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We derive an analytical formula for the open-circuit voltage �Voc� of organic planar heterojunction solar cells
under standard operating conditions. We find that the type of free carrier recombination at the interface
between the donor and acceptor materials controls the slope of Voc vs incident light intensity. By using the
same derivation, an equation for the resistance around Voc is obtained. From this, we investigate two param-
eters in more detail and compare them to experiments. The first is the work function of the cathode metal. We
show that, within our model, Voc does not depend on this work function, while the cell resistance around Voc

is strongly dependent on it. Second, we find that the asymptotic resistance around Voc is a third-order power
function of the thickness of the organic layers �acceptor or donor�. The model provides insights to achieve
low-resistivity high open-circuit voltage organic solar cells.
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I. INTRODUCTION

Despite growing research efforts, the fundamental pro-
cesses governing the operation of organic diodes are still
poorly understood. A better understanding would guide im-
provements in device design and performance. One applica-
tion of organic diodes is in the area of solar cells, and a key
parameter that can reveal physical mechanisms underlying
the diode operation is the open-circuit voltage �Voc�. It deter-
mines the point where the solar cell stops working as an
active device. Organic solar cells consisting of a donor-
acceptor bilayer have been shown to cover a broad range of
open-circuit voltages1–10 ranging from 0.25 to 2 V. The value
strongly depends on the chosen material set. Several models
described in literature, which are based on equivalent circuit
modeling,11 experimental work,12 or semianalytical
approaches,13,14 indicate that the maximum open-circuit volt-
age of a chosen material set is limited by the difference of
the highest occupied molecular orbital �HOMO� of the donor
and the lowest unoccupied molecular orbital �LUMO� of the
acceptor.12,13,15,16

The maximum power produced by a solar cell is in part
determined by the voltage at the maximum power point,
which is close to the open-circuit voltage. This maximum
power point is parametrized by the fill factor �FF�, a figure of
merit indicating how close the current-voltage �I-V� charac-
teristics under illumination are to an ideal rectangular shape.
Any parasitic resistance will reduce the fill factor and thus
the overall efficiency.17,18

In this work, we derive an analytical model for Voc based
on exciton dissociation at the interface between two materi-
als. Starting from first principles, it is shown that Voc is
largely determined by a diffusion current of carriers away
from the interface between the donor and acceptor materials.
In the next step, the model is extended to calculate the resis-
tance at Voc, which plays a crucial role in determining FF.

Simulations are carried out to obtain the carrier density and
the electric field distribution inside the device, which control
the resistance. Finally, we compare our results to experimen-
tal data in order to verify our model.

II. MODEL

A. Analytical formulas for the open-circuit voltage

The schematic energy diagram of a planar heterojunction
solar cell is shown in Fig. 1. Once an exciton reaches the
interface between the donor and the acceptor, it will dissoci-
ate to a bound polaron pair with a certain probability. In
order to generate free polarons �i.e., a free electron in the
acceptor and a free hole in the donor�, the Coulombic po-
laron pair binding energy has to be overcome. These carriers
will then be mobile in their respective transport levels within
the LUMO of the acceptor �LUMOA� and the HOMO of the
donor �HOMOD�. The maximum energy, which can be ex-
tracted, is given by the difference between these two levels,
�HOMOD�− �LUMOA�. We note that, for the purpose of this
model, any dipoles between the two organic layers are in-
cluded in this difference. Carriers can gain or lose energy
during their transport in the layers due to the band bending of
the electrostatic potential �BBD and BBA, as shown in Fig. 1�.
At the contacts, the carriers can be extracted, which leads to
an additional energy loss originating from the difference of
metal work function to the energy levels of the organic layers
���A and ��D�. Again, all possible dipoles or pinning ef-
fects are included in these offsets.

If the device is working under open-circuit conditions,
moving one electron and one hole from the donor-acceptor
interface toward the electrodes will yield the voltage across
the device. This corresponds to
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Voc = �HOMOD� − �LUMOA� + BBD + BBA − ��A − ��D.

�1�

We will see later that the effect of the band bending will
compensate for the energy loss at the contacts, making Voc
independent of the work function of the electrodes.

In order to calculate the band bending of a bilayer of
undoped semiconductors, we apply the Poisson equation,

� · F� =
q · �p − n�

�
, �2�

and the continuity equations of electrons and holes,

dp

dt
= − � · �p�pF� − Dp�� p� + Gp − Recp �3�

dn

dt
= − � · �n�nF� + Dn�� n� + Gn − Recn. �4�

Here, q is the elementary charge, � is the absolute permittiv-
ity that we assume the same for both layers, p and n are the
concentrations of holes and electrons, �p and �n are the hole
and electron mobilities, Dp and Dn are the hole and electron
diffusion constants, Gp and Gn are carrier generation rates,
and Recp and Recn are recombination rates, respectively. If
solved self-consistently, the solutions yield the electron and

hole densities �n and p� as well as the electric field �F� �
within the film. We assume the device to be in steady state
�dp /dt and dn /dt are 0�, the doping concentrations to be
negligible compared to the free carrier concentration and the
Einstein relation �D /�=kT /q, where k is the Boltzmann con-
stant and T is the absolute temperature� to hold.

The equations will be derived for a homogeneous planar
heterojunction. For symmetry reasons, we consider the one-
dimensional case. The vectors can be represented by their

magnitude, and the gradients and divergences resolve into
simple derivatives. In the following, the derivation will be
outlined for the donor layer. The results for the acceptor
layer are analogous.

The band bending due to the change in electrical potential
is equal to

BBD = �
0

dD

F�x�dx , �5�

where dD is the thicknesses of the donor layer. We define the
donor contact to be located at point x=0 and the donor-
acceptor interface at x=dD �see the bottom of Fig. 1�.

Starting from an expression for the current, the field F�x�
is evaluated. As the equations will be derived for the hole-
conducting donor material, we neglect the electron density.
By doing so, we assume a metal contact that is not injecting
any electrons. Therefore, the total current in the donor layer
equals the hole current,

jp = q�p�pF −
kT

q

dp

dx
� , �6�

with jp=0 for the case under investigation �Voc�. Analytical
solutions for the carrier density and electric field as a func-
tion of position can be derived, as shown in Appendix A.

By using Eqs. �5� and �6� with jp=0, the net band bending
can be rewritten as

BBD =
kT

q
ln� pi

pc
� . �7�

The carrier concentration at the interface pi will be deter-
mined by the incident light intensity, whereas the carrier con-
centration at the contact pc is a function of the barrier ��D.

The result of Appendix A can be used to calculate the
carrier profile inside an organic solar cell. Figure 2 shows an
example of simulations carried out for a 50 nm thick layer of
organic material. The carrier density at the contact pc is fixed
to three different values, and for each value, a different pi is
used. The steady-state carrier density through the layer is
plotted, depending on the boundary condition.

B. Carrier concentration at the contact

The physics at the interface between a metal and an or-
ganic semiconductor remains a matter of discussion. For an
overview of the current state of understanding, see reviews
by Scott19 and Arkhipov.20 While not going into detail here,
the carrier density at the interface is given by an exponential
dependence on the injection barrier ���D� and some depen-
dence on field and temperature, depending on the model ap-
plied. The injection barrier can be calculated from the posi-
tion of the HOMO or LUMO and the metal work function,
taking into account any surface dipoles.21 Additionally, the
metal work function itself depends on possible oxidation or
surface contaminations.22 Therefore, the ��D used here is an
effective injection barrier, accounting for all such effects.

A general equation for the carrier density at the contact
can be written as

FIG. 1. Schematic energy diagram of a planar heterojunction
solar cell. �HOMOD�− �LUMOA� is the energy difference between
the HOMO of the donor and the LUMO of the acceptor, BBA and
BBD are the net band bendings in the electrostatic potential, and
��A and ��D are the energy offsets at the contact. The values of
BBA and BBD are negative if a carrier moving from the interface to
the contact loses energy and are positive if the carrier gains energy.
As the acceptor layer is an electron region, and the donor layer a
hole region, BBA and BBD ���A and ��D�, show an opposite bend-
ing for the same sign. At the bottom, the coordinate system is
drawn, with dD and dA as the thickness of the donor and acceptor
layers, respectively.
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pc = NDf�Fc�exp�−
��D

kT/q� , �8�

where ND is the effective density of states of the donor and
f�Fc� is a function to include the effect of the electric field at
the contact. An example is the Richardson–Schockley23

equation for thermionic emission with field dependent barrier
lowering,

pc = ND exp�−
��D − �low�F�

kT/q � , �9�

with

�low�F� =� q3F

4��
. �10�

The effective reduction in the barrier is introduced to take
the image charge into consideration. This effect occurs only
if the field is aiding carrier injection, pointing away from the
contact for electrons �acceptor layer� and pointing toward the

contact for holes �donor layer�. Otherwise, �low�F� is zero.
By combining Eqs. �1�, �7�, and �9�, we obtain the follow-

ing expression for Voc:

Voc = �HOMOD� − �LUMOA� +
kT

q
ln� pi

ND
� +

kT

q
ln� ni

NA
�

+ �low�Fc,D� + �low�Fc,A� . �11�

The terms that determine Voc are mainly HOMOD, LUMOA
and the carrier concentration achievable at the interface. The
concentration of photogenerated carriers at the interface can
never exceed the density of states. As a consequence, the
open-circuit voltage will be limited by the effective energy
offset between the HOMO of the donor and the LUMO of
the acceptor,16 in practice, Voc will always be lower. The
influence of the barrier lowering by the field at the contact is
expected to be less than 20 meV, as can be seen in Fig. 3.

Furthermore, it appears that Voc is not dependent on the
work function of the contact materials. Figure 4 plots the
schematic energy diagram and the carrier profile inside the
organic layers for two different contact materials, leading to
two different injection barriers. The carrier density at the
donor-acceptor interface is the same for both plots. When the
work function of the contact material leads to a low injection
barrier, the carrier profile generates a diffusion current to-
ward the interface �Fig. 4�a�	. As the net current is zero at
Voc, a counteracting drift current pointing away from the in-
terface should cancel this diffusion current. The resulting
band bendings �BBA and BBD� are negative terms in Eq. �1�.
In contrast, when the chosen contact leads to a high injection
barrier, the diffusion current due to the carrier profile points
toward the contacts �Fig. 4�b�	. In this case, the opposite drift
current generates a band bending that has a positive contri-
bution to Voc. In the end, the obtained Voc is the same for

FIG. 2. Modeled carrier density versus position, where x
=0 nm is equal to the contact and x=50 nm is the location of the
heterojunction. The different graphs correspond to different carrier
densities at the contact ��a� 1020, �b� 1022, and �c�
1024 carriers /m3	, while the different curves on each graph corre-
spond to different carrier densities at the interface ranging from
1019 to 1026 carriers /m3.

FIG. 3. Effect of field dependent barrier lowering ��low�. Simu-
lations are carried out by using an injection barrier ��D=0.42 eV,
giving a contact carrier density �pc� of 1�20 m−3 without barrier
lowering. The lower graph plots the field at the contact �Fc� needed
to reach a certain carrier density at the interface. When a positive
field is present, barrier lowering occurs and pc increases �upper
panel�. Note that it only increases by a factor of 2 for an increase in
pi of 6 orders of magnitude.
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both situations. The results of our analytical model are in
agreement with the numerical calculations in the previous
work.13,24

C. Carrier density at the interface

The conversion of light into free charge carriers at the
interface is a three-step process:

�1� The absorbed light creates excitons.
�2� The excitons diffuse toward the interface where disso-

ciation into polaron-pairs occurs.
�3� These polaron pairs need to further dissociate to create

free charge carriers.
At the interface, three continuity equations are needed for

the three particles involved, namely, for excitons �S, Eq.
�12�	, polaron pairs �X, Eq. �14�	, and free carriers �holes in
this example, pi,s, Eq. �15�	. The equations for polaron pairs
and free carriers are written for surface densities �particles
per area�, while a conversion to bulk densities can be done
assuming all surface reactions take place at a monolayer
from the interface. The exciton continuity equation is

dS

dt
= GS − RecS − DS

d2S

dx2 , �12�

with a boundary condition at the interface,

DS
dS

dx



i
= GX. �13�

Here, GS is the generation of excitons due to incident light,
RecS incorporates all possible exciton recombination mecha-
nisms, DS is the diffusion constant for the excitons, and GX is
the amount of dissociated excitons into polaron pairs.

For the polaron pairs, we obtain

dX

dt
= GX − kX,recX − kdissX + Lni,spi,s, �14�

where kX,rec is the recombination rate, kdiss is the rate of dis-
sociation into free carriers, and Lni,spi,s is the creation of

excitons due to Langevin-type recombination of free carriers.
The free carrier continuity equation is

dpi,s

dt
= kdissX − Lni,spi,s − kSRH

ni,spi,s

ni,s + pi,s
. �15�

with the last term reflecting Shockley–Read–Hall �SRH� re-
combination.

In order to calculate the generation of excitons �GS in
Eq. �12�	, one should take into account the optical
interference.25,26 The generation has a linear dependence on
the light intensity �GS� P0�. At low to medium light intensi-
ties, the exciton recombination term RecS is directly propor-
tional to the exiton density. Only at very high light intensi-
ties, recombination mechanisms such as singlet-singlet or
singlet-polaron quenching will become important. As long as
these multiple-particle effects can be neglected, the number
of dissociated excitons will have a linear dependence on in-
cident light intensity �GX=�P0�.

Polaron pairs are created from the dissociation of excitons
at the heterojunction. Coulombic attractive forces prevent
these particles from dissociating into free carriers. The two
rates �recombination kX,rec and dissociation kdiss� will deter-
mine the probability of dissociation into free carriers.27

The free carriers obtained in this way can return to a
polaron pair with a rate constant L, which is the Langevin
recombination rate. As such, polaron pairs can be dissociated
and created multiple times before the carriers are collected to
the contacts.13,28 The last recombination term in Eq. �15�
reflects the recombination at the interface due to surface
traps. This trap-assisted recombination process can be ex-
pressed with the SRH equation.29–32 The recombination rate
kSRH takes the trap density and the capture coefficients of
electrons and holes into account.

The assumption ni,s=	pi,s is made to relate the opposite
charge carriers; both will have the same light dependence as
they are created and recombined. Combining Eqs. �12�, �14�,
and �15� with the continuity equation for electrons, we obtain
a quadratic equation for the carrier density at the interface,

L	 · pi,s
2 + kSRH

	

1 + 	
�1 +

kdiss

kX,rec
�pi,s −

kdiss

kX,rec
�P0 = 0.

�16�

Depending on which recombination mechanism domi-
nates at the interface, Eq. �16� can be simplified. If bimolecu-
lar Langevin-type recombination is the important limiting
factor, the carrier density can be expressed as

pi,s =�1

	

kdiss

kX,recL
�P0. �17�

The solution in case of SRH recombination is

pi,s =
kdiss

kSRH

1 + 	

	�kdiss + kX,rec�
�P0. �18�

The final equation relating the Voc and the incident light is
obtained by combining Eqs. �11�, �17�, and �18�. Simplified,
the Voc can be expressed by

FIG. 4. Schematic energy diagrams �upper graphs� and corre-
sponding carrier profile in the organic layers �lower graphs� when
using �a� low and �b� high injection barriers at the contacts, ��D

and ��A. The same incident light intensity is used for the two
situations, creating the same density of carriers at the donor-
acceptor interface �yi�. The values for the band bendings, BBA and
BBD, are negative for �a� and positive for �b�. The resulting open-
circuit voltage Voc is the same.

CHEYNS et al. PHYSICAL REVIEW B 77, 165332 �2008�

165332-4



Voc = �HOMOD� − �LUMOA� + nvoc
kT

q
ln� 


NAND
�P0�

+ �low�Fc,D� + �low�Fc,A� , �19�

where nvoc and 
 are the factors determined by the actual
recombination processes for the electrons and holes at the
interface.

According to Eq. �19�, Voc has a logarithmic dependence
on light, with a slope per decade equal to 2.3nvockT /q. If
both carrier types are limited by bimolecular recombination,
nvoc is equal to 1, while a value of 2 is obtained if SRH
recombination determines the electron and hole densities.
These values corresponds to a slope of 60 or 120 mV/decade.
Only one slope dominates at a given light intensity, but a
transition from SRH recombination at low light intensities to
bimolecular recombination at high light intensities is pos-
sible, and this will be reflected in two different slopes for Voc
as a function of log�P0�.

The different parameters directing ni and pi are assumed
to be electric field independent. In certain cases, this assump-
tion can be violated,27 and this will have a direct impact on
the slope of Voc. Also, the choice of metal contact can influ-
ence the electrical field at the interface, and as such, Voc.

D. Resistivity around Voc

The resistivity at Voc is a measure for the quality of the
solar cell, as it influences the FF. It can be calculated starting
from Eq. �6�,

F =
kT

q

� ln�p�
�x

+
j

pq�p
. �20�

By using this relationship together with Eqs. �1� and �5�
�which are equations valid for any voltage applied over the
contacts, not only for Voc�, we obtain a formula that is valid
for the whole I-V curve,

V�j� = �HOMOD� − �LUMOA� +
kT

q
ln� pi

ND
� +

kT

q
ln� ni

NA
�

+ jR�j� , �21�

with R�j� as an extra resistance, which gives the slope of the
I-V curve for a certain current. When the bias reached is
close to Voc, we can assume the carrier concentration at the
interface and the contact to be constant. The voltage across
the device is equal to Voc, with the addition of the term jRvoc.
The resistance is given by

Rvoc =
1

q��0

dD dx

�pp
+ �

dD

dD+dA dx

�nn� . �22�

This integral can be solved and an analytic formula is ob-
tained. The results are shown in Appendix B.

Equation �22� expresses the importance of reasonable mo-
bilities for low resistance devices. However, another impor-
tant parameter is the carrier concentration profile inside the
organic layer. Low carrier densities, whether at the contacts,
at the interface or in the bulk, will lead to high resistance, as
shown by Eq. �22�. By changing the metal contacts, the car-

rier concentration profile may drastically change, and accord-
ingly, the resistance will change. Another important param-
eter is the thickness of the layer. It directly influences the
resistance by both increasing the carrier transport path length
and by altering the carrier concentration profile. Simulations
and experiments will be carried out below to illustrate these
points.

III. EXPERIMENT

In order to verify the model derived in Sec. II, we per-
formed various experiments with organic solar cells based on
copper phthalocyanine �CuPc� as the donor material and
N,N�-di-tridecyl-3,4,9,10-perylene tetracarboxylic diimide
�PTCDI-C13H27� as the electron acceptor. On some samples,
a thin layer of bathocuproine �BCP� is added prior to metal
deposition. The substrates consist of 100 nm thick indium tin
oxide layer �ITO, Merck� on glass, with a sheet resistance of
�20 � /�. They are cleaned with soap, de-ionized water,
acetone, and isopropanol. A 15 min UV-ozone treatment is
carried out prior to the deposition of the organic layers. All
organic molecules are purchased from Aldrich and are puri-
fied once by gradient sublimation. All layers are deposited
under ultrahigh vacuum conditions �base pressure below 1
�10−8 Torr�. The layers are subsequently deposited without
breaking vacuum except for mounting the shadow masks for
electrode deposition inside a nitrogen atmosphere.

Illumination is with a 1000 W xenon arc lamp equipped
with filters to simulate the AM1.5D spectrum �L.O.T. oriel
solar simulator�. The lamp is calibrated by using a bandpass
filter �KG5, L.O.T. oriel33� and a silicon detector. The inci-
dent light power is varied with neutral density filters.

IV. RESULTS AND DISCUSSION

A. Simulation

The results of Sec. II can now be applied to calculate the
carrier and electric field profiles in the different layers as a
function of the incident light intensity. Initially, we choose a
certain electric field at the contact Fc. Depending on the in-
jection model, the carrier density at the contact �pc� is calcu-
lated. From these two values, we calculate the field and car-
rier profile in the layer. By changing the value of Fc, a range
of values for the carrier density �pi� and field �Fi,D� at the
interface is obtained. These steps are then repeated for the
acceptor layer, giving a range of ni and Fi,A values. As the
electric field should be continuous at the interface �Fi,D
=Fi,A, if the permittivities of the materials are the same�, the
profiles for the different layers can be linked to each other.
Finally, by using Eq. �17� or �18�, the incident light required
to obtain a certain ni-pi couple can be calculated.

Because it is difficult to correlate carrier density with in-
cident light intensity, most of the plots used in this paper give
the carrier density at the interface on the x axis, and not the
incident light intensity. In all the simulations, the mobility of
the organic layers is fixed to 1�10−7 m2 /V s, while the
effective density of states is kept at 1�1027 states /m3.
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B. Change in work function of the contact

A commonly recurring question when working with or-
ganic devices is the effect of the chosen metal contact on the
performance of the device. Most contacts induce an injection
barrier34 to the organic layer because of the difficulty in
achieving Ohmic contacts. Different contact materials will
change the carrier injection and as such the characteristics of
the device. Stössel et al.35 evaluated the performance of or-
ganic light-emitting diodes �OLEDs� by using a range of
cathodes with different work functions. Their results re-
vealed a clear relationship between efficiency of the OLED
and cathode metal work function. Although the effective in-
jection barrier is not known, the injection barrier will scale
with the work function of the metal, which is measured or
calculated for a clean surface.23,36 For some small molecules,
such as C60, the interaction between organic and the metal
contact is large enough that the injection barrier is pinned to
a certain value, regardless of which metal is used.37 To avoid
these problems, PTCDI-C13H27 is used as an acceptor mate-
rial as it is known that for this acceptor, different contact
metals change the injection behavior.38 For the comparison
to the model, we modify the injection barrier at the donor
side, but mutatis mutandis, this is equivalent to the experi-
mental situation of modifying the barrier at the acceptor side.

The results of a simulation with different injection barri-
ers at the donor side can be seen in Fig. 5, where the resis-
tance at Voc is plotted versus the carrier density at the inter-
face for a 50 nm thick layer. With increasing injection
barrier, the carrier density at the contact drops �see Eq. �8�	.
As can be seen in Fig. 2, a decreasing carrier density at the
contact will change the steady state carrier density through-
out the layer. As expected from Eq. �22�, the resistance drops
with increasing carrier density at the interface until the point
where the increase has only an effect on the carrier profile
close to the interface. The lower carrier density elsewhere in
the layer will dominate and the resistance will remain con-
stant. The point where the resistance exponentially stops de-
creasing is shifted depending on the metal work function.
Higher injection barriers shift this point to lower light inten-
sities and, consequently, the saturated resistance is higher.

Experimentally, two different metals �ytterbium �Yb� and
aluminum �Al�, with reported work functions of 2.63 and
4.30 eV, respectively23,35	 are deposited as cathode on a pla-
nar heterojunction composed of 50 nm CuPc followed by 50
nm PTCDI-C13H27. The resulting parameters of the light-
dependent I-V measurements are displayed in Fig. 6. For
both cells, the responsivity, which is the short-circuit �Isc�
current divided by the incident light power �P0�, decreases
with increasing P0.

Voc logarithmically increases with illumination intensity,
with a slope of 75 mV/decade. This is not equal to the ex-
pected value �60 or 120 mV� due to the decreasing respon-
sivity, as shown in Fig. 6. The decreasing responsivity re-
flects a decreasing free carrier generation efficiency at the
interface, corresponding to 
 �or the different recombination
terms� in Eq. �19� being dependent on the light intensity. To
take this into account, we fit the responsivity as a function of
P0 by using a power law �responsivity �P0

2/3 or 
� P0
2/3�. The

apparent slope of 75 mV/decade corresponds to 3 /2
�75 mV /decade=113 mV /decade. This is very close to
120 mV, expected for SRH-type recombination. We conclude
that SRH-type recombination is operative over 6 orders of
magnitude in light intensity.

Within the measurement accuracy �10 mV�, the two Voc
curves are identical for the different metals. Voc does not
change, although the forward current in the dark does. This
proves the independence of Voc with changing work function,
as predicted by the model.

The dark I-V curves are fitted to the generalized Shockley
equation,39

FIG. 5. Calculated resistance at Voc as a function of the
carrier density at the interface pi by using different injection barriers
��D, and this for a 50 nm thick layer with a mobility of
1�10−7 m2 /V s.

FIG. 6. Extracted light dependent parameters from planar het-
erojunction solar cells, consisting of 50 nm CuPc, 50 nm
PTCDI-C13H27, and a metal contact. The top contact is Yb or Al.
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I =
Rp

Rs + Rp
�JS�exp�q�V − JRs�

nkT
� − 1
 +

V

Rp
� , �23�

where n is the diode ideality factor, JS is the reverse satura-
tion current, and Rs and Rp are the series and parallel resis-
tances, respectively. The extracted fit parameters �Table I�
are comparable for both solar cells, with the exception of Rs.
At high voltages or high P0, Rs dominates. In that sense, Rs is
a good value for RVoc for high P0, provided that Rs is inde-
pendent of the incident light intensity P0.

The resistance at Voc vs P0 is plotted in Fig. 7. The trends
of the simulated data �Fig. 5� are apparent. The resistance
exponentially decreases until it saturates toward the series
resistance. The fill factor follows this trend: lower FF for the
case with Al are visible at high light intensities. A more
detailed look at the effects of resistance on FF can be found
elsewhere in the literature.18

C. Thickness dependence

As mentioned in Sec. II D, a second parameter that influ-
ences RVoc is the thickness of the organic layers. Simulations
show two different regimes, depending on the boundary car-
rier concentrations at the contact and at the interface. If both
are low, RVoc will linearly increase with increasing thickness
because the change in carrier density profile is negligible in
comparison to the change in thickness. However, if the

boundary concentrations are high, a third-order power-law
dependence on the thickness will be visible. Figure 8 shows
the reason of this power law. The carrier density forms a U
shape, where the minimum carrier density is situated in the
middle of the layer, and not at the boundaries. For thicker
layers, the minimum carrier density is smaller. This effect
adds up to the normal increase in resistance due to a longer
travel distance.

The layer structure used in the experiments is 20 nm
CuPc, followed by PTCDI-C13H27 to form the donor-
acceptor interface, which is capped with 10 nm BCP and 80
nm Al to form the cathode. The layer thickness of
PTCDI-C13H27 is varied from 78 to 228 nm. The dark I-V
curves are seen in Fig. 9. The fitted parameters from Eq. �23�
can be found in Table I. As seen before, RVoc as a function of
the incident light intensity has an asymptote toward the se-
ries resistance. The inset of Fig. 9 plots the series resistance
versus the thickness. The trend is clearly superlinear.

TABLE I. Parameters from dark IV-curves fitted with the generalized Shockley equation for the different
samples

Sample JS �A /m2� n Rs �� m2� Rp �� m2�

Work function experiments �50 nm PTCDI-C13H27�
Yb cathode 1.0�10−5 1.6 11�10−4 1.7�105

Al cathode 2.1�10−5 1.7 11�10−3 4.7�105

Thickness experiments �BCP/Al cathode�
76 nm PTCDI-C13H27 1.7�10−4 1.8 1.3�10−4 2.6�102

152 nm PTCDI-C13H27 1.2�10−4 1.8 5.5�10−4 2.3�102

228 nm PTCDI-C13H27 1.4�10−4 1.7 25.0�10−4 0.8�102

FIG. 7. The measured resistance at Voc versus incident light
power �P0� for planar solar cells with Yb and Al as contact. As a
guide for the eye, the dotted and the dashed lines represent the fitted
dark series resistance RS for cells with Al and Yb respectively.

FIG. 8. Upper panel: calculated carrier profile inside layers with
different thickness, from 25 nm to 500 nm, and with a mobility of
1�10−7 m2 /V s. The carrier density at the contact and the inter-
face is kept constant at 1�1024 carriers /m3. Lower panel: the re-
sulting resistance at Voc for the different thicknesses.
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As a side note, the resistance dependence at high light
intensities is related to the classical space-charge limited cur-
rent �SCLC�. In the SCLC model, the current is limited by
the bulk itself, and not by injection of carriers at the contact.
In our case, one of the contacts of the classical space-charge
limited current is replaced by the interface between donor
and acceptor, and as a result, we observe the same thickness
dependence.

V. CONCLUSIONS

Starting from basic continuity equations, we have pre-
sented an analytical model for the open-circuit voltage re-
gime of planar heterojunction solar cells. This model indi-
cates that Voc does not depend on the work function of the
metal contacts. When the work function creates a low injec-
tion barrier, drift current will induce Voc. If a high injection
barrier is created, diffusion current of carriers away from the
interface will make sure that the same Voc is reached. The
exact relationship between Voc and P0 is determined by the
actual recombination process of free carriers at the interface.

An extension of the model focuses on the resistance of the
solar cell at Voc. This resistance is determined by the carrier
profile inside the organic layers; the higher the carrier den-
sity, the lower the resistance. The carrier profile at zero cur-
rent is determined by the boundary values, namely, the car-
rier density at the interface and at the contact. In this view, a
change in the work function of the contact metal, leading to
a change in carrier density at the contact, will affect the
resistance, and hence, the FF. The lowest resistance will be
reached when the carrier density is high or when the injec-
tion barrier is low. Metals with work functions close to the
HOMO of the donor material or the LUMO of the acceptor
material will lead to low resistive organic solar cells.

The effect of the thickness on the resistance is twofold.
Thicker layers will lead to a longer distance the carriers need
to travel. A second effect is the change in steady-state carrier
densities. The minimum carrier density in the layer will be
reduced when increasing the thickness. This point of lowest
carrier density is the point of highest resistivity, and any
change in this density will be reflected in the overall resis-
tance of the layer. At high light intensities, these two effects

add up and the resistance follows a third-order power law of
the incident light intensity.

The results of these simulations can be applied to opti-
mize organic planar heterojunction solar cells. For example,
novel promising organic materials sometimes result in high
resistive solar cells. Often, this high resistance is explained
by a low mobility of the material; however, a better choice of
contacts along with an optimized layer thickness could also
reduce the resistance.
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APPENDIX A: SOLUTION OF DIFFERENTIAL EQUATION
FOR p(x) AND F(x)

By using the Poisson equation �Eq. �2�	 for holes only
with zero net current �jp=0�, Eq. �6� can be reformulated as

F
dF

dx
−

kT

q

d2F

dx2 = 0. �A1�

A double substitution �x=−u2kT /q and F=y� /y� is carried
out, yielding the following differential equation:

y� = C1y . �A2�

The differential equation can be solved depending on the
value of the integration constant C1. This latter parameter is
determined by the boundary conditions: the electric field �Fc�
and the carrier density �pc� at the contact,

C1 = Fc
2 −

2kT

�
pc. �A3�

Case 1: C1�0. The solution can be expressed as

y = A cos�
�− C1u + C2� , �A4�

where A and C2 are the two more integration constants. As F
is equal to y� /y, the integration constant A disappears. The
field and the carrier density can be rewritten as

F�x� = � �− C1 tan���− C1
q

2kT
x + C2� , �A5�

p�x� =
�

2kT

− C1

cos2���− C1
q

2kTx + C2�
, �A6�

with the integration parameter C2 that can be expressed in
terms of Fc and pc,

C2 = arctan��
1

�2kT
�

pc

Fc
2 − 1� . �A7�

Case 2: C1=0. This case can be seen as a boundary case.
The solution is

FIG. 9. The dark I-V curves for the solar cells with different
PTCDI-C13H27 thicknesses and the arrow points to thicker
PTCDI-C13H27 layers. Inset: series resistance dependence on
thickness.
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y = A�u + C2� . �A8�

The field and the carrier density can be written as

F�x� =
− 1

q
2kTx − C2

, �A9�

p�x� =
�

2kT
·

1

� q
2kTx − C2�2 , �A10�

with

C2 =
1

Fc
. �A11�

Case 3: C1�0. Two solutions are possible,

y = A sinh�
�C1u + C2� , �A12�

or

y = A cosh�
�C1u + C2� , �A13�

but the solution with the cosh is nonphysical as it leads to
negative charge densities. Again, equations for field and car-
rier density can be calculated as

F�x� = 
 �C1 coth���C1
q

2kT
x + C2� , �A14�

p�x� =
�

2kT

C1

sinh2���C1
q

2kTx + C2�
, �A15�

with

C2 = sec�

1

�1 − 2kT
�

pc

Fc
2

� . �A16�

APPENDIX B: SOLUTION OF INTEGRAL EQUATION
FOR Rvoc

The sign of the integration constant C1 �Eq. �A3�	 will
determine the solution of Eq. �22�. To simplify the equations,
two parameters �� and �� are defined as

� = 1 −
C1

Fc
2 , �B1�

� = 2dD

�C1

kT/q
. �B2�

The solutions of the integral are as follows:
For C1�0 or ��1,

Rvoc =
dD

3

��pkT/q

�
�sinh ���2 − ��cosh � − 2�1 − � sinh �	 − ���

�3�
.

�B3�

For C1�0 or ��1,

Rvoc =
dD

3

��pkT/q
�sin ���� − 2�cos � − 2�� − 1 sin �	 − ���

�3�
.

�B4�

*david.cheyns@imec.be
†Present address: Experimental Physics VI, Julius-Maximilians-

University of Würzburg, Am Hubland, 97074 Würzburg, Ger-
many.
1 C. W. Tang, Appl. Phys. Lett. 48, 183 �1986�.
2 P. Peumans and S. R. Forrest, Appl. Phys. Lett. 79, 126 �2001�.
3 W. Geens, T. Aernouts, J. Poortmans, and G. Hadziioannou, Thin

Solid Films 403-404, 438 �2002�.
4 S. Yoo, B. Domercq, and B. Kippelen, Appl. Phys. Lett. 85,

5427 �2004�.
5 B. Maennig et al., Appl. Phys. A: Mater. Sci. Process. 79, 1

�2004�.
6 C. W. Chu, Y. Shao, V. Shrotriya, and Y. Yang, Appl. Phys. Lett.

86, 243506 �2005�.
7 B. P. Rand, J. Xue, F. Yang, and S. R. Forrest, Appl. Phys. Lett.

87, 233508 �2005�.
8 P. Liu, Q. Li, M. Huang, W. Pan, and W. Deng, Appl. Phys. Lett.

89, 213501 �2006�.
9 K. L. Mutolo, E. I. Mayo, B. P. Rand, S. R. Forrest, and M. E.

Thompson, J. Am. Chem. Soc. 128, 8108 �2006�.
10 D. Cheyns, H. Gommans, M. Odijk, J. Poortmans, and P. Her-

emans, Sol. Energy Mater. Sol. Cells 91, 399 �2007�.
11 B. Mazhari, Sol. Energy Mater. Sol. Cells 90, 1021 �2006�.

12 M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf,
A. J. Heeger, and C. J. Brabec, Adv. Mater. �Weinheim, Ger.�
18, 789 �2006�.

13 J. A. Barker, C. M. Ramsdale, and N. C. Greenham, Phys. Rev.
B 67, 075205 �2003�.

14 M. Koehler, L. S. Roman, O. Inganäs, and M. G. E. da Luz, J.
Appl. Phys. 96, 40 �2004�.

15 A. Gadisa, M. Svensson, M. R. Andersson, and O. Inganäs,
Appl. Phys. Lett. 84, 1609 �2004�.

16 B. P. Rand, D. P. Burk, and S. R. Forrest, Phys. Rev. B 75,
115327 �2007�.

17 J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, Appl. Phys.
Lett. 84, 3013 �2004�.

18 S. Yoo, B. Domercq, and B. Kippelen, J. Appl. Phys. 97, 103706
�2005�.

19 J. C. Scott, J. Vac. Sci. Technol. A 21, 521 �2003�.
20 V. I. Arkhipov, in Conjugated Polymer and Molecular Inter-

faces, edited by W. R. Salaneck, K. Seki, A. Kahn, and J.
Pireaux �Dekker, New York, 2002�, Chap. 19, pp. 613–650.

21 H. Ishii, K. Sugiyama, E. Ito, and K. Seki, Adv. Mater. �Wein-
heim, Ger.� 11, 605 �1999�.

22 A. Wan, J. Hwang, F. Amy, and A. Kahn, Org. Electron. 6, 47
�2005�.

ANALYTICAL MODEL FOR THE OPEN-CIRCUIT VOLTAGE… PHYSICAL REVIEW B 77, 165332 �2008�

165332-9



23 S. M. Zse, Physics of Semiconductor Devices �Wiley, New York,
1981�.

24 B. A. Gregg and M. C. Hanna, J. Appl. Phys. 93, 3605 �2003�.
25 L. A. A. Pettersson, L. S. Roman, and O. Inganäs, J. Appl. Phys.

86, 487 �1999�.
26 R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized

Light �Elsevier, New York, 1987�.
27 C. L. Braun, J. Chem. Phys. 80, 4157 �1984�.
28 A. C. Morteani, P. Sreearunothai, L. M. Herz, R. H. Friend, and

C. Silva, Phys. Rev. Lett. 92, 247402 �2004�.
29 M. Mandoc, W. Veurman, and L. Koster, B. deBoer, and P.

Blom, Adv. Funct. Mater. 17, 2167 �2007�.
30 W. Shockley and W. T. Read, Phys. Rev. 87, 835 �1952�.
31 R. N. Hall, Phys. Rev. 87, 387 �1952�.
32 M. M. Mandoc, F. B. Kooistra, J. C. Hummelen, B. de Boer, and

P. W. M. Blom, Appl. Phys. Lett. 91, 263505 �2007�.
33 V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, and Y. Yang,

Adv. Funct. Mater. 16, 2016 �2006�.
34 T. P. Nguyen and P. Destruel, in Handbook of Luminescence,

Display Materials, and Devices, edited by H. S. Nalwa and L. S.
Rohwer �American Scientific, Stevenson Ranch, CA, 2003�,
Vol. 1, Chap. 1, pp. 1–130.

35 M. Stössel, J. Staudigel, F. Steuber, J. Simmerer, and A. Win-
nacker, Appl. Phys. A: Mater. Sci. Process. 68, 387 �1999�.

36 D. R. Lide, Handbook of Chemistry and Physics, 85th ed. �CRC,
New York, 2003�.

37 C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. From-
herz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, Adv.
Funct. Mater. 11, 374 �2001�.

38 D. J. Gundlach, K. P. Pernstich, G. Wilckens, M. Gruter, S. Haas,
and B. Batlogg, J. Appl. Phys. 98, 064502 �2005�.

39 R. H. Bube and A. L. Fahrenbruch, Advances in Electronics and
Electron Physics �Academic, New York, 1981�.

CHEYNS et al. PHYSICAL REVIEW B 77, 165332 �2008�

165332-10


