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Non-magnetic left-handed material
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We develop a new approach to build a material with negative refraction index. In contrast to
conventional designs which make use of a resonant behavior to achieve a non-zero magnetic response,
our material is intrinsically non-magnetic and relies on an anisotropic dielectric constant to provide
a left-handed response in waveguide geometry. We demonstrate that the proposed material can
support surface (polariton) waves, and show the connection between polaritons and the enhancement
of evanescent fields, also referred to as super-lensing.

PACS numbers: 78.20.Ci,72.80.Tm,42.25.Lc

A large number of potential applications in optics, ma-
terials science, biology, and biophysics has instigated an
extensive research in the area of materials with neg-
ative phase velocity, also known as left-handed me-
dia (LHM). Effects predicted in LHMs include reversed
Snell’s law, Doppler Effect, Cherenkov radiation [1],
super-lensing [2, 3], multi-focal imaging [4], unnatural
nonlinearities [5, 6], and soliton propagation [5]. The
LHMs, associated with simultaneously negative dielec-
tric permittivity and magnetic permeability have been
successfully demonstrated in microwaves in (i) a compos-
ite of antennas (which provide dielectric response) and
split-rings resonators (responsible for magnetic resonant
properties) [7, 8], and (ii) photonic crystals [9]. However,
most of practical applications of these unique materials
are in the “faster” (optical and infrared) region of the
spectrum.

The direct scale-down of the experimentally verified
split-ring designs is currently possible only to THz-
frequencies [10], and can hardly be extended farther.
Other proposed designs of infrared and optical LHMs [11,
12, 13] are (i) generally extremely sensitive to fabrica-
tion defects and (ii) often rely on a resonance to provide
negative magnetic response. The resonant losses, which
accompany the hard-to-achieve negative magnetic per-
meability at high frequencies [14] make the present LHM
designs almost impractical for real-life applications. The
only exception from this “resonant” approach so far is
Ref. [13], which again represents a great fabrication chal-
lenge.

In this letter we propose to use a planar waveguide with
anisotropic dielectric core as left-handed media. Unlike
most of the present LHM composites, our system does
not have any magnetic response. Moreover, in contrast
to current composite, resonance-based LHM designs, the
proposed material may be homogeneous, and does not re-
quire a resonance to achieve a negative phase velocity, the
fundamental property of LHM. The proposed material
may support surface (polariton) waves at the interface
between LHM and right-handed media. We describe the
electromagnetic properties of our system, and derive the
conditions for its right-, and left-handed response, and

FIG. 1: The extraordinary (TM) and ordinary (TE) waves
propagating in a planar waveguide with anisotropic core.

for excitation of surface waves (polaritons). We show the
connection between the existence of polaritons and en-
hancement of exponentially decaying (evanescent) fields.
Finally, we consider the fabrication perspectives of the
materials described in this paper and propose several fea-
sible designs for optical and infrared LHMs.

We consider a planar waveguide, parallel to the (y, z)
plane of coordinate system, with the boundaries at x =
±d/2. We assume that the material inside the waveguide
is non-magnetic (µ = 1), and has anisotropic uniaxial

dielectric constant ǫ, with ǫx = ǫ⊥ and ǫy = ǫz = ǫ|| (see
Fig. 1).

Similarly to uniaxial crystals, our system may support
two different kinds of electromagnetic waves [14]. The
waves of the first kind have their electric field vector in

(x, y) plane. The propagation of such waves depends only
on ǫ||, and is not affected by anisotropy. These waves are
also known as ordinary waves. In contrast to this behav-
ior, the waves of the second kind (known as extraordinary
waves) have their magnetic field in (x, y) plane. Corre-
spondingly their electromagnetic properties are affected
by both ǫ|| and ǫ⊥.

As we show below, the ordinary and extraordinary
waves are fundamentally distinct as they have different
dispersion relations and refraction properties.

A wave propagating in the proposed system can be
represented as a series of the waves with their electric
(magnetic) field perpendicular to the direction of propa-
gation, known as TE (TM) waves correspondingly (see,
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e.g. [14]). In our case of the planar waveguide with
anisotropic core, extraordinary wave has TM polariza-
tion, while ordinary wave has the TE form (see Fig. 1).
As it can be explicitly verified, the {x, y, z} components
of ordinary (E(o), H(o)), and extraordinary (E(e), H(e))
waves propagating in (y, z) direction can be represented
by the following expressions:
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where k = ω/c, and prime (′) denotes the differen-
tiation with respect to x. Similarly to Ref. [14] the

field E
(e|o)
0 (x, y, z; t) = E

(e|o)
0 (x)e−iωt+ik(e|o)

y
y+ik(e|o)

z
z is

defined from the equation

E
(e|o)
0

′′
+ κ

(e|o)2E
(e|o)
0 = 0, (2)

with the boundary conditions satisfying the conditions
for tangential (y, z) components of the electric field at
the waveguide walls. For simplicity, here we consider the
case of perfectly conducting waveguide boundaries; the
straightforward extension of the presented theory to the
case of dielectric walls, where similar effects are antici-
pated, will be presented elsewhere.
The Eq. (2) yields a series of solutions (modes)

E
(e|o)
0 (x) = A

(e|o)
m cos(κx) with κ = (2m + 1)π/d, and

E
(e|o)
0 (x) = A

(e|o)
m sin(κx), κ = 2mπ/d (where n is an

integer number). Each waveguide mode has its own dis-
persion relation:

k(e|o)
2

z + k(e|o)
2

y = ǫ(e|o)ν(e|o)k2, (3)

where

ǫ(e) = ǫ⊥; ǫ
(o) = ǫ||; ν

(e|o) =

(
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κ
(e|o)2

ǫ||k2

)

(4)

Note that due to different geometry the TM and TE
modes defined here are somewhat different from the con-
ventional waveguide solutions presented in common text-
books [14]. Here we focus on the planar waveguide un-

bounded in (y, z) plane with anisotropic core in contrast
to bounded in (x, y) directions “tubular” (1D) structure
with isotropic filling, where waves can propagate in z
direction alone. Taking into account the identical dis-
persion relations for ordinary and extraordinary waves
in the case ǫ⊥ = ǫ||, it is straightforward to obtain the

FIG. 2: Reflection and refraction on the boundary between
isotropic (right-) and left-handed media. (a) Schematic illus-
tration of refraction of a TM wave at right- and left- handed
media interface (ordinary wave not shown). (b) Results of ex-
act numerical calculations of refraction of the mode κ = k/2
in a planar waveguide. The dielectric parameters in right-
handed media (z < 0): ǫ = ν = 1/2; in the left-handed media
(z > 0): ǫ = ν = −1/2, angle of incidence is π/10. Red, green,
and blue, arrows show the direction of incident, reflected and
refracted waves correspondingly

well-known TE (Ez = 0) and TM (Hz = 0) “tubular”
solutions as the linear combination of the waves from
Eqs. (1). Also, as an alternative to the formalism pre-
sented in this letter, our system may be described in
terms of introduced in [6] generalized dielectric tensor
with spatial dispersion.

An arbitrary wave inside a planar waveguide can be
represented as a linear combination of waveguide modes
(corresponding to different values of κ). For simplicity
for the rest of the letter we limit ourselves to the case
when only a single mode is excited. This assumption
does not restrict the generality of our approach since it
does not limit (y, z) structure of the solutions or their
polarization. The generalization of expressions presented
here, to a multiple-mode case is straightforward.

It is clearly seen from Eq. (3) that a propagating solu-
tion (described by real kz and ky) is only possible in the
case when the corresponding parameters ǫ and ν are of
the same sign. The case ǫ > 0; ν > 0 is usually realized
for an isotropic material inside the planar (transmitting)
waveguide [14]; the case ǫ > 0; ν < 0 corresponds to the
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so-called subcritical waveguide which does not support
propagating modes and reflects all “incident” radiation.
The third case which can be realized in a waveguide with
isotropic core, ǫ < 0; ν > 0, describes a perfectly conduct-
ing interior, which again does not support propagating
waves.
Finally the case ǫ < 0; ν < 0, which is a primary focus

of this letter, can only be realized only for the extraordi-

nary wave in the anisotropic material. The correspond-
ing structure is transparent for TM wave; the TE solution
exponentially decays into such a waveguide.
While Eq. (3) defines the magnitude of the phase ve-

locity of the mode in this case, the sign of the phase
velocity cannot be determined by Eq. (3) alone. To de-
fine the sign of the phase velocity, and consequently the
“handedness” of a media, we consider the refraction of a
wave at the interface between the transparent isotropic
(right-handed) media and a media with ǫ < 0; ν < 0 in-
side the same waveguide. We assume that the interface
coincides with the coordinate plane z = 0 (see Fig. 2).
We first consider the special case of the normal prop-

agation of a TM-polarized wave. Since in such a wave
Hz = Hx = 0, neither refracted nor reflected ordinary
waves are excited. Since for ky = 0 the components
Hy and Ex are related to each other: Hy = kǫ⊥

kz

Ex [see
Eqs. (1)], the requirement for continuity of tangential
fields across the boundary z = 0 immediately shows that
the sign of kz should coincide with the one of ǫ⊥. This
is a clear indication that the media with ǫ < 0, ν < 0 is
left-handed.
The analysis of a general case of obliquely incident

wave (shown in Fig. 2) is more complicated, as in gen-
eral ordinary reflected wave is also excited, and the di-
rection of the refracted (extraordinary) wave should be
determined by the causality principle [14]. We perform
such an analysis via exact numerical calculations where
we assert that the propagating in the real (absorbing)
media wave decays in the direction of its propagation.
The results of these calculations are shown in Fig. 2. It
is clearly seen that Snell’s law is reversed, meaning that
phase velocity in the medium with ǫ < 0; ν < 0 is neg-
ative and the resulting wave is left-handed for a general
case of oblique incidence. As it is shown in [1], all optical
effects directly related to a phase velocity (Snell’s law,
Doppler Effect, Cherenkov radiation etc.) are reversed
in such a media.
Another class of phenomena commonly associated with

LHMs (e.g. enhancement of the evanescent fields [2], non-
linear surface waves [5]), however requires the propaga-
tion of surface waves, also known as polaritons, at the
left- and right-handed media interface. As it is shown in
[14], only TM waves could construct a surface mode on
a non-magnetic interface. In the following calculations
we represent the fields and electromagnetic constant of
right-handed media (which fills the region z < 0) with
superscript (−) and the ones in LHM region z > 0 with

FIG. 3: Amplification of evanescent field by a parallel slab
of planar LHM (κ = k/2). The blue line corresponds to
non-plasmonic case. Right-hand media (RHM) parameters:

ǫ(RHM) = ν(RHM) = 1/2, LHM parameters: ǫ(LHM) =

ν(LHM) = −1/2; ky = 2k. Red line shows the case of res-

onant excitation of polariton waves ǫ(RHM) = 3/2, ν(RHM) =

4; ǫ(LHM) = −6/5, ν(LHM) = −5; ky =
√

9/8k; the LHM
is positioned between z = 0 and z = 10λ. The resonant
enhancement of evanescent components with surface waves
(often attributed to superlens, originally proposed in [2]) is
clearly seen.

(+). We search for a polariton solution (E,H)(−) ∝
exp[ikyy + ξ(−)z]; (E,H)(+) ∝ exp[ikyy − ξ(+)z], with
real ky , and positive ξ(−|+) (the exponentially-growing
away from the interface “anti-polariton” solution corre-
sponding to negative ξ(−|+) can exist only in finite space
region).
While the LHM region is bound to have ǫ⊥ < 0, ǫ|| >

0, the “right-handed” medium can be constructed by ei-
ther ǫ⊥ > 0, ǫ|| > 0 or by ǫ⊥ > 0, ǫ|| < 0. These two
combinations of the dielectric constants lead to different
conditions for polariton propagation.

Specifically, for the case ǫ
(−)
|| > 0, ǫ

(−)
⊥ > 0, usually re-

alizable in an isotropic right-handed medium, the polari-
tons are only possible for ky = 0 and have the dispersion
relation (see Eqs. (1)):

ν(−)

ǫ
(−)
⊥

=
ν(+)

ǫ
(+)
⊥

(5)

Such waves however assume propagation along x di-
rection. The existence of these waves in the waveg-
uide geometry considered here is limited to a number
of “modes”, each forming a standing wave between the
waveguide plates and fulfilling the corresponding bound-
ary conditions (see also Eq.(2) and the discussion after-
wards).
However if the right-hand medium has ǫ|| < 0, and

ǫ⊥ > 0, the propagation of polaritons with non-zero ky
is also possible when

ǫ
(−)
|| ν(−) = ǫ

(+)
|| ν(+) (6)
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This equation again relates κ to k. When Eq. (6) is sat-
isfied, the surface wave exists for any given |ky|

2 > ǫνk2,
and the relation between ky and ξ is given by Eq. (3),
where we substitute k2z = −ξ2. Note that a similar sit-
uation takes place in 3D geometry on the boundary be-
tween the right-handed medium (ǫ(−) > 0, µ(−) > 0) and
“conventional” LHM (ǫ(+) < 0, µ(+) < 0), where for the
same frequency the polaritons exist for any wavevector
provided that ǫ(−) = −ǫ(+), µ(−) = −µ(+).
We stress that it is the existence of surface waves for

a wide range of wavevectors which makes the proposed
in [2] phenomenon of super-lensing possible. The evanes-
cent components, which carry the information about the
subwavelength features of the source, exponentially de-
cay away from the object plane. Their resonant enhance-
ment by a slab of either planar (described here) or 3D
(described in Refs. 1, 2) LHM can be represented as a
resonant coupling of the original evanescent wave to the
surface modes on both interfaces of the LHM lens. In
such a process, the original evanescent wave excites anti-
polariton (surface mode growing away from the interface)
on the front interface (see Fig. 3), which in turn excites
the true-polartion mode on the back interface of the slab.
The exponentially decaying away from the lens part of
this surface mode represents the LHM-enhanced evanes-
cent wave. This concept is illustrated in Fig. 3 where we
calculate the transmission of an evanescent component
through the slab of planar LHM proposed here. It is
clearly seen that decaying through the right-handed me-
dia evanescent wave, is resonantly enhanced inside LHM
slab only in the presence of polaritons [15].
Finally, we consider the fabrication perspectives of the

proposed LHM materials. In optical and near-infrared
frequencies negative dielectric constant is easily achieved
due to plasmon resonance of a free electron gas inside the
metal – (Ag, Au, etc.) or doped semiconductor – (Si)
(plasmonic) structures. Electron concentration and their
effective mass plays a role of tuning parameter, which de-
fines the exact position of plasmon resonance, and con-
sequently the highest ǫ < 0 frequency. In mid-infrared
spectrum range negative dielectric constant naturally oc-
curs in polar crystals (e.g. SiC) [16]. Both plasmonic and
polar materials generally have small absorption, which in
conjunction with negative ǫ makes them excellent candi-
dates for LHM preparation. The anisotropic dielectric
response described here, may be achieved in the follow-
ing composites:
(i) Composite of subwavelength (nanostructured) in-

clusions with anisotropic (e.g. spheroidal) shape in
isotropic dielectric host. In this approach all the inclu-
sions have to be aligned, and homogeneously distributed
in the dielectric host. The shape of the inclusion de-
fines the frequency range of LHM response. We stress
that no special arrangement of the inclusions (except for
their aligning) is necessary to achieve a desired dielectric

properties.
(ii) Composite based on isotropic (spherical) inclusions

in a dielectric host. The anisotropy may be achieved
by anisotropic concentration of inclusions. For example,
one may deposit a dielectric spacer followed by (random)
deposition of inclusions or deform the composite with
isotropic inclusion distribution to independently control
the concentration “in plane” and perpendicular to it.
(iii) A layered structure based either on multiple semi-

conductor quantum wells [17] or on plasmonic (polar)
materials [13].
We also anticipate the desired response from intrin-

sically anisotropic semi-metal crystals (Bi, and its al-
loys) [18].
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