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Abstract

The elasticity and piezoelectricity of zinc oxide (ZnO) crystals and single layers are investigated

from the first-principles calculations. It is found that a ZnO thin film less than three Zn-O layers

prefers a planar graphite-like structure to the wurtzite structure. ZnO single layers are much more

flexible than graphite single layers in the elasticity and stronger than boron nitride single layers

in the piezoelectricity. Single-walled ZnO nanotubes (SWZONTs) can exist in principle because

of their negative binding energy. The piezoelectricity of SWZONTs depends on their chirality.

For most ZnO nanotubes except the zigzag type, twists around the tube axis will induce axial

polarizations. A possible scheme is proposed to achieve the SWZONTs from the solid-vapor phase

process with carbon nanotubes as templates.

PACS numbers: 62.25.+g, 62.20.Dc, 77.65.-j
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I. INTRODUCTION

Zinc oxide (ZnO) materials have attracted extensive attention for half a century be-

cause of their excellent performance in optics, electronics and photoelectronics.1 They are

important for low cost productions of green, blue-ultraviolet, and white light-emitting de-

vices due to their wide band gap (∼3.37 eV) and large exciton binding energy (∼60 meV).

They can also be used as sensors and transducers owing to their strong piezoelectricity.

Recently, many ZnO nanostructures have been synthesized in experiments.2 Among them,

the quasi-one-dimensional structures have become the leading research objects because of

their novel chemical, electrical, mechanical and optical properties.3 The ultraviolet lasing in

ZnO nanowires4,5 and strong photoluminescence in ZnO nanorods6 have been demonstrated.

Nanobelts, nanorings and nanohelixes are also synthesized,7,8,9,10 which may be useful for

field-effect transistors.11

Since the discovery of carbon nanotubes in 1991,12 the synthesis of tubular nanostruc-

tures has raised worldwide interest. A lot of inorganic nanotubes, such as ZrS2, NbSe2,

SiO2, TiO2, BN nanotubes, etc. are achieved by several groups.13 Researchers have also

tried to fabricate ZnO nanotubes through various methods including thermal reduction,14

vapor phase growth,15,16,17 hydrothermal growth,18 vapor-solid process,19 sol-gel template

process,20 plasma-assisted molecular beam epitaxy,21,22 pyrolysis of zinc acetylacetonate,23

and Zn(NH3)
2+
4 precursor thermal decomposition.24 All ZnO nanotubes thus obtained have

the wurtzite structure with diameter of 30–450 nm and thickness of 4–100 nm. Much effort

has been made to realize much thinner and smaller ZnO nanotubes. A natural question

is: Can we manufacture single-walled ZnO nanotubes (SWZONTs)? In this paper, We will

answer this question based on the first-principles calculations (the ABINIT package25) and

the experimental methods15,16,17,19 for synthesizing ZnO nanobelts and nanotubes with the

wurtzite structure. Additionally, we will investigate the elasticity and piezoelectricity of ZnO

crystals and single layers within the framework of density-functional theory (DFT)26 and

density-functional perturbation theory (DFPT).27,28,29 The piezoelectricity of single-walled

ZnO nanotubes is also derived from the piezoelectricity of ZnO single layers.

The rest of this paper is organized as follows: In Sec. II, we present the results of elastic

constants and piezoelectric coefficients of ZnO crystals. We also compare them with the

experimental results and previous theoretical results in literatures. The main aim of this
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section is to test whether our computational procedure can validly describe the physical

properties of the ZnO system or not. In Sec. III, we optimize a Zn-O single layer cut from

the wurtzite crystal and arrive at a planar graphite-like structure. Comparing the binding

energy between the crystal and the planar single layer, we deduce that a ZnO thin film less

than three Zn-O layers prefers a planar graphite-like structure to the wurtzite structure. The

elastic and piezoelectric constants of ZnO single layers are also calculated. In Sec. IV, we

calculate and optimize different SWZONTs. The SWZONTs are shown to exist in principle

because of their negative binding energy. Their piezoelectricity depends on the chirality,

and for most of them except the zigzag type, twists around the tube axis will induce axial

polarizations. We also propose a possible scheme to realize the SWZONTs from the solid-

vapor phase process with carbon nanotubes as templates. In Sec. V, we give a summary

and propose some potential applications of SWZONTs.

II. ZINC OXIDE CRYSTALS

The ground state of a ZnO crystal has a wurtzite structure (space group P63mc) with

two zinc and two oxygen atoms per unit cell. The lattice constants and internal parameter

obtained from experiments are as follows: a = b = 3.250Å, c = 5.204Å, and u = 0.382,

respectively.30

We optimize the structure parameters and calculate the elastic and piezoelectric constants

of ZnO crystals. The calculations are carried by taking Troullier-Martins pseudopotentials,31

plane-wave energy cutoff (ecut) of 60 Hartree, and 6 × 6 × 3 Monkhorst-Pack k-points32 in

Brillouin-zone. The exchange-correlation energy are treated within the local-density approx-

imation in the Ceperley-Alder form33 with the Perdew-Wang parametrization.34

Using the experimental parameters to construct an initial unit cell, we have optimized

the structure parameters and summarized them in Table I. Results by other groups are also

listed for comparison. It is easy to see that our DFT results are quite close to those of Wu

et al. and agree well with the experimental results (errors in 2%).

Adopting the optimized structure, we can calculate the elastic constants and piezoelec-

tric coefficients of ZnO crystals. The elastic constants reflect the stress-strain relation of

materials. In terms of the symmetry of ZnO crystals (wurtzite structure), this relation can
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be expressed in the matrix form:37
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where σi and ǫi (i=1,· · ·,6) represent the stresses and strains, respectively. There are only

five independent elastic constants: c11, c12, c13, c33, and c44. Their values in the present

work are listed in Table II.

Similarly, the piezoelectricity can be expressed in the matrix form:37
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where P1, P2, and P3 are three polarization components along a direction, the direction

perpendicular to a and c, and c direction, respectively. P 0
3 is the spontaneous polarization

along c direction. There are only 3 independent piezoelectric coefficients: e31, e33, and e15.

It is necessary to point out that here the definition of piezoelectricity is different from that

in Ref. 37 where the piezoelectricity reflects the relation between polarizations and stresses.

The piezoelectric coefficients obtained by the present work are listed in Table III.

Good agreements have been achieved between the present results and those in literatures

(see Tables II and III). Confirming that our computational procedure can give reasonable

results for bulk ZnO systems, we proceed to analyze ZnO single layers and nanotubes.

III. ZINC OXIDE SINGLE LAYERS

In this section, we discuss the elasticity and piezoelectricity of ZnO single layers. First,

as an initial configuration, we take a single Zn-O layer (shown in the left side of Fig. 1) cut
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from the wurtzite ZnO crystal, and then optimize its structure. As an stable configuration,

we obtain a planar graphite-like structure as shown in the right side of Fig. 1. Here we

use 6× 6× 1 Monkhorst-Pack k-points and two different groups of other input parameters

for calculations. The final optimized results, listed in Table IV, are insensitive to the input

parameters. The bond length of the planar structure is slightly smaller than that of ZnO

crystals. Its binding energy is -8.246 eV/ZnO, higher than the value -8.947 eV/ZnO of ZnO

crystals.

Now we consider a wurtzite ZnO thin film with two polar surfaces (±0001 faces). Its

energy is higher than that of bulk ZnO with the same number of atoms by Ec = 4.0 J/m2

(the cleavage energy density40) because of the spontaneous polarization in c direction. Here

we derive the the critical layer number based on our above result for planar ZnO single

layers. Considering the influence of spontaneous polarization, we estimate the total binding

energy Ef = M(−8.947N +EcΩ0) = M(−8.947N +2.21) eV for the wurtzite thin film with

N Zn-O single layers, where Ω0 is the area for a unit cell of the ZnO crystal in ab plane

and M the number of unit cells in each layer. If we consider the thin film with N planar

single layers and neglect the very weak interlayer attractions, the total binding energy is

about −8.246MN eV. We find Ef > −8.246MN for N < 4, which implies that a ZnO thin

film less than Nc = 4 Zn-O layers prefers the planar graphite-like structure to the wurtzite

structure. Here the estimated value 4 is the lower bound of critical number Nc because we

neglect the weak interlayer attractions. Note that the cleavage energy density may depend

on the layer number and structural relaxation. Considering the structural relaxation, Meyer

and Marx41 found that the the cleavage energy density varied from 3.0 J/m2 to 3.4 J/m2,

weakly dependent on the the layer number. Using these values, the lower bound of critical

number Nc is changed to 3. If we consider the interlayer attractions coming from the dipole-

dipole interaction between planar ZnO layers because of their spontaneous polarizations

(the ground state: spontaneous polarizations antiparallel in the neighbor layers), we should

obtain Nc > 3, which is the exact meaning of “the lower bound of critical number being 3”.

Claeyssens et al. also obtained a critical thickness by DFT calculations.42 They investigated

the binding energy of the thin films with N = 4, 6, · · · , 24 single planar layers (layer distance

2.4 Å) and compared it with the binding energy of the thin films (wurtzite structure) with

the same number of Zn-O layers. They found that the ZnO thin film less than eighteen Zn-O

layers prefers the planar graphite-like structure to the wurtzite structure. As is well known,
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the widely used DFT packages cannot accurately describe the interlayer interactions.43,44

Thus the critical layer number Nc = 18 obtained directly from DFT calculations might be

inaccurate although it satisfies Nc > 3. With the development of DFT method, one may

obtain the accurate critical layer number in the future when DFT packages can deal well

with the interlayer interactions.

Adopting the optimized structure, we can calculate the elastic and piezoelectric constants

of ZnO single layers. From Fig. 2, we find that the ZnO single layer has the 3-fold rotation

symmetry and a reflection symmetry respect to x1-axis. Thus the stress-strain relation is

expressed in the matrix form:37
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There are only two independent elastic constants: c11 and c12. The piezoelectricity can be

expressed as
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where P 0
1 is the spontaneous polarization in the x1-direction. There is only one independent

piezoelectric coefficient e11. The calculated values of the elastic and piezoelectric constants

of ZnO single layers are listed in Table V. Using the elastic constants, we calculate the

Young’s modulus per atom by Yatom = (c11 − c212/c11)/2 ≈ 32.4 eV/atom, which is quite

smaller than the value 57.7 eV/atom for a single graphite layer obtained in our previous

work.45 Additionally, we observe that the ZnO single layer (e11 = 0.48 e/Å) has stronger

piezoelectricity than the BN single layer (e11 = 0.23 e/Å).46

IV. SINGLE-WALLED ZINC OXIDE NANOTUBES

Generally speaking, if a material can exist in graphite-like structure, the corresponding

nanotubes can be synthesized in the laboratory.13 A natural question is: how can we fabricate

SWZONTs? We propose a possible way in this section.

Without considering the two ends, an SWZONT can be thought of as a cylinder rolled

up from a single sheet of ZnO layer such that two equivalent sites of the hexagonal lattice
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coincide. To describe the SWZONT, we introduce several characteristic vectors in analogy

with a single-walled carbon nanotube. As shown in Fig. 2, the chiral vector Ch, which defines

the relative location of two sites, is specified by a pair of integers (n,m) which is called the

index of the SWZONT and relates Ch to two unit vectors a1 and a2 of the hexagonal lattice

(Ch = na1 +ma2). The chiral angle θ defines the angle between a1 and Ch. For an (n,m)

nanotube, θ = arccos[(2n+m)/(2
√
n2 +m2 + nm)]. The translational vector T corresponds

to the first point in the hexagonal lattice through which the line normal to the chiral vector

Ch passes.

We calculate the binding energy of SWZONTs with different indexes which is shown in

Fig. 3. From this figure we find that: (i) The binding energy for different SWZONTs is

negative, which suggests these SWZONTs can exist in principle; (ii) The binding energy

(Eb) decreases with the increase of the radius (R) of SWZONTs and can be well fit by

Eb = −8.242 + 1.371/R2 (eV/ZnO). (5)

Obviously, Eb → −8.242 eV/ZnO for R → ∞. This value is quite close to the binding energy

(-8.246 eV/ZnO) of a ZnO single planar layer. The term 1.371/R2 reflects the curvature

effect of nanotubes. The classic shell theory also gives the same form, DΩ/R2, for the

curvature effect,47 where D is the rigidity of the ZnO single layer and Ω = 8.91Å2 is the area

of the parallelogram generated by the unit vectors a1 and a2. Thus we obtain D = 0.15 eV,

which is quite smaller than the rigidity (1.17 eV)48 of a single graphite layer. The ZnO single

layer is much softer than the graphite layer such that it should be more easily wrapped up

into a nanotube.

The solid-vapor phase process has been employed to successfully synthesize ZnO

nanobelts, nanorings, and nanohelixes.7,8,9,10 It might also be used to realize SWZONTs

with carbon nanotubes as templates. As shown in Fig. 4, the ZnO powder decomposes into

gaseous Zn2+ and O2− at high temperature and low pressure.49 After that, Ar flow carries

Zn2+ and O2− to the low temperature zone at relative higher pressure where Zn2+ and O2−

will deposit on the carbon nanotube array prepared carefully in advance. Controlling the

low enough density of Zn2+ and O2− and the proper distance between carbon nanotubes,

one may obtain thin enough ZnO films, for example less than 3 single layers, coating on

the surfaces of carbon nanotubes. These films prefer the multi-walled tubes to the wurtzite

structure because the layer number is smaller than 3. One may take out the SWZONTs
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from the multi-walled tubes by analogy with the method in carbon nanotubes.50

Now we discuss two points in the above process. The first point is the growth temper-

ature. From the conditions for producing ZnO nanobelts,7,8,9,10 the growth temperature

of ZnO nanotubes is expected to be 300–500 ◦C. At this temperature, the highly purified

carbon nanotubes are chemically inactive,51 which ensures that they merely work as tem-

plates but do not react with Zn2+ or O2−. The other point is the critical radius of the

synthesized SWZONTs. The carbon-ZnO multi-walled tubes can form in the above process

if the attraction between nanotubes overcomes the curvature energy of ZnO nanotubes. For

simplicity, we consider a carbon nanotube coated by an SWZONT. The attraction between

them is approximately described by the Lennard-Jones potential. The layer distance is es-

timated to be 3–4 Å from the van der waals radii of carbon, oxygen, and zinc atoms.52 The

attraction energy (Eat) is about −19.5 meV/ZnO.53 From Eat + DΩ/R2 < 0, we obtain

the smallest radius Rc ∼ 8.3 Å synthesized in the above process. We should emphasize

that the above process is merely possible method to produce the ZnO nanotubes in terms

of the first-principles calculation and the previous experiments7,8,9,10 on the growth of ZnO

nanobelts. Whether it works or not, experimental researches will gives an answer in the

future.

It is useful to discuss the piezoelectricity of SWZONTs. We need not to do additional

DFT calculations considering the experience obtained by Sai et al. in the study of the

piezoelectricity of single-walled BN nanotubes.46 They found that the piezoelectricity of BN

nanotubes depends on the chirality. The physical origin is that an angle between local

polarization of each unit cell and the tube axis depends on the chiral angle. Their key point

is that the curvature of nanotubes has so small effect on the piezoelectricity that we can

directly deduce their piezoelectric property from the piezoelectricity of single layers. Two

deformation modes will result in the change of the polarization in the direction of tube axis:

one is the tension or compression strain (εT ) along the tube axis, another is the shear strain

(γ, the twist angle per length) induced by the torsion around the tube axis. The variation

of the polarization can be expressed as

δPT/L = eT εT + etγ, (6)

where L represents the perimeter of the nanotube. Following Ref.46, one can derive the
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coefficients

eT = e11 cos 3θ (7)

and

et = −e11 sin 3θ (8)

from the transformation between coordinate systems {x1, x2} and {Ch,T} shown in Fig. 2.

From above three equations, we find that the piezoelectricity of SWZONTs depends on their

chiral angles. For zigzag tubes (m = 0, θ = 0◦), only tension or compression strains induce

polarizations, while only shear strains play roles for armchair tubes (n = m, θ = 30◦).

Both strains work for achiral tubes. For a specific pure axial strain, the variation of the

polarization decreases with the increase of chiral angle θ from 0◦ to 30◦. For pure shear

strain induced by the torsion around the tube axis, the absolute variation of the polarization

increases with the increase of chiral angle θ from 0◦ to 30◦. These effects are more evident

in SWZONTs than in BN nanotubes because the ZnO single layer has a relative larger e11

than the BN single layer.

V. CONCLUSION

We have calculated the elastic constants and piezoelectric coefficients of ZnO crystals and

single layers. We find that ZnO single layers are much more flexible than graphite single

layers in the elasticity and stronger than boron nitride single layers in the piezoelectricity.

SWZONTs are demonstrated to exist in principle and might be realized by the solid-vapor

phase process with carbon nanotubes as templates.

Finally, we would like to point out some potential applications of SWZONTs and related

structures. (i) SWZONTs, same as other ZnO nanostructures, can be applied in optoelectric

devices. The quality of SWZONT-based devices should be higher than others because of

their very small thickness. (ii) The piezoelectricity of SWZONTs depends on their chirality.

For most ZnO nanotubes except the zigzag type, twists around the tube axis will induce

axial polarizations. This property makes SWZONTs possible to be used in the torsion mea-

surement devices. For example, one may use SWZONTs to make very small Coulomb torsion

balance. (iii) SWZONTs, except the armchair tubes, are polar tubes.54 Water transport,

ice formation, and biopolymer translocation in polar tubes should exhibit quite different

characteristics from those in non-polar tubes. The latter has been fully studied, especially
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for carbon nanotubes,55,56,57 while the former has attracted no attention even for BN tubes

up to now. (iv) The carbon-ZnO nanotubes formed in the solid-vapor phase process must

have excellent mechanical and electrical properties: On the one hand, they have high enough

rigidity and axial strength because of the contribution of carbon nanotubes. On the other

hand, they exhibit strong piezoelectricity coming from the ZnO tubes. These structures

may be employed to make electric nanotube motors58 where the axial voltage will be greatly

reduced relative to carbon nanotube motors58 because of the high piezoelectricity of ZnO

tubes.
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and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).

2 Z. L. Wang, Mater. Today 7, 26 (2004).

3 Z. L. Wang, J. Phys.: Condens. Matter 16, R829 (2004).

4 M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science

292, 1897(2001).

5 M. Haupt, A. Ladenburger, R. Sauer, K. Thonke, R. Glass, W. Roos, J. P. Spatz, H. Rauscher,
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TABLE I: Structure parameters of ZnO crystals.

Authors Methods a (Å) c (Å) c/a u

Present DFT 3.199 5.167 1.615 0.379

Karzel et al. a Experiment 3.250 5.204 1.602 0.382

Wu et al. b DFT 3.197 5.166 1.616 0.380

Catti et al. c Hartree-Fock 3.286 5.241 1.595 0.383

aReference 30.
bReference 35.
cReference 36.

TABLE II: Elastic constants (relaxed-ions) of ZnO crystals in units of GPa.

Authors Methods c11 c12 c13 c33 c44

Present DFPT 218 137 121 229 38

Wu et al. a DFPT 226 139 123 242 40

Catti et al. b Hartree-Fock 246 127 105 246 56

Kobiakovc Experiment 207 118 106 210 45

Azuhata et al.d Experiment 190 110 90 196 39

aReference 35.
bReference 36.
cReference 38.
dReference 39.
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TABLE III: Piezoelectric coefficients (relaxed-ions) of ZnO crystals in units of C/m2.

Authors Methods e31 e33 e15

Present DFPT -0.65 1.24 -0.54

Wu et al. a DFPT -0.67 1.28 -0.53

Catti et al. b Hartree-Fock -0.55 1.19 -0.46

Kobiakovc Experiment -0.62 0.96 -0.37

aReference 35.
bReference 36.
cReference 38.

TABLE IV: Optimized structure of a ZnO single layer. Here Lv, Bl, Ba, and Eb represent the

vacuum layer thickness, bond length, bond angle, and binding energy, respectively.

Lv (Å) ecut (Ha) Bl (Å) Ba Eb (eV/ZnO)

10.6 35 1.852 120◦ -8.246

21.2 60 1.852 120◦ -8.247

TABLE V: Elastic and piezoelectric constants (relaxed-ions) of ZnO single layers. Here Lv repre-

sents the vacuum layer thickness.

Lv (Å) ecut (Ha) c11 (eV/ZnO) c12 (eV/ZnO) e11 (e/Å)

10.6 35 72.6 24.0 0.48

21.2 60 72.7 24.1 0.48

FIG. 1: (Color online) ZnO single layers. The left side is a single layer taken from the wurtzite

ZnO crystal while the right one is the optimized structure which is a planar hexagonal lattice. The

small and large balls represent zinc and oxygen atoms, respectively.
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FIG. 2: (Color online) Unrolled honeycomb lattice of an SWZONT. By rolling up the sheet such

that the atoms in the two ends of the vector Ch coincide, a nanotube is formed. The vectors a1

and a2 are unit vectors of the hexagonal lattice. The translational vector T is perpendicular to Ch

and runs in the direction of the tube axis.
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FIG. 3: Binding energy (Eb) and radius (R) of different SWZONTs.
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FIG. 4: (Color online) Schematic diagram of the vapor-solid phase process to synthesize SWZONTs

with carbon nanotube (CNT) array as templates.
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