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We describe a first-principles atomistic approach to calculate the electronic and atomic dynamics of nano-
scale conductors under steady-state current flow. The approach is based on a self-consistent solution of the
Lippmann-Schwinger equation within the density-functional formalism for a sample connected to two bare
metallic electrodes with a finite bias. Three-terminal device geometries can also be described easily using the
present approach. The formalism provides the most fundamental quantities to describe the dynamics of the
whole system: the self-consistent electronic wave functions. With these, the forces on the atoms are determined
according to a Helmann-Feynman-like theorem that takes into account the contribution of the continuum of
states as well as of the discrete part of the spectrum. Examples of applications will be given in the case of
molecular devices with different anchoring groups at the interface between the molecule and the electrodes. In
particular, we find that conductances close to the quantum ueff 2 can be achieved with a given molecular
structure simply by increasing the atomic number of the anchoring group.,
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[. INTRODUCTION wave function of the biased electrodes without the molecule
(or atomic wirg, and the difference in the total effective

In the area of molecular electronitd, is very important ~ potential between the electrode-molecule system and the
to be able to calculate the properties of basic circuit elementglectrodes alone. This potential difference vanishes away
from first principles>™® Because of the difficulty of doing from the region of the molecule, and so the self-consistent
well-characterized experiments on such individual elementg?art of the calculation can be confined to this spatial region.
theoretical calculations play a significant role in guiding ex- AS an example of an application of the method, we study
periments, as well as in understanding their results. Howeveéhe conductance of a molecular device with different anchor-
this is only fully possible, particularly for the case in which INg groups at the interface between the wire and the elec-
the experiment has not yet been done, if there are no adjusi-odes, in particular S, Se, and Te. We find that the conduc-
able or unknown parameters in the calculation. tance increases with increasing atomic number, and assumes

The transport properties of atomic-scale wifeand of ~ @ value close to the quantum of conductance?(B) in the
relatively small moleculés$ (which may function as wires or case of Te. This study thus confirms, once again, the impor-
as switching devicgsconnecting more extended electrodestance of the contacts in determining the absolute value of the
are strongly affected by the relative positions of the Fermicurrent in molecular wires, and suggests that contact engi-
levels of the electrodes and the energy levels of the molecu2€ering can eventually lead to practical applications of mol-
lar circuit elements, and by the broadening of these molecuecules as electronic components.
lar levels?=® The relative level positioning affects, and is in
turn affected by, the charge transfer between the electrodes [l. CALCULATION OF THE CURRENT

and the circuit elements; and this charge transfer itself has an he phvsical fi . f |
important effect on the transport properties. Determining | Ne Physical system of interest to us consists of a sample

these level positions and charge transfers correctly require(%'g" a moIeguIe, or any set of ato)n't;etween two bUIk.
that the problem be solved fully self-consistently: small er-€/ectrodes which are kept at a certain external potential-
rors in the charge transfer can lead to substantial errors in tHe€rgy differenceVg=Err—Eg between the right Eer)
level positions, which can result in an incorrect account of2Nd left ErL) Fermi levels(see Fig. 1, right pankl The
the transport. Self-consistency is also required to determine
accurately the current-induced forces on the atoms that com-
prise the circuit elements, so as to account for such effects as ﬂ,&
electromigration. —‘ [7 o —|
The method we describe here uses the density-functional y i
formalism'? to calculate the wave functions, electron-density o H
distributions, and potentials of the systems of interest. With
wave functions in particular, the other steady-state properties F|G. 1. Left panel: schematic of two bare electrodes kept at a
of interest, like, e.g., current-induced forces, can be detercertain external potential difference. The biased bare electrodes are
mined. We use the Lippmann-Schwinger equation to expresgpresented by the unperturbed Hamiltoniién Right panel: sche-
each individual continuum wave function of the full matic of the total systenssample plus electrodesThe sample is,
molecule-electrode system in terms of the corresponding.g., a molecule, or any set of atoms.
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Vg E on the barrier region from the right together with its reflected
t R I . . .
— - and transmitted part§. Finally, for energies Er <E
Er t D <Eggr, the wave functions of interest correspond to waves
vy (0) incident from the right electrodéplus their reflected and
v (—o0) ) transmitted parjs As we will discuss in Sec. Il B, the poten-
eff

tial V tends asymptotically to zero more rapidly than.1h
FIG. 2. Schematic of the two bare electrodes kept at a certailI\_h's case, the statlonary st_atesHJJ (and, therefore, the sta-
external potential difference, and the corresponding effective poterfionary states oH) V‘.”t7h a given energfg <E<Eggr, mo-
tial vey. The left electrode is positively biased: electrons incidentMentumk;, and spin
from the right electrode are partly transmitted into the left electrode .
. - ; : . vl (n=e""Rug () 1)
with a probabilityt, and reflected back into the right electrode with EK| EK|\ &)

a probabilityr. . . N . .
P y satisfy the scattering boundary conditid(its atomic unitg*®

sample is part of an external circuit, which is assumed to e kRZ L REKRZ 700

have zero impedance. We consider the case of a steady-state ugy (2)=(2m)*%g Y2 iz

(dc) current flow. Current and voltage fluctuations are as- Te ’ ==, 2
sumed to be zero. The study of these fluctuations will be the (2)
subject of a forthcoming publicatiof. We also focus our where 1k3= —%|K”|2—veﬁ(oc), %ksz—%lK”F

attention on those systems where strong correlation effects;, (— ), andR is the coordinate parallel to the surfaces.
are negligible. Many physical systems presently investigateghe wave functiona?® satisfy the continuum normalization
fall in this category." Since the electron mean free path in ¢ondition
nanoscale conductors is much longer than the contact con-
striction length, polaronic effects are also expected to be neg- 30 0 ) )
ligible for short sample lengths—the ones considered in the f d r[‘I’E'K'(r)]*‘I'EK"(r)Za(E —E)S(K =Ky
present papéef-® In the following we will discuss the case H 3)
of transport at zero temperature only. Inclusion of the Fermi-
Dirac distribution function in the calculation of the currentis  Since the details of the electrodes are not important up to
straightforward. the interface with the sample, we represent them using a
For clarity of discussion, in the following we shall assume uniform-background(jellium) model® The jellium model
that the left-hand electrode is positively biased. Electronsilso allows an easy enumeration of scattering states, and
thus travel from the right electrode without scattering untilavoids complications arising from band crossing in the elec-
they reach a region in space close to the sample region. THeonic structure of the electrodes. Layers of atoms at the in-
system Hamiltonian can be written Bis=Hy+V, whereH, terface, and the sample atoms are represented within a
describes the energy spectrum of the two bulk electrodepseudopotential framework, and constitute the scattering po-
kept at a finite bias, without the sample atoms in betwden. tential V (see below. In previous work we showed that, in
is the perturbation potential upon which electrons, in stationthe case of gold electrodes, the jellium model correctly rep-
ary states of the electrodes, scatter elastically. The Hamilkesents the scattering properties of molecular structures mak-
tonian H will be described within the density-functional ing contact with a flat surface. For other types of substrates
theory of many-electron systerifs. the use of jellium is not a limitation either: the extra resis-
tance between the jellium and the interface atoms, if any, can
be easily determined, since it makes up for the difference
between the current with and without the extra interface lay-
In Fig. 2 we represent schematically the total effectiveers.
potential ver(z) (sum of the electrostatic and exchange- The calculation of the electronic density and potential for
correlation potentiajsfor the two bare electrodes at a given the bare electrodes in the presence of the external bias is
external bias, where is the coordinate perpendicular to the done within density-functional theory in the local-density
electrode surfaces. Assuming that equiliborium has beeapproximation> The calculation starts with a potential
reached(steady-state conditionthe potentialvez(z) tends v4(z) equal to the band bottom.s(—=) deep in the left
toward a constant valugss( — ) deep in the left-hand elec- electrode, and equal tdg+v() deep in the right elec-
trode, and to a constant valugg() deep in the right-hand trode. However, an electron current flows from the right elec-
electrode(see Fig. 2 The stationary states ¢f, will have  trode to the left electrode, leading to a slightly larger density
different asymptotic forms, according to their energy. In theof electrons in the left electrode and, consequently, to a defi-
energy region betwean4( —*) andv (), the wave func-  cit of electron density in the right electrode. These changes
tions of Hy are phase-shifted sine waves deep in the lefare present within a mean free path length of the surfaces.
electrode, which decay exponentially toward the right. In theSince charge neutrality has to be satisfied deep within both
energy region betwean.«(0) andEg, , the stationary states electrodes, the Fermi level relative to the bottom of the band,
have two different asymptotic form¢l) a plane wave inci- in each of the two electrodes, has to change self-consistently
dent on the barrier region from the left together with itsfrom its free-electron value. ThereforBg —ven(—°) de-
reflected and transmitted parts, ai2jla plane wave incident creases an@Err—v () increases. Sinc¥g=Egg—Efg|,

A. Bare electrodes
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then veg(e) —ver(—)<Vg. Even if this effect is negli- \PEKH(r)
gible for large electrode spacing, it is important, and needs to
be taken into account in the other cases.

On each iteration of the self-consistency loop, the com-
puted electron densities deep in each of the two electrodes (5)
are renormalized to produce local charge neutrality, and a
small charge distribution is added in the region of the : .
surfaces? that both guarantees overall system neutrality andThe wave funct|og1 SI’EKH also have the same labeling as the
guarantees tha¥g=Err—Er_ . No such renormalizations Wave fU”CtiO”S‘I’EKHa even thougtK| is no longer a good
or additions of charge are required once self-consistency iguantum number. The bound stat#g(r) of H, if any, are
achieved, in order to satisfy the neutrality conditions and tccalculated by a direct diagonalization of the total Hamil-
give the required separation of the Fermi levels. Finally, withtonian H. Only those states that have an energy below
these self-consistent wave functions the Green’s function of ( —) are truly bound states of the total system; these are
the bare electrodeB? is calculated for each enerd@yin the ~ Of course included in the total density. The total density of
continuum(see the Appendix the system is

=\1ng‘|(r)+f a3 a3 GR(r,r V(' 1) e (1),

B. Scattering potential n(r)=22 |‘I'i(r)|2+2J dEJ d2K|||‘I’EK”(r)|2, (6)
The potentialV describes the difference in potential be- '
tween the complete system and the bare electrodes. The
choice of what part of the system is describedHbyy and  where the factor 2 is for spin degenera@ye assume the
what is described by is somewhat arbitrary. However, if no system unpolarizedand the integrals it andK cover the
single-electron charging of the sample is assumédends  whole continuum spectrum occupied by the electrons.
asymptotically to zero more rapidly tharr 1In this case, we The self-consistent solution of E() starts with a guess
can represen¥ in a box large enough to contain the pertur- of the electronic density, and hence of the poteralhe
bation of the sample atoms on the bare electrode system. Weave functions\PEK‘(r) andW,(r) are then used to compute
choose to include iV all sample atoms and interface atoms, the new densitfEq. (6)], and the process is iterated until
if any. All atoms are represented within a pseudopotentiakelf-consistency is achieved in the density and/or poteyitial
approach? V is therefore The total electric current density in the full system is
given by

V(r:r’)zvps(ryr,)+ ch[n(r)]_vxc[no(r)]

E
=2 "ok @i We (01 Ve ),
- I I

o(r=r"). (4 ()

+f d3r [ onr) ]/ |r—r"|

where the integral overK; is restricted to |K||

The termu ,¢(r,r") is the sum of the nonlocal pseudopoten- < V2[E—veg(*)]. The total current in the full system is
tials representing the atomic cores,Jn(r)] is the simply the integral over a surface of E(f). However, the
exchange_corre|ati0n potentiaj?(r) is the electron density current across an infinite surface is infinite in this problem.
for the pair of biased metal electrodas(r) is the corre- Therefore, expressioh?) is not useful by itself. Since the
sponding quantity for the total system, asd(r) is their ~ current of interest to us is the extra curreidt that flows in
difference. The exchange-correlation potential is assumed tée sample with respect to the current for the bare electrodes,
be the one for electrons in the ground state at zero bias, arie can definesJ as

we represent it in the local-density approximattéiThis as-

sumption is certainly correct for small external biases, and

seems to give quite reqsonable results for the transport prop- 5J:f d?R z-[j(r)—j°7, (8)
erties of molecular devices also for larger bia%es.

wherej® is the current density for the pair of biased elec-

trodes, and: is the unit vector pointing toward the right and

Once the Hamiltonia, of the bare electrodes, and the perpendicular to the surfaces of the electrodes. Equa8pn
scattering potentiaV have been defined, we need to find the provides a finite quantity independentpfand a meaningful
self-consistent solutions of the equatibh?c=EW¥. The definition of the additional current flowing in the sample
total current will finally be calculated in terms of these waveregion® It is convenient to write the total wave functions as
functions. For the wave functions in the continuum, this¥ =¥+ s¥ (see below In this case the additional current
equation can be pwxactlyinto Lippmann-Schwinger form: can be written as

C. Lippmann-Schwinger equation
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Err ) 5 have meaningful quantitative results for current-induced
o= —ZJE dEj d K”J d°R forces. The approach outlined above thus provides the nec-
FL essary ingredients to calculate current-induced forces.
d
0
X1m [‘I'EKH(V)]* d_ZNEK”(r) Hellmann-Feynman theorem for transport

d d Once a self-consistent solution of the transport problem
+8WE (N—=PL (1) +8VE, (1) == 6%, (1) . has been obtained at a given geometry, current-induced re-
" d I " dz I laxation effects are taken into account by calculating forces
(9) according to the Hellmann-Feynman-like theorem developed
in Ref. 28. The details of the theorem can be found in Ref.
28. Here we outline its main result and practical implemen-
tation.

The above approach can easily be extended to calculate Let us consider the sample and the two electrodes as in
transport in the presence of a third termikgéte field. The  Fig. 1. As described above, each of these systems can be
gate field can be introduced simply as a capacitor field gentreated separately by density-functional theory. Only the po-
erated by two charged disks at a certain distance from eadntial v of the total HamiltoniartH =H,+V depends on the
other. The simplest geometry consists of the sample placegbosition of the atoms. The total Hamiltonian of the system
within the capacitor, with the axis of the capacitor perpen-can have a discrete and a continuum part. For single-particle

D. Three-terminal devices

dicular to the transport directich. wave functions in the discrete part of the spectrdm,
square integrability is satisfied. For each energy in the con-
E. Basis set tinuum betweern o4(—) and Egg (assuming the left-hand

glectrode to be positively biasgdve build square-integrable

We choose plane waves to represent the wave function ; . .
P P wave functlons‘IfEKHA in an energy regiolE<E'<E+A,

This choice has a number of advantagds:quantities like
the Green’s function and the potentiican be written ana-
lytically in this basis setsee the Appendjx (2) convergence W =A
. . . EKHA
can be easily checked by increasing the number of plane E
waves in the calculaﬂ_or(S) since the current is mostly de- where A is a normalization constant,
rived from wave functions that have a plane-wave character
[see Eq.(2)], its convergence is generally fa&—10 itera- 1 —1/2
tions are generally enough to converge the total cuyrend A=( lim Z(‘I’EKA|‘I’EKA>) : (17)
. . AHO
(4) as we will discuss below, we do not need to evaluate

Pulay-like force$' in the calculation of current-induced angw.'s are the continuum wave-function solutions of the
forces. _ o Lippmann-Schwinger equatiofs). The forceF acting on a
All calculations are performed within a box large enoughgiven atom at positioR, due to the electron distribution as

that the potentiaV is negligible outside the box; therefore, nogified by the external bias can be shown t&be
the only question that arises is how good a plane-wave rep-

resentation is for a finite system. We employ Hockney’s JoH

method for the Fourier-transform solution of Poisson’s equa- F= 2 (Wil ﬁl‘lw

tion for isolated system< We refer the reader to the original ' 0

papers for the detailed implementation of the method. We JH

only note here that this method gives exactrepresentation + lim f dEf d2K||<‘1’EKHA| ﬁ|‘PEKHA>- (12

of the potential inside the box, i.e., the effects of periodicity, A=077 0

intrinsic in the representation, are completely suppressed ifhe sum and integral in E412) also include spin variables,
the box?2 This way, we do not have to deal with any periodic o=[ves(—=),Err] is the part of the continuous spectrum

E+A
dE' Ve, (10

repetition of the potentiaV. occupied by the electrons at a given bias, aid|
< V2[E—v(—2°)]. An additional ion-ion interaction term
lll. CURRENT-INDUCED FORCES must be added to the above expression for the total force.

Writing the total wave function® =¥+ 5% as above, the

We have assumed so far that all atoms in the sample arterm in Eq.(12) derived only from the bare-electrode wave
kept fixed at a given equilibrium position. However, due tofunctions W° can be interpreted as the direct force on the
the current flow, atom motion can occur in the sample, &@ons. Since this contribution to the total force can be calcu-
phenomenon known as electromigratfont was recognized lated from the electrostatic potential of the bare electrodes,
in early theoretical wor¥ 2’ that current-induced forces on its value is known with essentially arbitrary accuracy. The
a given physical system depend strongly on the microscopielectron-wind force is also included in Ed.2) (see Refs. 28
details of the self-consistent electric field that is created upoand 24. We note, however, that we did not include inelastic
scattering of the electrons across the region of interest. Selfcattering processes in the total Hamiltonkrtherefore, no
consistency in the calculation of the local electric field with extra modulation of the carrier density in the sample due to
the correct scattering boundary conditions is thus essential wissipation effects is considered in the present éase.
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TABLE I. ConductanceG in units of the quantum of conduc-
tance (2%/h), density of states at the Fermi level D@{, and
S S GoXDOS(Ef)/DOS(Epea Of the three molecules of Fig. 3 with
different end groups.

Group G DOSE;)  GoXDOS(Er)/DOSEpea)
(2€?/h)  (states/ey (2€?/h)
S 0.036 0.09 0.051
Se 0.12 0.64 0.15
Te 0.88 6.96 0.90
Se Se

The atomic configuration of the molecule with S atoms
has been relaxed at zero bias using Bd).?° About 6500
plane waves were used to converge the forces. The relaxed
configuration consists of C-C bond lengths of 1.40 A, C-H
bond lengths of 1.09 A, C-S bonds of 1.70 A, and S-jellium
Te Te surface bond length of 1.00 A. The latter is in agreement
with the equilibrium distance of sulfur adsorption on jellium
surfaces? and the other bond lengths are in good agreement
with the experimental bond lengths in isolated benzene mol-

FIG. 3. Schematic of the three molecular structures investigateo‘?Cules and adsorbed _thlophenol molecdfeslo _S|zable
The molecules consist of a benzene ring where two opposite Ffhange in bond lengths is observed Ygy=0.01V. Since we
atoms are replaced by S, Se, or Te. These anchoring groups maR&e interested in determining trends with different anchoring
contact to ideal metallic electrodes. groups, we assume the same bond lengths for the other two

molecules where S is replaced by Se and Te, respectively. We

Due to the choice of plane waves as the basis set, Pulaflo not expect large changes in the conductance for small
like forces?! arising from the possible dependence of thevariations of Se-, Te-metal distance and Se-,Te-C distance.
basis set on the atomic positions are identically zero and Using a tight-binding approach, Yalirakt al. previously
need not be included in Eq12).28 We divide the energy reported? that molecules with Se anchoring groups show a
regiona into a discrete set of energy values. Convergence i§arger conductance than molecules witkb$ a factor of 25.
checked by increasing the number of energy points until thé)n the other hand, denSity'fUnCtional calculations without
limit in Eq. (12) is accurately described. Also note that, gen-the inclusion of an external bias suggested that S provides
erally, a number of plane waves larger than the one requireth€ best(in terms of conductangecontact, followed closely
to converge the current is necessary to obtain converged vadly Se and Té’ In Table | we report the conductance for
ues for the forces. Starting from a given atomic configuratiorfhree molecules in units of the quantum of conductance
(e.g., the atoms at the equilibrium experimental atomic posi{Go=2€%/h). In the same table we also report the density of
tions), we calculate the forces acting on each atom. We thestates at the Fermi leveDOS(Er) ]. We find, in agreement
move the atoms according to the gradient of these forceWith tight-binding calculations, that Se contacts provide a

until the force on each atom is zetgenerally lower than a larger conductance than S contagsen though by only a
defined precision factor of 3, and also that the conductance reaches a value

close to the quantum of conductance with Te. The conduc-
tance thus increases with increasing atomic number. In the
case of S and Se terminations, the Fermi levels recall

As an example of application, here we consider the conthat there is 0.01 eV of difference in energy between the
ductance of specific molecular wires for a small external biasight and left Fermi levelsfall in the highest occupied—
Vg=0.01V. In Fig. 3 we plot a schematic of the three mo- lowest unoccupied molecular-orbitdHOMO-LUMO) gap,
lecular wires investigated. The molecules consist of a benwhile in the case of Te the HOMO is nearly exactly at the
zene ring where two opposite H atoms are replaced by S, Sepsition of the Fermi levels. In the case of S, transport occurs
or Te. These anchoring groups make contact to ideal metallicia the tails of the LUMO orbitals that intersect the Fermi
electrodes. The interior electron density of the electrodes itevels, and the LUMO is closer to the Fermi levels than the
taken to be equal to the value for metallic gotd<3). Over HOMO (see Fig. 4 The latter finding is in agreement with
4000 plane waves were used to converge the current, eigkte fact that there is a charge transfer of aboué @r@m the
times that number to converge the electron density, and 128lectrodes to the molecufé,in practice providing a natural
energy points to represent the continuum. In all three casesn doping” to the molecular regiofi? On the other hand, in
considered, several molecular states fall below the loweghe case of Se, the HOMO is very close to the Fermi levels
conduction-band botton{in the present case, below the and the charge transfer occurs from the molecule to the elec-
conduction-band bottom of the left electrodand are thus trodes, giving a slight p doping” character to the molecular
truly bound states. region. However, the conductance increases only by about a

IV. SELECTED RESULTS ON MOLECULAR WIRES
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FIG. 4. Difference between the density of states of the two

semi-infinite electrodes with and without the molecules of Fig. 3 in
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molecule and the electrodes. In particular, we have found
that conductances close to the quantum un&’(8) can be
achieved with a given molecular structure, simply by in-
creasing the atomic number of the anchoring group.
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APPENDIX

between. The left Fermi level has been chosen as the zero of energy. Here we give some details on the plane-wave representa-

The right Fermi level is at 10 meV.

tion of the different quantities presented above. For simplic-
ity, we will assume that the sample is enclosed in a cubic box

factor of 3, because the HOMO resonance is very narrowpf side 2.. An extension to noncubic boxes is straightfor-

and it is its tail that intersects the Fermi levésee Fig. 4.
These findings were recently confirmed experimentali-
nally, in the case of Te, an even larger charge transfer occu
from the molecular region to the electrodésbout 0.®),
pushing the HOMO practically into resonance with the left
Fermi level. This transition from doping top doping of the

ward. The wave functions are expressed within the box as

rs

Ve (1) =2 Vex e, (A1)

with n=(n,,n,,n,) an integer vector, anét,=mwn/L. An

molecular region is also consistent with the decrease of ele@quivalent expression holds fdf®. The scattering potential

tronegativity of the end groups.

V[Eq.(4)]is

The conductance increase with increasing atomic number

does not, however, correlate well with the increase in the
density of states at the Fermi level. For instance, the ratio of

the conductancé for the S- and Se-terminated molecules is
G(Se)/G(S)=3.3, while the ratio of the respective DOS’s at
the Fermi level is 7.1. In the case of Te end groups
G(Te)/G(Se)=7.3, and the DOS’s ratio is 10.9. However,

we note that the contribution to the conductance of a given

resonant mode is reduced by a factor approximately propo
tional to the ratio DOSEr)/DOS(Epead , Where DOSE e

is the peak value of the line shape of the corresponding
resonancé® Therefore, a better estimate of the conductance

is provided byGyX DOS(Eg)/DOS(Epeq) (taking the con-
ductance at the peak to be unitf¥his quantity is reported in

V(r,r)=>, eknry, ek (A2)
n,n’
and the Lippmann-Schwinger equatit® becomes
2 CEnn’\PEKHn':\PgKHna (A3)
n/
Kwvith
Cennw =06 —(2L)°2 G2 Vo, (A%)
nH

where 6, is the Kronecker delta. The Green’s function in

the last column of Table I. The agreement between the crudthis representation is

estimate provided by the above argument and the actual co
ductance is quite remarkable.

V. CONCLUSIONS

We have described a first-principles atomistic approach t

n_
o (_1)nx+ny+n>'(+n)', -
O = |, 1t Gena(HL)
/2
0 xf d¢ siré(t cosp)sirf(t sin¢)
0

calculate the electronic and atomic dynamics of nanoscale
conductors under steady-state current flow, based on the self-
consistent solution of the Lippmann-Schwinger equation
within the density-functional formalism. With the self-
consistent wave functions and relaxed ionic distributions ob-
tained in the presence of current flow, any other transport
guantity can, in principle, be calculated. We have applied the
above approach to the case of transport in molecular wires

with different anchoring groups at the interface between thevith
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which is independent of z.

The direct force on the ions, derived only from the bare-
electrode wave function®®, can be calculated with essen-
tially arbitrary accuracy. The remaining force in Ed.2)
from the continuum wave functions is

1 L ,
— ik
gEnzn£(|KH|)— WEKdeZ e Knz

z
R L iknz'
X uEKH(z) JiLdz’ uEK”(z’)e' n,?

L o
+u'EKH(z)j dz' UEKH(Z’)e"‘n;Z }
z

F=—i(2L)3f dEf d?K > (ko—kp)
(A6) nn

: . . : x glkn=kn) RoyPe (W 1, 0%
The functlonsugK”(z), with a=L,R, satisfy the equation nnrd EKjan

*
EKHAH'

0
P +NEKHAn[‘I’EKHAn/]*+5‘I’EK”An5‘I’EKHAn'}'

Et242 2

(A7)

|K||2=ver(2) |ugk (2)=0,

(A9)

with left-moving (right-moving boundary conditions for
=L (a=R). The quantityVVEKH is the Wronskian,

d d
Wk = Utk (2) 55 Uk, (2) ~ Ugk () g5 Uk (D), (A8)

where NEK”An:\PEKHAn_\PgK”An and \IIEKlAnv\PgK‘An

have been constructed according to Eif), and the limit in
Eg. (12) is understood. The teriv">, is the plane-wave
representation of the nonlocal pseudpotentia(r,r’).
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