulation. Compared with other potential 

models[6,26,105] for liquid Au,  the liquid densities resulting from the current model are in 

excellent agreement with the experimental data. The estimated densities for other metals 

at their melting temperatures are listed in Table IX. In all cases, the theoretic liquid 

densities are within 1.0 percent of their experimental values at their melting points.  

The liquid structures were further investigated by examining their static structure factors 

)(QS and radial distribution functions (RDF) )(rg  at various temperatures. Both 

quantities can be computed using textbook methods.[124-126]  Fig. 12a illustrates the 

evolution of )(rg as a function of the temperature at which liquid Au was equilibrated. 

With decreasing temperature, the intensity of the first peak of the RDF increases and the 

peak width slightly broadens. The static structure factor )(QS , on the other hand, is a 

Fourier transform of the RDF, and can be experimentally extracted. Theoretic )(QS of 
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liquid Au was computed and plotted in Fig.12b at different temperatures to show their 

evolution. Experimentally, Waseda et al.,[127] has systematically measured the structure 

factors for different liquid metals by means of X-ray diffraction, which provides a 

benchmark for validating our EAM models. However, by comparing with newer 

structural data, it has been recognized [126] that, in Waseda’s )(QS  data, the peak 

intensities were systematically underestimated.  Therefore, in order to compare our 

simulated )(QS  with experiments, a decay factor of 
2qe ζ− (usually 2.00 << ζ  and q is 

the wave vector) was applied to )(QS to account for experimental uncertainties. Fig. 13c 

shows the calculated and experimental )(QS for Au at 1423 K. A satisfactory agreement 

between the experiment and the potential model can be found in terms of peak position, 

intensity, and shape. In fact, for other liquid metals, except Pb and Yb, the overall 

matches between the EAM )(QS  and experimental data are satisfactory.  

 

G. Liquid dynamics 

In order to study liquid dynamics using the EAM models, we focused on the transport 

properties of the liquids. Two complementary methods[124-126] were used to derive their 

self-diffusion coefficients. The first method is based on Einstein’s formula: 

t

tr
D

t 6

)(
lim

2Δ
=

∞→
         (12) 

where )(2 trΔ is the mean-square displacement of tagged particles.  

The second method is based on the Green-Kubo relation, in which the coefficient is given 

as the time integral of a time-dependent correlation function:  

∫
∞

=
0

)( dttC
m
TkD B ,          (13) 

where 2/)0(v)(v)( vttC =  is the normalized velocity auto-correlation function and 

Bk is the Boltzmann constant, T denotes temperature, and m is the mass of particles. At 

different temperatures, the MSD and velocity self-autocorrelation functions of Au at 

different temperatures were computed with MD simulations (4000 atoms in NVE 
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ensembles of well-equilibrated liquids), as shown in Fig. 13 a and b. Consequently, the 

self-diffusion coefficient of Au was computed using Eq. (12) and (13) respectively, and 

plotted in Fig.12b as a function of temperature.  Similarly, the self-diffusion coefficients 

of other metals at desired temperatures were estimated using both the Einstein relation 

( ED ) and the Green-Kubo relation ( GKD ), as listed in Table IX. Also listed are the self-

diffusion coefficients available from experiments. It can be seen that the values of the 

diffusion constant D computed using the Green-Kubo and Einstein relations are generally 

consistent with each other. For the metals whose self-diffusion coefficients (Cu, Ag, Pb) 

are available in literature, our computed values of this transport coefficient are in firm 

agreement with the experimental results.  

The dynamic properties of the metallic liquids can be further studied by assessing van 

Hove’s time-dependent pair correlation function: [128]  

∑
=

−−=
N

i
ii tr

N
trG

0

)0(r)(r((1),( δ .        (14)  

It should be noted that here we are only concerned with the self-part of the van Hove 

correlation function for the monatomic liquids. Usually it is easier to work with the 

transformed van Hove function ),(4 2 trGrπ . In Fig. 14a we show ),(4 2 trGrπ of Au near 

the melting temperature (1500K). Related to the van Hove pair correlation function are its 

two Fourier transforms: its spatial Fourier transform with respect to r termed 

“intermediate scattering function” ),( tqF , and its temporal and spatial Fourier transform 

called “dynamic structure factor” ),( ωqS . Both functions contain rich information about 

particle correlation and time evolution, which can be directly measured via 

experimentation.  For elements with available dynamic structure factor data,  such as Ni, 

Al and Pb,[129] the simulated ),( ωqS or ),( tqF  match well with experimental data. 

Unfortunately, experimental data on the dynamical structure factors are not available for 

Au. Nonetheless, we plot the dynamical structural data of Au at 1500 K in Fig. 14b for 

the completeness of the present work.  
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IV Conclusion 

Highly optimized EAM potentials have been developed for 14 fcc metals using the PES-

fitting method. For each element, we first established a first-principles database to 

include several hundreds of atomic configurations. High-precision ab initio calculations 

of those configurations form the PES of the systems. The PES was deformed by linear 

scaling to match experimental data:  lattice parameter at room temperature, cohesive 

energy, and liquid density at the melting point. The revamped PES, together with 

accurate experimental data on elastic constants and phonon frequencies, was used to 

optimize the EAM potentials. Through studying the lattice dynamics, thermal expansion, 

defects, deformation paths, melting behavior and liquid properties, the as-developed 

potentials were shown to have high fidelity and wide applicability.  

In the present work, the cutoff distance of the EAM models is relatively large compared 

to recently proposed modified-EAM potentials with angular terms[130]. This “long 

distance description” might be a surrogate for the “angular description”. It is true that real 

interaction chemistry works at short distances and is sensitive to angles. This is probably 

why some surface properties are less well reproduced by the current potentials than most 

properties in the bulk. We believe the current fitting strategy is applicable to constructing 

potentials with more explicit chemistry such as modified EAM[130],  angular dependent 

potential models (ADP)[131], and bond-order potentials (BOP)[132]. The established EAM 

potentials of the elements, however, are believed to find wide applications in diverse 

areas of materials science and engineering. Due to the “ab initio” nature of the as-

developed potentials, they are suitable to link atomistic computer simulations with high-

level quantum mechanics calculation to form advanced multi-scale simulation 

platforms.[133]  
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Figure Captions: 

 
Figure 1 EAM potential plots for Au. The three plots show the slowly varying 
profiles of  the pair function )(rφ , density function )(rρ and the embedding 
function )( inF , respectively,  in Eq (1).   

Figure 2 Comparison of phonon-dispersion curves of Au  predicted by the present EAM 
potential with the experimental values measured by neutron diffraction at 80 K. The 
phonon frequencies at point X were included in the potential fit. Also shown is the ab 
initio calculation using PWSCF. [43] (aRef. 42 and bRef. 43).  

Figure 3 Lattice constant of Au as a function of temperature predicted using the present 

EAM model. Both the QHA and MD methods were used for the evaluation of the 

equilibrium elastic constants at different temperatures. The importance of the quantum 

effect is also shown in the plot by excluding the zero point energy in Eq. (4) in obtaining 

the lattice constant (see text). 

Figure 4 Linear thermal expansion coefficient of Au as a function of temperature.   

Figure 5 Adiabatic elastic constants of Au as a function of lattice constants (solid lines), 

as predicted by the EAM. Also obtained are other important elastic moduli shown in the 

plot. Experimental elastic constants at two temperatures are shown for comparison. 

Figure 6 Pressure-volume EOS of Au at T=0 calculated using the EAM model in 

comparison with experimental data. [67-68]  

Figure 7 Comparison of ab initio and EAM calculations of the cohesive energies of six 

different crystal structures of Au at different volumes.  

Figure 8 EAM calculations of the γ surface of Au on the (111) plane. (a) Schematic 

drawing showing the displacements of the (111) plane to obtain the γ surface; (b) EAM 

calculation of the γ surface; (c) Comparison of the EAM and ab initio calculations of 

GSF energy displaced along the ]010[  direction (unit: a
2
2 ); Comparison of the EAM 

and ab initio calculations of GSF energy displaced along the ]112[  direction (unit: a
2
6 ) 

(see text). 
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Figure 9 (a) Comparison of EAM and ab initio calculations of energy along the tetragonal 

Bain path between fcc and bcc structures. Calculations were performed at a constant 

volume corresponding to the equilibrium fcc phase. (b) Contour plot of the PES for 

centered tetragonal Au as a function of c/a and the reduced volume 0/ ΩΩ . The contour 

spacing is 5 meV. 

Figure 10 Comparison of EAM and ab initio calculations of energy along the trigonal 

Bain path between fcc, sc and bcc structures. Calculations were performed at a constant 

volume corresponding to the equilibrium fcc phase.  

Figure 11 Density changes of Au during melting and freezing, as obtained from NPT 

molecular dynamics simulations (32,000 atoms) employing the present EAM potential. 

(aRef. 117, bRef.111) 

Figure 12 (a) The evolution of RDF of liquid Au at different temperatures employing the 

EAM potential; (b) Structure factor )(QS  of Au as a function of temperature; (c) 

Comparison of experimental[127] and theoretical )(QS of liquid Au near the melting point.  

Figure 13 (a) MSD of liquid Au during molecular dynamics equilibration at different 

temperatures. (b) Velocity auto-correlation functions of liquid Au at different 

temperatures. (c) Self-diffusion coefficient of Au at different temperatures, as derived 

from the Einstein and the Green-Kubo methods.  

 

Figure 14 Dynamical properties of Au examined by means of (a) the van Hove self auto-

correlation function; (b) self-intermediate scattering function of Au. Both plots were 

plotted against time to show their dynamical evolution (see text). 
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Table I  Valence electron configurations of the elements applied in the ab initio 

calculations in the present work.  A and B are two unitless scaling factors to deform the 

PES according to Eq. (2).   

 

 Electron 

configuration 

A B C 

(eV) 

Al 3s23p1 0.9916 1.000 0.3255 

Ni 3d84s2 0.9959 1.000 0.9614 

Cu 3d104s1 0.9891 1.000 0.1913 

Rh 4d85s1 0.9862 1.023 1.6340 

Pd 4d105s0 0.9797 1.050 1.8198 

Ag 4d105s1 0.9782 1.239 0.5295 

Ir 5d86s1 0.9900 1.062 2.3950 

Pt 5d96s1 0.9808 1.130 1.2325 

Au 5d106s1 0.9724 1.410 0.7137 

Ca 3p64s2 1.0082 1.000 0.0722 

Sr 4s24p65s 1.0034 1.100 0.1277 

Pb 6s26p2 0.9818 1.100 1.1150 

Ce s2d1f1 0.9665 1.000 0.4127 

Yb 5p66s2 1.0122 1.000 0.2359 
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Table II. Predicted values of interatomic potential models compared with 

experimental properties. The numbers in parentheses are the fitted experimental data. 
 

Property Exp. Present Glue Model a Johnsonb FBDc GRSd MEAMe

Cohesive  
energy Ec (eV) 

-3.93f -3.93  
(-3.93) 

-3.78 
 (-3.78) 

-3.930 
(-3.93) 

-3.927 
(-3.93) 

-3.924 
(-3.93) 

-3.93 
(-3.93) 

Lattice 
constant (Å) 

4.078f 4.078 
(4.078) 

4.704 
(4.07) 

4.0806 
(4.08) 

4.0805 
(4.08) 

4.0701 
(4.07) 

4.073 
(4.073) 

Bulk  
Modulus (GPa) 

180.3g 178.0 
 

180.4 
 

169.9 
(167) 

166.7 
(167) 

180.3 
 

180.3 
 

C11-C12 (GPa) 32g 32 
(30) 

60 
(32) 

27 
(29) 

25 
(29) 

32 
(32) 

32 
(32) 

C44 (GPa) 45g 45 
(42) 

60 
(45) 

41 
(42) 

45 
(42) 

46 
(45) 

45 
(45) 

γ110 (relaxed) 
(mJ/m2) 

--- 1321 1984 867 989 1533 1179 

γ100 (relaxed) 
(mJ/m2) 

--- 1261 2059 814 926 1296 1138 

γ111 (relaxed) 
(mJ/m2) 

--- 1194 1548 705 796 1196 928 

Average γg 
(mJ/m2) 

1506h 1260 
 

1863 
 

795 
 

904 
 

1342 
 

1081 

f
vE  (eV) 0.89 

~1.00i 
0.98 1.237 0.86 1.04 1.13 0.90 

SFE (mJ/m2) 32j 30 0 --- --- 42.6 40 

Melting point 
(K) 

1337k 1320 1338 1053 1121 1159 1410 

Ebcc – Efcc (eV) 0.04l 0.04 0.045 0.0225 0.0206 0.0608 0.06 
Ehcp – Efcc (eV) 0.003l 0.007 0 -0.00085 0.0011 0.0095 0.009 
Liquid density  
1500K (g/cm3) 

17.1m 17.1 
 

18.3 16.7 17.2 17.3 --- 

aRef. 105 ; bRef.7; cRef.6; dRef.26; eRef.25; fRef.49; gRef.65; hRef.6; iRef.90; jRef.26; 
kRef.78; lRef.80; mRef.110
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Table III Predicted values of EAM potentials compared with experimental 

properties, where the numbers in parentheses represent the experimental data. cE  (eV) is 

the cohesive energy corresponding to the equilibrium lattice constant ae (Å) at 300K.  

Also listed are the equilibrium lattice constants ae at 0K.  0a is the lattice parameter 

corresponding the minimum of the cohesive energy. ε is the linear thermal expansion 

coefficient (10-6 K-1) at 300 K derived from either the QHA method or MD as indicated. 

Experimental data for thermal expansion coefficients are from Ref. [49]. 

 

 
cE  

ae (300K)  ae(0K) a0
 ε (MD) ε (QHA) 

Al -3.36 4.050  4.032 (4.032)a 4.018  23.0  (23.2) 

Ni -4.45 3.520 3.511 3.504  13.5  (12.7) 

Cu -3.54  3.615  3.603 (3.603)b 3.596  16.8 (16.8) 

Rh -5.75 3.8034  3.797  3.793   7.9 (8.2) 

Pd -3.91 3.890 3.880 (3.879)c 3.877  11.2 (11.1) 

Ag -2.85 4.090 4.071 (4.070)d 4.064  19.7  (19.1) 

Ir -6.94 3.839 3.835 3.833 6.5  (6.4) 4.8 (6.4) 

Pt -5.77 3.920 3.912 3.909  9.2  (9.2) 

Au -3.93 4.078 4.066 (4.065)e 4.061  14.8 (14.2) 

Ca -1.84  5.588  5.570 5.562 20.4 (22.3)   

Sr -1.72 6.085 6.0712 6.073 17.0 (22.5)  

Pb -2.85 4.9508  4.928 4.925 28.5 (29.2)  

Ce -4.32 5.161 5.141 5.132 10.2  (5.2)  

Yb -1.6 5.485 5.445 5.436 13.2  (25.1)  
aRef. 45; bRef. 46; cRef. 47; dRef. 48; eRef. 49 
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Table IV  Calculated phonon frequencies (THz) at selected symmetry points. The 

numbers in the parentheses are experimental data. a0 (Å) is the lattice parameter used for 

the phonon calculation, and the value underneath it shows the temperature at which the 

experimental data were taken. 

 a0 νL(X) νT(X) νL(L) νT(L) νL(K) νT1(K) νT2(K) 
Al 4.032 

(80 Ka) 
9.62 

(9.69) 
5.80 

(5.80) 
9.73 

(9.69) 
4.17 

(4.19) 
7.68 

(7.59) 
5.55 

(5.64) 
8.63 

(8.65) 
Ni 3.520 

(300Kb) 
8.64 

(8.55) 
6.42 

(6.27) 
8.77 

(8.88) 
4.41 

(4.24) 
7.98 

(7.73) 
5.95 

(5.78) 
7.13 

(7.30) 
Cu 3.603 

(80Kc) 
7.35 

(7.38) 
5.18 

(5.16) 
7.40 

(7.44) 
3.38 

(3.41) 
5.98 
--- 

4.68 
--- 

6.78 
--- 

Rh 3.803 
(300Kd) 

7.01 
(7.02) 

5.55 
(5.56) 

7.57 
(7.42) 

4.66 
(4.21) 

5.88 
(5.94) 

5.23 
(5.30) 

6.23 
(6.33) 

Pd 3.89 
(300Ke) 

6.70 
(6.71) 

4.48 
(4.58) 

6.78 
(6.84) 

3.00 
(3.20) 

5.26 
(5.33) 

4.04 
(4.10) 

6.02 
(6.03) 

Ag 4.090 
(300Kf) 

5.07 
(5.08) 

3.31 
(3.34) 

5.04 
(4.92) 

2.06 
(2.23) 

4.01 
(3.70) 

2.96 
(3.04) 

4.66 
(4.49) 

Ir 3.839 
(300Kg) 

5.72 
(5.86) 

4.62 
(4.40) 

3.75 
(3.51) 

5.95 
(6.13) 

5.25 
--- 

4.23 
(4.16) 

4.72 
(4.78) 

Pt 3.910 
(90Kh) 

3.67 
(3.84) 

5.54 
(5.80) 

2.45 
(2.90) 

5.56 
(5.85) 

4.25 
(4.30) 

3.16 
(3.42) 

4.94 
(5.12) 

Au 4.078 
(300Ki) 

4.45 
(4.61) 

2.75 
(2.75) 

4.46 
(4.70) 

1.67 
(1.86) 

3.60 
(3.34) 

2.50 
(2.43) 

4.09 
(4.03) 

Ca 5.588 
(300Kj) 

4.59 
(4.52) 

3.52 
(3.63) 

4.46 
(4.61) 

2.32 
(2.36) 

3.87 
(3.94) 

3.11 
(3.08) 

4.27 
(4.45) 

Sr 6.085 
(300Kk) 

2.46 
(2.48) 

3.19 
(3.17) 

1.42 
(1.74) 

3.03 
(3.08) 

2.46 
(2.57) 

2.07 
(2.21) 

2.97 
(2.93) 

Pb 4.936 
(80Kl) 

2.07 
(1.86) 

1.55 
(0.89) 

1.98 
(2.19) 

0.95 
(0.89) 

1.66 
(1.75) 

1.35 
(1.25) 

1.91 
(2.02) 

Ce 5.162 
(295Km) 

2.01 
(2.05) 

3.12 
(3.04) 

1.28 
(0.75) 

3.09 
(2.75) 

2.56 
(2.17) 

1.85 
(1.71) 

2.87 
(2.71) 

Yb 5.485 
(300Kn) 

1.79 
(1.85) 

2.44 
(2.40) 

1.10 
(1.16) 

2.39 
(2.30) 

1.92 
(1.98) 

1.54 
(1.63) 

2.25 
(2.25) 

aRef.50; bRef. 51; cRef. 52; dRef. 53; eRef. 54; fRef. 55, gRef. 56, hRef. 57; iRef. 42; jRef. 58; 
kRef. 59; lRef. 60; mRef. 61; nRef. 62; 
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Table V Calculated elastic constants C11, C12, C14 (GPa) at designated temperatures. 

The numbers in the parentheses are experimental data at different temperatures taken from 

Ref. [65,70-73], unless indicated otherwise.  K, Y, G indicate the bulk modulus, Young’s 

modulus, and shear modulus in units of GPa, and ν is Poisson’s ratio.  

 a0 C11 C12 C44 K Y G ν 
Al 4.032 

(0K) 
113 

(114) 
61.6 

(61.9) 
32 

(31.6) 
77 

(76) 
69 

(70) 
28 

(26) 
0.36 

(0.35) 
Ni 3.511 

(0K) 
263 

(261) 
154 

(151) 
127 

(132) 
186 

(180) 
217 

(200) 
84 

(76) 
0.30 

(0.31) 
Cu 3.603 

(0K) 
175 

(176) 
124 

(125) 
79 

(82) 
141 

(140) 
125 

(110-128) 
46 

(48) 
0.35 

(0.34) 
Rh 3.797 

(0K) 
420 

(422) 
191 

(192) 
189 

(194) 
267 

(269) 
369 

(319-378 a) 
145 

(150) 
0.27 

(0.26) 
Pd 3.880 

(0K) 
235 

(234) 
180 

(176) 
82 

(71.2)b 
188 

(180) 
127 

(121) 
46 

(44) 
0.39 

(0.39) 
Ag 4.065 

(0K) 
131 

(132) 
97 

(97) 
51 

(51) 
98 

(100) 
78 

(83) 
29 

(30) 
0.37 

(0.37) 
Ir 3.839 

(300K) 
578 

(582) 
241 

(241) 
243 

(262) 
350 

(320) 
525 

(528) 
210 

(210) 
0.25 

(0.26) 
Pt 3.92 

(300K) 
347 

(347) 
253 

(251) 
78 

(77) 
282 

(228~275c) 
180 

(173c,168) 
65 

(61) 
0.39 

(0.38) 
Au 4.078 

(300K) 
197 

(193) 
165 

(163) 
45 

(42) 
178 

(180.3) 
78 

(78) 
28 

(27) 
0.42 

(0.44) 
Ca 5.588 

(300K) 
28 

(28d) 
18 

(18.2d) 
17 

(16.3d) 
21 

(14.1-19.3e) 
26 

(20) 
10 

(7.4) 
0.30 

(0.31) 
Sr 6.085 

(293K) 
16 

(15f) 
11 

(10f) 
17 

(10f) 
12 

(11.5g) 
17 
--- 

7.1 
(6.1) 

0.27 
(0.28) 

Pb 4.9508 
(300K) 

50.1 
(49.4) 

42.0 
(42.1) 

15.2 
(14.9) 

45 
(46) 

25 
(16) 

7.8 
(5.6) 

0.45 
(0.44) 

Ce 5.161 
(300K) 

24.8 
(24.1h) 

13.2 
(10.2h) 

14.6 
(19.5h) 

17.1 
(14.8h, 22) 

25.3 
(34) 

10.2 
(14) 

0.25 
(0.24) 

Yb 5.485 
(300K) 

21.0 
(18.6i) 

8.34 
(10.4i) 

20.7 
(17.4i) 

13 
(13.1i) 

28 
(24) 

12.7 
(9.9) 

0.18 
(0.21) 

aA Ref. 74; bRef. 75 (low temperature anomaly); cRef. 76; dRef. 58; eRef. 77; fRef.59;  gRef. 78; 
hRef. 61; iRef. 62 
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Table VI  Calculated structural energy differences, relative to fcc. The numbers in 

the parentheses are experimental data taken from Ref. [80] unless indicated.  
 

 ΔEfcc-hcp ΔEfcc-bcc ΔEfcc-9R ΔEfcc-sc ΔEfcc-dc 

Al 0.03 (0.03) 0.10 (0.12) 0.02 0.27 0.70 

Ni 0.024 (0.03) 0.092 (0.12) 0.01 0.60 1.27 

Cu 0.01 (0.006)  0.04 (0.04) 0.006 0.44 1.01 

Rh 0.01 0.29 0.007 0.69 1.28 

Pd 0.026 (0.02) 0.08 (0.11) 0.011  0.52 1.27 

Ag 0.006 (0.005) 0.038 (0.04) 0.004 0.41 0.95 

Ir 0.07 (0.07) 0.46 0.05 0.79 1.46 

Pt 0.03 (0.03) 0.16 (0.16) 0.03 0.39 1.16 

Au 0.007 (0.003) 0.004 (0.004) 0.005  0.43 0.95 

Ca 0.003 (-0.004~0.012a) 0.009 (0.013~0.024a) 0.003 0.395 1.05 

Sr 0.007 (0.007b) 0.006 (0.011b) 0.005 0.34 1.01 

Pb 0.007 (0.003) 0.04 (0.04) 0.005 0.32 0.83 

Ce 0.009  0.10 0.007 0.49 1.46 

Yb 0.003 0.006 0.006 0.44 0.88 

 
aRef. 81; bRef. 82
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Table VII  Predicted point defect properties for the fcc metals.  Values listed are the 
relaxed vacancy formation energy v

fE (eV), migration energy of vacancy diffusion v
mE  

(eV), relaxed octahedral and tetrahedral interstitial formation energy i
fE (Oh) and i

fE (Td) 

(eV), and relaxed formation energy of dumbbell defects d
fE  with different configurations. 

The numbers in the parentheses are experimental values.  
 

 v
fE  v

mE  i
fE (Oh) i

fE (Td) d
fE [111]  d

fE [110] d
fE [100] 

Al 0.67 
(0.68 a) 

0.65 
(0.65 b) 

2.38 2.85 2.78 2.47 2.21 

Ni 1.12 
(1.60 c) 

1.02 
(1.30 c) 

4.48 4.90 4.79 4.52 4.11 

Cu 0.99 
(1.03~1.30 b) 

0.74 
(0.65b) 

3.17 
(2.8-4.2 c) 

3.48 3.43 3.25 2.99 

Rh 1.57 
(1.71 d ) 

1.12 6.4 7.9 7.67 6.78 6.36 

Pd 1.44 
(1.40 e) 

0.90 4.26 4.87 4.75 4.55 4.23 

Ag 1.17 
(1.09-1.19f) 

0.65 
(0.66g) 

3.35 3.64 3.62 3.48 3.18 

Ir 1.67 
(1.79 h) 

1.52 10.3 11.9 11.4 10.6 9.39 

Pt 1.50 
(1.5b) 

0.87 
(1.43e) 

4.99 6.38 6.13 5.40 5.11 

Au 0.98 
(0.89-1.00 i) 

0.79 
(0.78-0.88 j) 

3.77 4.31 4.33 4.14 3.89 

Ca 0.95 
(1.12 k ) 

0.60 
(0.46 k) 

2.06 1.88 1.95 1.93 1.88 
 

Sr 0.97 
(---) 

0.56 
[---] 

2.03 1.91 1.86 1.95 1.84 

Pb 0.45 
(0.58 l) 

0.48 2.26 2.53 2.40 2.54 2.15 

Ce 0.75 0.62 3.30 3.32 3.19 3.10 2.95 
Yb 1.42 0.66 1.78 1.79 1.67 1.89 1.89 

aRef. 85; bRef. 86; cRef. 87; dRef. 88; eRef. 6; fRef. 91, gRef. 92; hRef.89; iRef.90; jRef.84; kRef.81; 
lRef.25 
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Table VIII  Calculated surface energies, relaxed stacking fault energies and twining 

fault energies employing the present EAM potentials.  

 Exp. γ(110) γ(100) γ(111) γSF γUS γT 

Al 980a 933 855 634 117(120-144)g,h 158 62(75)i 

Ni 2280b 2359 2212 2059 103(125j) 355 52(43j) 

Cu 1790b 1607 1504 1387 53(45k) 190 27(24i) 

Rh 2659b 2381 2481 2233 141(137l) 693 81 

Pd 2000d 1747 1645 1529 98(100m) 232 49 

Ag 1140c 1125 1042 977 26(22n) 114 13 

Ir --- 2965 2898 2506 317(365o) 1080 158 (217p) 

Pt 2490d 1934 1778 1694 121(110m) 320 61 

Au 1506d 1321 1261 1194 30(32q) 60 15  

Ca 490 e 477 426 377 8.0 51 4.1 

Sr 430e 433 374 316 10 36 5 

Pb 534f 532 476 405 12 (9n) 81 7.4 

Ce --- 797 697 586 21 98 12 

Yb 500e 527 491 248 19 57 10 
aRef. 93; bRef. 94; cRef. 91; dRef. 6; eRef. 95; fRef. 96;  gRef. 97; hRef. 98; iRef.93; jRef.86; kRef.99; 
lRef.100; mRef.101; nRef.25; oRef.102; pRef.103; qRef.26; nRef. 25
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Table IX  Calculated liquid properties of the fcc metals. mT (K) denotes the melting 

temperature (computational error: ± 15 K) ; mHΔ  (kJ/mol)  is the melting enthalpy;  

cm VV /Δ  is the volume change upon melting; l
mρ (g/cm3) is the liquid density at the 

melting temperature;  E
mD  and GK

mD (10-9 m2/s) are self-diffusion coefficients calculated 

using the Einstein method and the Green-Kubo method, respectively. The numbers in the 

parentheses are experimental data. Experimental data on melting temperature, melting 

enthalpy and liquid density are taken from Ref. [78,110,111] unless indicated.    
 

 
mT   mHΔ  cm VV /Δ  

l
mρ  E

mD  GK
mD  

Al 880 
(933) 

8.2 
(10.7) 

0.044 
(0.060) 

2.39 
(2.38, 2.37~2.40a) 

6.30 
(6.30b) 

7.12 

Ni 1650 
(1728) 

16.1 
(17.5) 

0.056 
(0.045, 0.051) 

7.78 
(7.81) 

5.20 
(4.60c) 

5.98 

Cu 1320 
(1357) 

11.6 
(13.3) 

0.057 
(0.049, 0.042) 

7.89 
(7.9k) 

3.88 
(3.96b) 

4.94 

Rh 2065 
(2237) 

19.30 
(26.59) 

0.050 10.85 
(10.82l) 

5.67 6.66 

Pd 1827 
(1828) 

13.9 
(16.74) 

0.049 
 

10.38 
(10.38, 10.5e) 

4.38 
(4.36d) 

5.37 

Ag 1255 
(1235) 

11.7 
(11.28) 

0.053 
(0.038) 

9.37 
(9.32) 

2.31 
(2.60b) 

3.40 

Ir 2280 
(2739) 

32.2 
(41.12) 

0.081 19.0 
(19.0j) 

4.90 5.74 

Pt 1890 
(2041) 

13.5 
(22.17) 

0.037 (19.0) 
(19.2h) 

3.63 4.56 

Au 1320 
(1337) 

11.1 
(12.55) 

0.049 
(0.051) 

17.35 
(17.31, 17.32f) 

1.84 2.81 

Ca 980 
(1115) 

7.56 
(8.54) 

0.029 1.415 
(1.378i) 

4.60 5.78 

Sr 1015 
(1050) 

8.77 
(7.43) 

0.057 2.32 
(2.32i) 

6.89 7.78 

Pb 620 
(600) 

5.25 
(4.77) 

0.041 
(0.035) 

10.55 
(10.63, 10.64g) 

1.09 
(2.19b) 

2.36 

Ce 1080 
(1068) 

11.39 
(5.46) 

0.015 6.52 
(6.55) 

5.22 6.32 

Yb 1081 
(1097) 

 
(7.66) 

 6.34 
(6.21) 

2.13 3.12 

aRef.112; bRef. 113;  cRef.114 theoretical prediction;  dRef.115 simulation; eRef. 116; fRef.117; gRef.118; 
hRef. 119; iRef. 120; jRef. 121; kRef. 122; lRef.123 
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Figure 1 EAM potential plots for Au. The three plots show the slowly varying 

profiles of the pair function )(rφ , density function )(rρ and the embedding 

function )( inF , respectively,  in Eq (1).  
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Figure 2 Comparison of phonon-dispersion curves of Au predicted by the present EAM 

potential model with the experimental values measured by neutron diffraction at 80 K. 

The phonon frequencies at point X were included in the potential fit. Also shown is the ab 

initio calculation using PWSCF.[43] (aRef. 42 and bRef. 43). 
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Figure 3 Lattice constant of Au as a function of temperature predicted using the present 

EAM model. Both the QHA and MD methods were used for the evaluation of the 

equilibrium lattice constants at different temperatures. The importance of the quantum 

effect is also shown in the plot by excluding the zero point energy in Eq. (4) in obtaining 

the lattice constant (see text). 
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Figure 4 Linear thermal expansion coefficient of Au as a function of temperature.  
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Figure 5 Adiabatic elastic constants of Au as a function of lattice constants (solid black 

lines), as predicted by the EAM. Also plotted are other important elastic moduli. 

Experimental elastic constants at room temperature and 0K are shown for comparison. 
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Figure 6 Pressure-volume EOS of Au at T=0 calculated using the EAM model in 

comparison with experimental data[67-68].  
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Figure 7 Comparison of ab initio and EAM calculations of the cohesive energies of six 

different crystal structures of Au at different volumes.  
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Figure 8 EAM calculations of the γ surface of Au on the (111) plane. (a) Schematic 

drawing showing the displacements of the (111) plane to obtain the γ surface; (b) EAM 

calculation of the γ surface; (c) Comparison of the EAM and ab initio calculations of 

GSF energy displaced along the ]010[  direction (unit: a
2
2 ); Comparison of the EAM 

and ab initio calculations of GSF energy displaced along the ]112[  direction (unit: a
2
6 ) 

(see text). 

(a) 
(b) 

(c) (d) 
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Figure 9 (a) Comparison of EAM and ab initio calculations of energy along the tetragonal 

Bain path between fcc and bcc structures. Calculations were performed at a constant 

volume corresponding to the equilibrium fcc phase. (b) Contour plot of the PES for 

centered tetragonal Au as a function of c/a and the reduced volume 0/ ΩΩ . The contour 

spacing is 5 meV. 

(a) 

(b) 
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Figure 10 Comparison of EAM and ab initio calculations of energy along the trigonal 

Bain path between fcc, sc and bcc structures. Calculations were performed at a constant 

volume corresponding to the equilibrium fcc phase. The draws in the inset shows the 

structural deformation along the trigonal deformation path.  
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Figure 11 Density changes of Au during melting and freezing, as obtained from NPT 

molecular dynamics simulations (32,000 atoms) employing the present EAM potential. 

(aRef. 117, bRef.111) 
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Figure 12 (a) The evolution of RDF of liquid Au at different temperatures employing the 

EAM potential; (b) Structure factor )(QS  of Au as a function of temperature; (c) 

Comparison of experimental [126] and theoretical )(QS of liquid Au near the melting point.  
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Figure 13 (a) MSD of liquid Au during molecular dynamics equilibration at different 

temperatures. (b) Velocity auto-correlation functions of liquid Au at different 

temperatures. (c) Self-diffusion coefficient of Au at different temperatures, as derived 

from the Einstein and the Green-Kubo methods. 

(a) (b) 

(c) 
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Figure 14 Dynamical properties of Au examined by means of (a) the van Hove self auto-

correlation function; (b) self-intermediate scattering function of Au. Both plots were 

plotted against time to show their dynamical evolution (see text). 
 

(a) 

(b) 


