• Editors' Suggestion

Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering

D. L. Nika, E. P. Pokatilov, A. S. Askerov, and A. A. Balandin
Phys. Rev. B 79, 155413 – Published 7 April 2009

Abstract

We investigated theoretically the phonon thermal conductivity of single-layer graphene. The phonon dispersion for all polarizations and crystallographic directions in graphene lattice was obtained using the valence-force field method. The three-phonon Umklapp processes were treated exactly using an accurate phonon dispersion and Brillouin zone, and accounting for all phonon relaxation channels allowed by the momentum and energy conservation laws. The uniqueness of graphene was reflected in the two-dimensional phonon density of states and restrictions on the phonon Umklapp scattering phase-space. The phonon scattering on defects and graphene edges has also been included in the model. The calculations were performed for the Gruneisen parameter, which was determined from the ab initio theory as a function of the phonon wave vector and polarization branch, and for a range of values from experiments. It was found that the near room-temperature thermal conductivity of single-layer graphene, calculated with a realistic Gruneisen parameter, is in the range 20005000W/mK depending on the flake width, defect concentration and roughness of the edges. Owing to the long phonon mean free path the graphene edges produce strong effect on thermal conductivity even at room temperature. The obtained results are in good agreement with the recent measurements of the thermal conductivity of suspended graphene.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
2 More
  • Received 1 December 2008

DOI:https://doi.org/10.1103/PhysRevB.79.155413

©2009 American Physical Society

Authors & Affiliations

D. L. Nika1,2, E. P. Pokatilov1,2, A. S. Askerov2, and A. A. Balandin1,3,*

  • 1Nano-Device Laboratory, Department of Electrical Engineering, University of California–Riverside, Riverside, California 92521, USA
  • 2Department of Theoretical Physics, Moldova State University, Chisinau, MD-2009, Republic of Moldova
  • 3Materials Science and Engineering Program, Bourns College of Engineering, University of California–Riverside, Riverside, California 92521, USA

  • *Corresponding author; balandin@ee.ucr.edu; website http://ndl.ee.ucr.edu

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 79, Iss. 15 — 15 April 2009

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×