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We present a systematic study for numerical atomic basis orbitals ranging from H to Kr, which could be used
in large scale Q) electronic structure calculations based on density-functional the@f€§). The compre-
hensive investigation of convergence properties with respect to our primitive basis orbitals provides a practical
guideline in an optimum choice of basis sets for each element, which well balances the computational effi-
ciency and accuracy. Moreover, starting from the primitive basis orbitals, a simple and practical method for
variationally optimizing basis orbitals is presented based on the force theorem, which enables us to maximize
both the computational efficiency and accuracy. The optimized orbitals well reproduce convergent results
calculated by a larger number of primitive orbitals. As illustrations of the orbital optimization, we demonstrate
two examples: the geometry optimization coupled with the orbital optimization of,an@lecule and the
preorbital optimization for a specific group such as proteins. They clearly show that the optimized orbitals
significantly reduce the computational efforts, while keeping a high degree of accuracy, thus indicating that the
optimized orbitals are quite suitable for large scale DFT calculations.
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[. INTRODUCTION advantages. The most serious drawback in LCAO is the lack
of a systematic improvement of atomic orbitals in terms of
Atomic orbitals as a basis set have been used for a lonthe computational accuracy and efficiency. One expects that
time in the electronic structure calculations of molecules and basis set such as double valence orbitals with polarization
bulks. Especially, in covalent molecular systems, one-orbitals for valence electrons provides a way for balancing a
particle wave functions are well described by a linear com+elatively small computational effort and a considerable de-
bination of atomic orbital§LCAO) because of the nature of gree of accuracy. Nevertheless, when a higher degree of ac-
localization in the electronic states, which is a reason whyuracy is required, we find the lack of a systematic and
chemists prefer to use the atomic orbitals, e.g., Gaussiagimple way for increasing the number of atomic orbitals and
orbitals’~* On the other hand, in the solid-state physics,for improving the shape of atomic orbitals at a satisfactory
LCAO has been regarded as a somewhat empirical methddvel within our knowledge of the LCAO method. Therefore,
such as a tool for an interpolation of electronic structureto overcome the drawback and to benefit the advantages,
calculations with a high degree of accurddgiowever, dur-  desirable atomic orbitals as a basis set must be developed
ing the last decade, LCAO has been attracting much interesiith the following features{i) the computational accuracy
from different points of view, since great efforts have beenand efficiency can be easily controlled by simple parameters
made not only for developing ®f) methods of the eigen- as few as possibldiji) once the number of basis orbitals are
value problenf, ! but also for making efficient and accurate fixed, which means that an upper limit is imposed on the
localized orbital®***°>*"as a basis set being suitable for computational efforts, the accuracy can be maximized by
O(N) methods to extend the applicability of density- optimizing the shape of the atomic orbitals. Along this line,
functional theories(DFT) to realistic large systems. Most recently, accurate basis sets have been constructed in several
O(N) methods are formulated under an assumption that aays?>~®Kennyet al. constructed a basis set so that atomic
basis set is localized in the real spdt&herefore, the local- orbitals can span the subspace defined by selected and occu-
ity of the atomic orbitals can be fully utilized in DFT calcu- pied states of reference systems as much as posibim-
lations coupled with Of) methods. In addition, even if a queraet al. optimized the shape and cutoff radii of atomic
minimal basis set of atomic orbitals is employed for valenceorbitals for reference systems by using the downhill simplex
electrons, it has been reported that a considerable accuracyrisethod™® However, in these approaches, the serious problem
achieved in many system&!8-2?This fact suggests that the in LCAO has not been solved at a satisfactory level, since
matrix size of the eigenvalue problem is notably reducedhe transferability of these optimized orbitals may be re-
compared to other localized basis methods such as finite e$tricted to systems similar to the reference systems used for
ements metho&>?* These aspects of LCAO encourage us tothe optimization in terms of atomic environments and states
employ the atomic orbitals in the large scaleN)(DFT cal-  such as the coordination number and the charge state. A more
culations. complete treatment for the optimization scheme is to varia-
However, several important problems still remain in thetionally optimize atomic orbitals of each atom located on
applications of LCAO to DFT calculations in spite of these different environments in a given systéfn'’ Furthermore, it
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is difficult to control the computational accuracy by simple (i) A set of atomic orbitals are generated by simple pa-
parameters since the procedure for generating more multiplemeters as few as possible, which means that orbitals are
orbitals than a minimal basis set is not unique in these apsystematically available as many as we want.
proaches proposed previousfy:3 The first condition is needed if the atomic orbitals are
In this paper, we present the first systematic study of coneoupled with ON) methods which suppose the locality of
vergence properties for numerical atomic orbitals rangingasis sets in the real space. Also the number of nonzero
from H to Kr, in which it is shown that the computational elements of Hamiltonian and overlap matrices is exactly pro-
accuracy can be controlled by two simple parameters: a cuportional to the number of atomic orbitals if the first condi-
off radius and the number of atomic orbitals. Our compre-tion is satisfied. Once the geometrical structure is given, the
hensive study not only provides a solution for the above firsstructure of the sparse matrices can be predictable through a
criterion, but also reveals the limitation in the applicability of connectivity table which is prepared from the geometrical
LCAO to metallic systems, especially, alkaline and alkalinestructure. Thus, both the computational efforts and the size of
earth metals. Moreover, starting from our primitive orbitals, memory for evaluating and storing the matrix elements scale
a simple and practical method is presented for variationallyas O(N). Another cutoff scheme which neglects small ele-
optimizing numerical atomic orbitals of each atom in a givenments of Hamiltonian and overlap matrices should not be
system based on the force theorem. The orbital optimizationsed because it violates the variational princf3l@he con-
scheme enables us to maximize the computational accuradinuity of atomic orbitals assumed in the first condition is
within a given number of basis orbitals, which fulfills the necessary to realize a stable geometry optimization and mo-
above second criterion. This paper is organized as follows. lfecular dynamics(MD) simulations. The second condition
Secs. Il and Ill, we present a method for generating numeriwe assumed is indispensable in order to obtain a systematic
cal atomic orbitals, and show the convergence propertiesonvergence with respect to simple parameters as few as
within DFT in dimers ranging from H to Kr and selected possible.
bulks with respect to a cutoff radius and the number of or-  Our primitive orbitalsR/,, as a basis sétare orbitals of
bitals. In Sec. 1V, a simple method is presented for variationeigenstates, including excited states, of an atomic Kohn-
ally optimizing numerical atomic orbitals of each atom in asham equation with a confinement pseudopotential in a
given system, and the convergence properties of the optsemilocal form for each angular momentum quantum num-
mized orbitals is discussed. In Sec. V, we conclude togetheser | 131718 T vanish the radial wave functioﬁi’pl of the

with discussing applicability and limitation of the LCAO oytside of the confinement radius, we modify the atomic

method. core potentialV,{r) in the all electron calculation of an
atom and keep the modified core potential in the generation
Il. PRIMITIVE ORBITALS of pseudopotential as follows:
Let us expand a Kohn-ShatKs) orbital ¢, of a given (
system using numerical atomic orbitads, in a form of -7 forr=<r,
LCAO: 3
Veord )= 3 p " forry<r=r, 2
_2 1) n=0
1/,'#(]’)— — Cp.,la‘ﬁla(r rl)1 ( h forrc<r,
\

wherei is a site indexa=(plm) an organized orbital index, whereb,, b;, b,, andb; are determined so that the value
and ¢o(1)=Yim(6,#)Ripi(r). A radial wave functionRi,;  and the first derivative are continuous at bethand r..
depends on not only an angular momentum quantum numbgfigyre 1 shows radial wave functions for 0 of an oxygen

|, but also a site indek and a multiplicity indexp. In this  atom under the confinement pseudopotential. The number of
Sec. II, we use our primitive orbitaRj;, as the radial wave nodes in the radial wave functions increases one by one, as
functionR;, as discussed below. Thus, it should be noted tahe eigenenergy increases. For the later discussion, here, we
be Rip|=Ri’p, in this Sec. Il, while a different expression will introduce an abbreviation of a basis orbital as G2p3,

be discussed in Sec. IV. Note that our argument in this paparhere C indicates the atomic symbol, 4.5 is the cutoff radius
is restricted within only nonspin-polarized systems and & (a.u) used in the generatiors2p3 means that two and
non-Bloch expression of the one-particle wave functions fotthree primitive orbitals are employed ferand p orbitals,
simplicity, but the extensions of our argument to those argespectively. The abbreviation of a basis orbital will be used

straightforward. to specify the content of basis orbitals, and also referred to as
We generate the numerical primitive orbita‘k;‘,p, based the basis specification. The abbreviation will be extended for
on the following conditions: describing the optimized orbitals in Sec. IV. The eigenstates

(i) The atomic orbitals must completely vanish within the construct an orthonormal basis set at the same atomic posi-
computational precision beyond a cutoff radius, and must b&on and vanish beyond the cutoff radiyswithin the double
continuous up to the third derivatives around the cutoff ra{recision, if an enough large value is used for the height of
dius so that matrix elements for the kinetic operator are conwall h. The completely vanishing tail of numerical orbitals
tinuous up to the first derivatives. assures that the number of nonzero elements of Hamiltonian
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8.0 - - y - Too stabilities in the solution of the differential equation from the

origin. In all elements, we used the fixed matching point at
which the logarithmic radial mesh is divided in the ratio of 3
to 1, measured from the origin. Using the fixed matching
point, a set of radial wave functions as primitive orbitals
were generated without numerical instabilitfs.

In the DFT calculations using the primitive orbitals, the
computational accuracy and efficiency can be controlled by
’ two simple parameters: the cutoff radius and the number of

orbitals per atom. The systematic control by two parameters
for the accuracy and efficiency is similar to that of spherical
wave basis setS.However, we guess that a relatively small
number of orbitals may be needed to obtain the convergent
result compared to the spherical wave basis sets, since the

FIG. 1. The radial wave function fdr=0 of an oxygen atom primitive orbitals are prepared for each element unlike the
under the confinement pseudopotential defined by (By.where  spherical wave basis sétsThis is one of reasons why we
4.5 (a.u), 4.3 (a.u), and 2.0 10* (hartre@ were used for., ry, use the eigenstates of an atomic Kohn-Sham equation with
andh, respectively. the confinement pseudopotentials as the primitive orbitals. In

order to investigate the convergence properties with respect

and overlap matrices is exactly proportional to the number of0 the cutoff radius and the number of orbitals per atom, we
primitive orbitals. The continuity of the modified core poten- first show the total energy and the equilibrium bond length of
tial up to the first derivatives provides that of the radial wavedimer molecules ranging from hydrogen to krypton atoms.
functions up to the third derivatives. Thus, the elements ofl he calculation of a dimer molecule could be a severe test
Hamiltonian and overlap matrices are continuous up to thdor the convergence with respect to basis orbitals, since the
first derivatives, including that for the kinetic operator. The N€ighboring atom is only one for each atom. In this case a
sharpness of rising edge can be easily controlled by tuning gtufficient contribution from orbitals belonging to the other
the radiusr;. If the height of the walh is large enough, the atoms is not anticipated to well express the peripheral region
tail of radial function vanishes within the double precision ©f €ach atom in KS orbitals, which means that the conver-
beyondr . even for excited states unbound without the modi-gence rate of dimer molecules could be the slowest one.
fied potential. In this study, we used 0&u) and 2.0< 10* Ther'efore, the _convergence properties of dlm_er moIecu_Ie
(hartree for |r.—r,| andh, respectively, for all elements we provide a practical guideline in an optimum choice of basis
considered. It should be mentioned that different modifiecf®ts for each element.

potentials have been also proposed to shorten the tail of ra-
dial wave functiong®!*8 However, to the best of our
knowledge, there are no modified potentials which can van-
ish the tail of the excited states at a cutoff radius within the
double precision, while keeping the continuity of radial func-  In Figs. 2—7 the total energies and the equilibrium bond
tions. On the other hand, our modified potential with a largdengths for dimer molecules from H to Kr are shown as a
h can generate a set of continuous numerical radial functionfunction of the number of primitive orbitals for various cut-
with the complete vanishing tail. In the atomic DFT calcula- off radii r., where the total energies were calculated at the
tions with the modified potential, there are technical detailsexperimental bond length and the equilibrium bond lengths
to generate excited states in a numerical stable way. Whewere computed by a cubic spline interpolation for the energy
the radial differential equation is solved from a distance, thecurve as a function of bond length. In most cases, a homo-
starting radiug s must be marginally larger tham.. We de-  nuclear diatomic molecule for each element was investi-
terminedr ¢ by a relationr =r.+2 (a.u) for all elements we gated. However, if the homonuclear diatomic molecule is not
considered. It is considerably larger than., then numeri-  well resolved experimentally, or is highly weak binding, the
cal instabilities appear due to the largelf the differential monoxide or the monohydride was calculated instead of the
equation is solved from the origin, we follow the usual pre-homonuclear diatomic molecule. In our all DFT calculations,
scription in the atomic DFT calculatioR$The choice of the factorized norm conserving pseudopotentfafS were used
matching point, at which two wave functions solved from thewith multiple projectors proposed by BlocHlin addition to
origin and a distance are merged, is also an important factoralence electrons, semicore electrons were also considered in
to obtain the excited states in a numerical stable way. In thenaking of pseudopotentials for several elements such as al-
all electron calculation, we adopt a slightly outside of thekaline, alkaline earth, and transition elements. Moreover, the
most outer peak as the matching point in the usual¥/&®n  nonlinear partial core correctidhwas considered in the
the other hand, we use a fixed matching point in the calcuevaluation of the exchange-correlation terms except for a hy-
lation of wave functions for the excited states under pseudodrogen and a helium atom. A relativistic correction was not
potentials with the modified core potential. This is becauséncluded in the generation of pseudopotentials. The basis set
the most outer peak often arises near the cutoff raditas  superposition errdf was not corrected, since the dissocia-
the number of nodes increases, which causes numerical ition energy was beyond the scope of this paper. The elec-
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FIG. 2. The total energy and the equilibrium bond length of a hydrogen dimea Helium dimer Hg, a lithium dimer Lp, a beryllium
monoxide molecule BeO, a boron dimeg,Band a carbon dimer Cas a function of the number of primitive basis orbitals per atom for
different cutoff radii. The energy cutoff of 255, 262, 113, 123, 177, and (R were used for the numerical integration and the solution
of Poisson’s equation in § He,, Li,, BeO, B,, and G, respectively. In BeO, we used 58&.u) as a cutoff radius of primitive orbitals for
the oxygen atom, and increased the number of basis orbitals of the beryllium and oxygen atomssagpBeirand O5.0smpmdnwhere
r. is a cutoff radius, given in Fig.(8), of primitive orbitals for the beryllium atom.

tronic states and the cutoff radii used in the generation ofvith respect to the basis orbitals in the following categorized
these pseudopotentidisare shown in Table I, where the cut- elements in Figs. 2—7.

off radii are given in parentheses. We limited the study
within the local spin-density approximatioi.SDA) (Ref.

33) to the exchange-correlation interactions, since we would
like to focus our attention on the convergence properties with In representative elements such as H, B, C, N, O, and F,
respect to the basis orbitals. Also the real-space grid techsystematic convergence properties are observed as expected.
niques were used with the energy cutoff given in the captiorAs the cutoff radius and the number of primitive orbitals

of figures in numerical integratidfiand the solution of Pois- increase, the total energy converges systematically. Along
son’s equation using the fast Fourier transformation. All cal-with the energy convergence, the calculated equilibrium
culations in this study were performed using our DFT codebond length converges at the experimental value within an
OpenMX?2® which is designed for the realization of large error of a few percentages. When the energy convergence is
scale calculations. We discuss the convergence propertiearefully observed from the left to the right elements in the

A. Representative elements
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FIG. 3. The total energy and the equilibrium bond length of a nitrogen dimeaMxygen dimer § a fluorine dimer , a neon dimer
Ne,, a sodium dimer Na and a magnesium monoxide molecule MgO as a function of the number of primitive basis orbitals per atom for
different cutoff radii. The energy cutoff of 177, 177, 255, 343, 135, and (R46 were used for the numerical integration and the solution
of Poisson’s equation inN O,, F,, Ne,, Na,, and MgO, respectively. In MgO, we used §au) as a cutoff radius of primitive orbitals
for the oxygen atom, and increased the number of basis orbitals of the magnesium and oxygen atorgsapMdrand O5.0smpmdn
wherer is a cutoff radius, given in Fig.(B, of primitive orbitals for the magnesium atom.

first row, we find a trend that primitive orbitals with a higher served in the first row is found in the convergence properties
angular momenturhare required in order to achieve enough of the second row elements with respect to angular momen-
convergence. Note that the primitive orbitals with a highertum of primitive orbitals. In B, S,, and C}, the polarization
angular momentum beyond valence orbitals allocated to d orbitals are relevant to obtain the convergent results, while
valence electrons are referred to as polarization orbitals adhe inclusion of the polarizatiom orbitals insensibly de-
cording to quantum chemistry in this paper. In Bnd G, creases the total energy in,Adnd Sj. In the third row, the

the valence orbitals are almost enough to accomplish thpolarizationd orbitals are required in all representative ele-
energy convergence. The inclusion of polarization orbifals, ments from Ga to Br for the energy and geometrical conver-
andd orbitals for hydrogen and carbon atoms, are not effecgences. If the valence and p orbitals are only considered,
tive for the energy convergence. In, lnd B, the total en- the equilibrium bond lengths tend to be overestimated. Based
ergies are significantly reduced by the inclusiodafrbitals.  on the calculations, rough estimations of appropriate cutoff
The overestimated equilibrium bond lengths in the calcularadii of basis orbitals might be given as 5.0, 6.5, and 6.5 a.u.
tions by thes and p valence orbitals shorten in accordancefor representative elements of the first, the second, and the
with the inclusion ofd orbitals. The same trend as that ob- third rows, respectively. Although these rough estimations
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FIG. 4. The total energy and the equilibrium bond length of an aluminum dimegrafdilicon dimer Sj, a phosphorus dimer,Pa sulfur
dimer S, a chlorine dimer Gl, and an argon dimer Aras a function of the number of primitive basis orbitals per atom for different cutoff
radii. The energy cutoff of 123, 113, 103, 103, 113, and PR were used for the numerical integration and the solution of Poisson’s
equation in A}, Sk, P, S,, Cly, and A, respectively.

provide a practical guideline in an optimum choice of cutoff examined. In Table II, we find that the electronic configura-

radius for each element, it should be mentioned that there igons of the experimental ground state are well reproduced in
often an exceptional case in which a larger cutoff radius ighe first row representative elements by only the inclusion of
required for the accurate description. As such an exceptionglaience orbitals. However, the polarization orbitals are more
case, we can point out that a relatively larger cutoff radiu§mnortant for the second and third row elements to obtain a
must be used when an atom is negatively charged up, S'”‘i,f‘onvergent result in the electronic configuration. Actually,

the electrons tend to be far from the atom due to the repul-he use of only the valence orbitals fails to predict the ground

sive interaction between electrons. In contrast, a smaller Cuétate of Si. The basis orbitals, Si6.&2p2, gives 3Hu to be

off radius could be enough to achieve a sufficient conver- round state of Si while the around state i rrectl
gence when an atom is positively charged up, and when a e ground state of § € the ground state I correctly

atom has a high coordination number which means that theredicted as’3y by the inclusion ofd orbitals. Due to the

atom is surrounded by the other many atoms. We will agair{ransmon between calculated ground states with different

discuss the cutoff radius in the later discussion based ofymmetries, the nonmonotonic convergence of the equilib-

numerical results. rium bond length of Si can be observed. Although the
Moreover, the convergence with respect to the basis orbitground state of Al is determined as’s ; , even if thed

als could be confirmed when the electronic state is carefullyrbitals are included, experimental investigations reveal that
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FIG. 5. The total energy and the equilibrium bond length of a potassium dimea Kalcium monoxide molecule CaO, a scandium
monoxide molecule ScO, a titanium dimes,Ta vanadium dimer ¥, and a chromium dimer Gras a function of the number of primitive
basis orbitals per atom for different cutoff radii. The energy cutoff of 113, 123, 146, 146, 146, ari®W46ere used for the numerical
integration and the solution of Poisson’s equation i KaO, ScO, T, V,, and Csg, respectively. In CaO and ScO, we used &) as
a cutoff radius of primitive orbitals for the oxygen atom, and increased the number of basis orbitals of the calcium, scandium, and oxygen
atoms as Qa-smpmdnflSa .-smpmdnfland O5.0smpmdnwherer . is a cutoff radius, given in Figs.(8) and §f), of primitive orbitals for
the calcium and scandium atoms.

the ground state |S°’H % The discrepancy between our est number of orbitals for each dimer in Figs. 2—7. The cal-
theoretical prediction and the experiments is attributed teculated bond lengths of dimer molecules by representative
LSDA to the exchange-correlation interaction as reported bylements are consistent with both the experimental and the
Martinezet al.”? They also obtamedE as the ground state other theoretical values, which supports that our primitive
of Al, within LSDA, while their GGA calculation correctly basis orbitals provide the convergent results comparable to
predicts that the ground state of Als °I1; and the®s,  the other DFT calculations.

state is the lowest excited stafeEor the third row represen—
tative elements, we did not observe the same kind of discrep-
ancy as that of Siin prediction of the ground state. How-
ever, the inclusion ofd orbitals is recommended for the  As well as the representative elements, we find systematic
geometrical convergence as mentioned before. Table 1l enwsonvergence properties with respect to the cutoff radius and
merated the equilibrium bond lengths which are calculatedhe number of primitive orbitals for the first row transition
using the orbitals with the largest cutoff radius and the greatelements. Both the total energy and equilibrium bond length

B. Transition elements
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FIG. 6. The total energy and the equilibrium bond length of a manganese monoxide molecule MnO, an iron gliraezdbalt dimer
Co,, a nickel dimer Nj, a copper dimer C4 and a zinc monohydride molecule ZnH as a function of the number of primitive basis orbitals
per atom for different cutoff radii. The energy cutoff of 146, 146, 146, 146, 113, andRy6wrere used for the numerical integration and
the solution of Poisson’s equation in MnO,,FeCo,, Ni,, Cu,, and ZnH, respectively. In MnO and ZnH, we used 5.0 and(4.6) as a
cutoff radius of primitive orbitals for the oxygen and hydrogen atoms, and increased the number of basis orbitals of the manganese, zinc,
oxygen, and hydrogen atoms as ismpmdmfnZnr -smpmdmfnO5.0smpmdnand H4.0smpn wherer .. is a cutoff radius, given in Figs.
6(b) and 8l), of primitive orbitals for the manganese and zinc atoms. Exceptionally, a cobalt dimer was calculated, while the bond length of
Co, determined experimentally is not available.

converge with increasing of the cutoff radius of orbitals andgng Ni. In V, the electronic configuratiorﬁEg , observed
the number of orbitals. Interestingly, the polarizatioorbit-  experimentally® is correctly reproduced by the inclusion of
als do not play an important role in the energy convergencethe polarizatiorf orbitals, while only the use of the valence
Within the valence orbitals the energy convergence is almosirbitals pred|ctslz+ as the ground state of,V The non-
achieved in all the transition elements that we consideredmonotonic convergence of the equilibrium bond length gf V
However, there would be a possibility that the polarizationfound in Fig. 5 can be attributed to the transition of singlet to
orbitals become more effective for transition elements in &riplet in the calculated ground state. For ,Nirecent
higher row which lies downward in the periodic table we experlment754 by resonant two-photon ionization spectros-
have not studied, like the representative elements. In Tableopy using argon carrier gas suggest that the ground state is
I, we find that the predicted electronic configurations of the{2= Og+ or 0, , which would be a mixture of32§ and
ground states are almost consistent with the experlmentai‘IE (0g) or 3% 7 and 13, (0;). In contrary, we obtained
results within the use of only valence orbitals, except for V 32 , Which is am hole state, as the ground state within
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FIG. 7. The total energy and the equilibrium bond length of a gallium monohydride molecule GaH, a germanium monoxide molecule
GeO, an arsenic dimer Asa selenium dimer Se a bromine dimer By, and a krypton dimer Kras a function of the number of primitive
basis orbitals per atom for different cutoff radii. The energy cutoff of 146, 146, 107, 107, 107, ar&®9%0ere used for the numerical
integration and the solution of Poisson’s equation in GaH, GeQ, 8s, Br,, and K, respectively. In GaH and GeO, we used 4.5 and
5.0 (a.u) as a cutoff radius of primitive orbitals for the hydrogen and oxygen atoms, and increased the number of basis orbitals of the
gallium, germanium, hydrogen, and oxygen atoms as-Gapmdn Ge -smpmdn H4.0smpn and O5.0smpmdn wherer is a cutoff
radius, given in Figs. (b) and 7d), of primitive orbitals for the gallium and germanium atoms.

LSDA. Although the calculated ground staﬁE; is not con-  monotonic behavior in the equilibrium bond length for,Cu
sistent with the experimenf$ but is equivalent to the other as shown in Fig. 6, this behavior can be attributed to the
theoretical predictiof within generalized gradient approxi- flatness of energy curve for Guln such a flat energy curve,
mations (GGA) to the exchange-correlation interaction. the equilibrium position is sensitive to the basis orbitals,
Thus, the discrepancy between the theoretical prediction angthich suggests that the calculation to precisely determine a
the experiments must be attributed to the poor description tflat energy curve requires a special care within LCAO treat-
exchange-correlation interaction or the limitation of singlement. For the first row transition elements, a rough estima-
configuration method such as DFT rather than the quality ofion of appropriate cutoff radius of basis orbitals might be
basis orbitals. Also, in Table Ill we see that the calculatedgiven as 7.0 a.u. based on the calculations of dimer mol-
bond lengths are comparable to both the experimental anelcules, which provides a trade-off between the computational
the other theoretical values. Although we observe a nonaccuracy and efficiency. However, as discussed in the repre-
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TABLE I. The atomic states taken into account in the pseudoshows nodeless pseudoradial wave functionssoftdte in K,
potential generations and its cutoff radigs.u) defined in the  Fe, and Br atoms, which are generated by the pseudopoten-
Troullier and Martine schen€. For Na, Mg, Al, K, Ca, Sc, Ti, Vi fia| calculations. The comparison definitely reveals that the

Cr, Mn, Fe, Co, Ni, Cu, and Zn, in addition to valence electrons, 4ja| wave function of an alkaline element has a longer tail
semicore electrons were included in the pseudopotential gener%’ompared to those of a transition element and a representa-

};O;ngn;i’eviiﬁic;;f;m:‘; f‘hr: Zgrr:éd;edurg: i:i;gﬁ;ﬂemiﬂ?\/e element, which might make the use of basis orbitals with

i 9 . a;hort cutoff radius difficult. Actually, we find in Figs. 2—-7
considered states, the lowest state among the multistates was ust%at a large cutoff radius is required for dimer molecules of
as a semilocal part of the pseudopotential with the angular momen- =" ° 9 . q - .
alkaline elements to achieve a sufficient convergence in the

tum. Thus, the cutoff radius of the upper state is not given in pa- T
rentheses. The local part is generated by a seventh polynomial §8tal energy and the equilibrium bond length. At least 9.0,

that the deviations between the all electron potential and the-0, and 10.0 a.u. of the cutoff radii are needed for Li, Na,

pseudopotential in terms of logarithmic derivatives of radial wave@nd K atoms, respectively. It should be noted that the re-
functions are minimized as much as possible. The nonlocal parts ifuirement of a larger cutoff radius for alkaline elements
the pseudopotentials are factorized by multiple projectors propose@aUses great computational demands in the evaluation of the

by Blochl2° Hamiltonian matrix elements, since the number of grids in
_ the sphere defined with a cutoff radiysscales as Oé). In

Cutoff radius(a.u) contrast, the energy dependency on the number of orbitals is
H 1s (0.80 not so large, which represents that the convergence is almost
He 1s (0.90 accomplished even if a small number of orbitals are em-
Li 25 (2.30 2p (1.50 ployed. This energy independency with respect to number of
Be 25 (140  2p (1.20 orbitals helps us to reduce the computational costs in the
2 %5 (igo) gp (1.:;0) application of LCAO to alkaline metal systems in spite of the
N 22 Eo'gg ZE 50-92) requirement of a large cutoff radius. For a sodium dimer, we
o) 25 (1:00 2p (1:00 see that the evolution of the equilibrium bond length is flat
E 2s (1.40 2p (1.40 with respect the number of basis orbitals for 6.0 a.u of the
Ne 2s (1.60 2p (1.60 cutoff radius. Within the nonspin polarized calculation the
Na 2p (1.60  3s(2.50 3p energy curve of Nahas the double minimum such as.K®
Mg 2p (130  3s(250 3p So, which of the minima can be stabilized depends on the
é: 232 ((igg)) g; (é%% 3p quality of basis orbitals, although high quality basis orbitals
P 35 (1:83 3p (1:833 provides the correct minimum. Since 6.0 a.u of the cutoff
S 3s (1.76 3p (1.7 radius is too short for sodium, the basis orbitals converge a
cl 3s (1.50 3p (1.50 wrong minimum even if the number of basis orbitals in-
Ar 3s(1.20 3p (1.29 creases. This is a reason why the evolution of equilibrium
K 3s(200  3p (2.00 4s 4p bond length is so flat with respect to the number of basis
ga 3 (i%@ gg (f-go) 2“ %éo) js 4p orbitals for 6.0 a.u of the cutoff radius. For alkaline earth
Tic 338 §1'73 2 E1'78 4: §z'63 43 elements, the monoxide molecules were investigated for ease
v 3p (1:70) 3d (1:7() 4s (2:50) 4p of calculations, since accurate calculations require a consid-
Cr 3p (1.70 3d (1.90 4s (2.40 4p erably Ia_rger cutoff energy for t_he numericaj integration gnd
Mn 3p (1.70 3d (1.90 4s (2.50 4p the solution of Poisson’s equation due to highly weak bind-
Fe 3p (2.00 3d (2.00 4s (2.60 4p ing of the homonuclear diatomic molecules of alkaline earth
Co 3p (1.80  3d(200  4s(250  4p elements. From Figs. 2—7 we find that the total energies and
(N::J 3;5 ((2138) 2‘; ggg 2'; (ég% 4p the equilibrium bond length systematically converge as the
7n 2 (1'80) 4s (2'2() 4p (2'00) cutoff radius and the number of primitive orbitals increase
Ga 45(2.00  4p (1.90 ' such as representative elements. In these monoxide mol-
Ge 4s (2.00 4p (2.00 ecules, 7.0 a.u. of the cutoff radius gives a trade-off between
As 4s (2.00 4p (2.00 the computational accuracy and efficiency for all the alkaline
Se 4 (184  4p (1.89 earth elements. The inclusion of polarizatidnoribtals is
Er 25 833 jp 8?3 essential for the convergence in CaO, while therbitals do

r s (1. p (2.

not play an important role in the energy and geometrical
convergences of BeO and MgO. This is because thstate
f a calcium atom exists near the valencestate. Therefore,

sentative elements, it should be noted that the appropria . . . )
choice of cutoff radius depends on atomic environments an e 3l orbitals of CaO considerably contribute inand =

states such as the coordination nhumber and the charge sta S orbitals. In fact, .the LCA.O coefficient 9f theb ort_)ltal
with a nodeless radial function of the calcium atom is about

0.3 in the occupieds orbital of the monoxide molecule
alongx axis, in which Ca7.62p2d2 and05.0-s2p2 were
Intrinsically, it would be hard to describe KS orbitals of used as the basis orbitals. In Table Il gives the electronic
systems consisting of alkaline and alkaline earth elements bgonfigurations for the ground state of the alkaline element
using LCAO with short range atomic orbitals. In Fig. 8 dimers and the monoxide molecules of alkaline earth ele-

C. Alkaline and alkaline earth elements
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TABLE Il. The electronic configuration of the ground state predicted by our calculations within LSDA.

The calculations were performed using experimental bond lengths, and the spin multiplicity are evaluated

from the difference in Mulliken charges of up and down spins. The experimental ground states are also shown

for comparison. The basis orbitals we used in these calculations are given in our basis specification in

parentheses. For the oxygen and hydrogen atoms in all the monoxides and the monohydrids2p@®autd

H4.5-s2 were used, respectively. For the energy cutoff we used the same values as those given in Figs. 2—-7.

The electronic configurations determined experimentally are taken from the references listed below, For Ni

the experimenté suggest the existence of a ground state \ith 0+ or 0, , which would be a mixture of

83, and '3, (0y) or °%} and 'Y (0,).

Dimer Expt. Calc.
H, (H4.552) 12; a S (1sod)
He, (He7.0s2) iy b sk (150215%)
Li, (Li8.0-s2) 123 ¢ ?Y (2sUg)
BeO (Be6.0s2p2) tyrd s+ (SO' sa?pm?)
B, (B5.552p2) 3291 e 3, (2302523022wu)
C, (C5.0s2p2) iyt 1y ? (2s022s022p )
N, (N5.0-52p2) iyl 12g (250§2p7742p0%)
0, (05.052p2) 32; g (2p0‘§2p7r 2pm g)
F, (F5.052p2) 1Eg f 12%{ (2pa'%2p7r ;2P
Ne, (Ne7.0s2p2) 12% 9 3 (2pmy 2p71'%2p0' )
Na, (Na9.0s2p2) 12& f 1E+ (2p77322pau350'g)
MgO (Mg7.0s2p2) ty¥h i+ (so?sa?pm®)
Al, (Al6.5-s2p2) ' 5 (3sa§3s(r23pwﬁ)
Al, (Al6.5-s4p4d2) 1, 32 (3s043s0:3p7s)
Si, (Si6.552p2) 3, 3H (3s(rgssagzspw3)
Si, (Si6.552p2d1) 32; g (350’§3p77 350%)
P, (P6.0s2p2d1) g 12 (SSU%SpU§3p
S, (S6.0s2p2) 32; g (3p0'83p77 3p71'g)
Cl, (C16.0-s2p2d2) 12%T lzg (3p0'%3p7743p7rg)
Ar, (Ar7.0-s2p2) 1231 'S4 (3pm, 3p7r§3pa' )
K, (K10.0s2p2) lzg f 12* (3p77323p0u480-g)
CaO(Ca7.0s2p2d2) Iy Tk i (so’sor pTr4)
ScO(Sc7.0s2p2d2) 23+ 23+ (dmso?sot)
Ti, (Ti7.0-s2p2d2) A, 3Ag (430§3d0é3d7r43d 5;2)
V, (V7.5-52p2d2) 54" 12 (430%3d0%3d7-r43d53)
V, (V7.5-s4p4d4f2) 83, " (430 SdU 3dm;3ds7)
Cr, (Cr7.0s2p2d2) ixto 12% (450 3do 3dw43d52)
MnO (Mn7.02p2d2) oyt %+ (doldmids?dm*2)
Fe, (Fe7.0s2p2d2) A9 A, (430§3d0§3d013d7743d7r23d633d52)
Co, (C07.052p2d2) 5A o (4s033do 3dri3dmi3dm 33d583ds))
Ni, (Ni7.0-s2p2d2) Qr & (45033d083d023d7743d77 59'3d5‘u‘)
Cu, (Cu7.0s2p2d?2) Ists 12 (4s0g3dog3doy; 3d7-r43d7-r 3d553d53)
ZnH (Zn7.0s2p2d2) S 22* (sU sU*ldUZdw“d,s“)
GaH (Ga7.0s2p2) 1y ¥ s+ (So’ so* 2)
GeO(Ge7.0s2p2) iyt I3+ (sso?spo?pprppo?)
As, (As7.0s2p2d1) 5 12* (4sol4soiapaiapmy)
Se (Se7.0s2p2d1) 32; g (4sag4sUZ4pa§4pw44pwg)
Br, (Br7.0s2p2d1) iy = f 12 (4sosasoiapoapmiapy)
Kr, (Kr7.0-s2p2) 12§V 3 (4802480U4p0'24p0'u4p77 4p7r4)

8Reference 34.
bReference 35.
‘Reference 36.
dreference 37.
®Reference 38.
fReference 51.
9Reference 39.
hReference 40.
iReference 41.
iReference 42.
KReference 43.
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TABLE lll. The calculated equilibrium bond lengths which are
calculated using the orbitals with the largest cutoff radius and the
greatest number of orbitals for each dimer in Figs. 2—7. The experi-
mental bond lengths and the other theoretical values are also shown
for comparison, which are taken from the references listed below.
For a substantial comparison between our calculations and the other
theoretical results, the other calculations based on pseudopotentials
and LSDA are listed. In case of the lack of calculations at the same
level, computational results performed with the other context are
listed, of which method is denoted in parentheses in this caption.

Radial Wave Function

0.6

0.4

02f /

PHYSICAL REVIEW B 69, 195113(2004

T
~—

°8.

15.0

Expt. Present Other
H, 0.7412 0.768 0.768
He, 2.97°¢ 2.417 2.397
Li, 2.6732 2.748 2.699
BeO 1.33° 1.339 1.31¢
B, 1.590° 1.603
C, 1.2432 1.255 1.249
N, 1.0982 1.104 1.094
0, 1.2082 1.201 1.197
F, 1.4122 1.435 1.38¢
Ne, 3.09° 2.692 2.6471
Na, 3.079% 3.140 3.048
MgO 1.749° 1.770 1.76'
Al, 2.650' 2.710 2.73
Si, 2.2462 2.281 2.280
P, 1.8932 1.926 1.877
S, 1.8892 1.936 1.942
Cl, 1.9872 1.946 1.97F
Ar, 3.76° 3.425 3.4H
K, 3.905% 3.620 3.67¢
CaO 1.822 1.768 1.79"
ScO 1.668 1.719 1.649
Ti, 1.942M 1.957 -
V, 1.77" 1.801 1.802
Cr, 1.679° 1.643 1.632
MnO 1.648' 1.673 1.58%
Fe, 2.028 2.076 1.963
Co, - 2.033 1.93'
Ni, 2.155" 2.074 2.037"
Cw, 2.220% 2.249 2.170"
ZnH 1.5952 1.574 1.59%
GaH 1.663 1.650 1.68P
GeO 1.628 1.563 1.59%
As, 2.1032 2.066 2.07¢
Se 2.1662 2.150 2.164
Br, 2.2812 2.257 2.27%
Kr, 3.951° 3.705 3.714

8Reference 51.
bReference 60.
‘Reference 52.
dreference 76.
®Reference 61

"Reference 55.

°Reference 66
(PW86-P86.

PReference 56.

9Reference 67

(B3LYP). (PW9D).
fReference 62 'Reference 57.
(APW). Reference 58.

9Reference 21.
PReference 63.
iReference 54.
iReference 72.
KReference 64.
IReference 65
(BLYP).

MReference 53.

'Reference 69.

YReference 70.
VReference 59.
YWReference 71.

FIG. 8. The pseudoradial wave functions &f drbital in potas-
sium, iron, and bromine atoms, which are generated by the TM
scheme. For ease of comparison, tises8micore state of potassium
atom was excluded in the pseudopotential generation to make the
4s orbital nodeless, while thes3semicore state was considered in
Table |I. For iron and bromine atoms, the pseudowave functions
were calculated under the same conditions as shown in Table I.

ments. The calculated electronic configurations for the
ground state are wholly consistent with those determined ex-
perimentally. Also, we find in Table Ill that the calculated
equilibrium bond lengths are comparable to both the experi-
mental and the other theoretical values for the alkaline ele-
ment dimers and the monoxide molecules of alkaline earth
elements. These results support that our primitive basis or-
bitals give a complete basis set even for the alkaline and
alkaline earth elements, while the cutoff radius required for
the convergence is larger than those of representative and
transition elements.

D. Rare-gas elements

It has been reported that local-density approximation
(LDA) and GGA fail to predict the equilibrium bond lengths
and the dissociation energies of dimer molecules consisting
of rare-gas elements weakly binding by Van der Waals
interactions’® However, our attention in this study is to
know the convergence properties with respect to basis orbit-
als. Therefore, we investigated homonuclear diatomic mol-
ecules of rare-gas elements, He, Ne, Ar, and Kr within LDA,
and compared the calculated equilibrium bond lengths with
the other theoretical values calculated by LDA. The dissocia-
tion energies of the rare-gas dimers are significantly small
unlike dimers of representative and transition elements.
Therefore, we had to use higher cutoff energies, which are
262, 343, 290, and 29®y) for He,, Ne,, Ar,, and Kb, for
the numerical integration and the Poisson’s equation so that
the computations are not buried in numerical errors. It seems
that the convergence in the total energy of rare-gas dimers
depends on only the cutoff radius of primitive orbitals. For
all the rare-gas dimers 7.0 a.u. of the cutoff radius are
enough to accomplish a sufficient convergence. On the other
hand, the calculated equilibrium bond lengths have a depen-
dency on the number of orbitals, especially in, And Kr,,
however, the double valence with single polarization orbitals
provide almost convergence results even foy &nd Kr,. In
Table Il we see that the calculated equilibrium bond lengths
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are comparable to the other theoretical values calculated hyes of the overlap matrix in bulk systems distribute continu-
all electron calculations within LDA. In addition, the calcu- ously as a function of energy, thus, many ill-conditioned

lated electronic configurations for the ground states are coreigenvalues, which are positive but almost zero, appear in
sistent with those reported experimentally. Thus, our primithe eigenvalue spectrum. The division by the ill-conditioned

tive orbitals could be a systematic basis set for rare-gasigenvalues brings about the numerical instability we met. If
dimers as well as representative, transition, and alkaline anlasis orbitals with a larger cutoff radius is used for a dense
alkaline earth elements, while the Van der Waals interactionsystem with atoms of large coordination numbers, a small
in the rare-gas dimers are not correctly taken into account imumber of optimized orbitals should be used to avoid the
LDA calculations. numerical instabilities.

IV. VARIATIONAL OPTIMIZATION
E. Bulks

For selected bulk systems, we investigated the conver In this section, we present a simple and practical method

gence properties of total energy, lattice constant, bulk moduf-Or variationally optimizing nu_mencal ba_S|s ork_ntals of each
tom located on different environments in a given systém.

lus, and magnetic moment with respect to basis orbitals a . S . h . 8
9 P tarting from the primitive basis orbitals discussed in the

shown in Fig. 9. The bulk modulus was calculated by a least:

square fitting of the total-energy curve to Murnaghan’s equa—sec' Il, the shape of radial wave functions of each atom are

tion of state’” The magnetic moment in the bcc iron are variationally optimized within a given cutoff radius so that

evaluated from the difference in Mulliken charges of up an the total_ energy 1S n_1|n|m|zed based on the force theorem.

down spins. In the graphite carbon, the lattice constant o he orb|t§al optlmlzatlor_l SChe”?e promises us to reduce the

only theab plane was varied with a lattice constant of the computational cost, while keeping a high degree of accuracy.
L . P .

axis fixed at the experimental value. For all bulk systems théﬁ\lthough the prlmmve radlgl wave funCt'ORipl , the eigen-

same systematic convergence as that for dimer molecules {2t of atomic KS equation with a confinement potential,

achieved as the cutoff radius and the number of primitiveVaS used as radial basis orbity, of the KS orbital in a
orbitals increase. When the shorter cutoff radius of primitive!®™™M Of LCAO in Sec. II, here, we reconsider a different
orbitals was used, the calculated lattice constantk modu- ~ €xPression foRi, and thusg;,, . To give a variational de-
lus) tends to be shortelgreatey than the experimental val- 9ree of freedom oip;,, we furthermore expand;, using
ues. As the cutoff radius increases, these calculated valu@§imitive orbitalsx;,(=YinRjy) as follows:
converge at experimental values within an error of a few
percentages. For carbon in the diamond and graphite, 4.0 and _ _ _ ro_ o
4.5 a.u. of the cutoff radius might be regarded as a tradeoff Pia(1) Eq: Aipima " mRia Eq: RaaXin(F), ©
between the computational accuracy and efficiency, respec- . i o
tively. The comparison in an appropriate cutoff radius forwhere #=(qlm), in which the indiced and m denote the
various systems suggests that the coordination number §&Mme as those of the index Note that a primitive radial
each atom is an important factor which determines an adwave functionRy, is independent om, and that the coeffi-
equate value of the cutoff radius. Our rough estimations ofientsa;q are independent variables on the eigenstatbut
an appropriate cutoff radius are 5.0, 4.5, and 4.0 a.u. for theould depend on a magnetic quantum nummef herefore,
carbon dimer G, the graphite carbon, and the diamond car-we prefer the expressiof8), which is expanded by a linear
bon of which the coordination numbers are one, three, angombination ofy;,,, rather than a expansion by the primitive
four. Thus, an appropriate cutoff radius could be in inversegadial functionR/,, itself. The expressiof) is similar to a
proportion to the coordination numbers. This observation iontraction used in quantum chemistry based on Gaussian
also confirmed in a comparison of the convergence with reerbitals, in which basis orbitals are expanded by a linear
spect to a cutoff radius for iron, an iron dimer,Fand the combination of several Gaussian orbitals. Therefore, the ba-
bcc iron. In the bcc iron, we can obtain almost convergensis orbital by the expression E¢(3) will be referred to as
results using 4.5 a.u. of the cutoff radius, while 7.0 a.u. iscontracted orbital or optimized orbital. For the later discus-
needed to obtain the convergence in.Fe sion, we moreover extend the abbreviation introduced in Sec.
Here, it must be stressed that the calculation of the bctl to the contracted orbital by Eq3) as C4.5s62* p62,
iron illustrates a limitation in applicability of LCAO method. where C indicates the atomic symbol, 4.5 is the cutoff radius
We found that it was difficult to perform reliable calculations r . (a.u) used in the generation as well as discussed in Sec. I,
of the bcc iron using Fe4.83p3d3 or more. In particular, s62 means that two optimized orbitals are constructed from
we were unable to perform meaningful calculations due tcsix primitive orbitals for thes orbital, and the symbof*
numerical errors for the bcc iron with a shorter lattice param-signifies the restricted optimization that the radial wave func-
eter. The problem comes from the overcompleteness of basi®on Ris independent on the indew, while R can differently
orbitals. In the bce iron with a shorter lattice parameter andzary for the indexm in the unrestricted optimizatiofnon-
the use of a longer cutoff radius of basis orbitals, eigenvaluesymbo). In case ofsnn such ass66, corresponding to no
of the overlap matrix can be negative, which means that theptimization,snn can be simplified asn, which is equiva-
basis orbitals are not linearly independent. A remedy in thident to the abbreviation introduced in Sec. II.
case is to reduce matrices by removing eigenvectors corre- The contraction coefficients;,, can be easily optimized
sponding to the negative eigenvalues. However, the eigenvaby the two-step optimization scheme. The details of the two-
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FIG. 9. The total energy, equilibrium lattice constant, bulk modulus, and magnetic moment of carbon and silicon in the diamond, gallium
arsenide in the zinc blend, carbon in the graphite, and the bcc iron as a function of the number of primitive basis orbitals per atom for
different cutoff radii, in which the energy cutoff of 168, 120, 120, 156, and(R§0Q were used for the numerical integration and the solution
of Poisson’s equation, respectively. The bulk modulus was calculated by a least square fitting of the total energy curve to Murnaghan’s
equation of state. The magnetic moment in the bcc iron are evaluated from the difference in Mulliken charges of up and down spins. In the
graphite carbon, the lattice constant of only #teplane was varied with a lattice constant of thaxis fixed at the experimental value. The
lack of datum calculated using Fe4s8p3d3or more in Figs. 8)—9(0) is due to the overcompleteness of basis orbitals as discussed in
context.

step optimization scheme has been already described of a;,, instead of atomic positions. The radial parts of basis
elsewheréd’ In this two-step optimization scheme, the orbitals in each atom located on different environment are
atomic orbitals are optimized variationally in the same two-automatically varied so that the total energy is minimized,
step procedure as that of the geometry optimization in termshich is a quite important advantage of our scheme com-
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FIG. 10. The total energy for a carbon dimeg, @ methane molecule GHcarbon and silicon in the diamond structure, an ethane
molecule GHg, and a hexafluoro ethane moleculgHgas a function of the number of primitive and optimized orbitals. The total energy and
the number of orbitals are defined as those per atom forc&bon and silicon in the diamond, and as those per molecule fgr CkHg,
and GFg. The energy cutoff of 113, 113, 222, 120, 120, and (R) were used for the numerical integration ip,GCH,, carbon and silicon
in the diamond structure, Elg, and GFg, respectively. The two step convergence gfi€due to the inclusion of polarizatioh orbitals,
where the basis specification was C4ripmdnand C4.5s6mp6mdén for the primitive and optimized orbitals, respectively. In the other
system, only the valenceandp orbitals were used, where the basis specifications are as follows: jiHgHsm C4.5smpm and H4.0-
sém, C4.5s6mp6m for the primitive and optimized orbitals, respectively, in carbon in the diamond €mand C4.5s5mp5m for the
primitive and optimized orbitals, respectively, in silicon in the diamond Si&fmand Si6.5s5mp5m for the primitive and optimized
orbitals, respectively, in g H4.5sm C5.0smpm and H4.5s5m, C5.0s6mp6m for the primitive and optimized orbitals, respectively, in
C,Fg C5.0smpm F5.0smpm and C5.0s5mp5m, C5.0s5mp5m for the primitive and optimized orbitals, respectively.

pared to the other optimization methtif In the later part Therefore, our study was limited within the restricted opti-
of this section, we demonstrate capability of our methodmization. In Fig. 11 the radial parts of the minimal orbitals
based on numerical results. Figure 10 shows the convergenedtained by the restricted optimization foply and GFg
properties of total energies for a carbon dimer € methane are shown with those of the lowest primitive orbitals of a
molecule CH, carbon and silicon in the diamond structure, carbon atom for comparison. It is observed that the tails of
an ethane molecule, and a hexafluoro ethane molecule asbath the optimizeds and p orbitals shrink compared to the
function of the number of primitive and optimized orbitals. primitive orbitals in GHs and GF;. In addition, we find that
The orbital optimization was done by ten iterative steps acthe p orbitals of the carbon atom in,€; more shorten than
cording to Eq.(6) in Ref. 17, in which each step includes ten that of GHg. The considerable shortening tail of tpeor-
self-consistent-field resul$SCP loops on the average. We bital is related to change in the effective charge of carbon
see that the unoptimized orbitals provide systematic conveatom. Decomposed Mulliken populations of the carbon atom
gent results for not only molecules, but also bulk systems agre 1.05 and 2.67 in ££g, and 0.86 and 2.00 in & for s

the number of orbitals increase as discussed in Sec. Il. Moreandp orbitals, respectively. So, we see that the deviation for
over, remarkable convergent results are obtained using thée p orbital is larger than that for theorbital in a compari-
optimized orbitals for all systems. The small set of optimizedson of the decomposed Mulliken population. Therefore, the
orbitals rapidly converge to the total energies calculated by #&rge shortening tail op orbital in G,Fg is due to increase of
larger number of the primitive orbitals, which implies that effective core potential fop electrons. The comparison be-
the computational effort can be reduced significantly with atween GHg and GFg clearly reveals that the shape of the
high degree of accuracy. Only the restricted contraction wabasis orbital can automatically vary within the cutoff radius
investigated in this study, since we found in the previousin order to respond to the change of the environment of each
study that the unrestricted optimization is not effective toatom, while minimizing the total energy.

minimize the total energy. Also, the restricted optimization Finally, as illustrations of the orbital optimization, we
guarantees the rotational invariance of the total energydemonstrate two examples: the geometry optimization
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L L _ SNP, a complete convergence, which is comparable to
08 N s—orbital ] TNDP, is achieved in the geometrical parameters with a great
’ 1 reduction of the computational time. The comptutional time

—— Primitive ] required for the orbital optimization of SNoccupies only
-------- Optimized (C,Hg)

0-4: ——— Optimized (CaF) 4% of that of the whole calculation. So the orbital optimiza-
5 tion can be utilized as a preconditioning before doing the
"g L geometry optimization or the molecular dynamics. Of
= 0.0 = = = course, it is possible to perform the orbital optimization dur-
§ 2o p—orbital ing the geometry optimization for further accuracy. It is
T , worth mentioning that the orbital optimization can be com-
3 ost ) bined with an ON) method®~*! since only energy density

_g;')'t','r':,‘fzd (CaHo and density matrices, which are calculated by theN)(

——- Optimized (C,Fs) - method, are required in E@5) in Ref. 17. Therefore, the
| orbital optimization can be applied to large scale systems in
. . Sy . O(N) operations.
*85 20 4.0 6.0 Second, we show that it is significantly effective for th
8y econd, _ gnificantly effective for the
realization of a high degree of accuracy and efficiency to
FIG. 11. The radial wave function of the minimal orbitals of the construct a database of optimized orbitals for a specific
carbon atom obtained by the restricted orbital optimization for angroup such as proteins. Proteins are constructed from twenty
ethane molecule £ and a hexafluoro ethane moleculgFg, and  kinds of amino acid residues. So, we categorized atoms in
the lowest primitive orbitals of a carbon atom. The optimizationthe residues as eleven, eighteen, four, three, and two kinds of
was done in the same conditions as those in Fig. 10. hydrogen, carbon, nitrogen, oxygen, and sulfur atoms from a
chemical point of view in consideration of chemical environ-
coupled with the orbital optimization of aggmolecule and ment and connectivity. To construct a database of optimized
the preorbital optimization for a set of amino acid residues.orbitals for the categorized atoms, the structures of tripep-
First, we performed the geometry optimization with thetides, Gly-X-Gly, are considered for the orbital optimization,
orbital optimization as a preconditioning for gg3nolecule.  where X could be one of 20 kinds of amino acid residues.
Before doing the geometry optimization, the orbital optimi- The structure of a Gly-X-Gly was optimized by a molecular
zation was performed by ten iterative steps, which includesnechanics (MM) using a softwareTINKER (Ref. 84
ten SCF loops per step on the average. Then, the geometwith an AMBER9S force field (Ref. 89 before the orbital op-
optimization was done using the optimized orbitals by fifty timization. Then, for the optimized Gly-X-Gly the restricted
steepest descefBD) steps with a variable prefactor for ac- orbital optimization was performed by ten iterative
celerating the convergence, which includes 14 SCF loops pexteps with nine SCF loops per step on the average, in
step on the average. The optimized geometrical parametevghich LDA was employed to exchange-correlation
are given in Table IV together with the total energy and theinteraction and the cutoff energy of 130 Ry was used for
computational time per MD step. In case of the unoptimizechumerical integration and the solution of Poisson’s equa-
primitive orbitals SN, TN, and TNDP, as the number of or-tion. In a series of optimizations, the basis specifications
bitals increase, we find the decrease of the total energy andere given as H4.852*p51*, C5.0s52*p52*d51*,
the convergent geometrical parameters comparable to the ek4.5-s52* p52* d51*, 04.5852" p52*d51*, and
perimental and the other theoretical values. Comparing to th86.0s52* p52* d51*. Because of the basis specifications,
unoptimized primitive and optimized minimal orbitals SN the orbitals stored in the database are well optimized for the
and SN, it is found that the geometrical parameters calcu-use of double valence plus polarization orbitals. However,
lated using SN are significantly improved without increas- the basis sets maybe provide a better performance even for
ing the computational time. In case of the optimized orbitalsthe other specifications of basis sets compared to the original

0.4

TABLE IV. Optimized geometrical parametetd and degreesof a G, molecule. The computational time per MD step was measured
using one Pentium 4 process@.8 GH2. The energy cutoff of 108Ry) was used for the numerical integration in all calculations. The
results by the other theory were taken from Ref. 82, and the experimental values from Ref. 83.

SN TN TNDP SN SNP

C4.5s1lpl C4.5s3p3 C4.5s3p3d2 C4.5s831*p31* C4.5831*p31*d21*  Other theory  Expt.
r(C=C) 1.439 1.391 1.393 1.395 1.393 1.39-1.41 1.40
r(C—C) 1.489 1.455 1.448 1.452 1.447 1.44-1.45 1.45
/(C—C—C) 108.0 108.0 108.0 108.0 108.0 108.0
/(C=C—C) 120.0 120.0 120.0 120.0 120.0 120.0
Energy(hartreg —333.729 —336.432 —336.939 —335.513 —336.233
Time(s)/MD step 168 403 1680 191 339
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TABLE V. The total energy(Hartred of small polypeptides, Met-enkephality GGFM),2® valorphin
(VVYPWTQ),®” dynorphin A(YGGFLRRIRPKLKWDNQ),2 calculated using unoptimized primitive orbit-
als and the optimized orbitals stored in the database of basis orbitals for proteins, where the primary se-
qguences of the polypeptides are shown in parentheses. The cutoff energy(&fyl®as used for numerical
integration and the solution of Poisson’s equation. The specifications of the used basis orbitals a2pH4.5-
C5.0s2p2d1, N4.5s2p2d1, O4.5s2p2d1, and S6.06s2p2d1. For the optimized orbitals the same specifi-
cations as the primitive basis set were used. The geometrical structures of the small polypeptides are gener-
ated by a simulated annealing method using a softwane=r* with an AmBeR9s force field® to apply the
optimized orbitals to an arbitrary structural conformation. The number of residues and atoms are also given
just for reference.

Residues Atoms Primitivéhartree Optimized(hartree
Met-enkephalin 5 75 —341.1740 —341.6071
Valorphin 7 125 —544.0666 —544.7536
Dynorphin A 17 312 —1313.6671 —1316.6620

primitive basis sets, when the basis sets are used for calcecules with respect to basis orbitals provide a practical
lations of proteins. Following the construction of the data-guideline in an optimum choice of a cutoff radius, the num-
base, we performed SCF calculations of small polypeptideper and the maximum angular momentum of basis orbitals
to investigate the transferability of the optimized orbitals forfor each element. In addition, our widespread study shows
proteins. In Table V shows total energies of small polypepdimitations of the LCAO method to metallic systems and
tides, Met-enkephaliff} valorphin®’ and dynorphin A® cal-  dense structures with a large coordination number. In alka-
culated using unoptimized primitive orbitals and the opti-line and alkaline earth elements, valence orbitals tend to
mized orbitals stored in the database, where the geometricalve a longer tail, which makes applications of the LCAO
structures of the small polypeptides are generated by a simuynethod to the systems difficult due to increase of computa-
lated annealing method using a softwansker (Ref. 84  tjonal costs. In dense structures such as bcc, fcc, and hep, the
with an AMBER9s8 force field(Ref. 89 to apply the optimized primitive basis orbitals often become overcomplete. Owing
orbitals to an arbitrary structural conformation. We see that ao the overcompleteness, we have difficulty in the systematic
set of the basis orbitals optimized for proteins give a lowerimprovement of basis orbitals for systems with a dense struc-
energy than the primitive orbitals in all the polypeptides,ture. Therefore, careful treatments are required in the appli-
which shows that the optimized orbitals well span the occucations of LCAO method to a such kind of systems. In spite
pied states of proteins beyond the primitive orbitals. Thisof the difficulty, we believe that the primitive orbitals can be
illustrates that the database construction for a specific systea systematic basis set in a wide variety of materials, espe-
promises us a substantial improvement in the basis convegially for highly covalent systems such as organic molecules.
gence, while keeping the same computational efforts as that Furthermore, we have developed a simple and practical
of the primitive orbitals. The details of the database construcmethod, based on the force theorem, for variationally opti-
tion for proteins will be presented elsewhere. mizing the radial shape of numerical atomic orbitals. The
optimization algorithm similar to the geometry optimization
allows us to fully optimize atomic orbitals within a cutoff
radius for each atom in a given system. The optimized orbit-
To conclude, we have presented the first systematic studgls well reproduce convergent results calculated by a larger
for numerical atomic basis orbitals ranging from H to Kr. number of primitive orbitals. The comparison betweeiidg
Our primitive orbitals as a basis set are eigenstates, includingnd GFg demonstrates that the basis orbital can automati-
excited states, of an atomic Kohn-Sham equation with a coneally vary within the cutoff radius in order to respond to the
finement pseudopotential in a semilocal form for each anguehange of the environment of each atom, while minimizing
lar momentum quantum numbkrThe scheme has been dis- the total energy. As practical applications of the orbital opti-
cussed for generating the systematic basis orbitals in eization, we have demonstrated two examples: the geometry
numerical stable way. The comprehensive investigation obptimization coupled with the orbital optimization of gdC
convergence properties shows that our primitive basis orbitmolecule and the preorbital optimization for a set of amino
als could be one of practical solutions as a systematic basecid residues. The former shows that the small set of opti-
set in large scale DFT calculations for a wide variety ofmized orbitals promises to greatly reduce the computational
systems. Using the primitive orbitals, the computational aceffort with a high degree of accuracy. The latter demonstrates
curacy and efficiency are systematically controlled by twothat it is significantly effective for the realization of a high
simple parameters: the cutoff radius and the number of ordegree of accuracy and efficiency to construct a database of
bitals per atom. As the cutoff radius and the number of primi-optimized orbitals for a specific group such as proteins. The
tive orbitals increase, the total energy and the physical quarscheme also could be a remedy for the problem of the over-
tities converge systematically. The convergence properties afompleteness. Thus, we conclude that the optimized orbitals
total energy and equilibrium bond length for dimer mol- are well suited for large scale DFT calculations.

V. CONCLUSIONS
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