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By using first principles density functional perturbation theory, we computed the phonon dispersions of 4 nm
diameter �5,0� carbon nanotubes. We investigated the development of phonon anomalies as the Fermi surface
sharpens. The soft modes are related to the nesting features in the electronic band structure. We found that two
phonon branches are strongly renormalized by electron-phonon coupling, and the anomaly of one phonon
branch is traced to interband coupling while the anomaly of another phonon branch is due to intraband
coupling. The complex behavior is explained using a simple model.
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I. INTRODUCTION

Recently, ultrasmall radius single wall carbon nanotubes
�SWNT� have been fabricated with a template method.1 The
small radius SWNTs are grown inside the channels of
AlPO4–5 zeolite crystals. Since the channels have very small
diameters, only SWNTs of 0.4 nm can form. Three types of
SWNTs, namely �3,3�, �4,2�, and �5,0�, are found inside the
zeolite channels. The �3,3� and �5,0� tubes are predicted to be
metallic by local density functional calculations.2 These ultr-
asmall SWNTs are of special interest since they are very
close to a one-dimensional �1D� system. In particular, they
can serve as excellent prototypical systems to study electron-
phonon �el-ph� interactions and the phenomenon of Peierls
transition. For the �3,3� tube, a phonon branch was found to
go soft at q=2kF at about room temperature.3,4 The �5,0� tube
was found to spontaneously distort when the atoms are re-
laxed in calculations that considered a primitive unit cell that
contains 20 atoms.4 A detailed study of the lattice dynamics
of the �5,0� tube, however, has not been done so far apart
from a tight-binding investigation,5 which, however, is a
nonself-consistent approach and has been shown to give sig-
nificantly different results from the fully self-consistent treat-
ment in the case of the �3,3� tube.3,4

In this paper, we investigate the lattice dynamics of the
�5,0� tube using density functional perturbation theory. We
found rather complex and interesting phenomena due to
el-ph coupling. The salient features of numerical results can
be explained by a simple model.

The phonon anomalies for �5,0� are considerably more
complex than what we have found for the �3,3� tube,3 due to
the more complex electronic structure of �5,0� near the Fermi
level. The comparison of the el-ph interactions between �3,3�
and �5,0� is in fact an interesting example of quantum size
effects. In many situations, quantum size effects are direct
consequences of the small size of the nano-object. The �3,3�
and �5,0� have nearly the same radius, and there is thus no
difference in the size. However, the el-ph interaction and
phonon anomalies are entirely different since different ways
of zone-folding lead to very different electronic structure,
which in turn leads to a very different el-ph coupling. The

quantum size effect here manifests itself as a boundary con-
dition effect rather than a simple “size” effect.

II. METHOD

In this paper, we study the lattice dynamics and the pho-
non softening of �5,0� nanotubes using modern ab initio
methods. Calculation of electronic properties are done by
employing the well established density functional method.
Phonon properties are obtained by determining the response
of the electronic system to small changes in the atomic po-
sitions. This is done most efficiently by using a formulation
that is known under the name of density functional perturba-
tion theory �DFPT�.6 The DFPT approach gives complete
phonon dispersion curves. Such an approach is very useful
for the present studies, as the Kohn anomalies can occur at
phonon wave vectors that may be incommensurate with the
lattice, making supercell type calculations impractical. Our
results are calculated with a “mixed-basis code,”7 which em-
ploys plane waves up to a cutoff of 20 Ry, augmented by
localized 2s and 2p functions. We employed Hamann–
Schlüter–Chiang type of norm-conserving pseudopotentials,8

which yields excellent results for carbon. Our DFPT is
implemented within our mixed-basis code,9 which has been
applied successfully to describe the phonon dispersions and
the electron-phonon coupling of many systems, including
graphitic structures and nanotubes.

We used a supercell geometry in which the �5,0� nano-
tubes are arranged in a hexagonal array, with a nearest wall
to wall distance of 10 Å. The tube-tube interactions are very
small at such a distance, so the results represent the proper-
ties of an isolated tube. The primitive unit cell has 20 carbon
atoms. The Fermi surface smearing is handled with a Gauss-
ian broadening approach.10 A Gaussian broadening width of
0.2 eV and 32 k points in the Brillouin zone are used for
atomic coordinate relaxations. For phonon calculations, we
employed a one-dimensional grid of 256 k points, and vari-
ous Gaussian widths are employed in smearing the Fermi
level, as explained below.
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III. RESULTS

A. Electronic structure

Although the simple zone-folding picture predicts that the
�5,0� tube is semiconducting, �5,0� is actually found to be a
metal from LDA calculations. Due to �−� coupling induced
by curvature effects, a nondegenerate band is pushed down
in energy and becomes partially occupied. This is a conse-
quence of the strong curvature effect due to the small radius
of the �5,0� tube. The details of such an effect on the band
structure of zigzag tubes had been discussed and explained
by several authors.2,11 This curvature effect has important
consequences on the properties of small-diameter zigzag
tubes. First of all, all �n,0� tubes with n�7 become metallic.
This effect also causes small diameter zigzag tubes to have
significantly higher work functions than graphite and �n ,n�
tubes.12 For our particular case of �5,0�, the tube is metallic
because of this effect. Although the LDA band structure of
the �5,0� tube can be found in the literature,2 we show our
calculated bands in Fig. 1 to facilitate the discussion of
electron-phonon coupling in the following sections. Typical
for this tube is the fairly high density of states at EF of 0.35
states/�eV atom�. This value is in good agreement with the
value given in Ref. 13, especially in view of its high sensi-
tivity to the k-point sampling and level broadening.

From Fig. 1, we see that a doubly degenerate negative
effective mass band and one singly degenerate positive ef-
fective mass band cross the Fermi level. The Fermi points
corresponding to the negative effective mass band and the
positive effective mass band will be labeled as k− and k+,
respectively. From Fig. 1, we found that �in units of � /a, i.e.,
zone−boundary=1 unit� the negative mass bands cross Ef at
k−=0.13� /a, while the positive mass band crosses Ef at k+
=0.26� /a.

As we shall see, the electronic structure of �5,0� gives
rather unusual phonon properties for the �5,0� as a conse-

quence of el-ph coupling. For the armchair �3,3�, which has
nearly the same radius, the band structure of �3,3� is qualita-
tively similar to the zone-folded graphene, although the
Fermi point is at a slightly displaced k vector due to curva-
ture. The phonon anomalies of �3,3� due to el-ph coupling
are derived from the q=0 and q=K �where K is the K point
in the Brillouin zone of graphene� anomalies of graphene.14

The �3,3� phonon anomalies can thus be qualitatively dis-
cussed by knowing the properties of graphene. For �5,0�, the
curvature effect changes the electronic band qualitatively
near the Fermi level so drastically that it is not possible to
discuss or understand the phonon anomalies from the elec-
tronic structure of graphene. In fact, within a zone-folding
description, �5,0� has a gap and there is no phonon anomaly
to worry about.

B. Phonon dispersion

In 1D systems, we have diverging susceptibilities at the
nesting vector q’s that connect Fermi points that have slopes
of opposite signs on either side of the q-vector. By examin-
ing the band structure of the �5,0� tube, we expect strong
el-ph coupling, and thus phonon anomalies at �i� q=2k−
=0.26� /a, �ii� q=2k+=0.52� /a, and �iii� q=k+—k−
=0.13� /a. The details of the phonon anomalies depend on
the el-ph coupling strength and the density of states.

The phonon dispersions calculated using the first prin-
ciples approach with a series of Gaussian broadening width
�w�, including w=0.2, 0.1, and 0.025 eV, are shown in Figs.
2–4 respectively. In Fig. 3 �w=0.1 eV� and Fig. 4 �w
=0.025 eV�, we plot only those symmetry class correspond-
ing to phonon branches that the el-ph coupling has a visible
renormalization of the phonon frequencies. From these fig-
ures, we can observe the development of phonon anomalies
and soft modes as the Fermi surface sharpens. In Fig. 4, we
use arrows to indicate the q vectors identified above to high-
light the relationship between the nesting q vectors and the
phonon anomalies. For all these phonon calculations, the
atomic coordinates are obtained by relaxing the system with
a Gaussian width of 0.2 eV. As we can see from Fig. 2, the
phonons are not soft at that broadening. As the Fermi surface
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FIG. 1. Band structure of �5,0� for the atomic coordinates re-
laxed with a Gaussian width of 0.2 eV and 32 k points in the
Brillouin zone. k is given in units of � /a. The Fermi energy is set
to 0.
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FIG. 2. Phonon dispersions of �5,0� calculated with a Fermi
surface smearing of w=0.2 eV.
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sampling sharpens at a Gaussian width of 0.025 eV, phonon
anomalies are clearly identified and soft modes appear near
q=0.13� /a and q=0.26� /a. The q=0.26� /a anomaly, due
to intraband coupling of the doubly degenerate band, is con-
siderably stronger than the interband q=0.13� /a coupling,
presumably because the doubly degenerate bands have a
higher density of state near Ef. We do not find noticeable
anomalies at q=0.52� /a that can potentially occur due to
interband coupling of the positive mass band crossing the
Fermi level. The positive mass band has low density of states
at Ef.

From Fig. 2, we see that with a Gaussian width of w
=0.2, the phonon dispersions show no anomalies that are
visible to the eye. We will focus on the low frequency
modes. There are four acoustic modes that have frequencies

that go to zero as q→0. The lowest frequency branch is
doubly degenerate and corresponds to transverse vibration
modes. Close to the Brillouin zone center, its frequency
shows a quadratic dependence on q in agreement with pre-
dictions from continuum models.15 The next branch corre-
sponds to the twisting mode, which is a signature mode of
the nanotubes, and the highest frequency acoustic branch is
the longitudinal mode. We remark that the twisting mode
actually has a small imaginary frequency at the zone center,
which is found to be nearly independent of the Gaussian
broadening width or the k-point sampling. This numerical
artifact is traced to a small coupling between the tubes in
different unit cells. There is actually a particular angle that
the tube and its images have lower interaction energy due to
intertube coupling, and that manifests as a small imaginary
frequency for the “rotation” of the tube. This small intertube
coupling does not affect our consideration of phonon anoma-
lies due to el-ph coupling.

There are two modes that are of special interest and they
are labeled as C and D in Figs. 3 and 4. The displacement
eigenvectors for these two branches at q=0 are plotted in
Fig. 5. At q=0, the phonon branches C and D have frequen-
cies of about 7.5 and 50.8 meV, respectively, at w=0.2.

At a reduced Gaussian width of 0.1 eV, we found that the
four acoustic phonon branches are hardly affected, but we
see from Fig. 3 that the branches C and D are strongly renor-
malized near the zone center. Branch C becomes soft near
the zone center, and branch D drops to below 30 meV.

If we further reduce the Gaussian width to 0.025 eV, the
phonon anomalies are fully developed and the dips can be
identified with the nesting q vectors at q=0.13� /a and
0.26� /a, respectively. Some interesting features are worth
our attention. First, the branch C is driven unstable by the
interband coupling between the negative mass bands and the
singly degenerate positive mass band, which has a nesting
q=0.13� /a. We note from Fig. 3 that this branch is soft at
and near q=0 �not at q=0.13� /a� when the Gaussian width
is 0.1 eV. At a smaller broadening of 0.025 eV, the frequency
becomes finite again at q=0 and its vicinity, and the mode is
soft near q=0.13� /a. Such an evolution, which involves a
re-entrant stability of the mode at zone center �the mode first
goes soft but becomes stable again�, will be discussed in
detail below. The branch D, which is still stable at w
=0.1 eV, becomes now the dominant soft mode, and the
mode is soft for a whole range of q vectors around q
=0.26� /a and extends all the way to the zone center. The
mode is “softest” near the expected q=0.26� /a.
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FIG. 3. Phonon dispersions of �5,0� calculated with a Fermi
surface smearing of w=0.1 eV are shown as solid lines. The dotted
lines show the phonons calculated with w=0.2 eV for comparison.
Only those modes that are noticeably affected by el-ph coupling are
shown.
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FIG. 4. Phonon dispersions of �5,0� calculated with a Fermi
surface smearing of w=0.025 eV are shown as solid lines. The
dotted lines show the phonons calculated with w=0.2 eV for com-
parison. Only those modes that are noticeably affected by el-ph
coupling are shown. The arrows mark the nesting q vectors corre-
sponding to q=k+—k−=0.13 and q=2k−=0.26.

C D
FIG. 5. Atomic distortions corresponding to the eigenvectors of

the modes at the zone center for the branches labeled as C and D in
Fig. 4.
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C. Frozen phonon calculations

The phonon dispersions give us useful information about
the lattice dynamics of the system. However, these results
correspond to the lowest order expansion of the Hamiltonian
near the equilibrium. In order to explore the energy land-
scape for larger displacements near the equilibrium positions,
we performed frozen phonon calculations. We first obtained
the phonon eigenvectors for the phonon branches C and D at
the zone center with w=0.2, where all phonons are stiff. We
then distort the lattice according to frozen phonon displace-
ments so that the atomic positions become Ri�=Ri+�Pi,�,
where the Ri� is the atomic coordinate of the tube at the
zero-force position and Pi,� is the atomic displacement at the
ith atom corresponding to the normalized eigenvector of the
�th phonon mode. We will focus on the modes C or D at k
=0. The atomic displacements that correspond to the phonon
modes C and D at the zone center are shown in Fig. 5. The
constant � is a scaling factor that controls the magnitude of
the frozen phonon displacement.

The results shown in Fig. 6 are the relative energy change
as the nanotube is distorted according to frozen phonon dis-
placements. The energy changes in Fig. 6�a� are calculated
with a Fermi surface smearing w=0.1 eV. Dots correspond
to the frozen phonon displacement of mode C, while squares
correspond to the frozen phonon displacement of mode D.
The lines are fourth order polynomial fits to the calculated
results. We see that both the energy change of the C and the
D modes can be fitted very well with fourth order polynomi-
als. The energy change corresponding to the D mode dis-
placement is positive, consistent with the results shown in
Fig. 3 that with w=0.1 eV, mode D is still stiff at the zone
center. In comparison, the energy change corresponding to
mode C has a very flat landscape. The inset in Fig. 6�a� is a
zoom-in view of the details for mode C. We see that the �
=0 point is actually a local maximum, which means that the
phonon displacement can bring the tube to a slightly lower
energy configuration. This result corroborates well with the
phonon dispersion result in Fig. 3 that with w=0.1 eV, mode
C at k=0 is soft.

We show in Fig. 6�b� the frozen phonon results calculated
with a smaller Fermi surface smearing of w=0.025 eV. The
inset in Fig. 6�b� is an expanded view using a smaller energy
scale. Again, dots and squares correspond, respectively, to
the frozen phonon displacement of modes C and D at q=0,
and the lines are the fourth order polynomial fits. It is inter-
esting to note that lattice distortion according to the eigen-
vector of mode C at q=0 gives positive energy changes,
which can be fitted very well with a parabola. This is con-
sistent with the phonon dispersion results that at w
=0.025 eV, mode C is unstable near the nesting q vector of
q=k+—k−=0.13� /a, but it has a positive frequency at the
zone center. For frozen phonon displacements of mode D,
the �=0 point is a local maximum, consistent with the pho-
non dispersion results that the zone center mode of branch D
has imaginary frequencies.

D. Model to explain the behavior

In order to gain a better understanding of the evolution of
the phonon instabilities as shown in Figs. 2–4, we employ a

model that describes the renormalization of an Einstein-like
phonon with a bare frequency �0 due to the coupling to two
electronic bands. The renormalized frequencies are given by

	2�q� = �0
2 + �

n,n�

Gn,n�
n,n��q� ,

where n is 1 or 2, with n=1 standing for the negative mass
band, and n=2 for the positive mass band. The susceptibility
functions


n,n��q� =
1

Nk
�

k

f�ek,n� − f�ek+q,n��

ek,n − ek+q,n�

are evaluated using a two-band model, where the dispersion
of the two LDA electronic bands crossing the Fermi energy
are approximated by quadratic functions that reproduce the
energies at k=0 and the k values at the Fermi-level crossings.
The Gaussian broadening functions are denoted by f�e�. The
Gn,n� are the coupling constants that are taken to be indepen-
dent of phonon or electron momenta. We will see that this
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FIG. 6. �Color online� The energy changes when the lattice is
distorted by frozen phonon displacements. Dots and squares corre-
spond, respectively, to the frozen phonon displacements of modes C
and D at zone center, and the lines are fourth order polynomial fits.
The insets show expanded views near �E=0. Results in Figs. 6�a�
and 6�b� are calculated with Gaussian broadening widths of w
=0.1 eV and of w=0.025 eV, respectively.

BOHNEN, HEID, AND CHAN PHYSICAL REVIEW B 77, 235407 �2008�

235407-4



simple ansatz already gives the salient features of the phonon
anomaly, which is due to the diverging behavior of the sus-
ceptibility. Typically, the k summation was performed with
Nk=10 000 k points.

As shown in Fig. 7, this simple two-band model is ca-
pable of describing the main features of the phonon instabili-
ties for both branches C and D. The solid lines in Fig. 7�a�
show the development of the phonon anomalies as the Fermi
surface sharpens according to the model when only the in-
terband coupling �G12=G21� is taken into account. The dot-
ted lines are the phonon dispersion curves calculated from
first principles. The important behaviors of branch C are cap-
tured by the simple model. In particular, the model gives the
following features: �1� All frequencies are positive for a
Fermi surface smearing of w=0.2 eV; �2� when w=0.1, a
softening that leads to unstable modes for q�0.1� /a; �3�
when w=0.025, modes become soft in the range 0.1� /a
�q�0.2� /a, but at q=0, the mode is stiffened and the fre-

quency is positive again. Thus, all essential features of the
first principles results are reproduced. It is not practical to go
to an infinitely dense k point grid using first principles cal-
culations, but we can follow the development of the phonon
anomalies to the limit of zero smearing using the model. For
very small smearing, the model finds that the susceptibility
diverges at q=0.13� /a and modes in the vicinity of q=0
remain stable.

When only the intraband coupling of the negative mass
band �G11� is nonzero, we get the behavior of branch D as
shown in Fig. 7�b�: �1� All frequencies are positive for w
=0.2 eV; �2� a softening is found for w=0.1 eV especially
near q=0, but all frequencies remain positive; �3� for w
=0.025 eV all phonons with q�0.35� /a become soft, with
a valley at q=0.26� /a. Again, we can use the model to vi-
sualize the zero Fermi surface smearing limits. For very
small broadening, the model predicts a singularity at
0.26� /a, but the range of unstable phonons extends to the
zone center.

E. Full relaxation within the constraint of primitive unit cell

We note that the phonon dispersions shown in Fig. 4 in-
dicate that the system is unstable. However, the ground state
atomic structure cannot be predicted by the phonon calcula-
tions. It would be interesting to know whether the lowest
energy structure is related to the eigenvectors of the soft
modes. Since the softest modes are at a finite q vector, the
corresponding supercell would be too large for a search for
the ground state geometry. We worked with the primitive
unit cell and attempted to search for the lowest energy struc-
ture within the constraint of 20 atoms/cell and a small Gauss-
ian broadening. We found that the lowest energy structure at
q=0 is just about 1 mRy/unit cell lower than undistorted
structure, and in addition, the distortion is essentially a linear
combination of the phonon eigenvectors of branches C and
D at the zone center. The amplitude of mode C is about five
times larger than that of mode D, which is consistent with
the frozen phonon results shown in Fig. 6 that shows that
distortion according to mode C causes little change in en-
ergy. Since the eigenvector of mode C at the zone center
corresponds to an elliptical distortion, the cross section of the
tube becomes slightly elliptical, and the reduced symmetry
opens a small gap near the Fermi level. The results are simi-
lar to those obtained in Ref. 4. The symmetry breaking and
the resulting gap opening accounts for the energy gain. We
have also tried to search for the minimum in the space of the
generalized-coordinates defined by the eigenvectors of
modes C and D, and the minimum point is basically the same
as we found from direct relaxation. So, we found that the
normal coordinates of the soft phonons do give us some
useful information about the ground state atomic structure
for q=0. It is of course difficult to speculate whether the true
ground state can be described entirely as a linear combina-
tion of the softest modes shown in Fig. 4 at finite q vectors.

IV. SUMMARY

Most of the modes, including the acoustic modes, are
hardly affected by the change of the Fermi surface smearing
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FIG. 7. �Color online� The solid lines show the phonon frequen-
cies for a model that describes Einstein-like phonons with their bare
frequency renormalized due to the coupling to two electronic bands.
Different colors represent different smearing at the Fermi level, as
labeled in the legend. The dotted lines are the phonon dispersion
curves calculated from first principles. Figure 7�a� shows that the
behavior of branch C is obtained when only the interband coupling
is taken into account. Figure 7�b� shows that when only the intra-
band coupling of the negative mass band is nonzero, we get the
behavior of branch D.

COMPLEX ELECTRON-PHONON DRIVEN LATTICE… PHYSICAL REVIEW B 77, 235407 �2008�

235407-5



in the range of 0.2–0.025 eV. Two phonon branches, labeled
C and D, are strongly renormalized. The branch D shows a
monotonic decrease in frequency near the region of small q
vectors, and a q=0.26� /a anomaly develops gradually due
to intraband nesting. At w=0.025 eV, the phonon anomaly
is fully manifested in the phonon dispersion and a whole
range of wave vectors becomes soft near q=0.26� /a, ex-
tending all the way to the zone center. The development of
the anomaly for the branch C is more complex, showing soft
mode near the zone center first at w=0.1 eV. When Fermi
surface smearing is reduced to w=0.025 eV, the modes near
q=0.13� /a become soft, driven by the interband nesting.

However, the mode at zone center becomes stable again. The
distortion of the fully relaxed structure at the zone center �for
small Fermi surface smearing� is found to be essentially a
linear combination of the soft modes C and D at zone center.
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