PHYSICAL REVIEW B VOLUME 57, NUMBER 8 15 FEBRUARY 1998-II
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We study theoretically the equilibrium fluctuations of steps on vicinal surfaces. From an analytical con-
tinuum description of the step edge, we findiagle Langevin equation governing the motion of an isolated
step around its equilibrium position that includes attachment/detachment of atoms, diffusion over the terrace,
diffusion along the edge, and evaporation. We then extend this approach to treat an array of steps, i.e., a vicinal
surface. We also present, in an appendix, an alternative formalism in which detachment to terrace and to
step-edge diffusion can take place independently. In established as well as some new limits, and for numerous
special cases, we study the wave-vector dependence—both exponent and prefactor—of the relaxation time of
fluctuations. From this we recover scaling relations for early-time dependence of the mean-square fluctuations.
We discuss how to extract thenesoscopittransport coefficients associated with different atomistic mecha-
nisms of surface mass transport and how to distinguish between mechanisms having the same power-law
dependence on wavelength in the capillary-wave analysis. To examine the crossovers between limiting re-
gimes, we compute and explore an effective exponent for this power law and show that the crossover occurs
over a narrow region of phase space. Furthermore, we find that single-sided approximations are valid only in
the limit of extreme Schwoebel barrief§0163-18208)09008-0

I. INTRODUCTION Ag(00]). Steps on $i111) have been studied with reflection
electron microscopyREM) at a temperature of 1172 K. Bar-
As the fundamental entity of vicinal surfaces, steps haveelt et al? showed in this study that the step fluctuations are
been the subject of substantial experimental investigatiorrate limited by detachment kinetics on this surface. Alfonso
Specifically, a variety of experimental technigtieéshave et al? studied the same surface at the same temperature to
been used to study step-edge fluctuations on metallic ancheasure the step-edge stiffness and the magnitude of the
semiconductor surfaces. Some of the important issues adtep-step interactions. On the(@1)-(2x 1) reconstructed
dressed have bedn determininguniquelythe microscopic  surface the dynamics of steps were studied by Pearson
mechanisms of surface mass transp6ij, finding the rate- et al® They found that the mass transport was dominated by
limiting step in the mass transport, and finaliiy) estimating  kink diffusion. Swartzentruber and Schakttiave also stud-
microscopic energy parameters of the material. We briefiied the kinetics of atomic-scale fluctuations of steps on
list here some of these studies. Kuipers and co-wotkersSi(001) with a variable temperature STM. They found that
made one of the first observations of these temporal fluctuabelow 503 K the steps were virtually immobile and that no
tions of steps on a Ai10) surface using a high-temperature fluctuations were observed on a time scale of hours. Above
scanning tunneling microscop&STM). They also studied 623 K the step movements were so rapid as to make deter-
these fluctuations on a PtL1) surface. In an independent mination of the step position impossible. Bartelt and
but simultaneous study, Poensgeral® studied the frizzled co-workeré did a systematic study of the step-edge fluctua-
step edges on Ad@11) and Cy002) surfaces. The frizziness tions and equilibrium two-dimensional island shapes on the
of the steps was studied as a function of time as well a$i(001) surface. They obtained from this study the step-edge
temperature using scanning tunneling microscdyM).  stiffnesses, free energies, and step mobilities of the two types
Detailed investigation of step fluctuations on (Cul n), of single-height stepss, andSg, naturally occurring on the
wheren=13,19,79, haslso been done, again with STM. Si(001) surface. Their analysis of the step stiffness from ther-
They also studied with Monte Carlo simulations the effect ofmal fluctuations agreed quantitatively with the equilibrium
correlation of the kink motion on the fluctuations. An STM two-dimensional island shapes they observed, providing a
study of step fluctuations of steps on(Btl) was done by direct connection between equilibrium structure and equilib-
Giesenet al® and Barbieret al® along with L. Masson rium thermal fluctuations.
et al1° have also reported the roughening of steps ofi.Clu The theoretical foundations for the relaxation of out-of-
11) as well as the quantitative measurement of step-step irequilibrium surface morphologies to equilibrium were laid
teractions. Pai and co-workétsdid a systematic study of by the work of Mullind>® in the late 1950s and in the
step-edge fluctuations on a 8d.0) surface at room tempera- 1960s. More recently Bartelt and co-worker€ applied this
ture using STM, and estimated a single-atom detachment rateork to the equilibrium fluctuations of a single isolated mon-
at step sites. Recently Wargs al!? have also studied the atomic step on a surface. Pimpinedli al1® arrived at some
spatial and temporal fluctuations of close-packed steps oscaling laws in a qualitative manner to relate the relaxation
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rates of bUmpS formed on |n|t|a”y Straight StepS. Cahn anq)ara”e] and perpendicu|ar to the step, in ghand;( direc-

0 H N’ . . .
Taylor® generalized Mullins's work for the laws of relax- tions, area, anda, , respectively. The coarse-grained free
ation of geometrical perturbations of equilibrium surfaces.energy functiondf-?'2>%%of the step edge is

This in turn inspired work by Bonzel and Mullif$,who

further generalized Mullins’s earlier work'® to include L/2 12

step-step interactions in surface relaxations and to relax the F[xs(y)]=J [1+(xs'(Y)17B(6)dy, D
small-slope approximation. Liu and Meffuhave also ap- L2

proached this subject from a slightly different perspective, irwhere the integral is over the entire step-edge position given

a Langevin formalism. Recently I?;e}gojé\a«:ld Duxbur§®** by x (y), which runs a distance in the ¥ direction. The
derived the results of Bartedit al.""™ by considering vari- prime after thex indicates a derivative with respectyoThe
ous forms of a diffusion kernel. They also were able to applysquare brackets indicate that the free energyfimationalof
this analysis to a problem of a vicinal array of steps. In ally (y). To avoid clutter in the notation, we henceforth drop
this previous theoretical work**either (i) the analysis has  the subscrips, denoting the step position simply byy.t).
been done for an isolated single step(ivj step-diffusion-  The step free energy per unit lendif the stef) is denoted
limited kinetics, surface-diffusion-limited kinetics, detach- by B(6): it is a function of the local orientatiod of the step

ment-limited kinetics, and evaporation-limited kinetics haveedge(i.e. the direction of the normal in the terrace plgne
not been treated together, in a self-consistent manner. Wgnich in turn is given by

present here a unified view of these four types of kinetics and
apply it to multiple steps. In Sec. Il we present the deriva- 6= (w/2)+tan x’'(y). 2)
tions for the step-edge velocity in two different configura- ] ] i i
tions: an isolated step and a vicinal array of equidistant stepd.NUS. I the step is perfectly straight= /2. The chemical
In Sec. Il we explore the implications of the formal results, Potentialy of the step>*-?°is given by

cataloguing numerous special limifincluding new ones

such ag(v) in caseA and (ii) in caseD]. We also consider u :(f) (ﬁ
carefully the crossover behavior between some of the limit- 5 ox/ | ox

ing cases with the goals of assessing the fiagarameter whereN is the total number of atoms of the upper terrace

space of the limiting regimes and the rapidity of the cross- minus that when(y)=0 or in other words it is the number
over. In Sec. IV we present some general comments, connecs

tions with the work of Refs. 20, 23, and 24 and a briefo;ato;ns in_volved in cau_s_ing the fIEctuatioz(]y) of the step
summary and tabulation of limiting cases. Appendix A dis-809¢€ from its mean position oi(y)=0. Hence,
cusses an alternate formalism to the conventional develop- L2 x(y)

ment given in Sec. II: carrier exchange with the terrace and sz ——dy,

with the step-edge occur with independent kinetic coeffi- -z

cients. Many of the results derived in the body of the papefyneare() s the surface unit cell aree., in this context the

can be readily transcribed to this alternative approach, pat;, o dimensional volume of surface mass carriers, namely

ticularly those mvolvmg just one or the other of these trans-,4.toms and vacancieisvolved in mass transpor. is the
port avenues; other implications are left for future papers

X . _ absolute temperature ahg is Boltzmann’s constant.
Appendix B deals with the case of two adjacent steps, Ap- We make the linear kinetic assumpti8R”28that the ve-

pen|Q|x c fl|sr:s some mathematical d(;ata”?l about_ the temgoAr%City of the step is linearly proportional to the change in the
scaling of the mean square step-edge fluctuations, and ARy emjca| potential from its equilibrium value near the step

pendjx D connects some OT the notations that are prevalent 'nge. Here the change in chemical potential on both sides of
the literature. The reader interested only in the results May o terrace contributes to the velocity. This is given by

-1

: ()

4

skip Sec. Il.
Xy 0] —k.| O Y T He ©)
II. DERIVATIONS FOR THE STEP-EDGE VELOCITY (.0l =k kgT '
A. Isolated step—conventional formulation wherek_ (k) is the kinetic coefficient for mass exchange

Consider an isolated step on a surface that undergoes raWith the upper(lower) terrace?®?"~**which causes a step-
dom fluctuations of its position. We assume that the fluctuaedge velocityx(y,t)| —(+)- The dot indicates a partial deriva-
tions are entirely due to the concentration field of adatoms otive with respect to time. Strictly speaking the chemical po-
the pair of terraces adjoining the step, i.e., we neglect anyential on the terraceg(x,y) appearing in Eq.(5 has
external driving force causing net translation of the step oexplicit time dependence and obeys the diffusion
any step-step interactions that are not brought about by thisquatior?®=?>?"In a linear approximation the chemical po-
concentration field. The surface is defined by the functiortential is simply related to the concentration of mass carriers
z=1z(x,y,t) at timet. The step position at timeis a curve of involved in the mass transpoftf. Eq. (3) of Ref. 27: If
discontinuity xs(y,t) on this surface such that the surface c(x,y) is the concentration of the mass carriers on the ter-
position is z=h for x(y,t)<xs(y,t) and z=0 for races which takes an equilibrium valog, far away from the
x(y,t)>x4(y,t), whereh is the height of the step, assumed step edge, then we have to linear order(x,y)/
to be monatomic. Thus, the step position is giverxby,t),  ksT=(c(X,Yy) —Csy)/Csy-
with (Xs(y,t)), =0, where(---), ; signifies a spatiafalong To solve the diffusion equation, we need an initial condi-
the step edgeand temporal average. The lattice constantgion and boundary conditions fou(x,y,t). The boundary
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condition is given by the linear kinetic assumption of E5). pe=—QB(O)X[1+(x")2] 32 (10)
As can be seen from the left-hand side of this equation, the S '

step velocity has an explicit time dependence in it. That imwhere is defined by

plies that the boundary conditions on théx,y,t) are them-

selves time dependent. Thus, we have to solve self- - 8?B(0)

consistently for the time dependence of the step edge as well B=p(6)+ 2

as the chemical potential of adatoms on the terraces. This J

problem, which is difficultand perhaps impossibléo solve  Eor ' <1 we approximatés( )~ B(m/2). Computingu
analytically, is also called the classical Stefan probfM. 1 jinear order inx’ we get s
Following previous work®?22"we ignore the explicit time

dependence of(x,y,t) [i.e., u(X,y,t)— u(x,y)], and thus o= —B(m2) QX" (12)
work in the quasistatic approximatiofThe range of validity

of this common approximation has recently beenHenceforth, we will omit the argument @, assuming it to
discussed’) Our problem then reduces to solving the be 7/2. We now solve Laplace’s equation for the chemical

(11)

Laplace equation fop(x,y): potential on the two adjoining terraces to the step. We as-
sume periodic boundary conditiopgx+L,y) = u(X,y) and
V2u(x,y)=0. 6)  x(y+L,t)=x(y,t). We use along with Eq(6) the boundary

conditions of Eq(8), and the expression fars of Eq.(12) to

Since the mass conservation is not explicitly present irget the solution fop(x,y). This is then used in Ed7) and

this Laplace equation, we must account for it separately. Théhe step-edge velocity is obtained using E2). Performing

incoming flux at a given point on the step edge consists of dhese calculations we gét®
normal componen(.e., along the unit normal in thedirec-

~ iay
tion +x) coming from the upper and the lower terrace and X(y,H)=—>, Xq(i_ (13)
another contribution from motion along the step edge, q Tq
along the unit normal in thg direction *y). The two terms  Here qL2m==1,£2 ..., andx,(t) is given by x(y,t)

on the right-hand side of Ed7) describe the flux from the =3 Xq(t)exp(qy). The sum ovex is truncated by the con-
edge and the terrace, respectivg¢hor notational simplicity,  gition that|q| <|q|max, Where|q|ma~27/a; and 1k, is
we have assumed—rather unphysically—the sdie on

both the upper and the lower side of the step edge. The better lrq= (1/73) + (1/75), (14
approximation ofDg;# 0 just on the loweruppe) side for , , ,

adatom(vacancy transport leads to more complicated equa_where .the relaxation times for fluctuations ca}used by a flux
tions with no gain in physical insigtThe left-hand side is ©Of carriers from the upper-) and lower ) side are

the step-edge velocity which is caused by this incident flux.

i . . ag +by
T_hus, mass conservation at the step edge leads to the equa 1/Tq_ESkiq2 q _ q +)_ (15)
tion 1+a, +by
. 1 . au(0%,y) We have used the notation
X(y-t)|+:(ﬁ aJ_Dst/'L”(O_-y)IDsu&—X . .
B R0 S=QBIksT (16)
D¢ is the diffusion constant of atoms moving only along thefor.the reduced stiffness, which has dimensions of length,
. e while
step edge an®, is the diffusion constant of atoms on the
terrace?”*2-**Now eliminating the step-edg_e_ velocity from a(-q:EDsu|q|/kt , b(-q:EDstaJ_qZ/kt (17)
Egs.(5) and(7), we get the boundary condition fer(x,y)
on the adjoining terraces. This is given by are dimensionless measures of the terrace diffusion and the
step-edge diffusion relative to the attachment/detachment
e In(0=,y) . rate. Note thagL/27w+#0 because we consider only fluctua-
a, Dsu”(07,y) + Dy —— =K [1(07,y) — us]. tions of the step-edge position from its mean position, which

(8 was already taken to coincide with tlyeaxis.
To take into account the stochastic nature of the step-edge
[In Appendix A, we consider an alternative to E@S), (7), fluctuations, we add a noise term to Ef3). We then have
and (8), in which different barriers and kinetic coefficients _
are associated with terrace and with step-edge diffukion. x(y,t)=FAx(y,t) ]+ L(y,b), (18

The step-edge velocity is now given by where Z[x(y,t)] is a functional ofx(y.t), which takes the

: o : operational form—2 7, 1xq(t)eprqy). We will see in Sec.
X(y ) =x(y, O]+ +x(y.0)]- . ©) Il special cases wherg- takes simple forms. Taking the

Now to solve the Laplace’s E@6), the only quantity still to  Fourier transform of the step-edge velocity, one gets

be computed explicitly is the equilibrium chemical potential 0

s at the step. Thus, Egél), (2), (3), and(4) yield the exact Xq(t)=— Xql

result q Tq

+4g(1). (19
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The definition of,(t) is given by(y,t) =2 4q(t) explay),
with qL/2m=+1,+2 ... . The restrictions thak_g(t)
=Xg (1) and{_4(t) = {5 (t) guarantee that(y,t) and{(x,t)
are real. We take the noise so tHgt(t));=0, for eachq,
and its two-point correlations are given by

(Lq(1)E_qi (1)) =Tq8q,q 6(t—t"). (20
The functionf is as yet undetermined. From Eq$9) and
(20), it follows®" that

<|Xq(t)|2>E<Xq(t)X,q(t)> = (quq/Z)(l_ e*Zt/Tq).
(21

We now determine the equilibrium value of these fluctua-
tions in order to determing, . Equation(1) can be written to
second order irx’ following Ref. 26, then expanded in the
Fourier modesx, to obtain the equilibrium fluctuations of FIG. 1. Schematic representation of an infinite array of steps,

|Xq|21 illustrating our choice of axes and notation.
) kgT The chemical potentialg, ,;1(X,y) obey the Laplace equa-
(Ixq(0)] >=~L > (22)  tion [Eq. (6)]. This equation is to be solved with the two
ALa boundary conditions, similar to that of E() for the iso-

Hence taking the limit/ 7,— + in Eq.(21) and comparing lated step case,

with Eq. (22), we get for consistency that ,‘
Dsuaﬂn,n+1(n/+:Y)

ax

20 alet,u,ﬁ]nH(n/J“,y)—f—
fo="T—- (23 .
SL 7qd :k+[ﬂn,n+1(n/ \Y) — Msnl, (25
This determines the two-point correlations of the noise ternyng
in Eq. (18) completely, through Eq419) and(20), because

fq is now known. , . Dsydpnn+1((N+1)77,y)
! &, Dan i a((N+1)/7 )+ =

B. Infinite array of steps

We now turn our attention to analyzing the fluctuations of K-Linnea((NFDAY) = psi 1] (26)
an array of steps. This scenario is more likely to be encounSince all steps are now equivalent, we will just consider the
tered experimentally than that of an isolated step and hencgtep withn=1 and its neighbors on the two sides;: 0 and
presents a direct motivation for the study. We shall onlyn=2. The Laplace Eq(6) for the chemical potentialg.|,
consider steps and terraces that are identical in terms of theéind .y, may be solved with the boundary conditions of Egs.
equilibrium crystal structure. The simplest generalization of(25) and (26). These solutions may then be substituted into
the already studied case of an isolated step, namely that ¢fie Eq.(24) for the step velocity. The result is given #y*®
two adjacent steps, is relegated to Appendix B, because it is
rather unphysical. Here we consider an infinite array of steps, - __ _ 2_iay
running on average along the directipnThe outward nor- Xa(y.t % {AX1g(t) = Byl Xoq(t) +x2q(1) 47",
mals to all terrace planes point along the positaxis. The (27)
chemical potential of step is us; and is given by Eq(12).
The chemical potential on the terrace bounded by stepsl
i+1is M i+ 1 The geome;try is shown in Fig. 1. Each. pair of Ag=S(kylg +k_I ;r)
nearest-neighbor steps is separated by a mean distance
Thus, the mean position at thath step is given by and
x(y)=n/, wheren=0,+1,+2,....We denote the fluctua-
tions around these mean positions by(yt) for the nth Bq=S(k,a, +k_ag)/[2E, cost{|q|/)]. (29
step, so thatx,(y,t))y=0. In analogy with the case of the
single isolated step, the step-edge velocity similar to(Bp.
is given by

where we have defined

The definitions ofE,, 15 (t) are

Eq=[aq(1+by)+ag (1+by)]
Mn,n+l(xvy) ~ Msn
kgT

) (29

Xn(y,t) =k, +[agag +(1+by)(1+b;)]tank(|q

x=n/
.
1=

! (e * TaT4ph* + :
7\ B £-1aq (1+2bg) +[aga, +bg (1+bg)]tank(|ql/)}.
x=n/ a (30)

Mn—l,n(X-Y) ~ Msn
kgT

+k_
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We make the further definitions step. Another alternative to this is E(L3) with the use of
Eq. (A1) (with the replacement of alDg|qg| by Dg|Ag|).
We now consider five distinct sets of limits, for all of which
xz(y,t)zn;x Xn(y.t) we demand that there be no step-edge diffusiae.,
D.=0), and that the diffusion lengtlkx; be small(i.e.,
and la|xs<1 or equivalently [Agl=xXc): (i) Dgy/(Xsks)
% <1</Ixs, (i) (xski)/Dsu<1</;/xS, (i) /Ixg=<1
— _ 13N . <Dg/(Xsk=) such that Dg//(xSk)>1, (iv) /Ixg
Xa(y:) n;—m( Dy 3D <Dg,/(xsk+)<1 and(v) Dg,/(xks)</Ixs<1. Applying
the limits in (i) to Eq. (13) (with [A| replacing|q| where
appropriatg, reduces it t

%)

and

w2()=((x(y,H) —x(y,0)?), (32
as the mean-square fluctuation of each step. The combina-
tionsxy (y,t) andx,(y,t) describe the two extreme cases of  This is analogous to Eq7) of Ref. 19. With the limits in
in—phase/acoust’r& and [fully] out-of-phase/optical motion (ji), the form of Eq. (35 is unchanged except that
of the steps in the array, i.&, . 1(y,t) = £xy(y,t), foralln,  2(D,,/7)? is replaced by K. +k_). We note that this is
respectively. The two combinations andx, are the¢=0  the same as E¢38) of caseB. (See below. This should not
and ¢=m limits, respectively, of the transform be surprising since in both cases the kinetics is detachment
X4(y,1)=Zrexpng)x(y.t) discussed recently in Ref. 31. It limited (Dg,|A|/k=>1); the only difference is that in the
can be shown from the definitiori81) and Eq.(27) thaf®*®  present case we uga 4|~ 1/xs while for deriving Eq.(38)
we shall use the limit of Ag|=|q|. The limits in (iii) are
X (Y1) = _zq: (AT ZBq)qu(t)qulqy_ (33  similar to those in(ii), except that we now apply them to
A

X(y,1)=28(Dgy/ ) ¥X"(y,1). (35)

Aq steps close together. Hence Eg3) gives in these limitS
Xa,3)(Y,1) = S(ky +K_)x{y 5,(y.1), which just suggests that

1l. DISCUSSION OF LIMITING CASES even though the steps are close togethaf/(<1) the ter-
AND CROSSOVER race diffusion is so fasta(|q|/>1) that each individual

step fluctuation is just determined by the detachment kinet-
Evidently Eq.(27) [as well as Eq(59) of Appendix B] ics, which is the rate-limiting step. It is as if the presence of
describes a set of coupled differential equations. Rather thaithie neighboring steps is not “felt.” With the limits ifiv) in
attempting to decouple these equations, we will content ourEg. (33), we get®
selves with describing the important limiting cases, and then ]
the crossover between them. First we consider the limit Xs(Y,1)=8(/11e)xs(y,1)
|g|/—. In this limit we expect that each step behaves as
an isolated step since all other steps are infinitely far awafim
from it. Indeed, we find that in this limB,— 0, so the set in K.k
Eqg. (27) decouples and reduces to H43) of the isolated 5<A(y,t)=43 Bl
step, withSk- g%l —1/7; . Kotk
Evaporation condensation (3dEC), case A of Ref.8®  The result forxs (y,t) in Eq. (36) is the result analogous Eq.
far we have neglectel8d] evaporation of the adatoms from (g) of Ref. 19, as expected. The resultin(y,t) however, is
the terraces. This may easily be incorporated in our derivanteresting in that the out-of-phase kinetics of the steps is
tion of Eq.(13). We now define\ ;= \x; “+ %, wherexsis  determined by the “parallel-resistor combination” &f.
the diffusion length given bw/Dg,7e, and 7, is the mean [i.e., 1/(k;1+ k~1), or half the harmonic medn Even
time for evaporation of an atom with surface diffusion con-though the kinetics is diffusion limited, tHe, appear in the
stantD,,.**** Now we need to replace E¢6) by'**’ equation forx,(y,t). We now consider the limits ifv) in
Eq. (33 to gef®

XA(Y,t). (36)

[V2=xg 2]u(x,y)=0. (34
All the boundary conditions remain the same as before. Fi- kz(y,t)zg[w X4 (y,t)
nally, in Egs.(13), (18), (27), and(33) [as well as Eq(B1) ek ko

of Appendix B and Eq.58)], we can simply replace all
Dgal by DgA4| and|qg|/ by |/2\q|/. Note that no change
should be made in thg ternis,q ,’yor terms |_nv_0IV|ng jusg X (Y,1)=48(D gyl /)XL(Y.1). (37)
without a correspondin®, or /. In the limit where the

steps are infinitely far aparti.e., |Aq|/—=), Eq.(27) [and, ~ This limit was not considered in Ref. 19. The result for
later, Eq.(B1)] reduces to Eq(13) with |q| replaced byA,|  xs(y,t) is unique in that all three types of transport coeffi-
where appropriate. This is as expected since each step is nawants corresponding to terrace diffusioD,), evaporation
isolated from the others, anddisappears from all the physi- (7.) and attachment/detachment at the step eégé éppear
cally relevant expressions. This form of H4.3) provides a in it. Comparing the limits in(iv) and (v), we see that the
generalization of the velocity equations of Bonzel andonly difference is that/’<Dg,/k. in the former while
Mullins?! and of Cahn and Tayl6t for the single isloated />D,/k- in the latter. Not surprisingly one obtains the

and
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result for xs(y,t) in Eq. (37) by just replacing/” with Ly, t)L(y',t'))y=8D Qg(y—y")d(t—t"), (4D
Doy(k;t+k-1) in Eq. (36). Similarly the equation for
x5 (y,t) in Eq. (37) is obtained by replacing; +k-* with
/IDg, in Eg. (37. One may now usem=2 and
A,=28(Dgy/7e)Y% S/ 17e,45K K I(ki+k_), SDg (K,
+k_)/(7cki k), or 48Dg,// [extracted from Eqs(35-—
37)] in Eq. (C4) of Appendix C to obtain the scaling of the
mean square fluctuations?(t), wi(t), andw3(t) [all de-
fined by Eq.(32)] at early times.

Isolated-step evaporation-condensation (EC), case B og
Ref. 19 In this case the rate-limiting step for mass transport,
around an isolated step is the random attachment/detachm
of adatomgor vacanciesat the edge of the boundary. This
happens in three distinct limitgi) If periphery motion along
the step edge is completely prohibitéce., D,,=0) and if
the detaching(attaching atoms or vacancies go tome
from) a reservoir of adatoms or vacancies on the terrace
then a§>1. (ii) If terrace diffusion is completely absent
(i.e., Dg,2=0) and if the detachingattaching atoms or va-
cancies from kink sites go t@ome from a one-dimensional
reservoir of adatoms or vacancies along the step edge its
where they move rapidly, thehrﬁ»l, and we still obtain the
same result of Eq$38) and(39). A more careful discussion - N+ P .

T . : ; (ag<1) such that(i) a;<|q|/<1, or such that(ii)
of this situation is provided in Sec. IV. We emphasize that' "9 ~~/, .4 . S
this limit also gives;q2 kinetics even though there is no dif- |Q|/<aa<1' Altgrngtlvely, mfa'ss transport 'f .rate limited
fusion on the terraced(,,=0). (iii) Finally, motion may be Py detachment kinetics so théii) |q|/<1<a, in such a
allowed along both the terraces and the step edge thoughdy thatag |al/>1. Limits (i), (i), and(iii) here are remi-
detachment/attachment of the mass carriers is still the ratéiscent of the limits(v), (iv), and(iii), respectively, consid-
limiting step in transporti.e., a;>1 andby >1). Each of ~€red under cas, except_thatgnqu| replaces . Taking
these cases gives the identical simplification that the term df€ limits (i) of Eq. (33) gives
unity in the two denominators of E¢L4) may be ignored, to
get 1k,=25kq?, where we defin&k= (k. +k_)/2. Using

whereg(y)=(c?—y?)/(c®+y?)? definesg(y); ¢ is a con-
vergence factor on the order of a lattice constant, ¢e.a, .
Then the mean-square fluctuations are given by usiag3
andA;=2S8Dg, in Eg. (C4). All these are the same expres-
sions as obtained by Bartelt, Einstein, and Willidfishus,

our general formulation of the problem presented here falls
in the case of terrace-diffusion-limited kinetics of Ref. 18, as
xpected. As an alternative to the linti} a§<1 we may
onsider a case where there mass transport occurs only from
ne side of the step edge and is rate limited by diffusion on
qﬂte other terrace, so that eith@r) k_=0, ag<1 or (iii)
k;=0,a, <1.In both these cases as well we get the limit of

Eq. (18) of the form of Egs(40) and(41) except that Dy,
is replaced byDg, in both equations and in the expression
éor 1/74 above.

' Diffusion from step to step (DSS), case D of Ref.|h9
this case we consider an infinite array of steps in which the
steps are close to each othfire., |q|/<1, implying
etﬁnh(q|/)%sinh4q|/)%|q|/ and coshf/)~1]. No step-
edge diffusion is allowedd,;=0). We now consider three
distinct limits: The mass transport is terrace diffusion limited

. (v.0) 4SDSU> " yt)
X L = —/ X ’
this expression for, in Eqg. (18), we find F to be® aly )Xl
FIX(y,H)]=28kx"(y,1) (3g and
with . 2 k++k7 m
s (y,0)==SDg| 77— [X"s(V.D). (42)
Lk

(Ly.Dily" 1)) =4kQsy—y")s(t—t"). (39

Then in this limit the scaling of the mean-square fluctuation
of Eq. (32) with time is given by lettingn=2 andA,= 285k
in Eq. (C4). These are the same expressions as obtained
Barteltet al!’ Thus, our general formulation of the problem
presented here falls in the case of detachment-limited kine
ics considered in Ref. 17, as expected.

Isolated-step terrace diffusion (ISTD), case C of Ref. 19
In this case there is no step-edge diffusid(=0). There
are three possiblities one of which is tHgtthe mass trans-
port is rate limited by diffusion on both the upper and lower
terrace (51qi< 1). This limit is considered for an isolated step. Xa(y,t)=
Then the dominant term in the two denominators of @4¢)
is the constant term of unity. This leads tard# 2SD¢|al®>,  and
which when used in Eq(18) gives a nonlocal form ofF
given by'8:3°

The result forx,(y,t) is analogous to Eq12) of Ref. 19, as
Sexpected. Unlike casB for an isolated step, he® behav-

ior results from terrace-diffusion-limited kinetics. The result
Y xs(Yy,t) is analogous to Eq44), discussed below. This
behavior arises because mass is conserved for the step array
s a whole in the terrace-diffusion-limited kinetics consid-
ered here. However, as opposed to the derivation of 4},

we have in this cask_+ 0, which appears in the prefactor.

If we consider the limits irfii) in Eq. (33), we get

k+k7 n
k++—k_XA(y,t)

Xs(y,)=—8Ds/x¥" (Y1) (43
1= 4DgS (= | X(y",t) _ydy’ This limit, analogous to limit(iv) in caseA, also was not
FIX(YO]=——] oy g(y—y")dy considered in Ref. 19. Interestingly, in this case as well, the
y' (40) result forxs(y,t) is analogous to Eq44) with even match-

ing terms D) in the prefactor. If we apply the limit8in
with (ii) to Eq. (33) then we get identical results for (t) and
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x4 (t) of the formx(A (1) =8k, +k_ )X(A 5(1). These are of a Schwoebel barrier and with terrace motion of carriers
allowed, as observed from Eqg2) and (43) for xs(y,t).
Periphery or edge diffusion (PD), case F of Ref. ¥e
now consider the limit in which the motion of adatoms is
allowed only along the step edg®{,=0), (i) but is the
rate-limiting step in mass transp0h§< 1). Then Eqgs(13)
and (27) [as well as Eq(B1)] take identical forms, as ex-
pected since for perfect periphery diffusion the presence of
an adjacent step should become irrelevant, at least in the
limit of small fluctuations. The relaxation time is now given
by 1/rq=28a, D" and hence

identical to the results obtained in liniti ) of caseA leading
to the same conclusions.

We thus see that the three distinct limfis (ii), and(iii),
give the sameg? kinetics for Xaq(t) Whenever step-edge
diffusion is disallowed Dg=0) and the steps are suffi-
ciently close together|§|/<1), albeit with different pref-
actors 4Dy, //, 4S8k, k_ /(k++k ), andS(k,.+k_), re-
spectively. Forxsq(t) we getq whenever the kinetics is
terrace-diffusion limited a <1) andq? kinetics whenever
it |s detachment limited in a way that, |q|/>1. With
wA s(t) defined by Eg.(32), one can usem=2 and

»=48Dg,// or 4Sk.k_I(k.+k_) to get wi(t), and
m 4 andA,= SDsu(k++k_)/(k_k+) or SDg/ to obtain  with
w%(t) from Eq. (C4), in the limits (i) and (ii) considered
here. Though here as well as in cageandB we haveq? (L(y.niy',t"))=4a, QD s"(y—y')8(t—t"). (46)
kinetics, the allowed motion of the mass carriers as well the
rate-limiting process in mass transport are quite different, a¥hen the mean square fluctuations are given by(Ed) by
is evidenced by the different expressions forin all these usingm=4 andA,=28a, D;. These are again the same
cases. Experimentally these cases may simply be distirexpressions as obtained by Bartedtall” Thus, our general
guished by measuring not only the single-step fluctuation$ormulation of the problem presented here falls in the case of
but also those oks(y,t) andx,(y,t). edge-diffusion-limited kinetics, as discussed in Ref. 17, as

Perfect Schwoebel effect terrace diffusion (PSTD), case Expected. If the rate-limiting periphery motion is allowed
of Ref. 19 We now consider the limit of the perfect only along the lower or upper terrace of the step edge then
Schwoebel barriéf (i.e., k_=0). No motion along the step the limit (i) bq:<1 is replaced byii) k_=0, b§<1 or (iii)
edge is allowed Dg=0) and the rate-limiting step in mass k, =0, by <1, then the factor of 2 should be removed from
transport is terrace diffusiorag <1), and the steps are close Eq. (45) and from the expression far, above; the 4 in Eq.
to each other[|qg|/<1, implying sinh{gl/)~|q|/ and  (46) should be replaced by 2, as is found in Refs. 32 and 33,
cosh(g|/)~1]. SinceB,— 0, the terms in,4(t) andxgq(t)  where they consider limiti).
in Eq. (27) vanish: since neighboring steps now do not ex- Direct sublimation (3dS) from the step edge, caseA&
change any mass, the fluctuations of one should not depenmbw allow direct sublimatioricondensationof atoms[3d3]
on the fluctuations of the other when the fluctuations areat the step edge introm) the vapor. Equatior§34) must
small. The dependence of of the fluctuations in the posi- then be written in @, with u=u(X,y,z). All the boundary
tion of the step just indicates that the step is interacting wittconditions remain as before. This leads in Fourier space to
a perfect reflector at a distaneeaway on the lower terrace. the wave vectors, andg, relating tog, the wave vector of

FIx(y,t)]= —28a, Dsx™ (y.1), (49

With these results used in E7) for x,(y,t), we get fluctuations along the step edge by the equality
9z +0;=—0?—X; >=—AZ. Then the solution of Eq(13)
X1(y,t)=—SDg/ Xy (1). (44  remains essentially unchanged in form, and we just need to

_ _ p _ replace Dsylal) by (D,alq,|+Dsyayl), whereD,, is the
This equation shows thaj” kinetics may be found in an diffusion constant of atoms in the vapSrLet 0, be the @
array of steps even though the rate-limiting process in masgtomic volume in the vapor. For notational clarity we iden-
transport is terrace diffusiotwith no mass transport along tify our D,,/Q, with D,p, of Eq. (A.7) of Ref. 19. In the
the step edge [See casé for a different situatior]. Now thus-modified Eq(13), we take the limitsD,=D=0 and
usingm=4 andA;=SDg/ in Eqg. (C4), we get the mean- D __|q,|/k.<1, so that in Fourier space we obtain a result

square step fluctuations of the step as a function of tlm%namgous to that of EqA.7) of Ref. 19 for an isolated
Thus, just like theg? kinetics, thisq* kinetics also does not step#

support a unigue microscopic mass transport mechanism.
Though both the PSTD limit of cage and the PD limit of
caseF give the same scaling ﬂc{~q4 in g, there is one
crucial difference. In the former case the prefactor depends
on the interstep separatighand in the later case it does not. _ T
This enables one, in principle, to measure these fluctuations ourier spaceof Eq. (40) of caseC. Here the step kinetics is
in the same sample at regions of different local orientations. m ited by diffusion in a saturateddvapor instead of ac
Also, independent checks need to be obtained for the remairf2Por as in case. .

ing prefactor oD, or a, Dy;, as the case may be. It is not Crossover between some of the Ilmﬂt9: study the cross-
necessary that there be a perfect Schwoebel barrier as cofYel Petween the cas@ C, andF of an isolated step, we
sidered here or that carrier motion be restricted to the steflefine an effective exponeay by

edge as in cask for g* kinetics to be observed. This is clear

from the limits(i) and(ii) of caseD, where the in-phase step d log(7q)

kinetics in an array exhibitg* behavior even in the absence ="y log(|ql)’ (48)

Xq(1) = — SD | 0, a4(1). (47)

The result of Eq(47) is essentially the & equivalent(in
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behavior(caseB). For ag<b,<1, there is a plateau with
z,=4, since terrace diffusion becomes unimportant and step-
edge diffusion limits transpor{case F). Likewise, for
bq<ay<1, there is a plateau with,= 3, since terrace dif-
fusion limits transpori{caseC). The crossover regions are
rather well confined and smooth, so that if one measures the
effective exponent over a decade or so, it should have a
well-defined value(i.e., the log-log plot should be linear
only if one is in one of the plateau regions. Conversely, if
one finds an effective exponent other than 2, 3, or 4, the fits
should not be good, and there should be indications of mono-
tonic variation. With two or more decades of data, one
reaches one of the three integer plateau regions. If any of
these statements are inconsistent with the data, then either
the experiment is flawed or the theory has left out some
crucial ingredient of the system.
log aq Between the two extreme values of the rightmost
bracket in Eq(49) does not reduce to unity, but nonetheless
FIG. 2. Contour plot, with gray-scale shading, of the effectiveit turns out to be relatively unimportant. In Fig(e3 we
exponentz, of Eq. (50) as a function of the logarithms of the display a contour plot of it as functions ofandp,. For pq
dimensionless quantities related to the ratios of transport alondarger than about unity, the term decreases smodiikg
steps and across terraces to the detachment rateghjognd 1-(1+ pal)r, to leading ordel to reach a minimum value
log;@y. To aid comparison with experimental numbers, all loga- of essentially 2(/5_ 1)~0.828, then rises smoothly again to

rithms in this and subsequent figures are common. Use of Iogaritrbnity [like 1—[(1+py)/2](1—r), to leading order For
mic scales not only allows us to display a greater range of indepen- ot ' 1~
dent variables but corresponds to how the data is plotted ir]arge Pa the ‘minimum occurs at about \/E 1~042

extraction of effective exponents. Note that plateaus at the limitin r-te/kBT:OB?)’ but decreases smoothljto r~0.32

case, integer values 2gray), 3 (light gray), and 4 (white)— (e/kgT=1.1)] asp, decreases to about 2, then turns down
indicative of EC of caseB. TD of caseC. and PD of case strongly to zero. Overall, the factor appears most significant
respectively—consume most of the parameter space: the crossog’ Positive values oy andbyg, regions in whictzq~2 (EC

regions are rather narrow. Contour curves are spaced at intervals Bfateal, so that ther-independent factor is tiny_- _
0.10 from 2.05 through 3.95. To check what happens at smaltewe show in Fig. &)

by gray scaling the difference iz, produced by the
referring back to Eq(15). For simplicity of notation we r-dependent factor. The largest decrease is abdus, indi-
deﬁne'aqzaar, qub;, pq=a,4+b,. We denote by the cated by the darkest shading. Evidently for snjallit not
asymmetry in the attachment/detachment ratesk_ /k., . tiny] values ofr the decrease occurs primarily in the region
It is convenient to recast this asymmetry as effective ~—2<min(aq,by)<0, which is in the crossover region be-
Ehrlich-Schwoebel barriete=—kgT In(r), 22442 although tween EC and the other two platead$he details can be
this identification can be quite misleading if the extra barrierreadily investigated but are not particularly enlightening.
at the step edge is small compared to the thermal erférgy. The main conclusion is that the well-defined integer values

Then we get should not be be affected significantly. From the contour
lines in Fig. 3b), we see that the principal effect of asym-
Pgtbq | [r(1+ pq)]2+ (r+ pq)2 metry is a modest decrease in the size of the plateau regions
Zq=2+ - (49 6t PD and TD behavior, with tting in f I
Pq(14pg) ][ (r+pg[2r+(1+r1)pg] 0 an ehavior, with crossover setting in for smaller

, . , values ofb, and a,, respectively. For practical purposes,
In both of the special case$) no Schwoebel barriéf this role of asymmetry seems negligible.

k_=k. (ie.,r=1, e=0) and(ii) perfect Schwoeb& bar- To consider the crossover among caBesC, D, andE
rier, k_=0 (i.e.,r=0, e=x), the bracket on the rightin Eq. \ye use the definition
(49) reduces to unity . Them, is simply

9 log(Aq+ ZBq)> 51

d log(|al)
as applied toc, 4(t) in Eq. (33), with the restrictionD ;=0
A contour plot ofz, of Eq. (50) as a function ofy andbyis  (b,=0). Even with this restriction, the expression is compli-

shown in Fig. 2. Wherk, is small, i.e.aq or by is large, we  cated. For compactness, we defimg=cosh{qgl/) and
have a large plateau with,=2 and electronic captueC) s =sinh(qg|/). Then

+b aqg+2b z E2+(
Patl __py 4~ . (50 !
Pq(1+pg) (agtbg)(1+aq+bg)

Zy=2+

2r[r(1+cq)+(1+1)agsql(sq—|al/) —2raj(|al/ce+sq) +(1+r?)aj(Cesq+|al/)

2 (52
[(1+r)agcqt(agtr)sql[2r(1+cy)+(1+r)agsy]

Z:
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@) log (aq + bq) 9 aq

FIG. 4. Contour plot with gray-scale shading, Dfillustrating
the features of Eq(52) for no step-edge transporb{=0) and no
Ehrlich-Schwoebel barrierr&1). The crossover region is rela-
tively narrow. The value ofq|/ near the crossover is generally
insensitive taa, . The white plateau corresponds to c&sbehavior
with z,=3. On the dark plateag,=2. Contour curves are spaced
at intervals of 0.10 from 2.05 through 2.95.

On the other hand in the limit|g|/<1, we have
sinh(q|~) ~|q|/ and cosHf|/)~ 1, which reduces Eq52)

to
2(1-r)%adlql”
zq=2+ :
a [(1+1)aq+(a2+n)|ql/1[4r +(1+1)aglql/]
(53
2 Note that in the limitr =1, we getz,=2 in Eq.(53), corre-
(b) log aq sponding to cas®. In the symmetric case=1, Eq. (52
, . . reduces to
FIG. 3. (a) Contour plot, with gray-scale shading, of the multi-

plicative factor in brackets on the extreme right of E49). Note sinh(lqlf)— |Q|/

that this factor depends om, and b, only through the sum 24=2 (59

pg=a4+by. For most of phase space, this expression is nearly Slnl“(|q|/)+aq(cosf(|q|/)+1)
unity (indicated by whitg Contour lines are at 0.98, 0.96 . 0.86,  for which we show a contour plot o, as a function ofa,
and 0.84. The minimum value of the factor is\®—1)~0.828.  and|q|/ in Fig. 4. For|q|/>1 anda,<1 there is a plateau
See text for more details. The overall effect of the factor turns out teat =3, corresponding to the TD behavior of c&SeThere
be negligible, as seen if). (b) Two distinct aspects of the reduc- is a smooth descent tg,=2, characteristic of EC, in the
tion of z, by the multiplicative factor plotted ife). (i) Modification ~ other three quadrants. The crossover occurs over roughly a
of contours of constant, of Fig. 2 due to the'-dependent factor. ~decade along either axis. The two quadrants @i 1 cor-
For clarity and emphasis, only the four contours bounding therespond to casB, while the remaining quadrant with, <1
crossover regions are depicteg:= 3.95, 3.05, 2.95, and 2.05. The and|q|/'<1 is caseD, in which the long-wavelength TD
unbroken curves, taken directly from Fig. 2, arefferl. The long-  fluctuations on a step relatively close to its neighbors have
dashed and short-dashed curves arerfe0.4 andr=0.1, respec- the signature of EC fluctuations because a powekqbﬁs
tively, in Eq. (49). (i) The gray-scale shading indicates, for the syrplanted by %/. The general behavior seen in Fig. 4 holds
particular valuer =0.1, thedifferencein the value ofz, due to the  yntj| remarkably smalt. Qualitatively, the descent from the
r-dependent factor, vz, as given by Eq(49) minusz, as given  plateay occurs at decreasing valuespand ripple develops
by Eq. (50). White indicates essentially no difference. The darkestyn the lower plateau along the diagom)f“q /~1. For
shading indicates about0.29. _ _ o ;
r=1/2 (e/kgT=0.69), this ripple at its largest corresponds
to z;~2.05. By r=0.1 (e/kgT=2.3), this ripple has in-
Analytically, we see that in the lim{g|/— o we recover  creased ta,~2.5[see Fig. a)]. Only for very smallr does
the behavior for isolated steps: the terms in Esp) that  qualitatively new behavior occur. The ripple broadens and
survive (besides, of course, the constant term pfage the  grows, and its center shifts to smaller valuesagfasr de-
terms incﬁ, sé, Or ¢4Sq - Then Eq.(52) reduces to Eq(49) creases. By~10 °—10 © (e/kgT=11.5-13.8), a plateau
with by=0. Furthermore, in this limit as can be seen fromatz,=4 has formed in the quadraag<1 and|q|/ <1 (see
Eq. (49) the limita,>1 leads ta,=2, while the limita,<r Fig. 5b)]. This region corresponds to cake Referring to
givesz,= 3, corresponding to cas@andC, respectively**  Eq. (53), we see that for =0, ag<1, we getz,=4 analyti-
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log (Iqlf)

log (Iqlf)

(b) log aq

FIG. 5. (a) As in Fig. 4, contour plot ok, illustrating the fea-
tures of Eq.(52) for no step-edge transporb{=0) but with a

rather large Ehrlich-Schwoebel barrier=10"2). Contour curves

4791

“slow” terrace diffusion a§<1 in an isolated step geom-
etry. The other two limits of?> andq* kinetics are found in
multiple cases such as cag®sB, andD for the former and
cased, E, andF for the latter, so that further information is
needed to establish the transport mechanism. Two of the
isolated-step caseB,andF, correspond to models andB,
respectively, of dynamical critical phenomefiaHowever,

for caseC we have found no simple correspondefiagith
these models.

In taking the limits considered in casAsthroughF, it is
important to distinguish the physically allowed motion of the
mass carriers from the rate-limiting process in the motion.
Since there has been considerable confusion about this idea,
we examine arguably the most striking example. We con-
sider the limitD4,=0 in Eq. (13), which implies that the
motion of carriers is restricted to the periphery or edge of the
isolated step. This restriction does not imply that the system
exhibits behavior characteristic of caBe even though de-
tachment onto the terrace is explicitly prohibited because
D,,=0, we can still get casB, i.e., EC. This result follows
from Eg. (13) or the extrapolation of Fig. 2 to the limit
In a;— —o, when the rate-limiting process is detachment ki-
netics, i.e.,b§>1. On the other hand, if the rate-limiting
process is diffusion along the periphery, im§,<1, then we
do get casé. Hence, the nomenclature EC or PD stands not
for the allowed motion but for the rate-limiting process in the
motion. In other words, the EC limit can also occur when the
motion of carriers is only along the periphery and disallowed
on the terraces. In this case motion along the step edge of an
atom between detaching from a kink site and reattaching
onto another kink site on the edge occurs “very fast.” This
may also be seen in terms of an effective “hop length” of
the[masg carriers, as we will see in the following paragraph.
In general one may expect intermediate behavior between
these two extreme limits. Such an analysis for the fluctuating
boundary of adatom and vacancy islands has already been
shown in Ref. 33. This intermediate case has recently been

are spaced at intervals of 0.10 from 2.05 through 3.25. A new ridg@Pserved in the case of monolayer adatom island edges on

(white sliver, with z,~3.3) divides the plateau at,=2. (For
r~0.2 this feature already appears—at somewhat laageras a

Cu001) and Ag001) by Pai etal® Earlier

explanation®338of the motion of large vacancy islands on

modest “foothill.”) The plateau at,=3 (now darker than in Fig. 2 Ag(111) suggested that mass transport in this system was

due to the gray-scale change necessitated,ogbove 3 has been
pushed largely off the plot on the upper left, to sma#gr the last
contour curve near the upper-left edge is4g#2.95.(b) Similar to

(@), but with asymmetry sufficientherer=10"%) to produce be-
havior close to the “perfect Schwoebel barrie¢aseE) limit of

Pimpinelli et al®
from 2.05 through 3.95. The new plateawzgt4 (white region) is

indicative of this extreme case. As—0 this plateau extends to

terrace-diffusion limited. Recent evidedndicates that the
microscopic mass transport is restricted to the island periph-
ery and that an explanation similar to the case ofQD®)

and Ag001) adatom island$ may describe the motion more
correctly. Similar distinctions between “allowed motion”

Contour curves are spaced at intervals of 0.10gnd “rate-limiting motion” apply to the other limits of cases

A, C, D, andE as well.
Recently, Blagojevicand Duxbury>?* have described

progressively smaller values @f,. The plateaus associated with step motion and fluctuations from a new perspective. They

TD atz,=3 (light gray, upper-left quadranand with EC atz,=2
(darker gray, right sideare clearly seen.

cally. We recognize now, however, that such behavior will

occur only for extremely smal, with virtually no attach-
ment to steps from their upper side.

IV. COMMENTS AND SUMMARY

Remarkably, only théq|® kinetics of caseC is associated
with a unigue microscopic mass transport mechanism

have derived some of the limits we have considered in terms
of the probability distributionP(y) that an adatom emitted
from a step will reattach to it a distangeaway. Furthermore
they have related parameters in the continuum theory such as
D, and k.. to microscopic energy parameters, which de-
scribe the potential energy surface in which the mass carriers
(adatoms or vacanciemove. We briefly show here some of
the connections between their approach and the present
work. In Eq.(13) we take the limitd,,=0 andk_=0. We

ofiefine the lengtit=/a, Ds,/k. =q~*\b; . The gé depen-
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dence of thegth component of Eq(13) then become$ two approaches. Even if this were not the case, it is not clear
how to show the equivalence of these two approaches for the
(ad)%[1+(gé)?] most general case, whewither Dy, nor D, vanish.
o An intuitive feeling for Eq.(56) is obtained simply. The
_ 2 (—1)"L(gg)? mass transport of a step at a point is determined by the dif-
n=1 ference in chemical potential there and that at a point a dis-
" tancety along the step edge. This differencegrspace is
2 [(—1)" (g2 T(2n+1)]/[(2n)!], (55) proportional to 1 cos@y). We may think of the probability

of having this difference at a distangeas given byP(y).
Again if ¢&— o thenP(y) goes to a constant and the transport
is just curvaturd x”(y,t)] driven (i.e., g° kinetics, case).
If instead {—a, then forga,>1 the transport is driven by
(9&)2I[1+(q8)?] the second .derivative of the curvatuiee., g* Ifinetics, case
F). Alternatively we may regard as an effective hop length
w along the periphery of an atom after it detaches from a kink
= —S_lf > (—D)"(2n)!]1" Y ay)?e iy site on the step edge. Let us suppose that it may only attach
0n=1 to another kink site on the edge. Th&{y) becomes the
o probability of finding a kink at a distancg along the step
=2f [1—cogqy)]P(y,&)dy, (56)  edge from a kink at the origifi.e., aty=0). If we assume
0 now that the probability of findingn kinks in a lengthé of
where P(y,&)=(2&) lexp(-y/é). Inserting Eq.(56) into  the step is a Poisson distribution with a mean of urftthen
Eg. (13) we see that itgjth component is identical to Eqg. it would automatically lead to the form d?(y) chosen by
(11) of Ref. 23 with the choice oP(y) made above, which us. Similar arguments for a closédircula) geometry can
is also one of their special choices. Thus, we further identifyequally well be used to explain the noninteger exponents
our B as theirS, and ourQk, as theirTs, (their hopping ©bserved in the diffusion of large adatom islatden
parameter Cu(001) 42:3(91 Ad001) surfaces or of vacancy islands on
Consider now the alternative lim2,=0 andk_=0 (or ~ Ag(11D.” In the notation of Ref. 33R,; would be the
k. =0) of Eq.(13) so that equivalent of¢ in a circular, closed geometfy.In that con-
tinuum theory®® this extra length scalfultimately the de-

where thel'(z) is the gamma function, which for integer
values ofz reduces to £—1)!.5% Using this form we get

1/rq=8ktq2a§/(1+a§) nominator in Eq{(55)] can produce a noninteger scaling ex-
ponent(a), in contrast to simpler theories.
_ 2 [ %1 _ amlalx Table | lists the special cases addressed explicitly in this
28k-q JO (1-e JP(X,Dsufk)dx. (57) paper. Identical entries in the fourth and fifth column in a

row indicate that the steps appear as “effectively” decou-
pled (since it impliesB,/A <1 in these limity and are de-
scribed by a single step equation, as in casand in limits
(iii) of casesA and D. However, in caseéE the interstep
distance/” does enter as a prefactor, indicating the indirect

The = signs in the equation correspond to the linkits=0.
Now consider the corresponding limit in E@8) of Ref. 23,
which in their notation implies;=0 (or ¢, =0). Using this
limit in their Eq. (28) and substituting the result in their Eq.
(11) we get Eq.(57) provided we replace exp(da,) by  ffect of the neighboring steps.

unity in their Eg. (28). Ihen we get the identifications as We have shown in a unified picture how the various mi-

before that ous is theirX, and our)k. =TI",. Furthermore  croscopic mass-transport mechanisms come into play in
we get ourDg,, as their @7 v)exp(—Ey/kgT), ourk. /Dg,a@s  causing step-edge fluctuations of a single isolated step as
their a5 and our(} as theira, a; . Duxbury* points out that ~ well as those of steps in a vicinal array. We have considered
the ad hoc replacement of expf|gla,) by unity to match ~ special limits[including some new ones such @ in caseA
their result with Eq(57) signifies one of the real differences and(ii) in caseD]) where only certain types of mass trans-
between our approach and that of Ref. 23. He states that thiort are allowed and of these allowed ones a particular one is
difference originates because of the different ways of solvingate limiting. In these limits a scaling of the relaxation time
Laplace’s equation on the terraces. In Ref. 23, an atom igq of a fluctuation of wave numberg (wavelength
placed an atomic spacing away from the step edge, and the=2/|q|) was found. There is, however, no scaling in gen-
diffusion is treated from that source. In our work and similareral away from these limits, as is evidenced from the com-
earlier treatments)*"24273334ne diffusion is studied in the plicated forms of Eqs(13) and (27). We have, however,
presence of a step which is perturbed from its original flatstudied the crossover between several of these limits.
shape by an infinitesimal amplitude. The method of Ref. 23 In analyzing both the limiting behavior and the crossover,
then introduces new terms such as exjgfa,), which are it has been convenient to rely on the dimensionless ratios
due to the distance an atom jumps when it detaches from e=k_/k, , |q|/, a§ , andbqi . In an actual experiment, one
step edge. There are no such terms in our analysis or earligvill certainly vary g and might also changg or tempera-
work 151721273334 hogh we have shown the similarity of ture. Sinceq is implicitly involved in the formation of the
our approach and that of Ref. 23 in the limit of no terracelatter two dimensionless ratios, experimental trajectories will
diffusion (D¢,=0), we have not been able to do so in thebe complicated but manageable in the various figures de-
most general form of Eq13). As mentioned abové®’there  scribing crossover. Temperature manipulation produces a
is a real difference in the treatment of terrace diffusion in thegreater problem, since characterization of the thermal varia-
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TABLE I. List of limiting cases discussed in the text. The first column describes the cases and the corresponding limits considered in Sec.
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Ill. Dg, andDyg, are the diffusion constants for motion along the surfd@egace and the step edge, respectivéBefs. 29 and 3b k.. is the

kinetic coefficient for mass exchange between the step and the lower/upper terragéjsatite mean spacing between steps. These are
defined more precisely in Sec. (Refs. 29 and 36 The key dimensionless ratios alg|/, where|q| is the capillary wave number
(wavelengthh =24/|q]), anda§ andb , which are measures of the terrace diffusion and the step-edge diffusion, respectively, relative to
the attachment/detachment rate, as defined inEf). Other parameters in casAsandG are defined in the appropriate subsection of Sec.

Ill, and reduced stiffnessS is defined by Eq.16). The second column cites the relevant equation numbers for that case, with any
modification of prefactors if necessary. The remaining columns indicate the determined prefactor and the expghefthé scaling of

7;1: The third column indicates the limit o*fal/J:Tq2 from Eq.(13). The fourth and fifth columns indicate the limits &{* 2B,)/S from

Eq. (33), for the out-of-phas¢opticall and in-phas¢acousti¢ combinations, respectively, of steps in an infinite array. Stars indicate the

absence of relevant entries in that cell. As described in Appendix A, the table can be readily recast into the variables of the alternative

formalism by making the appropriate replacemenkofby k3" or k%', with a;—' and b(f being replaced by their primed counterparts.

Case: Limits Equation 74 1502 (Ag+2By)/S (Ag—2By)/S
A (3dEQ): D=0, [Agl=Xs

(i) Dgu/(xk)<1</IXq (35) 2(Dgy/7e)Y? *

(ii) Xk IDgy<1</Xg (35) W/ 2(Dgy/ 7e) Y2—k, +k_ Ky +k_ *

(iii) /Txs<1<Dgy/(Xgk=) (36) w/ 4(k;1+k-hHt

such thaD ¢/ /(x2k-)>1 & /lre—ky+k_ k., +k_ k, +k_
(iv) /Ixs<Dgy/(xcks)<1 (36) 4k;t+k-ht /e

(V) Doyl (XK )</ Ixg<1 37 ADg I/ Doy(kit+ k=Y 7
B (EC): ag>1 orby>1

(i) Dg=0,a,>1 (398), (39 ki +k_

(i) Dgy=0, by>1 (38), (39 ki +k_

(i) by>1,a,>1 (38), (39 ki +k_

C (ISTD): D¢=0

(i)k-=0,a;<1 (40), (41) w/ Dg,—D/2 DJal

(i) k, =0,a,<1 (40), (41) w/ Dg,—D¢/2 Dl * *

(iii) a; <1 (40), (41) 2Dg|q

D (DSS: D=0, |q|/<1

(i) ag <lal/ (42 ADg,l/ D2 (k= + kY g?
(i) lal/<ag <1 43 4(k;t+k-hHt Do/ 2
(i) ag>1 (43 w/ 4(k; +k-hHt

such thata, |q|/>1 & Do/ qP—k, +k_ k, +k_ K, +k_

E (PSTD: k_=0, D=0

& |gl/<1<l/a; (49 * Do/ 9? D/ 02

F (PD): D=0

(i) by <1 (45), (46) 2a, D0

(i) by =0, by <1 (45), (46) W/ Dg— D2 a, D> * *

(i) by =0, by <1 (45), (46) W/ Dg;— D2 a, Dgq?

G (3dS): Dg=D¢,=0

& Dyqlql/k=<1 (47) D,alal * *

tion requires an explicit microscopic model of the transportimportant in the relaxation of biperiodic gratings or{(®i1),
process. In our treatment, such a model is neither necessaag demonstrated recenflyThe possibility of atoms just
nor even desirable; our approach is to extract transport coetrossing a step from one terrace to the next without being
ficients from[other mesoscop]experiments, so that there is attached to the step edge has also been proposed éattier.

no dependence am priori insights. Likewise, in our formal-
ism it does not matter whether transport is by adat¢assis
usually assumed implicitly or by vacancies[as found

Appendix A we have introduced a formalism that treats in-
dependently the mass exchange associated with terrace and
with step-edge diffusion. Some transcriptions of the results

recently® for Cu(001)]. Thus, many microscopic subtleties in the body of our papeiin this alternative approagitan be

are transcended at this level.

readily written, while others remain for future publications.

The present theory is limited in several ways. It is linearGeneralization of our and related approaches may be taken in
in the fluctuations. It uses a small-slope approximation forat least three possible directior(§) Other linear physically
the chemical potential. We have also neglected the possiblgelevant terms such as a constant force acting on the adatoms
significant effect of step permeability. This phenomenon isand vacancies on the terradasich as may be thought of as
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acting under the influence of a direct current being passe&ec. Il. All the limits considered in Sec. Ill and Table I

through the crystal under stutly or a linearized step-step remain unaffected with the replacementlof by kS“St as

interaction ternf:'"3"%%i) Another generalization would be appropriate. As already dicussed in casef Sec. Ill, we can

to consider the effect of large fluctuations through the excluinclude the effect of evaporation from the terraces into the

sion of the small slope approximati%ﬂrand including other 3¢ vapor by just replacingg| in the definition Ofaéi by

nonlinear term$™*° (i) One may also relax the quasistatic |A | and also|q|/ everywhere byA,|/. In caseG (only)

assumptiorf? These and other generalizations, though studWeq substitute fork. a third kinetic qcoefﬁcienmga corre-

ied to some exterft,"*-#**%>have not yet been fully ex- sponding to the direct sublimation of an atom from the step

plored. edge into 8 vapor. Figures 4 and 5 remain unaffected, but

with the understanding th&€" anda; ™ replacek.. anda, ,
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to ﬁ'f Kloc?iyalam folr us_eful disAcussi%rjs,;o D'O'I‘J' L(ié‘ fg{) in- As an intermediate case between single isolated steps and
sightful discourse leading to Appendix A, and to C. EDNer,, \;ina) array of steps one can consider two adjacent steps
D.-J. Liu, J. Pelz, and O. Pierre-Louis for helpful Comme”tsseparated by a mean distancé*3* The mean position of

on the manuscript. E. D. Williams and H. Ibach asked stimuy,q fi .t step will be given by=0 and that of the second one

lating questions about the definition Df;. by x=/. The upper terrace of the first step extends to
. x=—o from x~0. The lower terrace of the second step
APPENDIX A: ALTERNATIVE FORMALISM extends tax=+ from x~/. This scenario of two nonin-

The boundary condition expressed in E@) is not f[eractin_g steps separated by a fixed distaﬁaeann_ot occur
unique, even in a linear theory. In an alternative and arguln €quilibrium. We present this case for comparison with a
ably physically more appealing description, the kinetic coef-Similar result of Ref. 24. One may write appropriate bound-
ficientk. is different for an atom detaching from a kink site &Y conditions for this case and solve the problem as done in
onto a neighboring terrace and an atom detaching from Kef. 34. However, the approach we follow here is to use the
kink site onto a more mobile position but still along the stepSelution in the form of Eq(27) of the problem for a vicinal
edge. On a microscopic level, there should (amd are, infinite array of steps and thgn, specialize it to the case of
physically different activation barriers associated with de- WO steps of the above-mentioned geometry. To do this we
taching from the step or just becoming mobile along it, withfirst obserye that the Oth step has to be mﬂmtgly. fgr away
a resultant discontinuity in the chemical potential at the stegrom the first step and the 3rd one has to be infinitely far
edge. This picture is more general than that considered préWway from the second step. This is simply achieved by let-
viously in Refs. 21, 33, and 34. We denote the two kineticting ~— in the terms containin@qxoq(t) or k_I4 in the
coefficients bykS" and k', respectively. Then we get two equation for the first step and in the terms containing
equations to replace each of ES), (7), and(8). To illus-  BgXaq(t) Or k+|§2 in the equation for the second step. In this
trate, Eq. (8 is replaced by the equations limit we get Sq°k.lq =1/7; and BgXoq(t)=BgXs4(t)=0.

a, Do (0%,y) =K [ w(0%,y) — us] and ¥ D du(0%,y)/  We then get the equations for the two step%‘%%
Ix=K3 w(0*,y)— us]. The discontinuity ofu(x,y) asx

—0 requires the use of thedeo boundary conditions in- _ . _— 1
stead of the single one of E@8). The form of Eq.(13) X,(Y,)=—8> V] | kil g2+ | —= X;4(D)
remains the same but with the replacement of @§) by 2 d Tq 24
kiualt kitb!t
Urg=8q% ——+———|, (A1) Do Jal®
1+aq~ 14+by™ - Eq Xiq(t) . (B1)
g

with  the definitions a,"=Dg|q|/kS and bg™
=a,D4q%/k% . Egs. (18~(23 maintain their form under Then limits can be taken as described in the text.
these changes. For the boundary conditions for an infinite
array, Egs(25) and(26), similar modifications are then re-
quired. This reformulation entails the following changes in
Egs.(27)-(33) and Eq.(B1): (i) settingbg =0, (ii) replace- In this appendix we derive the early-time scaling relation-
ment ofa, by a;~, (iii) replacement ok.. by k", and(iv)  ship of the mean-square widih?(t) defined by Eq.(32),
in the definition of Ay, addition of the term withtimet. Such a scaling is possible only in cases where
Skitbéi/(l'f' by ). of Eq. (14) scales with |g|, so that we may write
Notice that in the limitk$"=k3'=k.., Eq. (A1) doesnot T;1=Am|q|m, wherem=2,3,4, andA,, is a constant. Using
simply reduce to Eq(15); this is an alternative formulation the Fourier expansion of(y,t) =2 xq(t)exp(qy), we may
rather than a mere extension of the conventional approach weirite

APPENDIX C
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with some of that present in the previous literature. We

wi(t)=>, 2 ([Xq(t) =Xg(0) ][ Xq/ (1) —Xq:(0) ] denote symbols used in Ref. 32 by KB, Ref. 33 by KE,
4 q Ref. 21 by BM, Ref. 27 by BZ, Ref. 17 by BG, and Ref. 18
xexdi(q+qg’)yl). (C) by BE. The symbols in the present work shall carry no

superscript. We note that there is a subtle difference between
the notation of KB and KE. First there are the identitical
definitions in both papersc/®'=cX® pKB=pKE,

su
, However,cX®) is the actual carrier density along the step
(C2  edge, andDX®) is the actual diffusion constant along the

o 7 edge. In KE,cX® is defined as[cea, ]*® leading to
In deriving Eqg.(C2) we assumed that the step was initially D(STE):[DstCst/(Csual)](KB)- Thusc(STE) andDg?E) are mere

straight and lying along thg axis, implying thereby that definiti :
a . o m efinitions and should not be confused with the actual
:tgn(lot)A‘O f%r \?vl(la qétTaklng the limits tAn/L"—0 and physical carrier concentration along the step edge which is
1/ (tAm) =0, g cX® and the actual diffusion constant of these carriers along

Using this with Egs(20)—(23), we get

1—exp(— 2tA|q|™)
q2

kgT
2(+) — AN—
w(t) % (| (xq(D)]%) ’BL%

the step edg®X®. Also to connect the present work with

) Q um [Z] L= exp(—x) ) TR
wa(t)= M(ZtAm) m o Dim dx (C3 that of KB and KE we have the identifications
0 X k.= [Csur*_-](KE)v _Dsu:[DsucsuQ](lfB) and
which, after integration by parts, gives a, Dg=[DsCs:Q1*® or in other words withQ=a,a, we
" getD=[D¢cs@ ] ). Footnote 34 of KE also needs modi-
WA(t) = Qf 2tAn F( m— 1) (4 fication. We identify3=[h¢]®™. BM consider mass trans-
| gm m /' port on both sides of the step in a single expression in their

Eq. (A.10). This is also true of Eq6) of BG. It is therefore
not possible to compare olr. with their notation. Still, we
. - use here k_ =0 for sake of comparison to get
As an alternative to the definition of E€B2) we may use _ (BM) (BM) .
W(ty,t5) =([X(y,tz) =x(y,t1)1?). Here as well it is as- 5?42':122%%%%1% v'vhnTegeiys t\';lvzedSi}nensioisal a\l/vé%eeen-
sumed that the step is initially straighte., x(y,0)=0], and ify Q=[Q/h]EW D :[QVDt/h](Bw' and
that t; ,t,—oc, so that the step fluctuations have reached, * —[Qva DS/h](BI\;I) SimiI;urIy comparing our Eq(39)
equilibrium at these times. The tine=|t,—t,| is assumed (vtithSIk +0) owith Eq (é) of BG we get X0=T"5% and
to be small. In this case EqC?2) is modified so that we - ; . i a
. e comparing our Eq.(45 with their Eq. (170 we get
replaceT by 2T and 2A,, by A,, and make the identification 2a, 0D =[T',]®, with periphery diffusion along the
of w*(t) with w*(ty,tp). Then the only modification in the Iov¢er a;td up?)er s’tep edge being allowed. If it is allowed
final result of Eq.(C4) is that ZYm s replaced by 2360 only on the lower step edge tthDst:[r;](BG)- B7 do
t-l\—/\r/lelzser?)iﬁlealrnessgl]ti z?%aerfesntlc(i)lf;enrgnlc; by a factor 8f Be- not consider transport along the step edge so that they have
' ' no terms involving ourDg. Our Dg,=[Dcg,Q]®?,
ke=[k.CoQ]®?,  7=[7/(ce,)]®?, and also
[csu ¥®=[c4]®?=[co]®E. Similarly Dg,=[Dsco02]"F.
The literature contains an unfortunate plethora of notafor completeness we reiterate that @y, /€, is the same
tions for identical quantities. We here connect our notatiorasD,p, of Eq. (A.7) of Ref. 19.

where I'(z) is the gamma functiofi and I'(1/2)= =
=1.77245... ,T'(2/3)=1.3541..., andl'(3/4)=1.2254...3°
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