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Within a tight-binding approach we investigate how the electronic structure evolves from a single graphene
layer into bulk graphite by computing the band structure of one, two, and three layers of graphene. It is well
known that a single graphene layer is a zero-gap semiconductor with a linear Dirac-like spectrum around the
Fermi energy, while graphite shows a semimetallic behavior with a band overlap of about 41 meV. In contrast
to a single graphene layer, we show that two graphene layers have a parabolic spectrum around the Fermi
energy and are a semimetal like graphite; however, the band overlap of 0.16 meV is extremely small. Three
and more graphene layers show a clear semimetallic behavior. For 11 and more layers the difference in band
overlap with graphite is smaller than 10%.
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I. INTRODUCTION

Graphite consists of van der Waals coupled graphene
layers.1 Graphene is a layer of carbon atoms with hexagonal
symmetry. In graphite every other layer of graphene is
shifted in the horizontal plane, leading to the well-known AB
stacking.

Recently, one succeeded in obtaining stable multilayers
and even single layers of graphene.2 Because of the weak
interlayer coupling, it is surprising that a single graphene
layer shows very different transport properties than systems
consisting of two or more graphene layers. As the charge
carriers in such thin graphene films are confined to two di-
mensions, one has looked for and observed the quantum Hall
effect. However, in the case of a single graphene layer, its
behavior differs drastically from the well-studied case of
quantum wells in conventional semiconductor interfaces; i.e.,
a half-integer quantum Hall effect was observed.3,4 This half-
integer quantum Hall effect is due to the existence of both
electronlike and holelike Landau states at zero energy.5,6 The
system consisting of two layers of graphene does not show
this half-integer quantum Hall effect3 �however, another
anomaly—a double step—is theoretically predicted7 and ob-
served experimentally8�.

It is also well known that a single graphene layer is a
zero-gap semiconductor while graphite is a semimetal.
Therefore it is interesting to investigate how the electronic
structure changes as a function of the number of graphene
layers and how many layers one needs to observe the bulk
graphite behavior. We will concentrate on an accurate deter-
mination of the band structure near the Fermi energy. To
realize this, we apply the tight-binding approach. All results
in this paper are verified by ab initio density-functional
theory calculations in the local density approximation, but
the advantage of the tight-binding approach is that the
Hamiltonian for a general number of graphene layers can be
and is explicitly given and can therefore easily be used by
others.

The energy band diagrams and the density of states for a
single layer and two layers of graphene were calculated be-
fore in Ref. 9 in which an all-electron density-functional
theory calculation within the local density approximation

was performed. They concentrated, however, on the dilayer
interlayer spacing, and they showed that it differs very little
from AB-stacked graphite. These calculations could not give
any conclusive evidence whether the system of two layers of
graphene is a zero-gap semiconductor or a semimetal. The
aim of the present paper is to resolve this issue. In contrast to
most other approaches we will concentrate on the small en-
ergy electronic structure which is the energy range relevant
for recent transport experiments.2–4

This paper is organized as follows. In Sec. II the details of
our tight-binding approach are given. In Sec. III our results
are presented and Sec. IV summarizes our conclusions. In
the Appendix the relation between our tight-binding param-
eters and the �experimentally well-known� parameters in the
Slonczewski-Weiss-McClure model is obtained.

II. TIGHT-BINDING DESCRIPTION

Figure 1�a� shows schematically the crystal structure of
three AB-stacked graphene layers. The translational vectors
of the crystal structure are

a�1 = a��3/2,1/2,0�, a�2 = a��3/2,− 1/2,0� . �1�

The in-plane lattice parameter is a=�3a0, with a0 the
nearest-neighbor distance. The corresponding Brillouin zone
with the name labels for the high-symmetry points is shown
in Fig. 1�b�. The reciprocal lattice is given by

b�1 =
2�

a
�1/�3,1,0�, b�2 =

2�

a
�1/�3,− 1,0� . �2�

The distance between two layers is c0. It was shown in Ref.
9 that already for a system of two graphene layers the inter-
planar spacing and the intraplanar lattice spacing are almost
identical to the bulk graphite values. Therefore we use in this
work a0=1.42 Å and c0=3.35 Å.

In order to study how the electronic structure changes
from a single graphene layer into bulk graphite, we construct
a tight-binding Hamiltonian for an arbitrary number of
graphene layers. Therefore we extend the original ap-
proaches of Refs. 10 and 11 for a single layer to multilayers,
with the important addition that starting from two layers of
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graphene, the A and B type of carbon atoms are inequivalent.
In our tight-binding model we limit ourselves to the follow-
ing interactions between carbon atoms �see also Fig. 1�a��:
the interactions between nearest A-B carbon atoms in a
plane, between nearest A-A, A-B, and B-B carbon atoms
between two nearest-neighbor planes, and between nearest
A-A and B-B carbon atoms between next-nearest-neighbor
planes. In previous studies of AB-stacked graphite it was
shown that the separation between the � bands and the �
bands near the Fermi energy is very large. So it is the �
electrons which play the dominant role in the electronic
properties of graphite. Therefore, in the following we restrict
ourselves to the � bands.

As there are one A and one B type of carbon atom in each
plane i, we construct two tight-binding Bloch functions per
layer:

�k�
Ai�r�� =

1
�N

�
Ai

�A�r� − r�Ai
�exp�ik� · r�Ai

� , �3a�

�k�
Bi�r�� =

1
�N

�
Bi

�B�r� − r�Bi
�exp�ik� · r�Bi

� . �3b�

Here r�Ai
and r�Bi

are the positions of the A and B carbon
atoms in layer i, �A and �B denote the atomic wave function
of an A and a B carbon atom, and N is the number of unit
cells. The total eigenfunction for a system of graphene layers
is now given by

�k��r�� = �
i=1

Nl

cAi
�k�

Ai�r�� + �
i=1

Nl

cBi
�k�

Bi�r�� , �4�

with Nl the number of layers. The 2Nl coefficients are ob-
tained by diagonalizing the total Hamiltonian for a system of
Nl layers on the basis of the tight-binding Bloch functions �3�
�we neglect all overlap integrals because of the relatively
large separation between the carbon atoms and because we
are only interested in the small energy electronic structure
around the K point�. Before developing this tight-binding
Hamiltonian we define eight tight-binding parameters �in
which H is the total Hamiltonian of the system of Nl
graphene layers�:

E0 + �� =� �A
*�r� − r�Ai

�H�A�r� − r�Ai
�dr� , �5a�

E0 =� �B
*�r� − r�Bi

�H�B�r� − r�Bi
�dr� , �5b�

�0� =� �A
*�r� − r�Ai

�H�A�r� − r�Ai
− R� AB

j �dr�, j = 1, . . . ,3,

�5c�

�1� =� �A
*�r� − r�Ai

�H�A�r� − r�Ai
± c�0�dr� , �5d�

�2� =� �B
*�r� − r�Bi

�H�B�r� − r�Bi
± 2c�0�dr� , �5e�

�3� =� �B
*�r� − r�Bi

�H�B�r� − r�Bi
+ R� AB

j ± c�0�dr�, j = 1, . . . ,3,

�5f�

�4� =� �A
*�r� − r�Ai

�H�A�r� − r�Bi
+ R� AB

j ± c�0�dr�, j = 1, . . . ,3,

�5g�

�5� =� �A
*�r� − r�Ai

�H�A�r� − r�Ai
± c�0�dr� , �5h�

with

R� AB
1 = a�1/�3,0,0�, R� AB

2 = a�− 1/2�3,1/2,0� ,

R� AB
3 = a�− 1/2�3,− 1/2,0� . �6�

�� is the difference in crystal field experienced by the in-
equivalent carbon atoms A and B.

The tight-binding Hamiltonian for a general number of
graphene layers can be obtained if one knows the following
matrix elements:

��k�
Ai	H	�k�

Ai
 �
1

N
�
Ai

� �A
*�r� − r�Ai

�H�A�r� − r�Ai
�dr� = E0 + ��,

�7a�

FIG. 1. �a� The crystal structure of three
AB-stacked graphene layers, together with the
correspondence between the tight-binding param-
eters �i� and the interaction between individual
carbon atoms. �b� The reciprocal cell of a finite
number of graphene layers with the labels for
special symmetry points.
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��k�
Ai	H	�k�

Bi
 �
1

N
�
Ai

� �A
*�r� − r�Ai

�

�H��
j=1

3

e�− 1�i+1ik�·R� AB
j

�B�r� − r�Ai
− R� AB

j �
dr�

= �0�f�kx,ky� if i is odd

and �0�f*�kx,ky� if i is even, �7b�

��k�
Ai	H	�k�

Ai+1
 �
1

N
�
Ai

� �A
*�r� − r�Ai

�H�A�r� − r�Ai
− c�0� = �1�,

�7c�

��k�
Ai	H	�k�

Bi+1
 �
1

N
�
Ai

� �A
*�r� − r�Ai

�

�H��
j=1

3

e�− 1�iik�·R� AB
j

�B�r� − r�Ai
+ R� AB

j − c�0�
dr�

= �4�f*�kx,ky� if i is odd

and �4�f�kx,ky� if i is even, �7d�

��k�
Ai	H	�k�

Ai+2
 �
1

N
�
Ai

� �A
*�r� − r�Ai

�H�A�r� − r�Ai
− 2c0

� �dr�

= �5�, �7e�

��k�
Bi	H	�k�

Bi
 �
1

N
�
Bi

� �B
*�r� − r�Bi

�H�B�r� − r�Bi
�dr� = E0,

�7f�

��k�
Bi	H	�k�

Ai+1
 = ��k�
Ai	H	�k�

Bi+1
 , �7g�

��k�
Bi	H	�k�

Bi+1
 � �
Bi

� �B
*�r� − r�Bi

�

�H��
j=1

3

e�− 1�i+1ik�·R� AB
j

�B�r� − r�Bi

− R� AB
j − c�0�
dr�

= �3�f�kx,ky� if i is odd

and �3�f*�kx,ky� if i is even, �7h�

��k�
Bi	H	�k�

Bi+2
 �
1

N
�
Bi

� �B
*�r� − r�Bi

�H�B�r� − r�Bi
− 2c0

� �dr�

= �2�. �7i�

The function f�kx ,ky� is given by

f�kx,ky� = eikxa/�3 + 2e−ikxa/2�3cos�kya/2� . �8�

With these expressions one can construct the tight-binding
Hamiltonian for an arbitrary number of layers, Nl:

�
��k�

A1	H	�k�
A1
 ��k�

A1	H	�k�
B1
 ¯ ��k�

A1	H	�
k�
BNl


��k�
B1	H	�k�

A1
 ��k�
B1	H	�k�

B1
 ¯ ��k�
B1	H	�

k�
BNl


��k�
A2	H	�k�

A1
 ��k�
A2	H	�k�

B1
 ¯ ��k�
A2	H	�

k�
BNl


� � � �

��
k�
BNl	H	�k�

A1
 ��
k�
BNl	H	�k�

B1
 ¯ ��
k�
BNl	H	�

k�
BNl

� .

�9�

The values for the eight tight-binding parameters are ob-
tained by comparing the tight-binding model for bulk graph-
ite with the Slonczewski-Weiss-McClure �SWMcC�
model12,13 as shown in the Appendix. The correspondence
and the values used �taken from Ref. 1� are given in Table I.
Note that the values are given for one, two, and more than
two layers, because not all parameters are meaningful for the
system of just one or two layers. The values for E0 and ��
for Nl=2 are chosen to be equal to the ones for Nl=3 which
follow from a comparison with the SWMcC model.

III. RESULTS

In Sec. III A we make a comparison between a single
graphene layer and a system consisting of two graphene lay-
ers. Multilayers with more than two graphene layers are con-
sidered in Sec. III B.

A. Systems consisting of one and two graphene layers

First we compare the energy band diagram of a single
graphene layer with the one of two graphene layers. The
energy bands for the single graphene layer along the M	KM
lines in the Brillouin zone are shown in Fig. 2. The Fermi
energy is located at E=0 where the two bands cross at the K
point, leading to the fact that a single graphene layer is a

TABLE I. The relation between the parameters from the tight-
binding �TB� model and the SWMcC model, together with the
values of the used tight-binding parameters for Nl=1, Nl=2, and
Nl
2, expressed in eV, taken from Ref. 1.

TB
parameter

SWMcC
parameter

Value for
Nl=1

Value for
Nl=2

Value for
Nl
2

E0 �2 0 −0.0206 −0.0206

�� �−�2+�5 0 0.0366 0.0366

�0� �0 3.12 3.12 3.12

�1� �1 0.377 0.377

�2� �2 /2 −0.0103

�3� �3 0.29 0.29

�4� −�4 −0.120 −0.120

�5� �5 /2 0.0125

FROM GRAPHENE TO GRAPHITE: ELECTRONIC¼ PHYSICAL REVIEW B 74, 075404 �2006�

075404-3



zero-gap semiconductor. Around the K point the spectrum is
linear as shown in the inset and it is given by E= ±

�3
2 �0��,

until first order in � which is the distance from the K point.
If one compares this expression with the relativistic energy
expression E= �m2c4+ p2c2�1/2, one can see that the disper-
sion relation of a single graphene layer mimics a system of
relativistic �Dirac� particles with zero rest mass and an effec-
tive speed of light c=�3�0�a /2� �1.01�106 m/s, which is
almost 300 times smaller than the speed of light in vacuum.

The corresponding energy band diagram for the system of
two graphene layers is shown in Fig. 3, together with a
close-up of the spectrum around the K point and around E
=0. Notice that the number of levels is doubled. The spec-
trum is clearly no longer linear around the K point, but para-
bolic. If one moves away from the K point, the spectrum
becomes again linear. At first sight one would conclude that
the bands just touch at the K point. However, a more detailed
investigation presented in Fig. 4 shows a small overlap and
an interaction leading to anticrossings between the conduc-
tion and valence bands. Figure 4�a� shows an enlargement of
the bands around E=0 from the K point in the direction of

the 	 point. There is clearly a small band overlap between
the conduction and the valence band of only 1.6 meV. This
small band overlap is caused by the interaction between B
and B� carbon atoms, and it disappears if one puts �3�=0.
This overlap is also present in bulk graphite and was dis-
cussed shortly in the original paper of Slonczewski and
Weiss �see Fig. 8 in Ref. 12�. Figure 4 shows further how the
crossing of the bands changes into an anticrossing if one
considers a line through the K point which makes an angle 

with the 	-K line �as defined in Fig. 1�b��. For 
=0 and 

=� /3, the bands can be well fitted by the expression E
=a±�m2c4+ �p− p0�2c2 with, respectively, a=−0.174 eV, m
=2.4�10−32 kg=0.026me, p0=0.0022 m−1��, and a
=0.2075 eV, m=3.57�10−32 kg=0.039me, p0=0.0031 m−1

�� for 
=0, and a=−0.163 eV, m=2.23�10−32 kg
=0.024me, p0=−0.0015 m−1��, and a=0.203 eV, m=3.5
�10−32 kg=0.038me, p0=−0.0032 m−1�� for 
=� /3. c
=�3�0�a /2� �1.01�106 m/s was taken the same as for a
single layer. Notice that the crossing at k=0.0052 Å−1 results
in an anticrossing: Figure 4�f� shows the band gap in this k
point as a function of 
. We found that this splitting is well
described by 0.0126 sin�3
 /2� eV. Clearly, the system con-
sisting of two graphene layers is a semimetal, but with a very

FIG. 2. The band structure of a single graphene layer along
M	KM. The inset is an enlargement of the region indicated by the
square around the K point.

FIG. 3. The band structure of two graphene layers along
M	KM. The square region is enlarged in the inset.

FIG. 4. The band structure of two graphene layers close to the K
point along a line which makes an angle 
 with the 	K line �see
Fig. 1�b��, for �a� 
=0° �i.e., from the K point in the direction of the
	 point�, �b� 
=1°, �c� 
=5°, �d� 
=10°, and �e� 
=60° �i.e., from
the K point in the direction of the M point�. �f� The band gap as
function of the angle 
 at k=0.0052 Å−1.
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small band overlap and with a crossing of the conduction and
valence bands only along one direction in the Brillouin zone.

Approximate expressions for the energy levels close to
the Fermi energy around the K point can be obtained by
expanding the Hamiltonian of Eq. �9� until first order in k
space, by neglecting the energy splitting between inequiva-
lent A and B atoms and by neglecting the smallest coupling
parameter �4. They are

E = ±
1

2�2
�4�1

2 + 3a2�2�0
2 + �3

2���x
2 + �y

2�

− �16�1
4 + 48�3a3�0

2�1�3�y�− 3�x
2 + �y

2�

+ 24a2�1
2�2�0

2 − �3
2���x

2 + �y
2�

+ 9a4�3
2�4�0

2 + �3
2���x

2 + �y
2�2�1/2�1/2, �10�

with ��x ,�y� the wave vector measured from the K point. In
this approximation the crossing occurs at k=0.0053 Å−1 and
the splitting is given by 0.0129 sin�3
 /2� eV. This expres-
sion agrees with the one in Ref. 7 when a possible influence
of the environment is neglected. Within this approximation
two layers of graphene is still a semimetal with the same
band overlap of 1.6 meV.

Another remarkable difference between a single layer and
two layers of graphene is found if one considers the wave
function at the K point. To obtain a qualitative description of
the wave function we have chosen the atomic orbital �A�r��
and �B�r�� as the pz wave function for hydrogenlike atoms:

��r�� =
1

4�2�
�Z/aB�3/2�Zr/aB�exp�− Zr/2aB�cos � ,

with Z=6 and aB the Bohr radius. In Figs. 5 and 6 we show

cuts through the wave functions at 1 Å above a graphene
layer. Figure 5 is the result for a single graphene layer. It
shows the phase of the wave functions of the two degenerate
levels at the K point with the density superimposed on top of
it. The hexagonal structure of the graphene layer is clearly
seen. The results for the system of two layers of graphene are
shown in Fig. 6. Again the phase of the wave functions of the
two degenerate levels at the K point are shown, together with
the density. The difference with a single graphene layer is
remarkable. The density in Fig. 6 only comes from B and B�
carbon atoms; the factors in front of �k�

A1�r�� and �k�
A2�r�� are

zero. From this comparison we can conclude that for a single
graphene layer all electrons in the pz orbital contribute to the
transport properties, while for the system with two graphene
layers the main contribution to transport comes from the pz
electrons located around the B- and B�-type carbon atoms.
Also note that for the system consisting of two graphene
layers vortices are present—i.e., zeros in the wave function
around which the phase changes by 2�—and these vortices
are arranged in a hexagonal lattice.

B. More than two graphene layers

In order to investigate how the electronic structure
evolves to bulk graphite with increasing number of graphene
layers, we first discuss the band structure of graphite. The
relevant region for electronic transport is the region around
the Fermi energy and in particular along the HKH band edge.
Figure 7 shows the band diagram in this region as obtained
by diagonalizing Hamiltonian �A8�. Along the HKH band
edge there are three energy bands E1 ,E2, and E3, of which E3
is twofold degenerate. The twofold-degenerate energy band
leads to a band overlap of 2�2�41 meV which makes bulk

FIG. 5. �Color online� The phase �using gray coloring with the corresponding scale at the right� of the two degenerate wave functions at
the K point for a single graphene layer, with a contourplot of the electron density superimposed.

FROM GRAPHENE TO GRAPHITE: ELECTRONIC¼ PHYSICAL REVIEW B 74, 075404 �2006�

075404-5



graphite a semimetal. This band overlap, which is 25 times
larger than the overlap for two graphene layers, is caused by
the interaction between the B carbon atoms of next-nearest-
neighbor planes. The Fermi surface consists of electron and

hole pockets. Because �2�0, the electron pocket is situated
around the K point, while the hole pockets are situated
around the H points. The splitting of the energy levels at the
H point equals � �which is related to the crystal field split-
ting between inequivalent A and B carbon atoms�. Because
the Fermi energy EF
 	�	, the hole pocket protrudes beyond
the H point, leading to a minority hole surface.

Let us now consider a system consisting of three graphene
layers. The band diagram together with a close-up around the
K point is shown in Figs. 8�a� and 8�b�, respectively. At the
K point around zero energy several bands cross while other
bands show anticrossings. It is clear that the band structure
around the K point becomes more and more complex with
increasing number of graphene layers: the number of layers
around the Fermi energy at the K point is doubled in com-
parison to systems with one and two graphene layers. In
contrast to the double-layer system, crossings do not become
anticrossings if one considers a line through the K point
which makes an angle 
 with the 	-K line. The band dia-
gram can be understood as a combination of the band dia-
gram of a single graphene layer �Fig. 2� and the band dia-
gram of the system consisting of two graphene layers �Fig.
3�. The four bands around the Fermi energy at the K point
are labeled by A ,B ,C, and D in Fig. 8�b�. While bands B and
C remind us of the two bands of the two-layer system, but
now with anticrossings, bands A and D show an almost lin-
ear dispersion and mimic the bands of a single graphene
layer with the additional opening of a gap at the K point of
13.8 meV. Bands A and D are almost independent of the
angle 
 �as defined in Fig. 1�b��, in contrast to bands B and
C.

In order to see how the energy levels at the K point for a
finite number of layers evolve into the band structure of
graphite along the HKH edge �see Fig. 11, below�, we show

FIG. 6. �Color online� The same as Fig. 5 but now for two layers of graphene.

FIG. 7. �a� The band diagram of bulk graphite around the HKH
band edge. �b� Close-up of �a� around the Fermi energy.
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in Figs. 9�a�–9�e� a plot of the energy levels at the K point, in
increasing order and equally distributed over the interval
�0,� /2c0� for three up to seven levels. In Fig. 9�f� the plot is
shown for 20 graphene layers. The start and end of the
curves evolve clearly into the levels marked E1 and E2 in
Fig. 7 for bulk graphite, while it is clear that in between the
doubly degenerate level E3 is built up. It consists of Nl en-
ergy levels if Nl is even and Nl+1 if Nl is odd. This also
allows us to make an estimate for the band overlap in the
finite layer systems—i.e., the difference in energy between
the last and first level which build up level E3. This is shown
in Fig. 10, where the solid horizontal line is the result for
bulk graphite. It is clear that all systems with Nl�3 are
semimetals. For 11 or more layers, the difference with the
bulk band overlap is smaller than 10%.

Finally we want to remark that the result for the wave
functions at the K point for the system consisting of three
and more graphene layers is similar to that for two graphene
layers: the levels that eventually evolve into the E3 level
consist only of B-type carbon atoms �except for the highest
levels close to the E1 level which can consist only of A- type
carbon atoms�. The fact that only the B atoms build up the

electron density at the K point for the levels close at the
Fermi energy is also the case for bulk AB-stacked graphite:
along the whole HKH edge of the Brillouin zone only the B
and B� carbon atoms contribute to the two degenerate E3
levels.

IV. CONCLUSIONS

We investigated the electronic structure of a finite number
of graphene layers around the K point and compared it with
bulk graphite. We used a tight-binding approach similar to
the Slonczewski-Weiss-McClure model for bulk graphite. A
single layer of graphene is a zero-gap semiconductor which
shows a linear photonlike spectrum around the Fermi energy
at the K point. The system consisting of two layers of
graphene, however, shows an almost parabolic spectrum
around the Fermi energy at the K point. A close-up of the
energy bands of two layers of graphene shows a small band
overlap close to the K point in the direction of the 	 point.
This overlap is due to the interaction between the B and B�
carbon atoms of the two layers and amounts only to
1.6 meV. The crossing between the two overlapping bands
transforms into an anticrossing when one moves away from
the 	K line. The system of two graphene layers is thus a
semimetal, but with a very small overlap and with a crossing
of the bands only along one direction in the Brillouin zone.
Starting from three graphene layers on, multilayer graphene
systems are all semimetals in which the semimetallic behav-
ior is caused by the interaction between the B carbon atoms
of next-nearest-neighbor planes. In general, the band overlap
increases with increasing number of layers. From 11 layers
on the difference with the band overlap in bulk graphite
��41 meV� is less than 10%. There is also a remarkable
difference in the wave functions at the K point for the levels
around the Fermi energy between a single graphene layer
and systems consisting of more graphene layers.
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APPENDIX: RELATION BETWEEN SWMcC
PARAMETERS AND THE TIGHT-BINDING PARAMETERS

The SWMcC model gives a phenomenological treatment
of the electronic structure of graphite based on crystal sym-
metry. The model presents the most general form for the
Hamiltonian that is consistent with the crystal symmetry and
is valid in the vicinity of the Brillouin zone edges �the Bril-
louin zone of bulk graphite is shown in Fig. 11 together with
the labels for special symmetry points�. In the kz direction a
Fourier expansion is made and rapid convergence is obtained
�which is the ideal tight-binding situation� because of the
weak interplanar binding. In the plane, a k� · p� expansion is
made. The SWMcC model is commonly written in terms of
the 4�4 Hamiltonian for the � bands:

FIG. 8. �a� The band structure of three graphene layers along
M	KM. �b� Enlargement of the region around the K point as indi-
cated by the little box in �a�.
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H =�
E1 0 H13 H13

*

0 E2 H23 − H23
*

H13
* H23

* E3 H33

H13 − H23 H33
* E3

� , �A1�

where the band edge energies are given by

E1 = � + �1	 +
1

2
�5	2, �A2�

E2 = � − �1	 +
1

2
�5	2, �A3�

E3 =
1

2
�2	2, �A4�

and the coupling terms are

H13 = �− �0 + �4	�� exp�i
�/�2, �A5�

H23 = ��0 + �4	�� exp�i
�/�2, �A6�

H33 = �3	� exp�i
� , �A7�

in which 
 is the angle between k� and the 	K direction, 	
=2 cos�kzc /2�, �=�3a� /2, and � is the in-plane wave vector
measured from the Brillouin zone edges. In order to find the
relation between the SWMcC parameters and the parameters

FIG. 9. The sorted energy lev-
els of �a� 3, �b� 4, �c� 5, �d� 6, �e�
7, and �f� 20 graphene layers at
the K point, plotted equidistantly
over the interval �0,� /2c0�.

B. PARTOENS AND F. M. PEETERS PHYSICAL REVIEW B 74, 075404 �2006�

075404-8



of our tight-binding model we first construct the tight-
binding Hamiltonian for graphite using the definitions of
Eqs. �5� and �8�:

�
E0 + �� + �5��	

2 − 2� �0�f�kx,ky� �1�	 �4�	f*�kx,ky�
�0�f*�kx,ky� E0 + �2��	

2 − 2� �4�	f*�kx,ky� �3	f�kx,ky�
�1�	 �4	f�kx,ky� E0 + �� + �5��	

2 − 2� �0f*�kx,ky�
�4�	f�kx,ky� �3�	f*�kx,ky� �0�f�kx,ky� E0 + �2��	

2 − 2�
� . �A8�

In order to obtain the relation between the SWMcC model �which are known from experiments� and the parameters of the
tight-binding model we consider special points and lines in the Brillouin zone for which it is easy to calculate the eigenenergies
in both models. Furthermore, each of the six parameters �i is proportional to the parameter �i� defined in Sec. II as they are
both related to the same interaction between two atoms in the graphite lattice as shown in Fig. 1.

Along the HKH line we have kx=2� /�3a ,ky =2� /3a, and thus f =0. Along the HKH line the tight-binding hamiltonian is
given by

�
E0 + �� + �5��	

2 − 2� 0 �1�	 0

0 E0 + �2��	
2 − 2� 0 0

�1�	 0 E0 + �� + �5��	
2 − 2� 0

0 0 0 E0 + �2��	
2 − 2�

� , �A9�

with the corresponding eigenenergies

E1,2 = E0 + �� − 2�5� ± �1�	 + �5�	
2, �A10�

E3 = E0 − 2�2� + �2�	
2. �A11�

They must be compared with the energies at the Brillouin
zone edge obtained by the SWMcC model:

E1,2 = � ± �1	 +
1

2
�5	2, �A12�

E3 =
1

2
�2	2. �A13�

Equating both results yields

E0 = 2�2�, �A14�

�1� = �1, �A15�

�2� = �2/2, �A16�

FIG. 10. The energy difference between the last and first energy
levels at the K point which build up the E3 energy band of graphite
for Nl graphene layers. The solid horizontal curve is the limiting
value for bulk graphite.

FIG. 11. The Brillouin zone of bulk graphite together with the
labels for special symmetry points.
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�5� = �5/2, �A17�

�� = � − �2 + �5. �A18�

This still leaves �0� ,�3�, and �4� to be determined.
Let us now calculate the energies along the 	K line until

first order in �. Along this line we have

kx =
�3

2
�4�

3a
− �
 , �A19�

ky =
1

2
�4�

3a
− �
 . �A20�

This gives, for f�kx ,ky� until first order in �,

f�kx,ky� = f��� �
�3

2
�a = � . �A21�

The tight-binding Hamiltonian along the 	K line becomes
�with also 	=2�

�
E0 + �� + 2�5� �0�� 2�1� 2�4��

�0�� E� + 2�2� 2�4�� 2�3��

2�1� 2�4�� E0 + �� + 2�5� �0��

2�4�� 2�3�� �0�� E0 + 2�2�
� ,

�A22�

with the corresponding eigenenergies

E1,2 = E0 +
��

2
+ �5� + �2� + �3�� + �1� ±

1

2
�C + D ,

�A23�

E3,4 = E0 +
��

2
+ �5� + �2� − �3�� − �1� ±

1

2
�C − D ,

�A24�

with

C = ��2 + 4���5� + 4�0�
2�2 + 4�3�

2�2 − 4�2��� − 8�2��5�

− 8�3���1� + 4�1�
2 + 16�4�

2�2 + 4�2�
2, �A25�

D = 16�0��
2�4� + 4�1��� + 8�1��5� − 8��5��3� − 8�2��1� + 8�3��2��

− 4���3� . �A26�

The SWMcC Hamiltonian along the 	K line is

�
� + 2�1 + 2�5 0 �− �0 + 2�4��/�2 �− �0 + 2�4��/�2

0 � − 2�1 + 2�5 ��0 + 2�4��/�2 − ��0 + 2�4��/�2

�− �0 + 2�4��/�2 ��0 + 2�4��/�2 2�2 2�3�

�− �0 + 2�4��/�2 − ��0 + 2�4��/�2 2�3� 2�2

� , �A27�

with corresponding eigenenergies

E1,2 =
�

2
+ �5 + �2 + �3� + �1 ±

1

2
�C + D , �A28�

E3,4 =
�

2
+ �5 + �2 − �3� − �1 ±

1

2
�C − D , �A29�

with

C = �2 + 4��5 + 4�5
2 + 4�3

2�2 − 4�2� − 8�2�5 − 8�3�1�

+ 4�1
2 + 4�2

2 + 4�0
2�2 + 16�4

2�2, �A30�

D = 4�1� + 8�1�5 − 8�3�5� − 8�1�2 + 8�2�3� − 4��3�

− 16�0�4�2. �A31�

A naive comparison between the energies along the 	K line
in both models would give �i�=�i and ��=� �except for �4�
=−�4�. However this choice would only be correct along this
line, from the results along the HKH line we know already
that �� ,�2�, and �5� fulfil a different relation. If we take these
results into account, we find

�0� = �0, �A32�

�3� = �3, �A33�

�4� = − �4. �A34�

Note the − sign in front of �4.
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