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Nonequilibrium molecular vibrons: An approach based on the nonequilibrium Green function
technique and the self-consistent Born approximation
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We consider the nonequilibrium quantum vibrations of a molecule clamped between two macroscopic leads
in a current-carrying state at finite voltages. Our approach is based on the nonequilibrium Green function
technique and the self-consistent Born approximation. Kinetic equations for the average populations of elec-
trons and vibrons are formulated in the weak electron-vibron coupling case and self-consistent solutions are
obtained. The effects of vibron emission and vibronic instability are demonstrated using few-orbital models.
The importance of the electron-vibron resonance is shown.
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I. INTRODUCTION

During the past several years, nonequilibrium quantum
transport in nanostructures and, in particular, transport
through single molecules, has been the focus of both experi-
mental and theoretical investigations because of possible
electronic device applications. Recently, the interaction of
electrons with molecular vibrations attracted attention fol-
lowing experiments on electron transport through single
molecules.'® Theoretical treatments were presented in Refs.
9-21. In this paper, we consider a quantum theory of non-
equilibrium vibronic excitation.

Basically there exist two main nonequilibrium effects; the
electronic spectrum modification!®?! and the excitation of
vibrons (quantum vibrations).!>!3:18-20 In the weak electron-
vibron coupling case the spectrum modification is usually
small (which is dependent, however, on the vibron dissipa-
tion rate, temperature, etc.) and the main possible nonequi-
librium effect is the excitation of vibrons at finite voltages.
We develop an analytical theory for this case. This theory is
based on the self-consistent Born approximation (SCBA),
which allows one to take easily into account and calculate
nonequilibrium distribution functions of electrons and vi-
brons.

If the mechanical degrees of freedom are coupled strongly
to the environment (dissipative vibron), then the dissipation
of molecular vibrations is determined by the environment.
However, if the coupling of vibrations to the leads is weak,
we should consider the case when the vibrations are excited
by the current flowing through a molecule, and the dissipa-
tion of vibrations is also determined essentially by the cou-
pling to the electrons. In this paper, we show that the effects
of vibron emission and vibronic instability are important es-
pecially in the case of electron-vibron resonances.

In the next section a simple model of an electron-vibron
system is formulated. In Sec. III nonequilibrium Green func-
tions and the Keldysh technique are used to obtain a full set
of equations describing nonequilibrium electrons and vibrons
self-consistently. Kinetic equations for the average popula-
tions of electrons and vibrons are formulated in the weak
electron-vibron coupling case. In Sec. IV the solutions of
these equations are obtained and the results are discussed.
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II. ELECTRON-VIBRON MODEL

We describe a molecule coupled to free conduction elec-
trons in the leads by a usual tunneling Hamiltonian. Further-
more, the electrons are coupled to vibrational modes. We do
not consider the Coulomb interaction to avoid further effects,
such as the Coulomb blockade and Kondo effect, which
could dominate over the physics we want to address, how-
ever, self-consistent mean-field effects can easily be included
in our approach. The full Hamiltonian is the sum of the mo-

lecular Hamiltonian H w» the Hamiltonians of the leads H R(L)>

the tunneling Hamiltonian I:IT describing molecule-lead cou-

pling, the vibron Hamiltonian I:IV including electron-vibron
coupling, and the coupling of the vibrations to the environ-
ment

ﬁ:ﬁM+ﬁL+IA{R+HT+ﬁv. (1)

A molecule (as well as a system of small quantum dots) is
described by a set of localized states |a@) with energies €,
(tight-binding model) by the following model Hamiltonian:

HY) =2 (et eu(Dldid,+ 2 tapdidg,  (2)
a a#f

where dl,da are the creation and annihilation operators in
the states |@), and ¢,(?) is the (self-consistent) electrical po-
tential. The index « is used to mark the single-electron states
including the spin degree of freedom.

The Hamiltonians of the right (R) and left (L) leads,
shown in Fig. 1, are

A

Hi_pr) = 2 (ko + e@i(t))cjk(rcik(r, (3)
ko

¢;(1) are the electrical potentials of the leads, the index k is

the wave vector, but can be considered as representing an-

other conserved quantum number, o is the spin index, but

can be considered as a generalized channel number describ-

ing, e.g., different bands or subbands in semiconductors.
The tunneling Hamiltonian
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(Color online) Schematic picture of the considered

IA{Tz E 2 (Vika',acj‘-kg-da'*'H'C') (4)

i=L.R ko,

describes hopping between the leads and the molecule. Di-
rect hopping between two leads is neglected (the weak
molecule-lead coupling case).

Vibrations and the electron-vibron coupling are described
by the Hamiltonian'4-'6

HV Eﬁ,wqa aq+22M sla, +aT)d s (5)
q aB q

Here vibrations are considered as localized phonons and ¢ is
an index labeling them, not the wave vector. The first term
describes the free vibrons with the energy #w,. The second
term represents the electron-vibron interaction. We include
both diagonal coupling, which describes a change of the
electrostatic energy with the distance between atoms, and the
off-diagonal coupling, which describes the dependence of the
matrix elements 7,5 over the distance between the atoms.

III. NONEQUILIBRIUM SELF-CONSISTENT
THEORY

We use the nonequilibrium Green function (NGF)
method,?>?* which now is a standard approach in mesoscopic
physics and molecular electronics.! We follow the formula-
tion of Meir, Wingreen, and Jauho,?*~2% which has already
been applied to the case of self-consistency.”!

The current in the left (i=L) or right (i=R) contact to the
molecule is described by the well-known expression

d
Ji=L,R_%f 26TT{F (e— €¢l)(G<(€)

+ /i (e=e@)[G (&) - G* (&)}, (6)

where f?(e) is the equilibrium Fermi distribution function
with the chemical potential u;
£ 1 ™)
€)= ,
’ exp((e— w)/T) + 1

and the level-width function is

Fi:L(R)(f) = Fiaﬂ(e) = 2772 Vika,B ka' a5(€ lem)- (8)
ko
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The matrix lesser (retarded, advanced) Green functions of
a nonequilibrium molecule G<(R’A)EGQ<(R’A) can be found
from the Dyson-Keldysh equations in the integral form

GR(e) = Gf(e) + G{(e)2R(e)GR(e), 9

G (9 =G (X" (G (o), (10)

or from the corresponding equations in the differential form
(see Ref. 21 and references therein).

Here ER’<=21§’<m+2§’<m+2&<(w, is the total self-
energy of the molecule composed of the tunneling (coupling
to the left and right leads) self-energies ER_f RT) Efa;(T
=3 AV ko, aGﬂfU kopt> and  the vibronic  self- energy
ER <(V) =

ap

For the retarded tunneling self-energy Efm one obtains

2@ =Afe-eg) = Tile=e@). (1)
where A, is the real part of the self-energy, which usually can

be included in the single-particle Hamiltonian A9 and I;
describes the level broadening due to the coupling to the
leads. For the corresponding lesser function one finds

2i<(T)(€) =iF,~(€—€QDi)f?(€_e‘Pi)‘ (12)

In the standard self-consistent Born approximation, using
the Keldysh technique, one obtains for the vibronic
self-energies!3-16.18.1926.27

' d
2R<V>(e)=12 29 MIGF MDE + M9GK MaDR
2 2 e—w qo e~ qo

2DR JMITH{ G MY]), (13)

qw=0

3<W(e) = 12 f —MqG MDD, (14)

where GK=2G~+GF-G* is the Keldysh-Green function,
and M7= M.

If vibrons are noninteracting, in equilibrium, and nondis-
sipative, then the vibronic Green functions write,

1 1
0—w,+i0"

Dg(q,a)) = (15)

w+wq+i0+’

Dy (q,w) =— 2771'[(,‘%(%) + 1)+ w,) +f%(wq) Aw-w,)],

(16)
where the equilibrium Bose distribution function is
f3(w) : (17)
w)="—""—""7.
B exp(w/T) -1

In our model the retarded vibron function is calculated
from the Dyson-Keldysh equation in the integral form

D*(qw) = Di(qw) + Di(qo)I1¥(qw)D*(qw),  (18)
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2w,
DX (g, w) = 4 s 19
(¢.) w’ - wfl - 2quR(q,w) (19)

where Il(g,w) is the polarization operator (boson self-
energy). The equation for the lesser function (quantum Kki-
netic equation in the differential form) is

(I}, - I, D, - (DX, - DO )T, =0. (20)

This equation, in the stationary case considered here, is al-
gebraic in the frequency domain.

In the integral form one has the Keldysh equation for the
lesser function

D(g, ) = DX(g,0)I17(¢,0)D*(q, w). (21)
The polarization operator is the sum of two Parts envi-
ronmental and electronic; 17}, s=1" <(env)+HR <)
The environmental equ1hbr1um part of the polarization
operator can be approximated by the simple expressions

HR(env)(q’w) ===, sign(w), (22)

H<(env)(q’w) =— iyqf%(w)sign(w), (23)

where Ye is the vibronic dissipation rate, and fg(w) is the
equilibrium Bose-Einstein distribution function.

The electronic contribution to the polarization operator
within the SCBA is

d
IR (g, w) = —i f 2—6 Tr(M/G MG, + MIGIMIG ),
T

(24)

d
<€, ) = — i f S TMIGIMIGZ,).  (25)
v

We obtained the full set of equations, which can be used
for numerical calculations. We simplify these equations and
obtain some analytical results in the vibronic quasiparticle
approximation, which assumes a weak electron-vibron cou-
pling limit and a weak external dissipation of vibrons;

‘y; =7v,~2Im HR(wq) < w,. (26)

The spectral function of vibrons can be approximated by the
Dirac 6, and the lesser function reads

D<(q,w) =- 2mi[(N, + 1)@+ w,) + N, 6w - w,)],
(27)

where N, is the (nonequilibrium) number of vibrations in the
gth mode. In this approximation the spectrum modification
of vibrons is not taken into account, but the possible excita-
tion of vibrations is described by the nonequilibrium N,. The
dissipation of vibrons is neglected in the spectral function,
but is taken into account later in the kinetic equation for N,.
A similar approach to the single-level problem was consid-
ered recently in Refs. 13, 18, and 19. The more general case
with the broadened equilibrium vibron spectral function does
not seem to be very interesting, because in this case vibrons
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are not excited. Nevertheless, in the numerical calculation it
can easily be taken into consideration.
From the general quantum kinetic equation for vibrons
(20) we obtain in this limit
7qNg —Im I1"(w,)

N, = . 28
Ty, ~2ImIT¥(w,) (28)

This expression describes the number of vibrons, N,, in a
nonequilibrium state, N2= fg(wq) is the equilibrium number
of vibrons. In the linear approximation the polarization op-
erator is independent of N, and -2 Im HR(w ) describes an
additional dissipation. Note that in equilibrium N, NO be-
cause Im I1(w,)=2 Im 1 ) )fg(w ). See also, the detalled
discussion of v1br0n emission and absorption rates in Ref.
18.

For weak electron-vibron coupling the number of vibrons
is close to equilibrium and is changed because of the vibron
emission by nonequilibrium electrons, N,, is roughly propor-
tional to the number of such electrons, and the distribution
function of the nonequilibrium electrons is essentially not
changed by the interaction with vibrons (perturbation theory
can be used). The situation changes, however, if the nonequi-
librium dissipation —2 Im HR(wq) is negative. In this case the
number of vibrons can be essentially larger than in the equi-
librium case (vibronic instability), and the change of the
electron distribution function should be taken into account
self-consistently.

In the stationary state the nonlinear dissipation rate

'y:; =7y,-2Im HR(wq) (29)

is positive, but the nonequilibrium contribution to dissipation
-2 Im I1¥(w,) remains negative.

Additionally, to the vibronic quasiparticle approximation,
the electronic quasiparticle approximation can be used when
the coupling to the leads is weak. In this case the lesser
function can be parametrized through the number of elec-
trons F,, in the eigenstates of the noninteracting molecular
Hamlltoman H(O)

Gap= zE Ayl S (30)

we introduce the unitary matrix S, which transfers the

Hamiltonian H EHES)Q into the diagonal form H=S™'HS, so
that the spectral function of this diagonal Hamiltonian is

As(€) =278(e~ &) 5y, (31)

where €5 are the eigenenergies.

Note that in the calculation of the self-energies and polar-
ization operators we cannot use the S-approximation for the
spectral function (this is too rough and results in the absence
of interaction out of the exact electron-vibron resonance). So
that in the calculation we use actually Eq. (30) or

Grs=iA,,F 8,5 (32)

with a broadened equilibrium spectral function. This ap-
proximation can be systematically improved by including
nonequilibrium corrections to the spectral function, which
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are important near the resonance. It is important to comment

that for stronger electron-vibron coupling vibronic sidebands

are observed in the spectral function and voltage-current

curves at energies €sxnw,. We do not consider these effects

in the rest of our paper and concentrate on resonance effects.
After corresponding calculations we finally obtain

3 7qM(;_En5Kn5(wq)Fn(F5_ 1)

Vo= 2,5 Kns@g) (Fyy = F)

N, (33)

where coefficients «,s are determined by the spectral func-
tion and electron-vibron coupling in the diagonal representa-
tion

k) = [ S0 Tl w4 E . G4

fLﬂﬂfﬁn"' fRﬂﬂf?M"' Eq,,[Q%FWq + C,%F(S(l +Nq)]

7= = — )
| I Eqn[ 7]‘3(1 —Fs+N,)+ (;%(F5+Nq)]
(35)
= MIA €, = 0,)MY,, (36)
here I';,,, and f?n are the level-width matrix in the diagonal

representation and Fermi function at energy €,—e¢;.
These kinetic equations are similar to the usual golden
rule equations, but are more general.

IV. RESULTS AND DISCUSSION

Now let us consider several examples of vibron emission
and vibronic instability.

(i) Vibron emission First we consider the most simple
case, when the instability is not possible and only vibron
emission takes place. This corresponds to a negative imagi-
nary part of the electronic polarization operator; Im IT®
X(w,) <0. From Eq. (34) one can see that for any two levels
with the energies €,>€; the coefficient «,s is larger than

Ks,» because the spectral function A ss(€) has a maximum at
€=€; The contribution of «,sw,)(F,~Fp is negative if
F,<Fs This takes place in equilibrium, and in nonequilib-
rium for transport through the symmetric molecules when
higher energy levels are populated after lower levels. The
example of such a system is shown in Fig. 2. Here we con-
sider a simple three-level system (& =1, &=2, &=3)
coupled symmetrically to the leads (I';,=I"g,=0.01). The
current-voltage curve is the same with and without vibrations
in the case of symmetrical coupling to the leads and in the
weak electron-vibron coupling limit (if we neglect the
changes in the spectral function). The figure shows how vi-
brons are excited and the number of vibrons Ny, in the mode
with a frequency w, is presented in two cases. In the off-
resonant case (green triangles) Ny is very small compared
with the resonant case (wy,=¢&,—¢;, red crosses, the vertical
scale is changed for the off-resonant points). In fact, if the
number of vibrons is very large, the spectral function and the
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FIG. 2. (Color online) Vibronic emission in the symmetric mul-
tilevel model; voltage-current curve, differential conductance, and
the number of excited vibrons in the off-resonant (triangles) and
resonant (crosses) cases (for details, see the text).

voltage-current curve are changed. We shall consider this in
a separate publication.

(ii) Vibronic instability Now let us consider the situation
when the imaginary part of the electronic polarization opera-
tor can be positive; Im HR(wq) >(0. Above we considered the
normal case when the population of higher energy levels is
smaller than lower levels. The opposite case F,>F, is
known as inversion in laser physics. Such a state is unstable
if the total dissipation y;, Eq. (29), is negative, which is
possible only in the nonstationary case. As a result of the
instability, a large number of vibrons is excited, and in the
stationary state 'y; is positive. This effect can be observed for
transport through asymmetric molecules, when higher energy
levels are populated before the lower ones. The example of a
such system is shown in Fig. 3. It is the same three-level
system as before, but the first and second levels are not
coupled symmetrically to the leads (I';;=0.001, I';;=0.1,
I';,=0.1, I'x,=0.001). The vibron couples resonantly to
these levels (w,=€,—€). The result is qualitatively different
from the symmetrical case. The voltage-current curve is now
asymmetric and a large step corresponds to the resonant level
with an inverted population.

Note the importance of the off-diagonal electron-vibron

coupling for the resonant effects. If the matrix M in the

0.6

++3[+++++

"o =04

0.2

Current (arb. units)
Ny

| —

bidi il
Vol(%age

0.0

-5

FIG. 3. (Color online) Vibronic instability in an asymmetric
multilevel model; voltage-current curve, differential conductance,
and the number of excited vibrons (crosses). The dashed line shows
the voltage-current curve without vibrons (for details, see the text).
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FIG. 4. (Color online) Floating level resonance; voltage-current
curve and the number of excited vibrons (crosses). The dashed line
shows the voltage-current curve without vibrons (for details, see the
text).

eigenstate representation is diagonal, there is no resonant
coupling between different electronic states.

(iii) Floating-level resonance Finally, let us consider the
important case, when an initially symmetric molecule be-
comes asymmetric when the external voltage is applied. The
reason for such asymmetry is simply that in the external
electric field left and right atoms feel different electrical po-
tentials and the position of the levels eaze(o?)+e<pa is
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changed (float) with the external voltage. The example of a
such system is shown in Fig. 4. Here we consider a two-level
system, one level is coupled electrostatically to the left lead
€, * ¢y, the other level to the right lead €, o . The tunneling
coupling to the leads also is not symmetrical (I';;=0.1, ',
=0.001, I';,=0.001, I'g,=0.1). The frequency of the vibra-
tion, coupling these two states, is wy=1. When we sweep the
voltage, a peak in the voltage-current curve is observed when
the energy difference €,—€,*eV is going through the reso-
nance €;— €, = w.

V. CONCLUSION

In conclusion, we considered the excitations of quantum
molecular vibrations in the nonequilibrium state and their
influence on the voltage-current curves of a single molecule
placed between two equilibrium leads. The importance of
vibron emission and vibronic instability in molecular trans-
port is demonstrated.
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