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Transport in nanoscale conductors from first principles
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We describe a first-principles atomistic approach to calculate the electronic and atomic dynamics of nano-
scale conductors under steady-state current flow. The approach is based on a self-consistent solution of the
Lippmann-Schwinger equation within the density-functional formalism for a sample connected to two bare
metallic electrodes with a finite bias. Three-terminal device geometries can also be described easily using the
present approach. The formalism provides the most fundamental quantities to describe the dynamics of the
whole system: the self-consistent electronic wave functions. With these, the forces on the atoms are determined
according to a Helmann-Feynman-like theorem that takes into account the contribution of the continuum of
states as well as of the discrete part of the spectrum. Examples of applications will be given in the case of
molecular devices with different anchoring groups at the interface between the molecule and the electrodes. In
particular, we find that conductances close to the quantum unit (2e2/h) can be achieved with a given molecular
structure simply by increasing the atomic number of the anchoring group.,
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I. INTRODUCTION

In the area of molecular electronics,1 it is very important
to be able to calculate the properties of basic circuit eleme
from first principles.2–9 Because of the difficulty of doing
well-characterized experiments on such individual eleme
theoretical calculations play a significant role in guiding e
periments, as well as in understanding their results. Howe
this is only fully possible, particularly for the case in whic
the experiment has not yet been done, if there are no ad
able or unknown parameters in the calculation.

The transport properties of atomic-scale wires10 and of
relatively small molecules11 ~which may function as wires o
as switching devices! connecting more extended electrod
are strongly affected by the relative positions of the Fe
levels of the electrodes and the energy levels of the mole
lar circuit elements, and by the broadening of these mole
lar levels.2–5 The relative level positioning affects, and is
turn affected by, the charge transfer between the electro
and the circuit elements; and this charge transfer itself ha
important effect on the transport properties. Determin
these level positions and charge transfers correctly requ
that the problem be solved fully self-consistently: small
rors in the charge transfer can lead to substantial errors in
level positions, which can result in an incorrect account
the transport. Self-consistency is also required to determ
accurately the current-induced forces on the atoms that c
prise the circuit elements, so as to account for such effect
electromigration.

The method we describe here uses the density-functi
formalism12 to calculate the wave functions, electron-dens
distributions, and potentials of the systems of interest. W
wave functions in particular, the other steady-state proper
of interest, like, e.g., current-induced forces, can be de
mined. We use the Lippmann-Schwinger equation to exp
each individual continuum wave function of the fu
molecule-electrode system in terms of the correspond
0163-1829/2001/65~4!/045402~8!/$20.00 65 0454
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wave function of the biased electrodes without the molec
~or atomic wire!, and the difference in the total effectiv
potential between the electrode-molecule system and
electrodes alone. This potential difference vanishes aw
from the region of the molecule, and so the self-consist
part of the calculation can be confined to this spatial regi

As an example of an application of the method, we stu
the conductance of a molecular device with different anch
ing groups at the interface between the wire and the e
trodes, in particular S, Se, and Te. We find that the cond
tance increases with increasing atomic number, and assu
a value close to the quantum of conductance (2e2/h) in the
case of Te. This study thus confirms, once again, the imp
tance of the contacts in determining the absolute value of
current in molecular wires, and suggests that contact e
neering can eventually lead to practical applications of m
ecules as electronic components.

II. CALCULATION OF THE CURRENT

The physical system of interest to us consists of a sam
~e.g., a molecule, or any set of atoms! between two bulk
electrodes which are kept at a certain external poten
energy differenceVB5EFR2EFL between the right (EFR)
and left (EFL) Fermi levels~see Fig. 1, right panel!. The

FIG. 1. Left panel: schematic of two bare electrodes kept a
certain external potential difference. The biased bare electrode
represented by the unperturbed HamiltonianH0. Right panel: sche-
matic of the total system~sample plus electrodes!. The sample is,
e.g., a molecule, or any set of atoms.
©2001 The American Physical Society02-1
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MASSIMILLIANO DI VENTRA AND NORTON D. LANG PHYSICAL REVIEW B 65 045402
sample is part of an external circuit, which is assumed
have zero impedance. We consider the case of a steady-
~dc! current flow. Current and voltage fluctuations are
sumed to be zero. The study of these fluctuations will be
subject of a forthcoming publication.13 We also focus our
attention on those systems where strong correlation eff
are negligible. Many physical systems presently investiga
fall in this category.11 Since the electron mean free path
nanoscale conductors is much longer than the contact
striction length, polaronic effects are also expected to be n
ligible for short sample lengths—the ones considered in
present paper.14,15 In the following we will discuss the cas
of transport at zero temperature only. Inclusion of the Fer
Dirac distribution function in the calculation of the current
straightforward.

For clarity of discussion, in the following we shall assum
that the left-hand electrode is positively biased. Electro
thus travel from the right electrode without scattering un
they reach a region in space close to the sample region.
system Hamiltonian can be written asH5H01V, whereH0
describes the energy spectrum of the two bulk electro
kept at a finite bias, without the sample atoms in betweenV
is the perturbation potential upon which electrons, in stati
ary states of the electrodes, scatter elastically. The Ha
tonian H will be described within the density-functiona
theory of many-electron systems.12

A. Bare electrodes

In Fig. 2 we represent schematically the total effect
potential veff(z) ~sum of the electrostatic and exchang
correlation potentials! for the two bare electrodes at a give
external bias, wherez is the coordinate perpendicular to th
electrode surfaces. Assuming that equilibrium has b
reached~steady-state condition!, the potentialveff(z) tends
toward a constant valueveff(2`) deep in the left-hand elec
trode, and to a constant valueveff(`) deep in the right-hand
electrode~see Fig. 2!. The stationary states ofH0 will have
different asymptotic forms, according to their energy. In t
energy region betweenveff(2`) andveff(`), the wave func-
tions of H0 are phase-shifted sine waves deep in the
electrode, which decay exponentially toward the right. In
energy region betweenveff(`) andEFL , the stationary state
have two different asymptotic forms:~1! a plane wave inci-
dent on the barrier region from the left together with
reflected and transmitted parts, and~2! a plane wave inciden

FIG. 2. Schematic of the two bare electrodes kept at a cer
external potential difference, and the corresponding effective po
tial veff . The left electrode is positively biased: electrons incide
from the right electrode are partly transmitted into the left electro
with a probabilityt, and reflected back into the right electrode wi
a probabilityr.
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on the barrier region from the right together with its reflect
and transmitted parts.16 Finally, for energies EFL<E
<EFR , the wave functions of interest correspond to wav
incident from the right electrode~plus their reflected and
transmitted parts!. As we will discuss in Sec. II B, the poten
tial V tends asymptotically to zero more rapidly than 1/r . In
this case, the stationary states ofH0 ~and, therefore, the sta
tionary states ofH) with a given energyEFL<E<EFR , mo-
mentumK i , and spin17

CEK i

0 ~r !5eiK i•RuEK i
~z!, ~1!

satisfy the scattering boundary conditions~in atomic units!18

uEK i
~z!5~2p!3/2kR

21/23H e2 ikRz1ReikRz, z→`

Te2 ikLz, z→2`,
~2!

where 1
2 kR

25E2 1
2 uK iu22veff(`), 1

2 kL
25E2 1

2 uK iu2

2veff(2`), andR is the coordinate parallel to the surface
The wave functionsC0 satisfy the continuum normalizatio
condition

E d3r @CE8K i8
0

~r !#* CEK i

0 ~r !5d~E82E!d~K i82K i!.

~3!

Since the details of the electrodes are not important up
the interface with the sample, we represent them usin
uniform-background~jellium! model.5 The jellium model
also allows an easy enumeration of scattering states,
avoids complications arising from band crossing in the el
tronic structure of the electrodes. Layers of atoms at the
terface, and the sample atoms are represented with
pseudopotential framework, and constitute the scattering
tential V ~see below!. In previous work2 we showed that, in
the case of gold electrodes, the jellium model correctly r
resents the scattering properties of molecular structures m
ing contact with a flat surface. For other types of substra
the use of jellium is not a limitation either: the extra res
tance between the jellium and the interface atoms, if any,
be easily determined, since it makes up for the differen
between the current with and without the extra interface l
ers.

The calculation of the electronic density and potential
the bare electrodes in the presence of the external bia
done within density-functional theory in the local-dens
approximation.12 The calculation starts with a potentia
veff(z) equal to the band bottomveff(2`) deep in the left
electrode, and equal toVB1veff(`) deep in the right elec-
trode. However, an electron current flows from the right el
trode to the left electrode, leading to a slightly larger dens
of electrons in the left electrode and, consequently, to a d
cit of electron density in the right electrode. These chan
are present within a mean free path length of the surfa
Since charge neutrality has to be satisfied deep within b
electrodes, the Fermi level relative to the bottom of the ba
in each of the two electrodes, has to change self-consiste
from its free-electron value. Therefore,EFL2veff(2`) de-
creases andEFR2veff(`) increases. SinceVB5EFR2EFL ,
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TRANSPORT IN NANOSCALE CONDUCTORS FROM . . . PHYSICAL REVIEW B65 045402
then veff(`)2veff(2`),VB . Even if this effect is negli-
gible for large electrode spacing, it is important, and need
be taken into account in the other cases.

On each iteration of the self-consistency loop, the co
puted electron densities deep in each of the two electro
are renormalized to produce local charge neutrality, an
small charge distribution is added in the region of t
surfaces,19 that both guarantees overall system neutrality a
guarantees thatVB5EFR2EFL . No such renormalizations
or additions of charge are required once self-consistenc
achieved, in order to satisfy the neutrality conditions and
give the required separation of the Fermi levels. Finally, w
these self-consistent wave functions the Green’s function
the bare electrodesGE

0 is calculated for each energyE in the
continuum~see the Appendix!.

B. Scattering potential

The potentialV describes the difference in potential b
tween the complete system and the bare electrodes.
choice of what part of the system is described byH0 and
what is described byV is somewhat arbitrary. However, if n
single-electron charging of the sample is assumed,V tends
asymptotically to zero more rapidly than 1/r . In this case, we
can representV in a box large enough to contain the pertu
bation of the sample atoms on the bare electrode system
choose to include inV all sample atoms and interface atom
if any. All atoms are represented within a pseudopoten
approach.20 V is therefore

V~r ,r 8!5vps~r ,r 8!1Fvxc@n~r !#2vxc@n0~r !#

1E d3r 9@dnr 9!]/ ur2r 9u Gd~r2r 8!. ~4!

The termvps(r ,r 8) is the sum of the nonlocal pseudopote
tials representing the atomic cores,vxc@n(r )# is the
exchange-correlation potential,n0(r ) is the electron density
for the pair of biased metal electrodes,n(r ) is the corre-
sponding quantity for the total system, anddn(r ) is their
difference. The exchange-correlation potential is assume
be the one for electrons in the ground state at zero bias,
we represent it in the local-density approximation.12 This as-
sumption is certainly correct for small external biases, a
seems to give quite reasonable results for the transport p
erties of molecular devices also for larger biases.2

C. Lippmann-Schwinger equation

Once the HamiltonianH0, of the bare electrodes, and th
scattering potentialV have been defined, we need to find t
self-consistent solutions of the equationHCE5ECE . The
total current will finally be calculated in terms of these wa
functions. For the wave functions in the continuum, th
equation can be putexactlyinto Lippmann-Schwinger form
04540
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CEK i
~r !

5CEK i

0 ~r !1E d3r 8d3r 9GE
0~r ,r 8!V~r 8r 9!CEK i

~r 9!.

~5!

The wave functionsCEK i
also have the same labeling as t

wave functionsCEK i

0 , even thoughK i is no longer a good

quantum number. The bound statesC i(r ) of H, if any, are
calculated by a direct diagonalization of the total Ham
tonian H. Only those states that have an energy bel
veff(2`) are truly bound states of the total system; these
of course included in the total density. The total density
the system is

n~r !52(
i

uC i~r !u212E dEE d2K iuCEK i
~r !u2, ~6!

where the factor 2 is for spin degeneracy~we assume the
system unpolarized!, and the integrals inE andK i cover the
whole continuum spectrum occupied by the electrons.

The self-consistent solution of Eq.~5! starts with a guess
of the electronic density, and hence of the potentialV. The
wave functionsCEK i

(r ) andC i(r ) are then used to comput
the new density@Eq. ~6!#, and the process is iterated un
self-consistency is achieved in the density and/or potentiaV.

The total electric current density in the full system
given by

j ~r !522E
EFL

EFR
dEE d2K iIm$@CEK i

~r !#* ¹CEK i
~r !%,

~7!

where the integral over K i is restricted to uK iu
<A2@E2veff(`)#. The total current in the full system i
simply the integral over a surface of Eq.~7!. However, the
current across an infinite surface is infinite in this proble
Therefore, expression~7! is not useful by itself. Since the
current of interest to us is the extra currentdJ that flows in
the sample with respect to the current for the bare electro
we can definedJ as

dJ5E d2R ẑ•@ j ~r !2 j0#, ~8!

where j0 is the current density for the pair of biased ele
trodes, andẑ is the unit vector pointing toward the right an
perpendicular to the surfaces of the electrodes. Equation~8!
provides a finite quantity independent ofz, and a meaningful
definition of the additional current flowing in the samp
region.5 It is convenient to write the total wave functions a
C5C01dC ~see below!. In this case the additional curren
can be written as
2-3
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dJ522E
EFL

EFR
dEE d2K i E d2R

3ImH @CEK i

0 ~r !#*
d

dz
dCEK i

~r !

1dCEK i
* ~r !

d

dz
CEK i

0 ~r !1dCEK i
* ~r !

d

dz
dCEK i

~r !J .

~9!

D. Three-terminal devices

The above approach can easily be extended to calcu
transport in the presence of a third terminal~gate! field. The
gate field can be introduced simply as a capacitor field g
erated by two charged disks at a certain distance from e
other. The simplest geometry consists of the sample pla
within the capacitor, with the axis of the capacitor perpe
dicular to the transport direction.4

E. Basis set

We choose plane waves to represent the wave functi
This choice has a number of advantages:~1! quantities like
the Green’s function and the potentialV can be written ana-
lytically in this basis set~see the Appendix!; ~2! convergence
can be easily checked by increasing the number of pl
waves in the calculation;~3! since the current is mostly de
rived from wave functions that have a plane-wave chara
@see Eq.~2!#, its convergence is generally fast~5–10 itera-
tions are generally enough to converge the total current!; and
~4! as we will discuss below, we do not need to evalu
Pulay-like forces21 in the calculation of current-induce
forces.

All calculations are performed within a box large enou
that the potentialV is negligible outside the box; therefore
the only question that arises is how good a plane-wave
resentation is for a finite system. We employ Hockne
method for the Fourier-transform solution of Poisson’s eq
tion for isolated systems.22 We refer the reader to the origina
papers for the detailed implementation of the method.
only note here that this method gives anexactrepresentation
of the potential inside the box, i.e., the effects of periodic
intrinsic in the representation, are completely suppresse
the box.22 This way, we do not have to deal with any period
repetition of the potentialV.

III. CURRENT-INDUCED FORCES

We have assumed so far that all atoms in the sample
kept fixed at a given equilibrium position. However, due
the current flow, atom motion can occur in the sample
phenomenon known as electromigration.23 It was recognized
in early theoretical work24–27 that current-induced forces o
a given physical system depend strongly on the microsco
details of the self-consistent electric field that is created u
scattering of the electrons across the region of interest. S
consistency in the calculation of the local electric field w
the correct scattering boundary conditions is thus essenti
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have meaningful quantitative results for current-induc
forces. The approach outlined above thus provides the n
essary ingredients to calculate current-induced forces.

Hellmann-Feynman theorem for transport

Once a self-consistent solution of the transport probl
has been obtained at a given geometry, current-induced
laxation effects are taken into account by calculating for
according to the Hellmann-Feynman-like theorem develo
in Ref. 28. The details of the theorem can be found in R
28. Here we outline its main result and practical impleme
tation.

Let us consider the sample and the two electrodes a
Fig. 1. As described above, each of these systems ca
treated separately by density-functional theory. Only the
tentialV of the total HamiltonianH5H01V depends on the
position of the atoms. The total Hamiltonian of the syste
can have a discrete and a continuum part. For single-par
wave functions in the discrete part of the spectrumC i ,
square integrability is satisfied. For each energy in the c
tinuum betweenveff(2`) and EFR ~assuming the left-hand
electrode to be positively biased!, we build square-integrable
wave functionsCEK iD

in an energy regionE,E8,E1D,

CEK iD
5AE

E

E1D

dE8CE8K i
, ~10!

whereA is a normalization constant,

A5S lim
D→0

1

D
^CEK iD

uCEK iD
& D 21/2

, ~11!

and CE’s are the continuum wave-function solutions of th
Lippmann-Schwinger equation~5!. The forceF acting on a
given atom at positionR0 due to the electron distribution a
modified by the external bias can be shown to be28

F5(
i

^C i u
]H

]R0
uC i&

1 lim
D→0

E
s
dEE d2K i^CEK iD

u
]H

]R0
uCEK iD

&. ~12!

The sum and integral in Eq.~12! also include spin variables
s5@veff(2`),EFR# is the part of the continuous spectru
occupied by the electrons at a given bias, anduK iu
<A2@E2veff(2`)#. An additional ion-ion interaction term
must be added to the above expression for the total fo
Writing the total wave functionsC5C01dC as above, the
term in Eq.~12! derived only from the bare-electrode wav
functions C0 can be interpreted as the direct force on t
ions. Since this contribution to the total force can be cal
lated from the electrostatic potential of the bare electrod
its value is known with essentially arbitrary accuracy. T
electron-wind force is also included in Eq.~12! ~see Refs. 28
and 24!. We note, however, that we did not include inelas
scattering processes in the total HamiltonianH; therefore, no
extra modulation of the carrier density in the sample due
dissipation effects is considered in the present case.27
2-4
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TRANSPORT IN NANOSCALE CONDUCTORS FROM . . . PHYSICAL REVIEW B65 045402
Due to the choice of plane waves as the basis set, Pu
like forces,21 arising from the possible dependence of t
basis set on the atomic positions are identically zero
need not be included in Eq.~12!.28 We divide the energy
regions into a discrete set of energy values. Convergenc
checked by increasing the number of energy points until
limit in Eq. ~12! is accurately described. Also note that, ge
erally, a number of plane waves larger than the one requ
to converge the current is necessary to obtain converged
ues for the forces. Starting from a given atomic configurat
~e.g., the atoms at the equilibrium experimental atomic po
tions!, we calculate the forces acting on each atom. We t
move the atoms according to the gradient of these for
until the force on each atom is zero~generally lower than a
defined precision!.

IV. SELECTED RESULTS ON MOLECULAR WIRES

As an example of application, here we consider the c
ductance of specific molecular wires for a small external b
VB50.01V. In Fig. 3 we plot a schematic of the three m
lecular wires investigated. The molecules consist of a b
zene ring where two opposite H atoms are replaced by S
or Te. These anchoring groups make contact to ideal met
electrodes. The interior electron density of the electrode
taken to be equal to the value for metallic gold (r s'3). Over
4000 plane waves were used to converge the current, e
times that number to converge the electron density, and
energy points to represent the continuum. In all three ca
considered, several molecular states fall below the low
conduction-band bottom~in the present case, below th
conduction-band bottom of the left electrode!, and are thus
truly bound states.

FIG. 3. Schematic of the three molecular structures investiga
The molecules consist of a benzene ring where two opposit
atoms are replaced by S, Se, or Te. These anchoring groups
contact to ideal metallic electrodes.
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The atomic configuration of the molecule with S atom
has been relaxed at zero bias using Eq.~12!.29 About 6500
plane waves were used to converge the forces. The rela
configuration consists of C-C bond lengths of 1.40 Å, C
bond lengths of 1.09 Å, C-S bonds of 1.70 Å, and S-jelliu
surface bond length of 1.00 Å. The latter is in agreem
with the equilibrium distance of sulfur adsorption on jelliu
surfaces,30 and the other bond lengths are in good agreem
with the experimental bond lengths in isolated benzene m
ecules and adsorbed thiophenol molecules.31 No sizable
change in bond lengths is observed forVB50.01V. Since we
are interested in determining trends with different anchor
groups, we assume the same bond lengths for the other
molecules where S is replaced by Se and Te, respectively
do not expect large changes in the conductance for sm
variations of Se-, Te-metal distance and Se-,Te-C distan

Using a tight-binding approach, Yalirakiet al. previously
reported32 that molecules with Se anchoring groups show
larger conductance than molecules with S~by a factor of 25!.
On the other hand, density-functional calculations witho
the inclusion of an external bias suggested that S prov
the best~in terms of conductance! contact, followed closely
by Se and Te.33 In Table I we report the conductance fo
three molecules in units of the quantum of conductan
(G052e2/h). In the same table we also report the density
states at the Fermi level@DOS(EF)#. We find, in agreemen
with tight-binding calculations, that Se contacts provide
larger conductance than S contacts~even though by only a
factor of 3!, and also that the conductance reaches a va
close to the quantum of conductance with Te. The cond
tance thus increases with increasing atomic number. In
case of S and Se terminations, the Fermi levels~we recall
that there is 0.01 eV of difference in energy between
right and left Fermi levels! fall in the highest occupied–
lowest unoccupied molecular-orbital~HOMO-LUMO! gap,
while in the case of Te the HOMO is nearly exactly at t
position of the Fermi levels. In the case of S, transport occ
via the tails of the LUMO orbitals that intersect the Ferm
levels, and the LUMO is closer to the Fermi levels than t
HOMO ~see Fig. 4!. The latter finding is in agreement wit
the fact that there is a charge transfer of about 0.1e from the
electrodes to the molecule,34 in practice providing a natura
‘‘ n doping’’ to the molecular region.2,4 On the other hand, in
the case of Se, the HOMO is very close to the Fermi lev
and the charge transfer occurs from the molecule to the e
trodes, giving a slight ‘‘p doping’’ character to the molecula
region. However, the conductance increases only by abo

d.
H
ke

TABLE I. ConductanceG in units of the quantum of conduc
tance (2e2/h), density of states at the Fermi level DOS(EF), and
G03DOS(EF)/DOS(Epeak) of the three molecules of Fig. 3 with
different end groups.

Group G DOS(EF) G03DOS(EF)/DOS(Epeak)
(2e2/h) ~states/eV! (2e2/h)

S 0.036 0.09 0.051
Se 0.12 0.64 0.15
Te 0.88 6.96 0.90
2-5
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MASSIMILLIANO DI VENTRA AND NORTON D. LANG PHYSICAL REVIEW B 65 045402
factor of 3, because the HOMO resonance is very narr
and it is its tail that intersects the Fermi levels~see Fig. 4!.
These findings were recently confirmed experimentally.35 Fi-
nally, in the case of Te, an even larger charge transfer oc
from the molecular region to the electrodes~about 0.5e),
pushing the HOMO practically into resonance with the l
Fermi level. This transition fromn doping top doping of the
molecular region is also consistent with the decrease of e
tronegativity of the end groups.

The conductance increase with increasing atomic num
does not, however, correlate well with the increase in
density of states at the Fermi level. For instance, the ratio
the conductanceG for the S- and Se-terminated molecules
G(Se)/G(S)53.3, while the ratio of the respective DOS’s
the Fermi level is 7.1. In the case of Te end grou
G(Te)/G(Se)57.3, and the DOS’s ratio is 10.9. Howeve
we note that the contribution to the conductance of a gi
resonant mode is reduced by a factor approximately pro
tional to the ratio DOS(EF)/DOS(Epeak), where DOS(Epeak)
is the peak value of the line shape of the correspond
resonance.36 Therefore, a better estimate of the conductan
is provided byG03DOS(EF)/DOS(Epeak) ~taking the con-
ductance at the peak to be unity!. This quantity is reported in
the last column of Table I. The agreement between the cr
estimate provided by the above argument and the actual
ductance is quite remarkable.

V. CONCLUSIONS

We have described a first-principles atomistic approac
calculate the electronic and atomic dynamics of nanos
conductors under steady-state current flow, based on the
consistent solution of the Lippmann-Schwinger equat
within the density-functional formalism. With the sel
consistent wave functions and relaxed ionic distributions
tained in the presence of current flow, any other transp
quantity can, in principle, be calculated. We have applied
above approach to the case of transport in molecular w
with different anchoring groups at the interface between

FIG. 4. Difference between the density of states of the t
semi-infinite electrodes with and without the molecules of Fig. 3
between. The left Fermi level has been chosen as the zero of en
The right Fermi level is at 10 meV.
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molecule and the electrodes. In particular, we have fou
that conductances close to the quantum unit (2e2/h) can be
achieved with a given molecular structure, simply by i
creasing the atomic number of the anchoring group.
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APPENDIX

Here we give some details on the plane-wave represe
tion of the different quantities presented above. For simp
ity, we will assume that the sample is enclosed in a cubic b
of side 2L. An extension to noncubic boxes is straightfo
ward. The wave functions are expressed within the box a

CEK i
~r !5(

n
CEK in

eikn•r, ~A1!

with n5(nx ,ny ,nz) an integer vector, andkn5pn/L. An
equivalent expression holds forC0. The scattering potentia
V @Eq. ~4!# is

V~r ,r 8!5 (
n,n8

eikn•rVnn8e
2 ikn8•r, ~A2!

and the Lippmann-Schwinger equation~5! becomes

(
n8

CEnn8CEK in85CEK in
0 , ~A3!

with

CEnn85dnn82~2L !6(
n9

GEnn9
0 Vn9n8 , ~A4!

wherednn8 is the Kronecker delta. The Green’s function
this representation is

GEnn8
0

5
~21!nx1ny1nx81ny8

2p2L4 E
0

`

t dt gEnznz8
~ t/L !

3E
0

p/2

df sin2~ t cosf!sin2~ t sinf!

3~ t2 cos2f1p2nxnx8!~ t2 sin2f1p2nyny8!

3@~ t2 cos2f2p2nx
2!~ t2 cos2f2p2nx8

2!

3~ t2 sin2f2p2ny
2!~ t2 sin2f2p2ny8

2!#21,

~A5!

with

o

gy.
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gEnznz8
~ uK iu!5

1

WEK i

E
2L

L

dz e2 iknz
z

3FuEK i

R ~z!E
2L

z

dz8 uEK i

L ~z8!eiknz8
z8

1uEK i

L ~z!E
z

L

dz8 uEK i

R ~z8!eiknz8
z8G .

~A6!

The functionsuEK i

a (z), with a5L,R, satisfy the equation

FE1
1

2

d2

dz2
2

1

2
uK iu22veff~z!GuEK i

a ~z!50, ~A7!

with left-moving ~right-moving! boundary conditions fora
5L (a5R). The quantityWEK i

is the Wronskian,

WEK i
5uEK i

L ~z!
d

dz
uEK i

R ~z!2uEK i

R ~z!
d

dz
uEK i

L ~z!, ~A8!
ett

ys

tt

a

,

u

an
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which is independent of z.
The direct force on the ions, derived only from the ba

electrode wave functionsC0, can be calculated with essen
tially arbitrary accuracy. The remaining force in Eq.~12!
from the continuum wave functions is

F52 i ~2L !3E dEE d2K i(
nn8

~kn2kn8!

3ei (kn2kn8)•R0Vnn8
ps $CEK iDn

0 dCEK iDn8
*

1dCEK iDn@CEK iDn8
0

#* 1dCEK iDndCEK iDn8
* %,

~A9!

where dCEK iDn5CEK iDn2CEK iDn
0 and CEK iDn ,CEK iDn

0

have been constructed according to Eq.~10!, and the limit in
Eq. ~12! is understood. The termVnn8

ps is the plane-wave
representation of the nonlocal pseudpotentialvps(r ,r 8).
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