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Unified view of step-edge kinetics and fluctuations
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We study theoretically the equilibrium fluctuations of steps on vicinal surfaces. From an analytical con-
tinuum description of the step edge, we find asingleLangevin equation governing the motion of an isolated
step around its equilibrium position that includes attachment/detachment of atoms, diffusion over the terrace,
diffusion along the edge, and evaporation. We then extend this approach to treat an array of steps, i.e., a vicinal
surface. We also present, in an appendix, an alternative formalism in which detachment to terrace and to
step-edge diffusion can take place independently. In established as well as some new limits, and for numerous
special cases, we study the wave-vector dependence—both exponent and prefactor—of the relaxation time of
fluctuations. From this we recover scaling relations for early-time dependence of the mean-square fluctuations.
We discuss how to extract the@mesoscopic# transport coefficients associated with different atomistic mecha-
nisms of surface mass transport and how to distinguish between mechanisms having the same power-law
dependence on wavelength in the capillary-wave analysis. To examine the crossovers between limiting re-
gimes, we compute and explore an effective exponent for this power law and show that the crossover occurs
over a narrow region of phase space. Furthermore, we find that single-sided approximations are valid only in
the limit of extreme Schwoebel barriers.@S0163-1829~98!09008-0#
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I. INTRODUCTION

As the fundamental entity of vicinal surfaces, steps ha
been the subject of substantial experimental investigat
Specifically, a variety of experimental techniques1–5 have
been used to study step-edge fluctuations on metallic
semiconductor surfaces. Some of the important issues
dressed have been~i! determininguniquelythe microscopic
mechanisms of surface mass transport,~ii ! finding the rate-
limiting step in the mass transport, and finally~iii ! estimating
microscopic energy parameters of the material. We brie
list here some of these studies. Kuipers and co-work1

made one of the first observations of these temporal fluc
tions of steps on a Au~110! surface using a high-temperatu
scanning tunneling microscope~STM!. They also studied
these fluctuations on a Pb~111! surface. In an independen
but simultaneous study, Poensgenet al.6 studied the frizzled
step edges on Ag~111! and Cu~001! surfaces. The frizzines
of the steps was studied as a function of time as well
temperature using scanning tunneling microscopy~STM!.
Detailed investigation of step fluctuations on Cu~1 1 n!,
wheren513,19,79, hasalso been done, again with STM7

They also studied with Monte Carlo simulations the effect
correlation of the kink motion on the fluctuations. An ST
study of step fluctuations of steps on Pt~111! was done by
Giesen et al.8 and Barbieret al.9 along with L. Masson
et al.10 have also reported the roughening of steps on Cu~1 1
11! as well as the quantitative measurement of step-step
teractions. Pai and co-workers11 did a systematic study o
step-edge fluctuations on a Ag~110! surface at room tempera
ture using STM, and estimated a single-atom detachment
at step sites. Recently Wanget al.12 have also studied the
spatial and temporal fluctuations of close-packed steps
570163-1829/98/57~8!/4782~16!/$15.00
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Ag~001!. Steps on Si~111! have been studied with reflectio
electron microscopy~REM! at a temperature of 1172 K. Bar
telt et al.2 showed in this study that the step fluctuations a
rate limited by detachment kinetics on this surface. Alfon
et al.3 studied the same surface at the same temperatur
measure the step-edge stiffness and the magnitude of
step-step interactions. On the Si~001!-~231! reconstructed
surface the dynamics of steps were studied by Pea
et al.13 They found that the mass transport was dominated
kink diffusion. Swartzentruber and Schacht14 have also stud-
ied the kinetics of atomic-scale fluctuations of steps
Si~001! with a variable temperature STM. They found th
below 503 K the steps were virtually immobile and that
fluctuations were observed on a time scale of hours. Ab
623 K the step movements were so rapid as to make de
mination of the step position impossible. Bartelt a
co-workers4 did a systematic study of the step-edge fluctu
tions and equilibrium two-dimensional island shapes on
Si~001! surface. They obtained from this study the step-ed
stiffnesses, free energies, and step mobilities of the two ty
of single-height steps,SA andSB , naturally occurring on the
Si~001! surface. Their analysis of the step stiffness from th
mal fluctuations agreed quantitatively with the equilibriu
two-dimensional island shapes they observed, providin
direct connection between equilibrium structure and equi
rium thermal fluctuations.

The theoretical foundations for the relaxation of out-o
equilibrium surface morphologies to equilibrium were la
by the work of Mullins15,16 in the late 1950s and in the
1960s. More recently Bartelt and co-workers17,18applied this
work to the equilibrium fluctuations of a single isolated mo
atomic step on a surface. Pimpinelliet al.19 arrived at some
scaling laws in a qualitative manner to relate the relaxat
4782 © 1998 The American Physical Society
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57 4783UNIFIED VIEW OF STEP-EDGE KINETICS AND . . .
rates of bumps formed on initially straight steps. Cahn a
Taylor20 generalized Mullins’s work for the laws of relax
ation of geometrical perturbations of equilibrium surfac
This in turn inspired work by Bonzel and Mullins,21 who
further generalized Mullins’s earlier work15,16 to include
step-step interactions in surface relaxations and to relax
small-slope approximation. Liu and Metiu22 have also ap-
proached this subject from a slightly different perspective
a Langevin formalism. Recently Blagojevic´ and Duxbury23,24

derived the results of Barteltet al.17,18 by considering vari-
ous forms of a diffusion kernel. They also were able to ap
this analysis to a problem of a vicinal array of steps. In
this previous theoretical work,15–23either~i! the analysis has
been done for an isolated single step or~ii ! step-diffusion-
limited kinetics, surface-diffusion-limited kinetics, detac
ment-limited kinetics, and evaporation-limited kinetics ha
not been treated together, in a self-consistent manner.
present here a unified view of these four types of kinetics
apply it to multiple steps. In Sec. II we present the deriv
tions for the step-edge velocity in two different configur
tions: an isolated step and a vicinal array of equidistant st
In Sec. III we explore the implications of the formal resul
cataloguing numerous special limits@including new ones
such as~v! in caseA and ~ii ! in caseD#. We also consider
carefully the crossover behavior between some of the lim
ing cases with the goals of assessing the size~in parameter
space! of the limiting regimes and the rapidity of the cros
over. In Sec. IV we present some general comments, con
tions with the work of Refs. 20, 23, and 24 and a br
summary and tabulation of limiting cases. Appendix A d
cusses an alternate formalism to the conventional deve
ment given in Sec. II: carrier exchange with the terrace a
with the step-edge occur with independent kinetic coe
cients. Many of the results derived in the body of the pa
can be readily transcribed to this alternative approach,
ticularly those involving just one or the other of these tra
port avenues; other implications are left for future pape
Appendix B deals with the case of two adjacent steps, A
pendix C lists some mathematical details about the temp
scaling of the mean square step-edge fluctuations, and
pendix D connects some of the notations that are prevale
the literature. The reader interested only in the results m
skip Sec. II.

II. DERIVATIONS FOR THE STEP-EDGE VELOCITY

A. Isolated step—conventional formulation

Consider an isolated step on a surface that undergoes
dom fluctuations of its position. We assume that the fluct
tions are entirely due to the concentration field of adatoms
the pair of terraces adjoining the step, i.e., we neglect
external driving force causing net translation of the step
any step-step interactions that are not brought about by
concentration field. The surface is defined by the funct
z5z(x,y,t) at timet. The step position at timet is a curve of
discontinuity xs(y,t) on this surface such that the surfa
position is z5h for x(y,t),xs(y,t) and z50 for
x(y,t).xs(y,t), whereh is the height of the step, assume
to be monatomic. Thus, the step position is given byxs(y,t),
with ^xs(y,t)&y,t50, where^•••&y,t signifies a spatial~along
the step edge! and temporal average. The lattice consta
d
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parallel and perpendicular to the step, in theŷ and x̂ direc-
tions, areai and a' , respectively. The coarse-grained fre
energy functional15,21,25,26of the step edge is

F@xs~y!#5E
2L/2

L/2

@11~xs8~y!2#1/2b~u!dy, ~1!

where the integral is over the entire step-edge position gi
by xs(y), which runs a distanceL in the ŷ direction. The
prime after thex indicates a derivative with respect toy. The
square brackets indicate that the free energy is afunctionalof
xs(y). To avoid clutter in the notation, we henceforth dro
the subscripts, denoting the step position simply byx(y,t).
The step free energy per unit length@of the step# is denoted
by b(u); it is a function of the local orientationu of the step
edge~i.e., the direction of the normal in the terrace plan!,
which in turn is given by

u5~p/2!1tan21x8~y!. ~2!

Thus, if the step is perfectly straight,u5p/2. The chemical
potentialms of the step15,21,25is given by

ms5S dF

dx D S dN

dx D 21

, ~3!

whereN is the total number of atoms of the upper terra
minus that whenx(y)[0 or in other words it is the numbe
of atoms involved in causing the fluctuationx(y) of the step
edge from its mean position ofx(y)[0. Hence,

N5E
2L/2

L/2 x~y!

V
dy, ~4!

whereV is the surface unit cell area~i.e., in this context the
two-dimensional volume of surface mass carriers, nam
adatoms and vacancies! involved in mass transport.T is the
absolute temperature andkB is Boltzmann’s constant.

We make the linear kinetic assumption20,27,28that the ve-
locity of the step is linearly proportional to the change in t
chemical potential from its equilibrium value near the st
edge. Here the change in chemical potential on both side
the terrace contributes to the velocity. This is given by

ẋ~y,t !u65k6Fm~06,y!2ms

kBT G , ~5!

wherek2 (k1) is the kinetic coefficient for mass exchang
with the upper~lower! terrace,20,27–29which causes a step
edge velocityẋ(y,t)u2(1) . The dot indicates a partial deriva
tive with respect to time. Strictly speaking the chemical p
tential on the terracesm(x,y) appearing in Eq.~5! has
explicit time dependence and obeys the diffusi
equation.20–22,27In a linear approximation the chemical po
tential is simply related to the concentration of mass carr
involved in the mass transport@cf. Eq. ~3! of Ref. 27#: If
c(x,y) is the concentration of the mass carriers on the
races which takes an equilibrium valuecsu far away from the
step edge, then we have to linear orderm(x,y)/
kBT5(c(x,y)2csu)/csu .

To solve the diffusion equation, we need an initial con
tion and boundary conditions form(x,y,t). The boundary
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4784 57S. V. KHARE AND T. L. EINSTEIN
condition is given by the linear kinetic assumption of Eq.~5!.
As can be seen from the left-hand side of this equation,
step velocity has an explicit time dependence in it. That
plies that the boundary conditions on them(x,y,t) are them-
selves time dependent. Thus, we have to solve s
consistently for the time dependence of the step edge as
as the chemical potential of adatoms on the terraces.
problem, which is difficult~and perhaps impossible! to solve
analytically, is also called the classical Stefan problem.22,30

Following previous work,20,21,27we ignore the explicit time
dependence ofm(x,y,t) @i.e., m(x,y,t)→m(x,y)], and thus
work in the quasistatic approximation.~The range of validity
of this common approximation has recently be
discussed.31! Our problem then reduces to solving th
Laplace equation form(x,y):

¹¢ 2m~x,y!50. ~6!

Since the mass conservation is not explicitly presen
this Laplace equation, we must account for it separately.
incoming flux at a given point on the step edge consists o
normal component~i.e., along the unit normal in thex direc-
tion 7 x̂) coming from the upper and the lower terrace a
another contribution from motion along the step edge~i.e,
along the unit normal in they direction6 ŷ). The two terms
on the right-hand side of Eq.~7! describe the flux from the
edge and the terrace, respectively.@For notational simplicity,
we have assumed—rather unphysically—the sameDst on
both the upper and the lower side of the step edge. The b
approximation ofDstÞ0 just on the lower~upper! side for
adatom~vacancy! transport leads to more complicated equ
tions with no gain in physical insight.# The left-hand side is
the step-edge velocity which is caused by this incident fl
Thus, mass conservation at the step edge leads to the e
tion

ẋ~y,t !u65S 1

kBTD Fa'Dstm9~06,y!7Dsu

]m~06,y!

]x G .
~7!

Dst is the diffusion constant of atoms moving only along t
step edge andDsu is the diffusion constant of atoms on th
terrace.29,32–35Now eliminating the step-edge velocity from
Eqs. ~5! and ~7!, we get the boundary condition form(x,y)
on the adjoining terraces. This is given by

a'Dstm9~06,y!7Dsu

]m~06,y!

]x
5k6@m~06,y!2ms#.

~8!

@In Appendix A, we consider an alternative to Eqs.~5!, ~7!,
and ~8!, in which different barriers and kinetic coefficien
are associated with terrace and with step-edge diffusi#
The step-edge velocity is now given by

ẋ~y,t !5 ẋ~y,t !u11 ẋ~y,t !u2 . ~9!

Now to solve the Laplace’s Eq.~6!, the only quantity still to
be computed explicitly is the equilibrium chemical potent
ms at the step. Thus, Eqs.~1!, ~2!, ~3!, and~4! yield the exact
result
e
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ms52Vb̃~u!x9@11~x8!2#23/2, ~10!

whereb̃ is defined by

b̃[b~u!1
]2b~u!

]u2
. ~11!

For x8!1, we approximateb̃(u)'b̃(p/2). Computingms
to linear order inx8 we get

ms52b̃~p/2!Vx9. ~12!

Henceforth, we will omit the argument ofb̃ , assuming it to
be p/2. We now solve Laplace’s equation for the chemic
potential on the two adjoining terraces to the step. We
sume periodic boundary conditionsm(x1L,y)5m(x,y) and
x(y1L,t)5x(y,t). We use along with Eq.~6! the boundary
conditions of Eq.~8!, and the expression forms of Eq. ~12! to
get the solution form(x,y). This is then used in Eq.~7! and
the step-edge velocity is obtained using Eq.~9!. Performing
these calculations we get34,36

ẋ~y,t !52(
q

xq~ t !eiqy

tq
. ~13!

Here qL/2p561,62 . . . , and xq(t) is given by x(y,t)
5(qxq(t)exp(iqy). The sum overq is truncated by the con
dition that uqu<uqumax, whereuqumax'2p/ai and 1/tq is

1/tq5~1/tq
1!1~1/tq

2!, ~14!

where the relaxation times for fluctuations caused by a fl
of carriers from the upper (2) and lower (1) side are

1/tq
6[Sk6q2S aq

61bq
6

11aq
61bq

6D . ~15!

We have used the notation

S[Vb̃ /kBT ~16!

for the reduced stiffness, which has dimensions of leng
while

aq
6[Dsuuqu/k6 , bq

6[Dsta'q2/k6 ~17!

are dimensionless measures of the terrace diffusion and
step-edge diffusion relative to the attachment/detachm
rate. Note thatqL/2pÞ0 because we consider only fluctu
tions of the step-edge position from its mean position, wh
was already taken to coincide with they axis.

To take into account the stochastic nature of the step-e
fluctuations, we add a noise term to Eq.~13!. We then have

ẋ~y,t !5F@x~y,t !#1z~y,t !, ~18!

whereF@x(y,t)# is a functional ofx(y,t), which takes the
operational form2(qtq

21xq(t)exp(iqy). We will see in Sec.
III special cases whereF takes simple forms. Taking the
Fourier transform of the step-edge velocity, one gets

ẋq~ t !52
xq~ t !

tq
1zq~ t !. ~19!
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57 4785UNIFIED VIEW OF STEP-EDGE KINETICS AND . . .
The definition ofzq(t) is given byz(y,t)5(qzq(t)exp(iqy),
with qL/2p561,62 . . . . The restrictions thatx2q(t)
5xq* (t) andz2q(t)5zq* (t) guarantee thatx(y,t) andz(x,t)
are real. We take the noise so that^zq(t)& t50, for eachq,
and its two-point correlations are given by

^zq~ t !z2q8~ t8!&5 f qdq,q8d~ t2t8!. ~20!

The functionf q is as yet undetermined. From Eqs.~19! and
~20!, it follows37 that

^uxq~ t !u2&[^xq~ t !x2q~ t !&5~ f qtq/2!~12e22t/tq!.
~21!

We now determine the equilibrium value of these fluctu
tions in order to determinef q . Equation~1! can be written to
second order inx8 following Ref. 26, then expanded in th
Fourier modesxq to obtain the equilibrium fluctuations o
uxqu2:

^uxq~ t !u2&5
kBT

b̃Lq2
. ~22!

Hence taking the limitt/tq→1` in Eq. ~21! and comparing
with Eq. ~22!, we get for consistency that

f q5
2V

SLtqq2
. ~23!

This determines the two-point correlations of the noise te
in Eq. ~18! completely, through Eqs.~19! and ~20!, because
f q is now known.

B. Infinite array of steps

We now turn our attention to analyzing the fluctuations
an array of steps. This scenario is more likely to be enco
tered experimentally than that of an isolated step and he
presents a direct motivation for the study. We shall o
consider steps and terraces that are identical in terms of
equilibrium crystal structure. The simplest generalization
the already studied case of an isolated step, namely tha
two adjacent steps, is relegated to Appendix B, because
rather unphysical. Here we consider an infinite array of ste
running on average along the directionŷ. The outward nor-
mals to all terrace planes point along the positivez axis. The
chemical potential of stepi , is msi and is given by Eq.~12!.
The chemical potential on the terrace bounded by stepsi and
i 11 is m i ,i 11. The geometry is shown in Fig. 1. Each pair
nearest-neighbor steps is separated by a mean distancl .
Thus, the mean position at thenth step is given by
x(y)5nl , wheren50,61,62, . . . .We denote the fluctua
tions around these mean positions by xn(y,t) for the nth
step, so that̂ xn(y,t)&y,t50. In analogy with the case of th
single isolated step, the step-edge velocity similar to Eq.~5!
is given by

ẋn~y,t !5k1Fmn,n11~x,y!2msn

kBT G
x5nl

1k2Fmn21,n~x,y!2msn

kBT G
x5nl

. ~24!
-
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The chemical potentialsmn,n11(x,y) obey the Laplace equa
tion @Eq. ~6!#. This equation is to be solved with the tw
boundary conditions, similar to that of Eq.~8! for the iso-
lated step case,

a'Dstmn,n119 ~nl 1,y!1
Dsu]mn,n11~nl 1,y!

]x

5k1@mn,n11~nl 1,y!2msn#, ~25!

and

a'Dstmn,n119 ~~n11!l 2,y!1
Dsu]mn,n11~~n11!l 2,y!

]x

5k2@mn,n11~~n11!l 2,y!2msn11#. ~26!

Since all steps are now equivalent, we will just consider
step withn51 and its neighbors on the two sides,n50 and
n52. The Laplace Eq.~6! for the chemical potentialsm12
andm01 may be solved with the boundary conditions of Eq
~25! and ~26!. These solutions may then be substituted in
the Eq.~24! for the step velocity. The result is given by34,36

ẋ1~y,t !52(
q

$Aqx1q~ t !2Bq@x0q~ t !1x2q~ t !#%q2eiqy,

~27!

where we have defined

Aq[S~k1I q
21k2I q

1!

and

Bq[S~k1aq
11k2aq

2!/@2Eq cosh~ uqul !#. ~28!

The definitions ofEq , I q
6(t) are

Eq[@aq
1~11bq

2!1aq
2~11bq

1!#

1@aq
1aq

21~11bq
1!~11bq

2!#tanh~ uqul !; ~29!

I q
6[

1

Eq
$aq

7~112bq
6!1@aq

1aq
21bq

7~11bq
6!#tanh~ uqul !%.

~30!

FIG. 1. Schematic representation of an infinite array of ste
illustrating our choice of axes and notation.
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4786 57S. V. KHARE AND T. L. EINSTEIN
We make the further definitions

xS~y,t ![ (
n52`

`

xn~y,t !

and

xD~y,t ![ (
n52`

`

~21!nxn~y,t !; ~31!

and

w2~ t ![^~x~y,t !2x~y,0!!2&, ~32!

as the mean-square fluctuation of each step. The comb
tions xS(y,t) andxD(y,t) describe the two extreme cases
in-phase/acoustic27 and @fully # out-of-phase/optical motion
of the steps in the array, i.e.,xn11(y,t)56xn(y,t), for all n,
respectively. The two combinationsxS andxD are thef50
and f5p limits, respectively, of the transform
xf(y,t)[(nexp(inf)xn(y,t) discussed recently in Ref. 31.
can be shown from the definitions~31! and Eq.~27! that36,38

ẋS
D

~y,t !52(
q

~Aq72Bq! xSq
Dq

~ t !q2eiqy. ~33!

III. DISCUSSION OF LIMITING CASES
AND CROSSOVER

Evidently Eq.~27! @as well as Eq.~59! of Appendix B#
describes a set of coupled differential equations. Rather
attempting to decouple these equations, we will content o
selves with describing the important limiting cases, and th
the crossover between them. First we consider the li
uqul →`. In this limit we expect that each step behaves
an isolated step since all other steps are infinitely far aw
from it. Indeed, we find that in this limitBq→0, so the set in
Eq. ~27! decouples and reduces to Eq.~13! of the isolated
step, withSk7q2I q

6→1/tq
7 .

Evaporation condensation (3dEC), case A of Ref. 19. So
far we have neglected@3d# evaporation of the adatoms from
the terraces. This may easily be incorporated in our der
tion of Eq.~13!. We now defineLq[Axs

221q2, wherexs is
the diffusion length given byADsute, and te is the mean
time for evaporation of an atom with surface diffusion co
stantDsu .29,35 Now we need to replace Eq.~6! by19,27

@¹¢ 22xs
22#m~x,y!50. ~34!

All the boundary conditions remain the same as before.
nally, in Eqs.~13!, ~18!, ~27!, and~33! @as well as Eq.~B1!
of Appendix B and Eq.~58!#, we can simply replace al
Dsuuqu by DsuuLqu and uqul by uLqul . Note that no change
should be made in the termsDstq

2 or terms involving justq
without a correspondingDsu or l . In the limit where the
steps are infinitely far apart,~i.e., uLqul →`), Eq. ~27! @and,
later, Eq.~B1!# reduces to Eq.~13! with uqu replaced byuLqu
where appropriate. This is as expected since each step is
isolated from the others, andl disappears from all the phys
cally relevant expressions. This form of Eq.~13! provides a
generalization of the velocity equations of Bonzel a
Mullins21 and of Cahn and Taylor20 for the single isloated
a-
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n
it
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y
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-
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ow

step. Another alternative to this is Eq.~13! with the use of
Eq. ~A1! ~with the replacement of allDsuuqu by DsuuLqu).
We now consider five distinct sets of limits, for all of whic
we demand that there be no step-edge diffusion~i.e.,
Dst50), and that the diffusion lengthxs be small ~i.e.,
uquxs!1 or equivalently uLqu'xs): ~i! Dsu /(xsk6)
!1!l /xs , ~ii ! (xsk6)/Dsu!1!l /xs , ~iii ! l /xs!1
!Dsu /(xsk6) such that Dsul /(xs

2k6)@1, ~iv! l /xs

!Dsu /(xsk6)!1 and~v! Dsu /(xsk6)!l /xs!1. Applying
the limits in ~i! to Eq. ~13! ~with uLqu replacinguqu where
appropriate!, reduces it to39

ẋ~y,t !52S~Dsu /te!
1/2x9~y,t !. ~35!

This is analogous to Eq.~7! of Ref. 19. With the limits in
~ii !, the form of Eq. ~35! is unchanged except tha
2(Dsu /te)

1/2 is replaced by (k11k2). We note that this is
the same as Eq.~38! of caseB. ~See below.! This should not
be surprising since in both cases the kinetics is detachm
limited (DsuuLqu/k6@1); the only difference is that in the
present case we useuLqu'1/xs while for deriving Eq.~38!
we shall use the limit ofuLqu5uqu. The limits in ~iii ! are
similar to those in~ii !, except that we now apply them t
steps close together. Hence Eq.~33! gives in these limits39

ẋ(D,S)(y,t)5S(k11k2)x(D,S)9 (y,t), which just suggests tha
even though the steps are close together (uqul !1) the ter-
race diffusion is so fast (aq

6uqul @1) that each individual
step fluctuation is just determined by the detachment kin
ics, which is the rate-limiting step. It is as if the presence
the neighboring steps is not ‘‘felt.’’ With the limits in~iv! in
Eq. ~33!, we get39

ẋS~y,t !5S~ l /te!xS9 ~y,t !

and

ẋD~y,t !54SS k1k2

k11k2
D xD9 ~y,t !. ~36!

The result forxS(y,t) in Eq. ~36! is the result analogous Eq
~8! of Ref. 19, as expected. The result inxD(y,t) however, is
interesting in that the out-of-phase kinetics of the steps
determined by the ‘‘parallel-resistor combination’’ ofk6

@i.e., 1/(k1
211k2

21), or half the harmonic mean#. Even
though the kinetics is diffusion limited, thek6 appear in the
equation forxD(y,t). We now consider the limits in~v! in
Eq. ~33! to get39

ẋS~y,t !5SFDsu~k11k2!

tek1k2
GxS9 ~y,t !

and

ẋD~y,t !54S~Dsu /l !xD9 ~y,t !. ~37!

This limit was not considered in Ref. 19. The result f
xS(y,t) is unique in that all three types of transport coef
ciants corresponding to terrace diffusion (Dsu), evaporation
(te) and attachment/detachment at the step edge (k6) appear
in it. Comparing the limits in~iv! and ~v!, we see that the
only difference is thatl !Dsu /k6 in the former while
l @Dsu /k6 in the latter. Not surprisingly one obtains th
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result for xS(y,t) in Eq. ~37! by just replacingl with
Dsu(k1

211k2
21) in Eq. ~36!. Similarly the equation for

xD(y,t) in Eq. ~37! is obtained by replacingk1
211k2

21 with
l /Dsu in Eq. ~37!. One may now usem52 and
A252S(Dsu /te)

1/2, Sl /te ,4Sk1k2 /(k11k2), SDsu(k1

1k2)/(tek1k2), or 4SDsu /l @extracted from Eqs.~35–
37!# in Eq. ~C4! of Appendix C to obtain the scaling of th
mean square fluctuationsw2(t), wS

2 (t), and wD
2 (t) @all de-

fined by Eq.~32!# at early times.
Isolated-step evaporation-condensation (EC), case B

Ref. 19. In this case the rate-limiting step for mass transp
around an isolated step is the random attachment/detach
of adatoms~or vacancies! at the edge of the boundary. Th
happens in three distinct limits:~i! If periphery motion along
the step edge is completely prohibited~i.e., Dst50) and if
the detaching~attaching! atoms or vacancies go to~come
from! a reservoir of adatoms or vacancies on the terra
then aq

6@1. ~ii ! If terrace diffusion is completely absen
~i.e., Dsu50) and if the detaching~attaching! atoms or va-
cancies from kink sites go to~come from! a one-dimensiona
reservoir of adatoms or vacancies along the step edge i
where they move rapidly, thenbq

6@1, and we still obtain the
same result of Eqs.~38! and~39!. A more careful discussion
of this situation is provided in Sec. IV. We emphasize th
this limit also givesq2 kinetics even though there is no di
fusion on the terraces (Dsu50). ~iii ! Finally, motion may be
allowed along both the terraces and the step edge tho
detachment/attachment of the mass carriers is still the r
limiting step in transport~i.e., aq

6@1 andbq
6@1). Each of

these cases gives the identical simplification that the term
unity in the two denominators of Eq.~14! may be ignored, to
get 1/tq52Skq2, where we definek[(k11k2)/2. Using
this expression fortq in Eq. ~18!, we findF to be39

F@x~y,t !#52Skx9~y,t ! ~38!

with

^z~y,t !z~y8,t8!&54kVd~y2y8!d~ t2t8!. ~39!

Then in this limit the scaling of the mean-square fluctuatio
of Eq. ~32! with time is given by lettingm52 andA252Sk
in Eq. ~C4!. These are the same expressions as obtaine
Bartelt et al.17 Thus, our general formulation of the proble
presented here falls in the case of detachment-limited ki
ics considered in Ref. 17, as expected.

Isolated-step terrace diffusion (ISTD), case C of Ref..
In this case there is no step-edge diffusion (Dst50). There
are three possiblities one of which is that~i! the mass trans
port is rate limited by diffusion on both the upper and low
terrace (aq

6!1). This limit is considered for an isolated ste
Then the dominant term in the two denominators of Eq.~14!
is the constant term of unity. This leads to 1/tq52SDsuuqu3,
which when used in Eq.~18! gives a nonlocal form ofF
given by18,39

F@x~y,t !#5
4DsuS

p E
2`

` F ]2x~y9,t !

]y92 G
y8

g~y2y8!dy8

~40!

with
of
rt
ent

s,

elf

t

gh
e-

of

s

by

t-

r

^z~y,t !z~y8,t8!&58DsuVg~y2y8!d~ t2t8!, ~41!

whereg(y)[(c22y2)/(c21y2)2 definesg(y); c is a con-
vergence factor on the order of a lattice constant, i.e.,c'ai .
Then the mean-square fluctuations are given by usingm53
andA352SDsu in Eq. ~C4!. All these are the same expre
sions as obtained by Bartelt, Einstein, and Williams18 Thus,
our general formulation of the problem presented here f
in the case of terrace-diffusion-limited kinetics of Ref. 18,
expected. As an alternative to the limit~i! aq

6!1 we may
consider a case where there mass transport occurs only
one side of the step edge and is rate limited by diffusion
the other terrace, so that either~ii ! k250, aq

1!1 or ~iii !
k150, aq

2!1. In both these cases as well we get the limit
Eq. ~18! of the form of Eqs.~40! and ~41! except that 2Dsu
is replaced byDsu in both equations and in the expressio
for 1/tq above.

Diffusion from step to step (DSS), case D of Ref. 19. In
this case we consider an infinite array of steps in which
steps are close to each other@i.e., uqul !1, implying
tanh(uqul )'sinh(uqul )'uqul and cosh(uqul )'1]. No step-
edge diffusion is allowed (Dst50). We now consider three
distinct limits: The mass transport is terrace diffusion limit
(aq

6!1) such that ~i! aq
6!uqul !1, or such that ~ii !

uqul !aq
6!1. Alternatively, mass transport is rate limite

by detachment kinetics so that~iii ! uqul !1!aq
6 in such a

way thataq
6uqul @1. Limits ~i!, ~ii !, and~iii ! here are remi-

niscent of the limits~v!, ~iv!, and~iii !, respectively, consid-
ered under caseA, except that nowuqu replaces 1/xs . Taking
the limits ~i! of Eq. ~33! gives39

ẋD~y,t !5S 4SDsu

l
D xD9 ~y,t !

and

ẋS~y,t !52SDsu
2 S k11k2

k1k2
D x-S8 ~y,t !. ~42!

The result forxD(y,t) is analogous to Eq.~12! of Ref. 19, as
expected. Unlike caseB for an isolated step, hereq2 behav-
ior results from terrace-diffusion-limited kinetics. The resu
for xS(y,t) is analogous to Eq.~44!, discussed below. This
behavior arises because mass is conserved for the step
as a whole in the terrace-diffusion-limited kinetics cons
ered here. However, as opposed to the derivation of Eq.~44!,
we have in this casek2Þ0, which appears in the prefacto
If we consider the limits in~ii ! in Eq. ~33!, we get

ẋD~y,t !5
4Sk1k2

k11k2
xD9 ~y,t !

and

ẋS~y,t !52SDsul xS-8~y,t !. ~43!

This limit, analogous to limit~iv! in caseA, also was not
considered in Ref. 19. Interestingly, in this case as well,
result forxS(y,t) is analogous to Eq.~44! with even match-
ing terms (Dsul ) in the prefactor. If we apply the limits39 in
~iii ! to Eq. ~33! then we get identical results forxS(t) and
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4788 57S. V. KHARE AND T. L. EINSTEIN
xD(t) of the formẋ(D,S)(t)5S(k11k2)x(D,S)9 (t). These are
identical to the results obtained in limit~iii ! of caseA leading
to the same conclusions.

We thus see that the three distinct limits~i!, ~ii !, and~iii !,
give the sameq2 kinetics for xDq(t) whenever step-edg
diffusion is disallowed (Dst50) and the steps are suffi
ciently close together (uqul !1), albeit with different pref-
actors 4SDsu /l , 4Sk1k2 /(k11k2), andS(k11k2), re-
spectively. ForxSq(t) we get q4 whenever the kinetics is
terrace-diffusion limited (aq

6!1) andq2 kinetics whenever
it is detachment limited in a way thataq

6uqul @1. With
wD,S

2 (t) defined by Eq. ~32!, one can usem52 and
A254SDsu /l or 4Sk1k2 /(k11k2) to get wD

2 (t), and
m54 andA45SDsu

2 (k11k2)/(k2k1) or SDsul to obtain
wS

2 (t) from Eq. ~C4!, in the limits ~i! and ~ii ! considered
here. Though here as well as in casesA andB we haveq2

kinetics, the allowed motion of the mass carriers as well
rate-limiting process in mass transport are quite different
is evidenced by the different expressions forA2 in all these
cases. Experimentally these cases may simply be dis
guished by measuring not only the single-step fluctuati
but also those ofxS(y,t) andxD(y,t).

Perfect Schwoebel effect terrace diffusion (PSTD), cas
of Ref. 19. We now consider the limit of the perfec
Schwoebel barrier40 ~i.e., k250). No motion along the step
edge is allowed (Dst50) and the rate-limiting step in mas
transport is terrace diffusion (aq

1!1), and the steps are clos
to each other@ uqul !1, implying sinh(uqul )'uqul and
cosh(uqul )'1]. SinceBq→0, the terms inx2q(t) andx0q(t)
in Eq. ~27! vanish: since neighboring steps now do not e
change any mass, the fluctuations of one should not dep
on the fluctuations of the other when the fluctuations
small. The dependence onl of the fluctuations in the posi
tion of the step just indicates that the step is interacting w
a perfect reflector at a distancel away on the lower terrace
With these results used in Eq.~27! for x1(y,t), we get

ẋ1~y,t !52SDsul x1-8~ t !. ~44!

This equation shows thatq4 kinetics may be found in an
array of steps even though the rate-limiting process in m
transport is terrace diffusion~with no mass transport alon
the step edge!. @See caseF for a different situation.# Now
usingm54 andA45SDsul in Eq. ~C4!, we get the mean-
square step fluctuations of the step as a function of ti
Thus, just like theq2 kinetics, thisq4 kinetics also does no
support a unique microscopic mass transport mechan
Though both the PSTD limit of caseE and the PD limit of
caseF give the same scaling 1/tq;q4 in q, there is one
crucial difference. In the former case the prefactor depe
on the interstep separationl and in the later case it does no
This enables one, in principle, to measure these fluctuat
in the same sample at regions of different local orientatio
Also, independent checks need to be obtained for the rem
ing prefactor ofDsul or a'Dst , as the case may be. It is no
necessary that there be a perfect Schwoebel barrier as
sidered here or that carrier motion be restricted to the s
edge as in caseF for q4 kinetics to be observed. This is clea
from the limits~i! and~ii ! of caseD, where the in-phase ste
kinetics in an array exhibitsq4 behavior even in the absenc
e
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of a Schwoebel barrier and with terrace motion of carri
allowed, as observed from Eqs.~42! and ~43! for xS(y,t).

Periphery or edge diffusion (PD), case F of Ref. 19. We
now consider the limit in which the motion of adatoms
allowed only along the step edge (Dsu50), ~i! but is the
rate-limiting step in mass transport (bq

6!1). Then Eqs.~13!
and ~27! @as well as Eq.~B1!# take identical forms, as ex
pected since for perfect periphery diffusion the presence
an adjacent step should become irrelevant, at least in
limit of small fluctuations. The relaxation time is now give
by 1/tq52Sa'Dstq

4 and hence

F@x~y,t !#522Sa'Dstx-8~y,t !, ~45!

with

^z~y,t !z~y8,t8!&54a'VDstd9~y2y8!d~ t2t8!. ~46!

Then the mean square fluctuations are given by Eq.~C4! by
using m54 and A452Sa'Dst . These are again the sam
expressions as obtained by Barteltet al.17 Thus, our general
formulation of the problem presented here falls in the case
edge-diffusion-limited kinetics, as discussed in Ref. 17,
expected. If the rate-limiting periphery motion is allowe
only along the lower or upper terrace of the step edge t
the limit ~i! bq

6!1 is replaced by~ii ! k250, bq
1!1 or ~iii !

k150, bq
2!1, then the factor of 2 should be removed fro

Eq. ~45! and from the expression fortq above; the 4 in Eq.
~46! should be replaced by 2, as is found in Refs. 32 and
where they consider limit~ii !.

Direct sublimation (3dS) from the step edge, case G. We
now allow direct sublimation~condensation! of atoms@3d3#
at the step edge into~from! the vapor. Equation~34! must
then be written in 3d, with m5m(x,y,z). All the boundary
conditions remain as before. This leads in Fourier space
the wave vectorsqz andqx relating toq, the wave vector of
fluctuations along the step edge by the equa
qz

21qx
252q22xs

22[2Lq
2 . Then the solution of Eq.~13!

remains essentially unchanged in form, and we just nee
replace (Dsuuqu) by (Dvauqzu1Dsuuqxu), whereDva is the
diffusion constant of atoms in the vapor.35 Let Vv be the 3d
atomic volume in the vapor. For notational clarity we ide
tify our Dva /Vv with Dvrv of Eq. ~A.7! of Ref. 19. In the
thus-modified Eq.~13!, we take the limitsDsu5Dst50 and
Dvauqzu/k6!1, so that in Fourier space we obtain a res
analogous to that of Eq.~A.7! of Ref. 19 for an isolated
step,41

ẋq~ t !52SDvauqzuq2xq~ t !. ~47!

The result of Eq.~47! is essentially the 3d equivalent~in
Fourier space! of Eq. ~40! of caseC. Here the step kinetics is
limited by diffusion in a saturated 3d vapor instead of a 2d
vapor as in caseC.

Crossover between some of the limits.To study the cross-
over between the casesB, C, andF of an isolated step, we
define an effective exponentzq by

zq[2
] log~tq!

] log~ uqu!
, ~48!
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referring back to Eq.~15!. For simplicity of notation we
define,aq[aq

1 , bq[bq
1 , pq[aq1bq . We denote byr the

asymmetry in the attachment/detachment rates:r[k2 /k1 .
It is convenient to recast this asymmetry as aneffective
Ehrlich-Schwoebel barriere[2kBT ln(r),23,24,42 although
this identification can be quite misleading if the extra barr
at the step edge is small compared to the thermal energ43

Then we get

zq521F pq1bq

pq~11pq!GF @r ~11pq!#21~r 1pq!2

~r 1pq!@2r 1~11r !pq#G . ~49!

In both of the special cases~i! no Schwoebel barrier,40

k25k1 ~i.e., r 51, e50) and~ii ! perfect Schwoebel40 bar-
rier, k250 ~i.e., r 50, e5`), the bracket on the right in Eq
~49! reduces to unity . Thenzq is simply

zq521
pq1bq

pq~11pq!
[21

aq12bq

~aq1bq!~11aq1bq!
. ~50!

A contour plot ofzq of Eq. ~50! as a function ofaq andbq is
shown in Fig. 2. Whenk1 is small, i.e.,aq or bq is large, we
have a large plateau withzq52 and electronic capture~EC!

FIG. 2. Contour plot, with gray-scale shading, of the effect
exponentzq of Eq. ~50! as a function of the logarithms of th
dimensionless quantities related to the ratios of transport a
steps and across terraces to the detachment rate: log10bq and
log10aq . To aid comparison with experimental numbers, all log
rithms in this and subsequent figures are common. Use of loga
mic scales not only allows us to display a greater range of indep
dent variables but corresponds to how the data is plotted
extraction of effective exponents. Note that plateaus at the limiti
case, integer values 2~gray!, 3 ~light gray!, and 4 ~white!—
indicative of EC of caseB, TD of caseC, and PD of caseF,
respectively—consume most of the parameter space; the cros
regions are rather narrow. Contour curves are spaced at interva
0.10 from 2.05 through 3.95.
r
.

behavior~caseB). For aq!bq!1, there is a plateau with
zq54, since terrace diffusion becomes unimportant and s
edge diffusion limits transport~case F). Likewise, for
bq!aq!1, there is a plateau withzq53, since terrace dif-
fusion limits transport~caseC). The crossover regions ar
rather well confined and smooth, so that if one measures
effective exponent over a decade or so, it should hav
well-defined value~i.e., the log-log plot should be linear!
only if one is in one of the plateau regions. Conversely
one finds an effective exponent other than 2, 3, or 4, the
should not be good, and there should be indications of mo
tonic variation. With two or more decades of data, o
reaches one of the three integer plateau regions. If an
these statements are inconsistent with the data, then e
the experiment is flawed or the theory has left out so
crucial ingredient of the system.

Between the two extreme values ofr , the rightmost
bracket in Eq.~49! does not reduce to unity, but nonethele
it turns out to be relatively unimportant. In Fig. 3~a! we
display a contour plot of it as functions ofr andpq . For pq
larger than about unity, the term decreases smoothly@like
12(11pq

21)r , to leading order#, to reach a minimum value
of essentially 2(A221)'0.828, then rises smoothly again
unity @like 12@(11pq)/2#(12r ), to leading order#. For
large pq the minimum occurs at aboutr 5A221'0.42
(e/kBT50.87), but decreases smoothly@to r'0.32
(e/kBT51.1)# as pq decreases to about 2, then turns dow
strongly to zero. Overall, the factor appears most signific
for positive values ofaq andbq , regions in whichzq'2 ~EC
plateau!, so that ther -independent factor is tiny.

To check what happens at smallerr , we show in Fig. 3~b!
by gray scaling the difference inzq produced by the
r -dependent factor. The largest decrease is about20.3, indi-
cated by the darkest shading. Evidently for small@but not
tiny# values ofr the decrease occurs primarily in the regio
22<min(aq ,bq)<0, which is in the crossover region be
tween EC and the other two plateaus.~The details can be
readily investigated but are not particularly enlightenin!
The main conclusion is that the well-defined integer valu
should not be be affected significantly. From the conto
lines in Fig. 3~b!, we see that the principal effect of asym
metry is a modest decrease in the size of the plateau reg
of PD and TD behavior, with crossover setting in for smal
values ofbq and aq , respectively. For practical purpose
this role of asymmetry seems negligible.

To consider the crossover among casesB, C, D, andE
we use the definition

zq[21S ] log~Aq12Bq!

] log~ uqu! D , ~51!

as applied toxD,q(t) in Eq. ~33!, with the restrictionDst50
(bq50). Even with this restriction, the expression is comp
cated. For compactness, we definecq[cosh(uqul ) and
sq[sinh(uqul ). Then

g

-
h-
n-
in
-

ver
of
zq521
2r @r ~11cq!1~11r !aqsq#~sq2uqul !22raq

2~ uqul cq1sq!1~11r 2!aq
2~cqsq1uqul !

@~11r !aqcq1~aq
21r !sq#@2r ~11cq!1~11r !aqsq#

. ~52!
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Analytically, we see that in the limituqul →` we recover
the behavior for isolated steps: the terms in Eq.~52! that
survive ~besides, of course, the constant term of 2! are the
terms incq

2 , sq
2 , or cqsq . Then Eq.~52! reduces to Eq.~49!

with bq50. Furthermore, in this limit as can be seen fro
Eq. ~49! the limit aq@1 leads tozq52, while the limitaq!r
giveszq53, corresponding to casesB andC, respectively.44

FIG. 3. ~a! Contour plot, with gray-scale shading, of the mul
plicative factor in brackets on the extreme right of Eq.~49!. Note
that this factor depends onaq and bq only through the sum
pq[aq1bq . For most of phase space, this expression is ne
unity ~indicated by white!. Contour lines are at 0.98, 0.96, . . . 0.86,
and 0.84. The minimum value of the factor is 2(A221)'0.828.
See text for more details. The overall effect of the factor turns ou
be negligible, as seen in~b!. ~b! Two distinct aspects of the reduc
tion of zq by the multiplicative factor plotted in~a!. ~i! Modification
of contours of constantzq of Fig. 2 due to ther -dependent factor.
For clarity and emphasis, only the four contours bounding
crossover regions are depicted:zq 5 3.95, 3.05, 2.95, and 2.05. Th
unbroken curves, taken directly from Fig. 2, are forr 51. The long-
dashed and short-dashed curves are forr 50.4 andr 50.1, respec-
tively, in Eq. ~49!. ~ii ! The gray-scale shading indicates, for th
particular valuer 50.1, thedifferencein the value ofzq due to the
r -dependent factor, viz.zq as given by Eq.~49! minuszq as given
by Eq. ~50!. White indicates essentially no difference. The dark
shading indicates about20.29.
On the other hand in the limituqul !1, we have
sinh(uqul )'uqul and cosh(uqul )'1, which reduces Eq.~52!
to

zq521
2~12r !2aq

2uqul

@~11r !aq1~aq
21r !uqul #@4r 1~11r !aququl #

.

~53!

Note that in the limitr 51, we getzq52 in Eq. ~53!, corre-
sponding to caseD. In the symmetric caser 51, Eq. ~52!
reduces to

zq521
sinh~ uqul !2uqul

sinh~ uqul !1aq~cosh~ uqul !11!
, ~54!

for which we show a contour plot ofzq as a function ofaq
anduqul in Fig. 4. Foruqul @1 andaq!1 there is a plateau
at zq53, corresponding to the TD behavior of caseC. There
is a smooth descent tozq52, characteristic of EC, in the
other three quadrants. The crossover occurs over rough
decade along either axis. The two quadrants withaq@1 cor-
respond to caseB, while the remaining quadrant withaq!1
and uqul !1 is caseD, in which the long-wavelength TD
fluctuations on a step relatively close to its neighbors h
the signature of EC fluctuations because a power ofuqu is
surplanted by 1/l . The general behavior seen in Fig. 4 hol
until remarkably smallr . Qualitatively, the descent from th
plateau occurs at decreasing values ofaq and ripple develops
on the lower plateau along the diagonalaququl '1. For
r 51/2 (e/kBT50.69), this ripple at its largest correspon
to zq'2.05. By r 50.1 (e/kBT52.3), this ripple has in-
creased tozq'2.5 @see Fig. 5~a!#. Only for very smallr does
qualitatively new behavior occur. The ripple broadens a
grows, and its center shifts to smaller values ofaq as r de-
creases. Byr'102521026 (e/kBT511.5213.8), a plateau
at zq54 has formed in the quadrantaq!1 anduqul !1 ~see
Fig. 5~b!#. This region corresponds to caseE. Referring to
Eq. ~53!, we see that forr 50, aq!1, we getzq54 analyti-

ly

o

e

t

FIG. 4. Contour plot with gray-scale shading, ofzq illustrating
the features of Eq.~52! for no step-edge transport (bq50) and no
Ehrlich-Schwoebel barrier (r 51). The crossover region is rela
tively narrow. The value ofuqul near the crossover is general
insensitive toaq . The white plateau corresponds to caseC behavior
with zq53. On the dark plateauzq52. Contour curves are space
at intervals of 0.10 from 2.05 through 2.95.
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cally. We recognize now, however, that such behavior w
occur only for extremely smallr , with virtually no attach-
ment to steps from their upper side.

IV. COMMENTS AND SUMMARY

Remarkably, only theuqu3 kinetics of caseC is associated
with a unique microscopic mass transport mechanism

FIG. 5. ~a! As in Fig. 4, contour plot ofzq illustrating the fea-
tures of Eq.~52! for no step-edge transport (bq50) but with a
rather large Ehrlich-Schwoebel barrier (r 51022). Contour curves
are spaced at intervals of 0.10 from 2.05 through 3.25. A new ri
~white sliver, with zq'3.3) divides the plateau atzq52. ~For
r'0.2 this feature already appears—at somewhat largeraq—as a
modest ‘‘foothill.’’! The plateau atzq53 ~now darker than in Fig. 2
due to the gray-scale change necessitated byzq above 3! has been
pushed largely off the plot on the upper left, to smalleraq ; the last
contour curve near the upper-left edge is forzq52.95.~b! Similar to
~a!, but with asymmetry sufficient~here r 51026) to produce be-
havior close to the ‘‘perfect Schwoebel barrier’’~caseE) limit of
Pimpinelli et al.19 Contour curves are spaced at intervals of 0.
from 2.05 through 3.95. The new plateau atzq54 ~white region! is
indicative of this extreme case. Asr→0 this plateau extends to
progressively smaller values ofaq . The plateaus associated wit
TD at zq53 ~light gray, upper-left quadrant! and with EC atzq52
~darker gray, right side! are clearly seen.
ll

f

‘‘slow’’ terrace diffusion aq
6!1 in an isolated step geom

etry. The other two limits ofq2 andq4 kinetics are found in
multiple cases such as casesA, B, andD for the former and
casesD, E, andF for the latter, so that further information i
needed to establish the transport mechanism. Two of
isolated-step cases,B andF, correspond to modelsA andB,
respectively, of dynamical critical phenomena.45 However,
for caseC we have found no simple correspondence46 with
these models.

In taking the limits considered in casesA throughF, it is
important to distinguish the physically allowed motion of th
mass carriers from the rate-limiting process in the moti
Since there has been considerable confusion about this
we examine arguably the most striking example. We c
sider the limit Dsu50 in Eq. ~13!, which implies that the
motion of carriers is restricted to the periphery or edge of
isolated step. This restriction does not imply that the syst
exhibits behavior characteristic of caseF: even though de-
tachment onto the terrace is explicitly prohibited becau
Dsu50, we can still get caseB, i.e., EC. This result follows
from Eq. ~13! or the extrapolation of Fig. 2 to the limi
ln aq→2`, when the rate-limiting process is detachment
netics, i.e.,bq

6@1. On the other hand, if the rate-limitin
process is diffusion along the periphery, i.e.,bq

6!1, then we
do get caseF. Hence, the nomenclature EC or PD stands
for the allowed motion but for the rate-limiting process in t
motion. In other words, the EC limit can also occur when t
motion of carriers is only along the periphery and disallow
on the terraces. In this case motion along the step edge o
atom between detaching from a kink site and reattach
onto another kink site on the edge occurs ‘‘very fast.’’ Th
may also be seen in terms of an effective ‘‘hop length’’
the@mass# carriers, as we will see in the following paragrap
In general one may expect intermediate behavior betw
these two extreme limits. Such an analysis for the fluctuat
boundary of adatom and vacancy islands has already b
shown in Ref. 33. This intermediate case has recently b
observed in the case of monolayer adatom island edge
Cu~001! and Ag~001! by Pai et al.47 Earlier
explanations32,33,48of the motion of large vacancy islands o
Ag~111! suggested that mass transport in this system
terrace-diffusion limited. Recent evidence49 indicates that the
microscopic mass transport is restricted to the island per
ery and that an explanation similar to the case of Cu~001!
and Ag~001! adatom islands47 may describe the motion mor
correctly. Similar distinctions between ‘‘allowed motion
and ‘‘rate-limiting motion’’ apply to the other limits of case
A, C, D, andE as well.

Recently, Blagojevic´ and Duxbury23,24 have described
step motion and fluctuations from a new perspective. Th
have derived some of the limits we have considered in te
of the probability distributionP(y) that an adatom emitted
from a step will reattach to it a distancey away. Furthermore
they have related parameters in the continuum theory suc
Dsu and k6 to microscopic energy parameters, which d
scribe the potential energy surface in which the mass carr
~adatoms or vacancies! move. We briefly show here some o
the connections between their approach and the pre
work. In Eq.~13! we take the limitsDsu50 andk250. We
define the lengthj[Aa'Dst /k15q21Abq

1. The qj depen-

e
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dence of theqth component of Eq.~13! then becomes50

~qj!2/@11~qj!2#

5 (
n51

`

~21!n11~qj!2n

5 (
n51

`

@~21!n11~qj!2nG~2n11!#/@~2n!! #, ~55!

where theG(z) is the gamma function, which for intege
values ofz reduces to (z21)!.53 Using this form we get

~qj!2/@11~qj!2#

52j21E
0

`

(
n51

`

~21!n@~2n!! #21~qy!2ne2y/jdy

52E
0

`

@12cos~qy!#P~y,j!dy, ~56!

where P(y,j)[(2j)21exp(2y/j). Inserting Eq. ~56! into
Eq. ~13! we see that itsqth component is identical to Eq
~11! of Ref. 23 with the choice ofP(y) made above, which
is also one of their special choices. Thus, we further iden
our b̃ as theirS̃, and ourVk1 as theirGse ~their hopping
parameter!.

Consider now the alternative limitDst50 andk250 ~or
k150) of Eq. ~13! so that

1/tq5Sk6q2aq
6/~11aq

6!

52Sk6q2E
0

`

~12e2uqux!P~x,Dsu /k6!dx. ~57!

The 6 signs in the equation correspond to the limitsk750.
Now consider the corresponding limit in Eq.~28! of Ref. 23,
which in their notation impliesaU50 ~or aL50). Using this
limit in their Eq. ~28! and substituting the result in their Eq
~11! we get Eq.~57! provided we replace exp(2uqua') by
unity in their Eq. ~28!. Then we get the identifications a
before that ourb̃ is their S̃, and ourVk65Gh . Furthermore
we get ourDsu as their (a'

2 n)exp(2E0 /kBT), our k6 /Dsu as
their a L

U
and ourV as theira'ai . Duxbury51 points out that

the ad hoc replacement of exp(2uqua') by unity to match
their result with Eq.~57! signifies one of the real difference
between our approach and that of Ref. 23. He states that
difference originates because of the different ways of solv
Laplace’s equation on the terraces. In Ref. 23, an atom
placed an atomic spacing away from the step edge, and
diffusion is treated from that source. In our work and simi
earlier treatments,15,17,21,27,33,34the diffusion is studied in the
presence of a step which is perturbed from its original
shape by an infinitesimal amplitude. The method of Ref.
then introduces new terms such as exp(2uqua'), which are
due to the distance an atom jumps when it detaches fro
step edge. There are no such terms in our analysis or ea
work.15,17,21,27,33,34Though we have shown the similarity o
our approach and that of Ref. 23 in the limit of no terra
diffusion (Dsu50), we have not been able to do so in t
most general form of Eq.~13!. As mentioned above51,52there
is a real difference in the treatment of terrace diffusion in
y

his
g
is
he
r

t
3

a
ier

e

two approaches. Even if this were not the case, it is not c
how to show the equivalence of these two approaches for
most general case, whenneither Dsu nor Dst vanish.

An intuitive feeling for Eq.~56! is obtained simply. The
mass transport of a step at a point is determined by the
ference in chemical potential there and that at a point a
tance6y along the step edge. This difference inq space is
proportional to 12cos(qy). We may think of the probability
of having this difference at a distancey as given byP(y).
Again if j→` thenP(y) goes to a constant and the transp
is just curvature@x9(y,t)# driven ~i.e., q2 kinetics, caseB).
If insteadj→ai then for qai@1 the transport is driven by
the second derivative of the curvature~i.e., q4 kinetics, case
F). Alternatively we may regardj as an effective hop length
along the periphery of an atom after it detaches from a k
site on the step edge. Let us suppose that it may only at
to another kink site on the edge. ThenP(y) becomes the
probability of finding a kink at a distancey along the step
edge from a kink at the origin~i.e., aty50). If we assume
now that the probability of findingn kinks in a lengthj of
the step is a Poisson distribution with a mean of unity,54 then
it would automatically lead to the form ofP(y) chosen by
us. Similar arguments for a closed~circular! geometry can
equally well be used to explain the noninteger expone
observed in the diffusion of large adatom islands47 on
Cu~001! and Ag~001! surfaces or of vacancy islands o
Ag~111!.48,49 In the notation of Ref. 33,Rst would be the
equivalent ofj in a circular, closed geometry.47 In that con-
tinuum theory,33 this extra length scale@ultimately the de-
nominator in Eq.~55!# can produce a noninteger scaling e
ponent~a!, in contrast to simpler theories.

Table I lists the special cases addressed explicitly in
paper. Identical entries in the fourth and fifth column in
row indicate that the steps appear as ‘‘effectively’’ deco
pled ~since it impliesBq /Aq!1 in these limits! and are de-
scribed by a single step equation, as in caseE and in limits
~iii ! of casesA and D. However, in caseE the interstep
distancel does enter as a prefactor, indicating the indire
effect of the neighboring steps.

We have shown in a unified picture how the various m
croscopic mass-transport mechanisms come into play
causing step-edge fluctuations of a single isolated step
well as those of steps in a vicinal array. We have conside
special limits@including some new ones such as~v! in caseA
and ~ii ! in caseD]) where only certain types of mass tran
port are allowed and of these allowed ones a particular on
rate limiting. In these limits a scaling of the relaxation tim
tq of a fluctuation of wave numberq ~wavelength
l52p/uqu) was found. There is, however, no scaling in ge
eral away from these limits, as is evidenced from the co
plicated forms of Eqs.~13! and ~27!. We have, however,
studied the crossover between several of these limits.

In analyzing both the limiting behavior and the crossov
it has been convenient to rely on the dimensionless ra
r 5k2 /k1 , uqul , aq

6 , andbq
6 . In an actual experiment, on

will certainly vary q and might also changel or tempera-
ture. Sinceq is implicitly involved in the formation of the
latter two dimensionless ratios, experimental trajectories w
be complicated but manageable in the various figures
scribing crossover. Temperature manipulation produce
greater problem, since characterization of the thermal va
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TABLE I. List of limiting cases discussed in the text. The first column describes the cases and the corresponding limits considere
III. Dsu andDst are the diffusion constants for motion along the surface~terrace! and the step edge, respectively~Refs. 29 and 35!; k6 is the
kinetic coefficient for mass exchange between the step and the lower/upper terrace; andl is the mean spacing between steps. These
defined more precisely in Sec. II~Refs. 29 and 35!. The key dimensionless ratios areuqul , where uqu is the capillary wave numbe
~wavelengthl52p/uqu), andaq

6 andbq
6 , which are measures of the terrace diffusion and the step-edge diffusion, respectively, rela

the attachment/detachment rate, as defined in Eq.~17!. Other parameters in casesA andG are defined in the appropriate subsection of S
III, and reduced stiffnessS is defined by Eq.~16!. The second column cites the relevant equation numbers for that case, with
modification of prefactors if necessary. The remaining columns indicate the determined prefactor and the exponent ofuqu of the scaling of
tq

21 : The third column indicates the limit oftq
21/Sq2 from Eq. ~13!. The fourth and fifth columns indicate the limits of (Aq62Bq)/S from

Eq. ~33!, for the out-of-phase@optical# and in-phase@acoustic# combinations, respectively, of steps in an infinite array. Stars indicate
absence of relevant entries in that cell. As described in Appendix A, the table can be readily recast into the variables of the a
formalism by making the appropriate replacement ofk6 by k6

su or k6
st , with aq

6 andbq
6 being replaced by their primed counterparts.

Case: Limits Equation tq
21/Sq2 (Aq12Bq)/S (Aq22Bq)/S

A (3dEC): Dst50, uLqu'xs

~i! Dsu /(xsk6)!1!l /xs ~35! 2(Dsu /te)
1/2 ! !

~ii ! xsk6 /Dsu!1!l /xs ~35! w/ 2(Dsu /te)
1/2→k11k2 k11k2 ! !

~iii ! l /xs!1!Dsu /(xsk6) ~36! w/ 4(k1
211k2

21)21

such thatDsul /(xs
2k6)@1 & l /te→k11k2 ! k11k2 k11k2

~iv! l /xs!Dsu /(xsk6)!1 ~36! ! 4(k1
211k2

21)21 l /te

~v! Dsu /(xsk6)!l /xs!1 ~37! ! 4Dsu /l Dsu(k1
211k2

21)/te

B ~EC!: aq
6@1 or bq

6@1
~i! Dst50, aq

6@1 ~38!, ~39! k11k2 ! !

~ii ! Dsu50, bq
6@1 ~38!, ~39! k11k2 ! !

~iii ! bq
6@1, aq

6@1 ~38!, ~39! k11k2 ! !

C ~ISTD!: Dst50
~i! k250, aq

1!1 ~40!, ~41! w/ Dsu→Dsu/2 Dsuuqu
~ii ! k150, aq

2!1 ~40!, ~41! w/ Dsu→Dsu/2 Dsuuqu ! !

~iii ! aq
6!1 ~40!, ~41! 2Dsuuqu

D ~DSS!: Dst50, uqul !1
~i! aq

6!uqul ~42! ! 4Dsu /l Dsu
2 (k2

211k1
21)q2

~ii ! uqul !aq
6!1 ~43! ! 4(k1

211k2
21)21 Dsul q2

~iii ! aq
6@1 ~43! w/ 4(k1

211k2
21)21

such thataq
6uqul @1 & Dsul q2→k11k2 k11k2 k11k2

E (PSTD): k250, Dst50
& uqul !1!1/aq

6 ~44! ! Dsul q2 Dsul q2

F ~PD!: Dsu50
~i! bq

6!1 ~45!, ~46! 2a'Dstq
2

~ii ! bq
250, bq

1!1 ~45!, ~46! w/ Dst→Dst/2 a'Dstq
2 ! !

~iii ! bq
150, bq

2!1 ~45!, ~46! w/ Dst→Dst/2 a'Dstq
2

G ~3dS!: Dst5Dsu50
& Dvauqzu/k6!1 ~47! Dvauqzu ! !
or
s
oe
is
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tion requires an explicit microscopic model of the transp
process. In our treatment, such a model is neither neces
nor even desirable; our approach is to extract transport c
ficients from@other mesoscopic# experiments, so that there
no dependence ona priori insights. Likewise, in our formal-
ism it does not matter whether transport is by adatoms~as is
usually assumed implicitly! or by vacancies@as found
recently55 for Cu~001!#. Thus, many microscopic subtletie
are transcended at this level.

The present theory is limited in several ways. It is line
in the fluctuations. It uses a small-slope approximation
the chemical potential. We have also neglected the poss
significant effect of step permeability. This phenomenon
t
ary
f-

r
r
ly
s

important in the relaxation of biperiodic gratings on Si~001!,
as demonstrated recently.5 The possibility of atoms just
crossing a step from one terrace to the next without be
attached to the step edge has also been proposed earlier56 In
Appendix A we have introduced a formalism that treats
dependently the mass exchange associated with terrace
with step-edge diffusion. Some transcriptions of the resu
in the body of our paper~in this alternative approach! can be
readily written, while others remain for future publication
Generalization of our and related approaches may be take
at least three possible directions:~i! Other linear physically
relevant terms such as a constant force acting on the ada
and vacancies on the terraces~such as may be thought of a
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4794 57S. V. KHARE AND T. L. EINSTEIN
acting under the influence of a direct current being pas
through the crystal under study57! or a linearized step-ste
interaction term.2,17,31,58~ii ! Another generalization would b
to consider the effect of large fluctuations through the exc
sion of the small slope approximation21 and including other
nonlinear terms.21,59 ~iii ! One may also relax the quasistat
assumption.22 These and other generalizations, though st
ied to some extent,2,17,21,22,58,59have not yet been fully ex
plored.
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APPENDIX A: ALTERNATIVE FORMALISM

The boundary condition expressed in Eq.~8! is not
unique, even in a linear theory. In an alternative and ar
ably physically more appealing description, the kinetic co
ficient k6 is different for an atom detaching from a kink si
onto a neighboring terrace and an atom detaching from
kink site onto a more mobile position but still along the st
edge. On a microscopic level, there should be~and are,
physically! different activation barriers associated with d
taching from the step or just becoming mobile along it, w
a resultant discontinuity in the chemical potential at the s
edge. This picture is more general than that considered
viously in Refs. 21, 33, and 34. We denote the two kine
coefficients byk6

su and k6
st , respectively. Then we get tw

equations to replace each of Eqs.~5!, ~7!, and~8!. To illus-
trate, Eq. ~8! is replaced by the equation
a'Dstm9(06,y)5k6

st@m(06,y)2ms# and 7Dsu]m(06,y)/
]x5k6

su@m(06,y)2ms#. The discontinuity ofm(x,y) as x
→0 requires the use of thesetwo boundary conditions in-
stead of the single one of Eq.~8!. The form of Eq.~13!
remains the same but with the replacement of Eq.~15! by

1/tq
6[Sq2F k6

suaq8
6

11aq8
6

1
k6

stbq8
6

11bq8
6G , ~A1!

with the definitions aq8
6[Dsuuqu/k6

su and bq8
6

[a'Dstq
2/k6

st . Eqs. ~18!–~23! maintain their form under
these changes. For the boundary conditions for an infi
array, Eqs.~25! and ~26!, similar modifications are then re
quired. This reformulation entails the following changes
Eqs.~27!–~33! and Eq.~B1!: ~i! settingbq

650, ~ii ! replace-
ment ofaq

6 by aq8
6, ~iii ! replacement ofk6 by k6

su , and~iv!
in the definition of Aq , addition of the term
Sk6

stbq8
6/(11bq8

6).
Notice that in the limitk6

su5k6
st5k6 , Eq. ~A1! doesnot

simply reduce to Eq.~15!; this is an alternative formulation
rather than a mere extension of the conventional approac
d
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Sec. II. All the limits considered in Sec. III and Table
remain unaffected with the replacement ofk6 by k6

su,st as
appropriate. As already dicussed in caseA of Sec. III, we can
include the effect of evaporation from the terraces into
3d vapor by just replacinguqu in the definition ofaq8

6 by
uLqu and alsouqul everywhere byuLqul . In caseG ~only!
we substitute fork6 a third kinetic coefficientk6

va corre-
sponding to the direct sublimation of an atom from the s
edge into 3d vapor. Figures 4 and 5 remain unaffected, b
with the understanding thatk6

su andaq8
6 replacek6 andaq

6 ,
respectively. Figures 2 and 3 will change, as will their co
responding Eqs.~49! and~50!. Equation~A1! @and the result-
ing Eq.~13!# serves as an alternative to the velocity equat
derived by Bonzel and Mullins in the Appendix of Ref. 21

APPENDIX B: TWO ADJACENT STEPS

As an intermediate case between single isolated steps
a vicinal array of steps one can consider two adjacent s
separated by a mean distancel .24,34 The mean position of
the first step will be given byx50 and that of the second on
by x5l . The upper terrace of the first step extends
x52` from x'0. The lower terrace of the second ste
extends tox51` from x'l . This scenario of two nonin-
teracting steps separated by a fixed distancel cannot occur
in equilibrium. We present this case for comparison with
similar result of Ref. 24. One may write appropriate boun
ary conditions for this case and solve the problem as don
Ref. 34. However, the approach we follow here is to use
solution in the form of Eq.~27! of the problem for a vicinal
infinite array of steps and then, specialize it to the case
two steps of the above-mentioned geometry. To do this
first observe that the 0th step has to be infinitely far aw
from the first step and the 3rd one has to be infinitely
away from the second step. This is simply achieved by
ting l →` in the terms containingBqx0q(t) or k2I q

1 in the
equation for the first step and in the terms contain
Bqx3q(t) or k1I q

2 in the equation for the second step. In th
limit we get Sq2k6I q

751/tq
6 and Bqx0q(t)5Bqx3q(t)50.

We then get the equations for the two steps as34,36

ẋ1
2

~y,t !52S(
q

eiqyH F k6I q
7q21S 1

tq
7D Gx1q

2q

~ t !

2FDsuuqu3

Eq
Gx2q

1q

~ t !J . ~B1!

Then limits can be taken as described in the text.

APPENDIX C

In this appendix we derive the early-time scaling relatio
ship of the mean-square widthw2(t) defined by Eq.~32!,
with time t. Such a scaling is possible only in cases wheretq
of Eq. ~14! scales with uqu, so that we may write
tq

215Amuqum, wherem52,3,4, andAm is a constant. Using
the Fourier expansion ofx(y,t)5(qxq(t)exp(iqy), we may
write
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w2~ t !5(
q

(
q8

^@xq~ t !2xq~0!#@xq8~ t !2xq8~0!#

3exp@ i ~q1q8!y#&. ~C1!

Using this with Eqs.~20!–~23!, we get

w2~ t !5(
q

^u~xq~ t !u2&5
kBT

b̃L
(

q
F12exp~22tAmuqum!

q2 G ,

~C2!

In deriving Eq.~C2! we assumed that the step was initial
straight and lying along they axis, implying thereby that
xq(0)50 for all q. Taking the limits tAm /Lm→0 and
ai

m/(tAm)→0, we get

w2~ t !5
V

mpS ~2tAm!1/mE
0

`F12exp~2x!

x~m11!/m Gdx ~C3!

which, after integration by parts, gives

w2~ t !5
V

p S 2tAm

Sm D 1/m

GS m21

m D , ~C4!

where G(z) is the gamma function53 and G(1/2)5Ap
51.77245... ,G(2/3)51.3541... , andG(3/4)51.2254... .53

As an alternative to the definition of Eq.~32! we may use
w2(t1 ,t2)5^@x(y,t2)2x(y,t1)#2&. Here as well it is as-
sumed that the step is initially straight@i.e., x(y,0)50], and
that t1 ,t2→`, so that the step fluctuations have reach
equilibrium at these times. The timet[ut22t1u is assumed
to be small. In this case Eq.~C2! is modified so that we
replaceT by 2T and 2Am by Am and make the identification
of w2(t) with w2(t1 ,t2). Then the only modification in the
final result of Eq.~C4! is that 2(1/m) is replaced by 2.23,60

This explains the apparent difference by a factor of 23/4 be-
tween the results of Refs. 10 and 17.

APPENDIX D: NOTATIONS

The literature contains an unfortunate plethora of no
tions for identical quantities. We here connect our notat
y

d

a-
n

with some of that present in the previous literature. W
denote symbols used in Ref. 32 by KB, Ref. 33 by K
Ref. 21 by BM, Ref. 27 by BZ, Ref. 17 by BG, and Ref. 1
by BE. The symbols in the present work shall carry n
superscript. We note that there is a subtle difference betw
the notation of KB and KE. First there are the identitic
definitions in both paperscsu

~KB!5csu
~KE! , Dsu

~KB!5Dsu
~KE! .

However,cst
~KB! is the actual carrier density along the ste

edge, andDst
~KB! is the actual diffusion constant along th

edge. In KE, cst
~KE! is defined as@csua'#~KE! leading to

Dst
~KE!5@Dstcst /(csua')#~KB!. Thuscst

~KE! andDst
~KE! are mere

definitions and should not be confused with the actu
physical carrier concentration along the step edge which
cst

~KB! and the actual diffusion constant of these carriers alo
the step edgeDst

~KB! . Also to connect the present work with
that of KB and KE we have the identification
k65@csuG6#~KE!, Dsu5@DsucsuV#~KB! and
a'Dst5@DstcstV#~KB! or in other words withV5aia' we
getDst5@Dstcstai#

~KB!. Footnote 34 of KE also needs mod

fication. We identifyb̃5@hz#~BM!. BM consider mass trans
port on both sides of the step in a single expression in th
Eq. ~A.10!. This is also true of Eq.~6! of BG. It is therefore
not possible to compare ourk6 with their notation. Still, we
use here k250 for sake of comparison to ge
k1 /(kBT)5@m/V#~BM!. They use V~BM! as a three-
dimensional volume whileV is two dimensional. We iden-
tify V5@V/h#~BM!, Dsu5@VnDt/h#~BM!, and
a'Dst5@Vna0Ds/h#~BM!. Similarly comparing our Eq.~38!
~with k2Þ0) with Eq. ~6! of BG we get 2kV5Ga

~BG! and
comparing our Eq. ~45! with their Eq. ~17! we get
2a'VDst5@Gh#~BG!, with periphery diffusion along the
lower and upper step edge being allowed. If it is allow
only on the lower step edge thena'VDst5@Gh#~BG!. BZ do
not consider transport along the step edge so that they h
no terms involving our Dst . Our Dsu5@Dsceq

0 V#~BZ!,
k65@k6ceq

0 V#~BZ!, te5@t/(ceq
0 V)#~BZ!, and also

@csu#
~KB!5@ceq

0 #~BZ!5@c0#BE. Similarly Dsu5@Dsc0V#~BE!.
For completeness we reiterate that ourDva /Vv is the same
asDvrv of Eq. ~A.7! of Ref. 19.
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